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A B S T R A C T   

The cold-inducible proteins (CIPs) are essential for post-transcriptional gene regulation playing diverse tissue- 
specific roles in maintaining normal cellular function and morphogenesis. The potential implications of CIPs 
in reproductive events raise questions about their role in the physiology of the bovine reproductive tract. 
However, the expression changes of CIPs during the bovine estrous cycle have not been studied so far. Here, we 
hypothesized that the bovine estrous cycle could affect the mRNA expression of the CIPs and other candidate 
transcripts in the reproductive tract. This study aimed to examine estrous cycle-dependent mRNA expression 
patterns in the bovine endometrium and ampulla of three of the major described CIPs (CIRBP, RBM3, SRSF5), a 
set of inflammatory cytokines (IL-10, IL-18, IL-1β), and other candidate genes (IL-10RA, IL-10RB, BCL2, NLRP3, 
STAT1, STAT3, STAT5A, STAT6). Endometrial and ampullar tissues were assessed by RT-qPCR. Additionally, the 
mRNA expression levels were correlated among them and with follicular progesterone and estradiol concen-
trations. The transcript levels of CIPs increased in the endometrium during stage III (Days 11–17) compared to 
stage I (Days 1–4) and IV (Days 18–20). In the ampulla, the mRNA expression of CIRBP increased during the late 
luteal phase (stage III), but no differences in the expression of other CIPs were observed. This study expands the 
current knowledge regarding mRNA expression in the endometrium and oviductal ampulla of cycling heifers, 
focusing mainly on the CIPs. A better understanding of the mechanisms within the uterus and oviduct during the 
estrous cycle is crucial to improving the fertility rate.   

1. Introduction 

During the bovine estrous cycle, different transcriptomic changes are 
induced by hormonal regulation along the female reproductive tract in 
preparation for subsequent reproductive events (Forde et al., 2011). 
Several gene regulatory processes are activated in response to a wide 
range of stressors to organize an appropriate cellular response (Harvey 
et al., 2017). The post-transcriptional control of RNAs provides a critical 
regulatory point in gene expression (Änkö, 2018). This regulation is 
achieved, in part, by the RNA-binding proteins (RBPs), which form RNA 
ribonucleoproteins complexes when binding to RNA, defining the 

processing, localization, lifetime, and translation rate of specific mRNAs 
(Lunde et al., 2007). The RBPs are involved in several functions, 
including the modulation of inflammation and the immune system 
(Kafasla et al., 2014), contributing to different reproductive patho-
physiological conditions (Khalaj et al., 2017). Although inflammation 
can cause pathological states in the female reproductive tract, an 
appropriate pro- and anti-inflammatory balance is required for repro-
ductive success (Cicchese et al., 2018). Besides, inflammation is crucial 
during several physiological reproductive steps, including ovulation, 
mating, embryo implantation (Jabbour et al., 2009), and the estrous 
cycle (Bauersachs et al., 2005). However, the precise mechanism by 
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which RBPs are modulated in the reproductive tissues during the bovine 
estrous cycle is poorly understood. 

A family of evolutionarily conserved RBPs named cold-inducible 
proteins (CIPs) (Ciuzan et al., 2015) is transcriptionally upregulated 
not only in response to mild hypothermia (Danno et al., 1997; Nish-
iyama et al., 1997; Tong et al., 2013; Rzechorzek et al., 2015; Fujita 
et al., 2017), but also to different cellular stressors, such as UV radiation, 
osmotic stress, or hypoxia (Zhu et al., 2016). The cold-inducible RNA- 
binding protein (CIRBP) is a constitutively and ubiquitously expressed 
CIP (Liao et al., 2017). Other CIPs are the RNA-binding motif protein 3 
(RBM3) and the serine and arginine-rich splicing factor 5 (SRSF5), also 
induced by mild hypothermia and other general stressors (Zhu et al., 
2016; Fujita et al., 2017). CIRBP is induced by mild hypothermia in 
bovine cumulus cells (Gardela et al., 2019b), and it is localized in the 
bovine ovary (Gardela et al., 2019a) and the endometrium of women 
(Hamid et al., 2003). Several findings suggest that CIPs play various 
tissue-specific roles, including maintenance of normal cellular function 
and morphogenesis (Zhu et al., 2016). However, if the bovine estrous 
cycle modulates the mRNA expression of these CIPs along the female 
reproductive tract has not been determined. 

