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Abstract: Lineage tracing studies have become a well-suited approach to reveal cellular hierarchies
and tumor heterogeneity. Cellular heterogeneity, particularly in breast cancer, is still one of the main
concerns regarding tumor progression and resistance to anti-cancer therapies. Here, we review the
current knowledge about lineage tracing analyses that have contributed to an improved compre-
hension of the complexity of mammary tumors, highlighting how targeting different mammary
epithelial cells and tracing their progeny can be useful to explore the intra- and inter-heterogeneity
observed in breast cancer. In addition, we examine the strategies used to identify the cell of origin
in different breast cancer subtypes and summarize how cellular plasticity plays an important role
during tumorigenesis. Finally, we evaluate the clinical implications of lineage tracing studies and the
challenges remaining to address tumor heterogeneity in breast cancer.

Keywords: breast cancer; lineage tracing; heterogeneity; cellular plasticity

1. Introduction

Breast cancer is the most common cancer in women worldwide and is the second
leading cause of cancer death in women, exceeded only by lung cancer (based on data
from the World Health Organization, 2021). This type of cancer originates in the mammary
gland, which is a ductal tree composed of two epithelial compartments: cells facing the
ductal lumen called luminal cells (LCs), and basal cells (BCs) found in the outer layer with
a capacity to contract, which includes basal progenitor cells and terminal differentiated
myoepithelial cells. Luminal cells can be further subdivided into two independent subpop-
ulations based on the expression of the hormone receptor, estrogen receptor alpha (ERα) [1]
(Figure 1).
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Figure 1. Model of normal mammary gland structure. This tissue is composed of ducts, which are
formed by three epithelial populations: basal cells, in contact with the basal membrane; estrogen
receptor-positive (ERαpos) luminal cells; and estrogen receptor-negative (ERαneg) luminal cells. The
dotted black line indicates the cross-section of the mammary duct represented in the magnified
scheme on the right. This figure was created with Biorender.com (accessed on 12 December 2021).
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In clinical practice, breast tumors are classified based on the histological expres-
sion of ERα, progesterone receptor (PR), receptor tyrosine-protein kinase ErbB-2 (HER2),
and the proliferation marker Ki-67. They are divided into three main groups: hormone
receptor-positive subtype, which includes tumors expressing ERα and/or PR, which are
subclassified as luminal A or B depending on the percentage of Ki-67; HER2-positive tu-
mors, defined by the presence of ERBB2/HER2 amplifications and loss of ERα expression;
and triple-negative breast cancer (TNBC), characterized by the lack of expression of the
aforementioned molecular markers [2] (Figure 2).
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hormone receptor (HR)-positive, HER2-positive, and triple-negative. This figure was created with
Biorender.com (accessed on 12 December 2021).

At the cellular level, breast cancer is a heterogeneous disease [3], thereby evoking
disparate phenotypes not only between patients, but also within the tumor itself, known as
inter- and intratumor heterogeneity, respectively [4]. It was suggested that this intratumor
heterogeneity is perpetuated by tumor stem-like cells, leading many research groups to
focus on the identification of biomarkers that allow them to target those cells responsible for
tumor maintenance, including CD44 [5], CD29 and CD49f, [6], CD133 [7], Lgr5 [8], Procr [9],
ALDH [10], or CD61 [11]. Although the origin of breast cancer, as many other types of
cancer, remains largely elusive, a plausible theory is that adult mammary stem/progenitor
cells, which are very long-lived compared with differentiated cells, are better targets for
accumulating the multiple genetic mutations necessary for malignant transformation [12];
however, accumulating evidence has demonstrated that specific mutations in differentiated
cells are also able to initiate a tumor [13–16]. Importantly, both luminal and basal cells are
possible targets for malignant transformation [17,18].

During the last decade, lineage tracing studies have provided deeper insights into the
cellular heterogeneity and molecular mechanisms underlying cellular plasticity in different
subtypes of breast cancer. Accordingly, this review outlines the main milestones concerning
this technology in the breast cancer context, as well as underlining unsolved questions and
future prospects in the field.

2. Lineage Tracing Is the Gold-Standard Approach for Exploring Cellular Hierarchies
and Tumor Heterogeneity in Breast Cancer

Genetic fate mapping studies commonly use a lineage-specific promoter followed
by an inducible form of Cre recombinase fused to the mutant ligand-binding domain of
the human estrogen receptor (CreER, CreERT, or CreERT2) [19–21], which does not bind
to endogenous estradiol, but can be activated by the administration of synthetic ligands,
such as tamoxifen or 4-hydroxytamoxifen (4-OHT). Furthermore, this Cre line needs to
be mated with a reporter line carrying the β-galactosidase enzyme [22], one or several
fluorescent protein(s) [23–27], or barcoding sequences [28,29], in order to monitor the
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targeted cells. In this way, tamoxifen or 4-OHT drive the inducible Cre to the nucleus, where
it promotes the recombination of loxP sequences, allowing the expression of the reporter
(Figure 3A). The use of this particular system has been controversial, since high doses of
tamoxifen can delay mammary gland development [30]; however, the use of low doses
(0.1 mg/g of mouse body weight) is a good balance between correct mammary epithelial
development and sufficient labeling efficiency [31]. Alternatively, other studies have
opted for tetracycline-inducible systems, where tetracycline administration, or its analogue
doxycycline (Dox), enables the expression of a reverse tetracycline-controlled transactivator
(rtTA). Activated rtTA will bind to tetracycline response elements (TRE), which trigger
the expression of Cre recombinase to mediate the recombination of loxP sequences located
at the reporter transgene [32,33] (Figure 3B). Advantageously, this system allows us to
perform lineage tracing at saturation [34], relying on the long-term administration of Dox
and inducing reporter recombination in every single cell of a given lineage, overcoming
the low recombination efficiency obtained by classic lineage tracing experiments using
ER-dependent Cre lines.
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Figure 3. Inducible Cre/Lox systems. (A) Tamoxifen-inducible Cre/Lox model, where, upon tamox-
ifen (Tam) administration, the cells expressing CreER, CreERT, or CreERT2 (determined by a specific
promoter) will be labeled with β-galactosidase, fluorescent protein(s), or barcode sequence(s) due to
the Cre-mediated recombination of the loxP sites, excising the STOP codon in the reporter transgene.
(B) Tetracycline-inducible Tet/Lox system, where, upon doxycycline (Dox) administration, the cells
expressing rtTA will be labeled by the chosen reporter due to the binding of the rtTA transactivator
to TRE sequences (such as transcriptional activation elements (TetO)), resulting in Cre expression and
consequent excision of the loxP-flanked STOP codon upstream to the reporter transgene. This figure
was created with Biorender.com (accessed on 12 December 2021).

A new genetically engineered mouse model using the Flippase (Flp)/flippase recogni-
tion target (Frt) system was developed to specifically study the mammary gland [35]. The
authors generated a transgenic mouse line expressing a mouse codon-optimized Flp under
the control of the mouse mammary tumor virus (MMTV) promoter, which recombines Frt
sequences exclusively in mammary epithelial cells. Similar to the doxycycline-dependent
system, this in vivo strategy does not require the use of tamoxifen for activating Flp en-
zyme. Importantly, this model consists of a Cre alternative recombinase (Flp), which allows
the combination of multiple site-specific recombination systems, such as Cre/loxP and
Flp/Frt [35,36].

One of the most suitable approaches for lineage tracing is pulse experiments, where
16–24 h after Cre recombination, the targeted cells are analyzed; and chase experiments,
which allow us to visualize the progeny of the targeted cells, genetically labeled regardless
of the expression of the specific gene used for lineage tracing. Recently, some groups have
used this technology to explore the capacity of different mammary epithelial cells to initiate
tumors or metastasize, as well as to understand the potential mechanisms underlying
cellular plasticity within breast tumors, which could ultimately lead to new therapeutic
strategies for treating heterogeneous tumors in the near future.