Generally, CIRBP is mainly found in the nucleus but can be trans-
located to the cytoplasm and released extracellularly under certain 
stress situations (Aziz et al., 2019). Intracellularly, CIRBP acts as an RNA 
chaperone regulating the mRNA stability of specific targets and trans-
mitting signals interacting with other proteins (Zhong and Huang, 
2017). Under stress, CIRBP can suppress apoptotic pathways promoting 
cell survival (Liao et al., 2017), enhancing the expression of anti- 
apoptotic proteins like the B-cell lymphoma 2 (BCL2), which prevents 
apoptosis by maintaining cell survival (Yang et al., 1997). 

Extracellular CIRBP functions as a danger-associated molecular 
pattern (DAMP) response to promote inflammation (Qiang et al., 2013), 
being involved in diverse acute and chronic inflammatory diseases 
(Zhong and Huang, 2017). Besides, CIRBP has been related to the 
inflammasome (Yang et al., 2016). This multiprotein complex signaling 
platform that mediates immune responses activating inflammatory 
caspases that facilitate the secretion of cytokines, which induce a pro- 
inflammatory form of cell death (Broz and Dixit, 2016). The protein 
complex is formed in response to infection, damage, or other cellular 
stressors, containing a nucleotide-binding oligomerization domain-like 
receptor (NLR) sensor molecule (Latz et al., 2013). The NLR pyrin 
domain containing 3 (NLRP3) inflammasome is a crucial mediator of 
inflammation in response to DAMPs, including cell-free DNA, extracel-
lular debris, or extracellular vesicles (Broz and Dixit, 2016; Shirasuna 
et al., 2020). The activation of the inflammasome complex triggers 
caspase 1, which activates the pro-inflammatory interleukins IL-1β and 
IL-18 (Latz et al., 2013). IL-1β mediates immune cell activation, cytokine 
production, and adhesion molecules, playing essential roles in several 
inflammatory diseases (Dinarello, 1996). IL-18 is a pro-inflammatory 
cytokine first identified for its interferon-γ-inducing properties (Oka-
mura et al., 1998). 

As an anti-inflammatory cytokine, IL-10 is secreted by many cell 
types, playing crucial roles in maintaining maternal immune tolerance 
(Bin and Sharma, 2015). The biological effects of IL-10 are exerted 
through binding to the tetramer IL-10 receptor (IL-10R), with two 
ligand-binding subunits (IL-10R1 or IL-10RA) and two accessory 
signaling subunits (IL-10R2 or IL-10RB) (Bin and Sharma, 2015). 
Binding IL-10 to its receptor inhibits autophagy through the phosphoi-
nositide-3 K (PI3K)-Akt signaling pathway (Park et al., 2011) and acti-
vates the Janus kinase (JAK)- signal transducer and activator of 
transcription (STAT) pathway, which could activate STAT3 promoting 
various IL-10-responsive genes (Donnelly et al., 1999). The JAK-STAT 
pathway regulates the transcription of multiple genes relevant to im-
munity, development, and metabolic and stress responses (Verhoeven 
et al., 2020). Activated by multiple cytokines (including interferons 
(INFs) and interleukins) (Bromberg, 2001), STATs are involved in 
several cell processes, and their dysregulation can induce pathological 

events (Bowman et al., 2000). 
Revealing the mRNA changes of CIPs and inflammatory and 