Biorender.com
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2.1. Searching for the Tumor Cell of Origin in Different Breast Cancer Subtypes

Gene expression analyses have provided a new sub-classification of breast cancer
patients based on their transcriptomic profile, which allowed them to be originally subclas-
sified into five different molecular breast cancer subtypes: luminal A, luminal B, HER2-
positive, normal-like, and basal-like [37]. Further gene expression studies identified a new
breast cancer subtype known as claudin-low or mesenchymal-like [38]; and later, clustering
analysis of genomic and transcriptomic data of breast tumors revealed 10 novel integrative
clusters, which displayed different copy number alterations and gene expression profiles
associated with distinct clinical outcomes [39].

Importantly, several studies compared the gene expression signature of different
healthy mammary epithelial cells (MECs) with transcriptional profiles of different tumor
subtypes [17,40,41]. Interestingly, it was found that the luminal progenitor cell signature
resembled that of basal-like tumors, suggesting that the cell of origin in this breast cancer
subtype could be an LC, both in mouse and human [17,40,41]. Conversely, the BC signature
was upregulated in the claudin-low subtype, and the mature luminal gene signature
was closely aligned with the luminal A and B subtypes [17,41]. Overall, these results
introduced comparative expression profiling as a powerful tool to elucidate the cell of
origin in different cancer subtypes, which could serve as a cellular target for oncogenic
events; however, only genetic studies at the single-cell level or lineage tracing experiments
are the current definitive approaches to identify the cell of origin in each breast cancer
subtype.

So far, only a few studies have explored this particular issue using lineage tracing tools.
A good example is a recent study that proved that cells positive for leucine-rich repeat-
containing G-protein coupled receptor 6 (Lgr6), which is expressed in LCs and BCs during
the early stages of tumorigenesis, contributed to mammary tumor progression [42]. Specifi-
cally, when Lgr6pos cells were genetically labeled at the hyperplasia stage (P12, 12-day-old)
in a mouse mammary tumor virus promoter-driven Polyomavirus middle T antigen breast
cancer mouse model (MMTV-PyMT), which mostly generates luminal tumors, these cells
clonally expanded, contributing to the formation of carcinomas [42]. Surprisingly, when
they used the Medroxyprogesterone Acetate (MPA) plus 7,12-Dimethylbenz[a]anthracene
(DMBA)-dependent model to generate mixed luminal and basal tumors [42], their lineage
tracing analysis showed that neither basal nor luminal Lgr6pos cells were involved in the
formation of basal-like tumors. These results suggest that Lgr6pos cells could be the cell
of origin in the luminal breast cancer subtype exclusively; however, the fact that the Lgr6
promoter is activated in LCs and BCs at the start point of the lineage tracing makes it
complicated to draw strong conclusions regarding the true cell of origin in each breast
cancer subtype. Remarkably, when Lgr5-expressing cells (exclusively expressed in BCs [43])
were traced in C3(1)Tag mice, a murine model that spontaneously develops TNBC [44,45],
the hyperplastic lesions generated were mostly Lgr5pos-derived progeny, denoting Lgr5pos

cells as the cellular origin of TNBCs [46]; nevertheless, an exhaustive histological character-
ization of the resulting tumors was missing in this work, making it difficult to conclude
which specific types of tumors were formed from these cells.

Fascinatingly, a recent work combined lineage tracing analysis and the RCAS-TVA
system. This consists of expressing the TVA cell surface receptor under the control of a
specific target promoter recognized by an avian leukosis virus-derived vector (RCAS) [47]
to elucidate the contribution of ERα during cancer progression and metastasis of HER2-
positive tumors [48]. By using Esr1-Cre/MMTV-TVA/Rosa26-tdRFP mice infected with
RCAS-Erbb2 (to generate HER2-positive tumors), the authors could demonstrate that
ERαpos tumor cells with an overexpression of HER2 have to progressively lose their ERα
expression in order to clonally expand and metastasize [48]. Importantly, HER2-positive
cells originated from ERαpos cells were more aggressive than those originated from ERαneg

cells, suggesting that the cell of origin plays an important role in the clinical outcome of
breast cancer patients.
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Undoubtedly, more studies are required to figure out which mammary epithelial cell
type is the cell of origin for each specific tumor type. The lack of good preclinical breast
cancer mouse models that truly recapitulate human subtypes, and the selection of suitable
inducible Cre lines, which exclusively label one mammary epithelial cell type at a time, are
the major concerns that the research community currently face to address this important
issue.

2.2. Importance of the Epithelial-to-Mesenchymal Transition during Tumor Progression

The epithelial-to-mesenchymal transition (EMT) is a biologic process by which ep-
ithelial cells lose their cell polarity and cell–cell adhesion to undergo multiple biochemical
changes that enable them to assume mesenchymal attributes, such as an elongated shape,
fibroblast-like morphology, enhanced mobility, invasiveness, resistance to apoptotic stimuli,
and production of extracellular matrix components [49]. Crucially, this process could be
exploited by tumor cells, allowing them to detach from each other within the primary
tumor and metastasize to distant organs [50].

In vivo monitorization of different mesenchymal markers (FSP1 and Vimentin) using
different breast cancer models demonstrated that the EMT process does not contribute to
lung metastasis development [51]. These studies evaluated the appearance of EMT in two
breast cancer models (MMTV-PyMT and MMTV-Neu), being a biological process that can
be observed in vivo; however, the metastases developed were neither FSP1- nor Vimentin-
derived progenies [51–53]. Notwithstanding, FSP1-derived mesenchymal cells can undergo
mesenchymal-to-epithelial transition (MET) and contribute to tumor recurrence, although
this was addressed using serial transplantations as a rough way of recapitulating this
tumor process [54]. The main concern regarding these studies was that these murine
lines were targeting a small fraction of the total cells that undergo EMT, having a non-
negligible difference between the total percentage of mesenchymal E-Cadherin (Ecad)low

cells and FSP1pos-cells (5% and 0.3%, respectively) [52]. Crucially, when Ecadlow tumor
cells were injected into the circulation, these cells generated metastases [52]; however, these
experiments did not address the fact that this process occurs naturally in vivo during the
progression of this disease.

The fact that many different cells can undergo EMT and the lack of a universal marker
encouraged the combinatorial design of Cre and Dre systems to study this biological pro-
cess. Recently, Li and colleagues generated EMTracer, a triple transgenic mouse model
carrying Kit-CreER, EMTgene-LSL-Dre, and NR1-reporter. Thus, this EMTracer was crossed
with the MMTV-PyMT model to monitor EMT during tumor progression [55]. With this
strategy, after tamoxifen administration, luminal-Kitpos cells recombined LoxP sequences
expressing ZsGreen fluorescent protein, inducing Dre expression exclusively in mesenchy-
mal cells which were positive for Vim or Cdh2/N-cadherin, turning tdTomato positive [55].
In their functional assays, they found that Vimentin was not functionally required to metas-
tasize (as previously reported); however, the activation of N-cadherin was critical for lung
colonization [55]. In addition, the authors demonstrated that breast cancer cells underwent
the EMT program during primary tumor growth rather than during dissemination or lung
colonization [55], indicating the importance of studying EMT at different stages of the
metastatic cascade to draw reliable conclusions.

The heterogeneity underlying the EMT process could be explained by the emergence
of a partial rather than a full EMT [56], resulting in the appearance of intermediate hybrid
states that share epithelial and mesenchymal features. In fact, combining lineage tracing
strategies with single cell RNA-sequencing (scRNA-seq) analyses at different time points
of the metastatic cascade could shed light on the characterization of the different EMT
transitioning states that breast cancer cells undergo.