immune-related factors may help better understand the biological pro-
cesses in the endometrium and ampulla during the bovine estrous cycle. 
Here, we hypothesized that the mRNA expression of the CIPs is differ-
ently present through the bovine estrous cycle stages and in different 
regions of the female reproductive tract. Taking the ampulla and the 
endometrium as essential tissues for reproductive success in which 
fertilization (Ellington, 1991) and implantation (Lee and DeMayo, 2004) 
take place, respectively, we aimed to explore the mRNA expression of 
three major described CIPs (CIRBP, RBM3, and SRSF5), inflammatory 
interleukins (IL-10, IL-1β, and IL-18), as well as other relevant immunity, 
cell proliferation, and apoptosis genes (IL-10RA, IL-10RB, BCL2, NLRP3, 
STAT3, STAT5A, STAT6). 

2. Material and methods 

2.1. Animals and tissue collection 

Commercial crossbreed beef postpubertal heifers (Bos taurus) aged 
between 13 and 15 months were used for the recovery of the female 
reproductive tracts (n = 20). Animals were slaughtered for commercial 
purposes in a local slaughterhouse (Escorxador de Sabadell, Barcelona, 
Spain). The bovine reproductive tracts were classified into different 
stages of the estrous cycle by the appearance of corpora lutea and antral 
follicles according to the morphological classification described by 
Ireland et al. (Ireland et al., 1980), as follows: stage I, corresponding to 
the post-ovulatory phase, Days 1 to 4 (n = 6); stage II, corresponding to 
the early luteal phase, Days 5 to 10 (not included due to the low number 
of animals found); stage III, corresponding to the late luteal phase, Days 
11 to 17 (n = 8); and stage IV, corresponding to the pre-ovulatory phase, 
Days 18 to 20 (n = 6). Day 0 was considered as the day on which the 
female exhibits estrus (standing to be mounted) and other proceptive 
phase behaviors (vocalization, mounting herd mates, and restlessness) 
(Estill, 2015). Endometrial tissue samples were obtained exposing the 
endometrial mucosa from intercaruncular areas at the base of the 
uterine horn ipsilateral to the pre-ovulatory or freshly ovulated follicle, 
<1 h from the harvest of the female reproductive tracts. Additionally, a 
section of the ampulla of the ipsilateral oviduct was obtained for each 
animal. Only the epithelial folds on the inner surface of the ampulla 
were processed for RNA extraction. Immediately after tissue collection, 
each sample was immersed in RNAlater™ stabilization solution (Fisher 
Scientific, Gothenburg, Sweden) and stored at − 80 ◦C until RNA 
extraction. 

2.2. Follicular progesterone and estradiol concentrations 

Follicular fluid was collected by aspiration of subordinate and 
dominant follicles present in the ovaries using an 18 G needle coupled 
with a 10-mL syringe. An individual pool of fluid from subordinate and 
dominant follicles from each ovary was used to determine follicular 
concentrations of estradiol and progesterone. Samples were centrifuged 
at 5000 X g for 10 min to discard cellular debris. Supernatants were 
recovered and stored at − 20 ◦C until their analysis. 

Follicular progesterone and estradiol concentrations were deter-
mined by ELISA (Progesterone ELISA KIT and Estradiol ELISA KIT; 
Neogen Corporation, Ayr, UK). The absorbance values were obtained 
using a microplate reader (Sunrise-Basic Tecan; Tecan Austria GmbH, 
Grödig, Austria). According to the manufacturer, cross-reactivity of the 
progesterone ELISA antibody with other steroids was: deoxy-
corticosterone 2.5%, corticosterone 2.0%, and pregnenolone 2.0%. 
Steroids with a cross-reactivity <2.0% are not presented. The cross- 
reactivity of the estradiol ELISA antibody with other steroids was 
testosterone 1.0%. Steroids with a cross-reactivity <1.0% are not pre-
sented. The precision within the test was assessed by calculating co-
efficients of variation (CV, where CV = SD/mean × 100) from all 
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duplicate samples. The CV for progesterone and estradiol were 7.47% 
and 3.65%, respectively. A sensitivity of 0.23 ng/mL and 0.012 ng/mL 
for progesterone and estradiol were respectively obtained. Finally, for 
each pair of progesterone and estradiol data, a progesterone/estradiol 
(P4/E2) ratio was calculated. 