2.3. Differential Clonal Expansion during Tumor Progression and the Metastatic Process

New microscopy technologies, such as intravital or 3D-whole mount imaging, have
allowed the visualization of mammary tumor progression from adenoma to carcinoma
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in vivo and at large-scale single-cell resolution, respectively [57,58]. Combining intravital
imaging with random multi-labeling of the mammary gland (using Rosa26-CreERT2),
Zomer and colleagues observed that only a small subset of tumor cells clonally expanded
during tumor progression, and the vast majority of cells within the primary tumor either
disappear, grow slowly, or partially expand to finally regress [57]. The combination of these
technologies with cell-specific lineage tracing analysis to further study the potential of each
MEC to metastasize still represents a gap in our field of knowledge.

Performing multicolor fluorescent lineage tracing in the MMTV-PyMT model demon-
strated that the metastatic process is produced by the collective dissemination of cancer
cells forming cohesive clusters rather than the serial seeding of single tumor cells [59].
Concretely, after the orthotopic implantation of mammary tumors formed of cells randomly
labeled with different fluorescent proteins, the resulting lung metastases were formed of
multicolored cells, signifying multicellular seeds [59]. Moreover, these lineage tracing stud-
ies showed multicolored tumor cell clusters at five different stages of metastasis: collective
invasion, locally disseminated clusters in the adjacent stroma, extravasated tumor emboli,
circulating tumor cell clusters, and distant micro- and macro-metastases [59].

A powerful approach is combining lineage tracing with scRNA-seq by introducing
genetic barcodes. Indeed, using this strategy, Ginzel and colleagues measured the tu-
morigenic capacity of different oncogenic HER2 isoforms (HER2, d16HER2 and p95HER2)
within the same mammary gland [60]. Specifically, the authors mated MMTV-Cre mice
with HER2-Crainbow (HER2BOW) mice, which encoded for the three HER2 variants, fluo-
rescently barcoded and flanked by LoxP sites. Using fluorescence and RNA sequencing,
they could characterize the tumor phenotype associated with each barcoded isoform [60].
Although wild-type HER2 rarely induced indolent tumors, d16HER2 generated luminal-
like proliferative in situ lesions, which eventually progressed, and p95HER2 prompted
the early appearance of invasive cancers characterized by double-positive luminal and
basal epithelial cells. From a clinical standpoint, these results underscore the importance of
subclassifying HER2-positive breast cancer patients based on their HER2 isoform [60].

3. In Vivo Models to Study Mammary Gland Tumorigenesis

Many groups have tried to recapitulate the wide diversity of breast cancer subtypes
detected in the clinics, designing preclinical mouse models that overexpress oncogenes or
silence tumor suppressor genes. Indeed, recent studies have relied on Cre/lox systems for
defining novel drivers of mammary tumorigenesis and assessing their consequences in
different cellular contexts.

3.1. Classic Preclinical Models to Recapitulate Different Breast Cancer Subtypes

It was reported that specific murine strains can spontaneously develop breast tu-
mors, such as CH3, that produces adenocarcinomas with a latency of 6–10 months [61];
BALB/c that also generates adenocarcinomas at 12 months of age [61]; and the Kunming
strain that can develop invasive ductal carcinomas in 13.5 months [62]. In addition, there
are inducible models that can be sorted by chemical treatments (DMBA or N-nitroso-N-
methylurea (NMU)) [63]; physically, by the effects of radiation [64]; or biologically, by
lentiviral infection [65]. However, the transcriptomic profiles of most of these models have
not been fully analyzed. In order to shed light on this important issue, different research
groups analyzed in depth tumors derived from different animal models by comparing
their gene expression profiles with different human public databases, and calculating to
what extent these models resembled the human disease [45,66]. Thus, murine models
were divided into mesenchymal (also known as claudin-low subtype), basal, luminal, or
HER2-enriched tumors. Among the animal models with tumors presenting mesenchy-
mal features, mainly characterized by the expression of Vim and Snai1, they found the
MMTV-Cre/Brca1Co/Co/p53+/− [67]; DMBA-induced [68], few C3(1)-Tag [44], MMTV-
Lpa [69], WAP-T121 [70], and p53+/− irradiated [71] models. Recapitulating human basal-
like tumors, they included MMTV-Cre/Brca1Co/Co/p53+/− [67], DMBA-induced [68],
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C3(1)-Tag [44], MMTV-Myc [72], WAP-Myc [73], WAP-Tag [74], MMTV-Aib1 [69], and
MMTV-Wnt1 [75] mice. Resembling luminal tumors, they detected MMTV-Neu [76],
MMTV-PyMT [77], WAP-Myc [73], MMTV-Myc [72], MMTV-Aib1 [69], MMTV-Hras [72],
and WAP-Int3 [78]. Additionally, recapitulating HER2-enriched tumors, they found MMTV-
Neu [76], Bgr1+/− [79], p18−/− [80], Rb−/− [81], MMTV-Aib1 [69], WAP-Cre/Etv6 [82],
WAP-T121 [70], and MMTV-Fgf3 [83]. (Table 1).

Table 1. Murine models that recapitulate different human breast cancer subtypes. This table summa-
rizes the transcriptomic analysis performed in tumors derived from different murine in vivo models
that are able to resemble specific human breast cancer subtypes.

Mouse Model Oncogenic Expression Human Breast Cancer
Subtype Ref.

MMTV-Wnt1 Wnt1 overexpression Basal-like [75]

WAP-Tag SV40 large T antigen Basal-Like [74]

WAP-Int3 Notch 4 overexpression Luminal-Like [78]

MMTV-Hras Hras overexpression Luminal A [72]

MMTV-PyMT Activation of Src, PI3K, and
Shc Luminal B [77]

MMTV-Neu Inactivated rat ErbB2
overexpression in MECs HER2-enriched [76]

WAP-Cre/Etv6 Etv6-Ntrk3 fusion gene
overexpression HER2-enriched [82]

Brg1+/− Brg1 heterozygous HER2-enriched [79]

p18−/− Cdkn2c homozygous null HER2-enriched [80]

Rb−/− Rb homozygous null HER2-enriched [80]

MMTV-Fgf3 Fgf3 overexpression HER2-enriched [83]

MMTV-Lpa Lpa1, Lpa2, or Lpa3
overexpression Mesenchymal-like [69]

p53+/− irradiated
Trp53 heterozygous,

irradiated Mesenchymal-like [71]

DMBA-induced Random DMBA induction Basal-like
Mesenchymal-like [68]

C3(1)-Tag
pRb, p107, p130, p53, p300
inactivation and others in

MECs

Basal-like
Mesenchymal-like [44]

WAP-Myc Myc overexpression in LCs Basal-like
Luminal B [73]

MMTV-Myc Myc overexpression Basal-like
Luminal B [72]

MMTV-
Cre/Brca1Co/Co/p53+/−

Brca1 truncation in MECs,
Tp53 heterozygous null

Basal-like
Mesenchymal-like [67]

MMTV-Aib1 Aib1 overexpression
Basal-Like
Luminal B

HER2-enriched
[69]

WAP-T121
pRb, p107 and p130
inactivation in LCs

HER2-enriched
Mesenchymal-like [70]

Some of these models have been the in vivo approaches of reference to study breast
cancer for decades; however, they are not sufficient to understand the wide spectrum of
human breast tumors. Moreover, the major differences in the composition of the stroma
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between the murine and human mammary gland, being more adipocytic and less fibrotic
in mice than in humans [84], might play an important role during tumor progression, as
well as the colonization of different metastatic organs, since mouse models only develop
distant lung metastases, whereas humans are able to metastasize into lung, liver, bone, or
brain [85].

3.2. Cellular Plasticity Plays an Important Role in the Development of Mammary Tumors

Numerous lineage tracing studies in healthy mammary glands have demonstrated that
there are no multipotent stem cells in adult mice, but distinct pools of unipotent stem cells,
which self-sustain the lineage restriction of each mammary epithelial population [86–88].
However, adult MECs have been shown to be extremely plastic under different stress situa-
tions, such as transplantation [86], oncogene activation [18,43,89,90], cellular ablation [91],
or the ectopic expression of key cell fate determinants [92,93], interconverting their cellular
potency and destiny. This cellular plasticity observed in normal epithelial cells may be
conceivably magnified in tumors, thus contributing to the cellular heterogeneity observed
in breast cancer.