2.3. RNA extraction and cDNA synthesis 

Samples were homogenized in TRIzol using a bead mill (24 beats/s, 
2 min, twice) (TissueLyser II with 7 mm stainless steel beads; Qiagen, 
Sollentuna, Sweden) for total RNA extraction, as reported (Gardela 
et al., 2020a). The homogenized was centrifuged (12,000 X g, 10 min, 
4 ◦C) and the supernatant was retrieved and mixed with bromo-
chloropropane (100 μL/mL homogenized). After centrifugation (12,000 
X g, 15 min, 4 ◦C), the aqueous phase was incubated with isopropanol 
and RNA precipitation solution (1.2 M NaCl and 0.8 M Na2C6H6O7) 
(250 μL of each/500 μL aqueous phase). The mixtures were centrifuged 
(12,000 X g, 10 min, 4 ◦C) and the supernatants were discarded. For each 
sample, 1 mL 75% ethanol was added. Supernatants were discarded 
after centrifugation (7500 X g, 5 min, 4 ◦C), and the RNA pellets ob-
tained were dried for 30 min in the fume hood. The RNA was dissolved 
in 30 μL of RNase-free water for 30 min on ice. 

After the extraction, the RNA concentration was determined using 
the Thermo Scientific NanoDrop™ 2000 (Fisher Scientific, Gothenburg, 
Sweden). The quality of the RNA was determined by the Agilent 2100 
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), using the 
samples with an RNA integrity number (RIN) value higher than 8. The 
cDNA synthesis was performed using the High-Capacity RNA-to-cDNA™ 
Kit (Fisher Scientific, Gothenburg, Sweden) according to the manufac-
turer's instructions. The reaction consisted of 5 μg RNA in a final volume 
of 50 μL. The cDNA obtained was stored at − 20 ◦C for subsequent 
analysis. 

2.4. Quantitative real-time PCR analyses 

Following a previous protocol for quantitative real-time polymerase 
chain reaction (qPCR) (Gardela et al., 2020a) (CFX96™; Bio-Rad Lab-
oratories, Inc.; Kabelsketal, Germany), the mRNA relative expression 
levels were quantified using the 2-ΔΔCT method (Livak and Schmittgen, 
2001). The reactions consisted of 2 μL cDNA, 250 nM of each primer, 
and 5 μL of PowerUp™ SYBR™ Green Master Mix (Applied Bio-
systems™, CA, USA) in a final volume of 10 μL. The PCR protocol 
consisted of one cycle of uracil-DNA glycosylase activation at 50 ◦C for 2 
min; one cycle of denaturation at 95 ◦C for 2 min; and 40 cycles of 
denaturation at 95 ◦C for 5 s, annealing/extension at 60.2 ◦C for 30 s, 
and a melting curve at 60–95 ◦C (0.5 increments) for 5 s/step. Two 
technical replicates were performed per each sample and primer pair 
used. Four housekeeping genes were initially used for cDNA normali-
zation (G3DPH, β-ACTIN, HPRT1, and TBP). After a preliminary analysis 
of the results, the G3PDH was the most constantly expressed gene 
through the tissues and treatments and was chosen for further analyses. 
Commercial gene-specific qPCR primers for bovine were used (Pri-
mePCR™SYBR® Green Assay, Bio-Rad Laboratories, Kabelsketal, Ger-
many). The specific sequences for each primer are registered by the 
company. The product sizes for each primer are shown in Supplemen-
tary Table S1 and were confirmed by loading the amplicons in an 
agarose gel using a gel imaging system (ChemiDoc XRS+ System, Bio-
Rad Laboratories, Inc., Kabelsketal, Germany). 

2.5. Protein extraction and Western blot analyses 

Tissue fragments were homogenized in radioimmunoprecipitation 
assay lysis buffer (RIPA; Fisher Scientific, Gothenburg, Sweden) sup-
plemented with 10 μL/mL protease inhibitors and ethyl-
enediaminetetraacetic acid (Thermo Scientific™ Halt™ Protease 
Inhibitor Cocktail (100×); Fisher Scientific, Gothenburg, Sweden). 

Homogenates were centrifuged (13,000 X g, 10 min, 4 ◦C) and the su-
pernatants were collected. Protein concentration was determined by the 
detergent compatible (DC) protein assay (Bio-Rad Laboratories, Inc.; 
Kabelsketal, Germany), using bovine serum albumin as standard. Then, 
25 μg of each sample were mixed with 4× sample buffer (NuPAGE LDS; 
Fisher Scientific, Gothenburg, Sweden) and 500 mM dithiothreitol. 
Samples were heated for 10 min at 70 ◦C. Samples were run on 12–15% 
SDS-polyacrylamide gels. Odyssey® One-Color Protein Molecular 
Weight Marker (LI-COR Biosciences, Inc.; Hamburg, The Netherlands) 
was used as a molecular weight marker. For Western blot analysis, 
proteins were transferred onto 0.2 μm polyvinylidene difluoride (PVDF) 
membranes (Fisher Scientific, Gothenburg, Sweden), previously acti-
vated with methanol. For protein identification, and after blocking 
(Intercept Tris-buffered saline blocking buffer; LI-COR Biosciences, Inc.; 
Hamburg, The Netherlands) for 1 h at room temperature, membranes 
were incubated overnight at 4 ◦C with a rabbit monoclonal antibody 
against CIRBP (ab191885, Abcam, Cambridge, UK) at dilution 1:500. To 
standardize the results, a rabbit monoclonal antibody against α-tubulin 
(ab52866, Abcam, Cambridge, UK) was used at dilution 1:1000 in the 
same membranes. To visualize immunoreactivity, membranes were 
incubated with secondary antibody donkey anti-rabbit IgGs (IRDye® 
800 CW-labelled, 926–32,213, LI-COR Biosciences, Inc.; Hamburg, The 
Netherlands). Then, PVDF membranes were scanned with Odyssey CLx 
Near-Infrared Fluorescence Imaging System (LI-COR Biosciences, Inc.; 
Hamburg, The Netherlands). Optical density was quantified by Image 
Studio software version 5.2. (LI-COR Biosciences, Inc.; Hamburg, The 
Netherlands). 

2.6. Statistical analyses 

Data from qPCR analyses were exported with CFX Maestro™ 1.1 
software version 4.1.2433.1219 (Bio-Rad Laboratories, Inc.; Kabelske-
tal, Germany) and data from Western blot analyses were exported with 
Image Studio software version 5.2. (LI-COR Biosciences, Inc.; Hamburg, 
The Netherlands). All data sets were analyzed for normal distribution 
and homoscedasticity using the Shapiro–Wilk Normality test and Lev-
ene's test, respectively. The log(x + 1) was used to transform non-normal 
distributions before analysis to achieve a normal distribution. Statistical 
analyses were performed with R software version 3.6.1. (R Core Team, 
2019). Data are presented as mean ± SEM. The threshold for signifi-
cance was set at P < 0.05. 

Data from qPCR, Western blot, and follicular hormone analyses were 
analyzed using the nlme package (Pinheiro et al., 2020) to develop linear 
mixed-effects (LME) models and the multcomp package (Hothorn et al., 
2008) to perform pairwise comparisons adjusted by Tukey's test. In the 
LME model, the estrous cycle stages were included as the fixed factor 
and the samples as the random part of the model. Data from qPCR an-
alyses were also analyzed using multiple Spearman's rank correlation 
coefficients to explore the relationship between the mRNA expression 
fold change of the target genes and between mRNA expression and 
follicular fluid hormone concentrations. Additionally, to investigate 
whether the CIRBP protein abundance occurs in proportion to its mRNA 
relative levels, Spearman's rank correlation coefficients were performed. 