In the cancer context, two independent groups have shown that luminal ERαpos tumors
can arise from BCs and LCs due to the expression of the oncogenic form PIK3CAH1047R [43,89].
In fact, PIK3CAH1047R was enough to induce cell plasticity and the acquisition of multi-
lineage features, defined by the expression of both luminal and basal gene signatures at
the same time [43]. Interestingly, when the same oncogenic hit was overexpressed in LCs
(Krt8-expressing cells) or BCs (Lgr5-expressing cells), the resulting tumors were basal-like,
HER2-positive, and luminal B (Krt8-derived tumor), or mainly luminal A and B (Lgr5-
derived tumors) [43] (Figure 4). Similar results were found using the Krt5 promoter to
target BCs [89]; concretely, overexpression of PIK3CAH1047R in BCs led to the formation of
luminal B tumors (Figure 4), while Krt8-expressing cells generated luminal B and basal-like
tumors [89]. All these results suggest that ERα-positive tumors with mutations in PI3K
could originate from LCs and also BCs, whereas luminal ERα-negative, basal-like, and
HER2-enriched tumors may exclusively arise from LCs. Indeed, these studies show how
different the cellular plasticity is in LCs and BCs, and how the activation of a specific
oncogene can give rise to different latency and tumor types depending on the cell of origin.

In the same direction, the loss of Brca1 and Tp53 in different cellular compartments
resulted in the development of different breast cancer subtypes [18]. In this particular work,
the authors used Krt14-Cre or Blg-Cre lines to monitor BCs or ERαneg LCs, respectively, and
mated them with Brca1fl/fl/p53+/− mice. Importantly, BRCA1/p53 deficiency generated
different types of tumors that histologically expressed basal markers (Keratin-14 or p63) and
luminal markers (Keratin-18 and/or ERα), with similar but not identical gene expression
profiles, which closely resembled that of human basal-like tumors, regardless of the cell of
origin (Figure 4). Importantly, only Bgl-derived tumors histologically resembled human
BRCA1 loss-of-function [18].

Strikingly, using the luminal Cre line Wap-Cre, different groups were able to ob-
serve a luminal-to-basal conversion, either overexpressing NTRK3 [94], active NOTCH1
(N1ICD) [95], or KRASG12D [96]. NTRK3 was able to induce mixed tumors bearing both
basal and luminal cells, as well as hybrid tumors with cells expressing basal and luminal
markers simultaneously [94]; N1ICD specifically generated tumors that transcriptionally
matched with distinct luminal subtypes, but also with a mixed subtype containing lu-
minal and basal identities [95], and the exogenous expression of mutant KRASG12D led
to metastatic claudin-low mammary tumors with a mesenchymal-like phenotype [96]
(Figure 4).
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Figure 4. Schematic representation of the mammary cellular plasticity during tumorigenesis. The
use of different murine Cre lines (Lgr5-CreERT2, Krt5-CreERT2 or Krt14-Cre to target BCs; Bgl-Cre
or Wap-Cre to trace ERαneg LCs; and Esr1-Cre to monitor ERαpos LCs) to induce the expression of
specific mutations in different mammary epithelial cell types resulted in the generation of tumors that
resembled some of the human subtypes: luminal A [43], luminal B [43,89], HER2-enriched [48,66],
claudin-low (or mesenchymal-like) [96], and basal-like [18,73] tumors. Notes: this figure only includes
studies that have used comparisons with human breast cancer transcriptomic datasets (PAM50, Hu306
or similar); studies performed with non-specific Cre lines, such as MMTV-Cre or Krt8-CreERT2 (which
labels all MECs, or both LC populations, respectively), were discarded. This figure was created with
Biorender.com (accessed on 12 December 2021).