3. Results 

3.1. Endometrial mRNA expression changes 

The analysis indicated that the differences observed in the endo-
metrium between stages of the estrous cycle in the mRNA expression of 
CIRBP, RBM3, SRSF5, STAT1, STAT5A, STAT6, IL-10RB, and NLRP3 
were statistically significant (Fig. 1). The mRNA expression of the CIPs 
(CIRBP, RBM3, and SRSF5) was higher expressed in stage III of the estrus 
cycle compared to stage I and IV (P < 0.05). Similarly, STAT1 and STAT6 
mRNA expressions were higher expressed in stage III of the estrous cycle 
compared to stage I and IV (P < 0.05). The STAT5A and NLRP3 mRNA 
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expressions were higher expressed in stages I and IV of the estrous cycle 
compared to stage III (P < 0.05). The IL-10RB mRNA expression was 
higher expressed in stage III of the estrus cycle compared to stage I of the 
estrus cycle (P < 0.05). 

3.2. Ampullary mRNA expression changes 

The analysis showed statistical differences in CIRBP, STAT1, STAT3, 
STAT5A, STAT6, BCL2, IL-10RA, IL-10RB, and IL-1β mRNA expression 
between stages of the estrous cycle in the ampulla (Fig. 2). Of the three 
CIPs included in the study, only differences in the mRNA expression of 
CIRBP were found, increasing its mRNA expression in stage III of the 
estrus cycle compared to stage I and IV (P < 0.05). Similarly, STAT5A, 
IL-10RA, and IL-10RB mRNA expressions were higher expressed in stage 
III of the estrous cycle compared to stage I and IV (P < 0.05). Conversely, 
BCL2, STAT3, and IL-1β mRNA expression were lower expressed in stage 
III of the estrous cycle compared to stage I and IV (P < 0.05). The STAT1 

and STAT6 mRNA expressions were higher expressed in stage I of the 
estrous cycle compared to stage III (P < 0.05). 

3.3. Correlations between relative mRNA expression of genes and 
follicular hormone concentrations 

The follicular fluid progesterone and estradiol concentrations 
depicted a non-significant increasing trend as the estrous cycle pro-
gresses (Fig. 3A). The progesterone/estradiol (P4/E2) ratio did not differ 
significantly between the stages of the estrous cycle (Fig. 3B). 

The relative mRNA expression levels of the genes included in the 
study were correlated among themselves and with the follicular fluid 
concentrations for both tissues analyzed, namely the endometrium 
(Supplementary Fig. 1) and the ampulla (Supplementary Fig. 2). The 
endometrial CIRBP mRNA expression positively correlates with several 
mRNAs, independently of the stage of the estrous cycle. On the other 
hand, the ampullary CIRBP mRNA expression negatively correlates with 
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interleukins and their receptors, and with NLRP3 during stage III. 

3.4. CIRBP protein expression in the bovine endometrium and ampulla 

Differences in relative CIRBP protein expression between stages of 
the estrous cycle were evidenced by Western blot analysis of both in the 
endometrial and ampullary tissues (Fig. 4). In the endometrium, the 
CIRBP protein expression was higher expressed in stage III compared to 
stage I (P < 0.05). In the ampulla, the CIRBP protein expression was 
higher expressed in stage III compared to stage IV (P < 0.05). 

3.5. CIRBP protein abundance in proportion to CIRBP mRNA levels 

In both endometrial and ampullary tissues, the CIRBP protein 
expression correlated with the abundances of its corresponding mRNA, 
but not strongly (Fig. 5). The Spearman correlation coefficient of 0.61 in 
the endometrium implied that 61% of the variation in CIRBP protein 
expression was explained by known mRNA abundances. Similarly, the 

Spearman correlation coefficient of 0.56 in the ampulla implied that 
56% of the variation in CIRBP protein expression was explained by 
known mRNA abundances. 

4. Discussion 

The RBPs have key functions in the post-transcriptional regulation of 
mRNA, being crucial in tissue homeostasis and pathophysiology in 
multiple tissues, including the female reproductive tract (Khalaj et al., 
2017; Änkö, 2018). Although the implications of RBPs in the repro-
ductive process are poorly understood, CIPs may have potential impli-
cations in early reproductive events during the peri-ovulatory phase 
(Gardela et al., 2020b). The present study demonstrates that the mRNA 
of CIPs and other candidate factors are differentially expressed in the 
endometrium and ampulla during the bovine estrous cycle. 

It has been hypothesized that the regular cyclic changes induced 
during the estrous cycle in the bovine female reproductive tract may 
lead to changes in the mRNA expression of three CIPs: CIRBP, RBM3, and 
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SRSF5. However, as multifunctional proteins that contribute to the 
maintenance of normal cellular function (Zhu et al., 2016), we aimed to 
explore other candidate-related factors. Our results showed increased 
the CIRBP, RBM3, and SRSF5 mRNA expression in the endometrium 
during the late luteal phase (stage III). Only CIRBP relative mRNA level 

was increased in the ampulla during stage III of the estrous cycle, which 
was also confirmed by results obtained at the protein level. This situa-
tion resembles that reported for the human uterus, whose CIRBP protein 
levels in the endometrium are strongly increased during the secretory 
(luteal) phase and inversely correlated to the proliferative activity in 
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endometrial glands (Hamid et al., 2003). These results may be related to 
the described activities of CIRBP in the regulation of post-transcriptional 
and translational events, cell proliferation, and protection against 
apoptosis, among other molecular and cellular activities (Zhu et al., 
2016). However, the exact mechanism behind these results needs 
further research to be clarified. 

High progesterone levels in the luteal phase can induce apoptotic- 
like regression of granulosa cells (Zhang et al., 2021). However, 
apoptosis is less important in the oviduct changes during the estrous 
cycle (Steffl et al., 2008). As shown here, we demonstrate differential 
expression of the anti-apoptotic gene BCL2 and its correlations with 
other genes during the bovine estrous cycle in the ampulla. The mRNA 
expression of BCL2 increased during the pre- and post-ovulatory phases 
(stage IV and I, respectively), showing a common positive correlation 
with the mRNA expression of CIRBP, SRSF5, IL-1β, and IL-18, and a 
negative correlation with the mRNA expression of IL-10. Our data agree 
with the proposed defense mechanism to protect the ampulla from 
damage caused by apoptosis during the luteal phase (Zhang et al., 2021). 

IL-1β stimulates the infiltration and migration of immune cells to the 
bovine oviduct epithelium (Nakamura et al., 2021). In the present study, 
the mRNA expression of IL-1β was significantly higher in the ampulla 
during pre-ovulatory and post-ovulatory phases compared with the late 
luteal phase. Similar results were reported in the bovine endometrium, 
in which the mRNA expression of IL-1β increased around ovulation 
compared to the luteal phase (Fischer et al., 2010). Other studies 
demonstrate the induction of inflammatory cytokines and acute-phase 
proteins in the bovine endometrium during post-partum (Gabler et al., 
2010; Pothmann et al., 2021), first inflammatory immune responses 
(Gärtner et al., 2016), and endometritis (Wagener et al., 2017). How-
ever, our data did not show IL-1β mRNA expression changes in the 
endometrium, probably due to the variation of mRNA expression be-
tween animals. As previously proposed in the bovine endometrium 
(Fischer et al., 2010), we suggest a similar functional IL1 system in the 
bovine ampulla. 

Our results did not show any changes in IL-10 mRNA expression 
either in the endometrium or ampulla during the bovine estrous cycle. 
However, we demonstrated higher IL-10RA and IL-10RB mRNA 
expression in the ampulla during the late luteal phase, and higher IL- 
10RB mRNA expression in the endometrium during the late luteal phase 
that may suggest a role of these receptors in the homeostasis mainte-
nance in that specific stage of the estrus cycle. 

Several immune-mediated processes contribute to the regulation of 
reproductive physiology (Yockey and Iwasaki, 2018) and may be 
beneficial for subsequent fertility at the time of insemination (Wagener 
et al., 2021). Our results revealed higher NLRP3 mRNA expression in the 
endometrium during the pre- and post-ovulatory phases. As long as the 

NLRP3 has been linked with the preparation of the bovine endometrium 
during early implantation (Suzuki et al., 2018), our results might suggest 
that, in the absence of pregnancy, the increase of NLRP3 mRNA 
expression could lead to the preparation of the endometrium for the 
early reproductive events. 

We analyzed the factors of the STAT family that can activate gene 
transcription, transducing signals from the cell membrane into the nu-
cleus (Sadowski et al., 1993). Here, we reported differential and oppo-
site STAT1, STAT3, STAT5A, and STAT6 mRNA expressions during the 
bovine estrous cycle in the endometrium and ampulla. 

Our results showed an increase in the endometrium STAT1 mRNA 
expression during the late luteal phase, being the STAT1 one of the first 
STAT proteins detected in the INF signal transduction pathways, which 
involves, among others, stimulation of apoptosis (Bromberg, 2001). 
Previous studies have shown that, in the event of gestation, the STAT1 
transcript increases in the endometrium during the period of maternal 
recognition of pregnancy (Day 16) and then amplifies at implantation 
(Day 20) (Carvalho et al., 2016). In the ampulla, the STAT1 mRNA 
expression was increased during the post-ovulatory phase compared to 
the late luteal phase. This dual modulation of STAT1 mRNA opens new 
questions to understand the biological functions and specific mechanism 
of STAT1 during the bovine estrous cycle. 

The activation of STAT3, by multiple cytokines or other factors, such 
as hormones (Verhoeven et al., 2020), is crucial for wound healing 
(Chang et al., 2004), restoration of tissue integrity (Sano et al., 1999), 
and the resolution of the immune response (Fielding et al., 2008). Our 
results showed a decrease in STAT3 transcript in the ampulla during the 
late luteal phase, suggesting that STAT3 signaling in the ampulla may be 
involved in early reproductive events, like ovulation, sperm transport, or 
fertilization. As for the STAT6, previous studies have associated STAT6 
with puberty onset (Nguyen et al., 2018) and age at first corpus luteum 
(Fortes et al., 2011). As shown here, STAT6 mRNA expression increased 
in the ampulla during the pre- and post-ovulatory phases, contrary to 
what happened the endometrium. These results may suggest possible 
roles of STAT6 during early reproductive events, yet not fully 
understood. 

Our study gives a first approach to understanding the modulation of 
the CIPs and related transcripts during the bovine estrous cycle. 
Regarding the classification of the reproductive tracts, the methodology 
applied has been used for over 40 years to assign animals into stages and 
the length of such stages; however, the lack of complete analysis to 
confirm that classification should be considered, and the presence of 
animals in different hormonal profiles and physiological statuses should 
not be discarded. Moreover, further studies are needed to link the 
different correlation patterns between follicular hormones and mRNA 
expression levels observed during the bovine estrous cycle in this study. 
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5. Conclusions 

In summary, we have revealed significant changes in the mRNA 
expression during the bovine estrous cycle. Here, we reported an in-
crease in the mRNA and protein expression of CIRBP during the late 
luteal phase (Days 11–17) in both the endometrium and ampulla of 
cycling heifers. Additionally, we demonstrated changes in the mRNA 
expression of other CIPs (RBM3 and SRSF5), a pro-inflammatory cyto-
kine (IL-1β), and other related genes involved in inflammatory pathways 
(IL-10RA, IL-10RB, BCL2, NLRP3, STAT1, STAT3, STAT5A, STAT6). Our 
data provide novel molecular insights into the mRNA changes during the 
bovine estrous cycle and raises questions about the regulation and 
functions of CIPs under non-hypothermic physiological situations, but 
further validation is needed for its application as prospective biomarkers 
for reproductive physiology performance. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rvsc.2022.08.006. 
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