Another interesting strategy to study cellular plasticity is the use of the RCAS-TVA
system [47]. Using this retrovirus-mediated in vivo lineage tracing, Hein and colleagues
engineered RCAS vectors bearing either PyMT or HER2 constructs, which were produced
and infected in Wap-TVA transgenic mice that specifically express the TVA receptor in
LCs [90]. Similar to the aforementioned studies, the activation of certain oncogenes in the
luminal compartment was sufficient to develop tumors with either luminal, basal, or mixed
(Keratin-8 and Keratin-5-positive) features [90].

Collectively, these studies have demonstrated that cellular plasticity could be respon-
sible for the intra- and inter-tumor heterogeneity found in breast cancer and pose new
questions such as whether any mammary epithelial cell has the potential to become a
tumor-initiating cell, or, by contrast, only a suitable combination of oncogenic hits is the
crucial determinant in developing a tumor regardless of the cell of origin. Hence, these find-
ings emphasize the importance of searching for key factors underlying cellular plasticity,
which could have significant implications for cancer therapeutics.

4. Clinical Implications of Lineage Tracing Studies and Future Perspectives

Clinical decisions are made depending on the molecular subtype diagnosed, which
includes anti-hormone therapies for those patients with ERαpos cells, anti-HER2 treatments
for HER2-positive patients, and chemotherapy for patients diagnosed with TNBC, due
to the lack of specific targets [2]. These therapeutic strategies do not take into account
that tumors are heterogeneous, meaning that they are composed of different types of cells,
which could be the main cause of clinical failures. In this sense, the main handicap that
researchers are currently facing is the lack of reliable preclinical models that resemble
this human intratumor heterogeneity. Currently, the vast majority of in vivo mammary
tumorigenesis models available depend on the expression of a specific driver, which
eventually contributes to the formation of practically (intra)homogeneous tumors. The
combination of multiple in vivo systems (Cre/lox, RCAS/TVA, Dre/rox, and Flp/Frt) could
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be the key to designing a model able to recapitulate the tumor evolution observed in human
breast cancer.

Remarkably, lineage tracing studies have disclosed that the cell of origin matters. Here,
we have presented several good examples, such as the work of Ding and colleagues that
proved that HER2-positive tumors with an ERαpos or ERαneg cellular origin will determine
their aggressiveness and metastatic capacity [48]. Moreover, these in vivo approaches
have also revealed an inherent cellular plasticity in MECs; along this line, different groups
have demonstrated that upon the activation of a specific oncogenic hit, MECs can ac-
quire new transcriptomic features and expand to develop tumors with different cell fate
signatures [18,43,89,94–96]. Some of these studies tried to understand whether the cell of
origin or the oncogenic activation were playing a major role during tumorigenesis, and
concluded that the cell of origin was crucial for determining the tumor subtype and/or ag-
gressiveness; however, in all cases, those specific oncogenes (PI3KCA [43,89] or HER2 [48])
were able to generate tumors, suggesting that both facts (cell of origin and oncogenic hit) are
equally important. Numerous studies on the normal mammary gland have demonstrated
the high plasticity of BCs upon different stressors (transplantation or cell ablation [86,91])
compared with LCs; nevertheless, in the cancer context, all these studies demonstrated
that LCs are more plastic than BCs, being able to generate a wider range of breast tumor
subtypes [18,43,89,94–96], representing a new field to be explored.

Human cells contain somatic mutations that have served as genetic barcodes to per-
form retrospective lineage tracing analysis in healthy and diseased human tissues [97].
For example, topographic single-cell sequencing from laser-capture microdissected breast
cancer samples at different tumorigenic stages, analysis of copy number alterations and
clonal dynamics of different areas suggested a multiclonal invasion model for breast can-
cer [98]. Another strategy is the use of mitochondrial DNA mutations as a natural barcode,
which McDonald and colleagues used to find common mutations that would indicate a
common cell of origin in both normal and premalignant breast sections [99]. Alternatively,
the use of DNA barcodes, introduced by infection in isolated normal human mammary
cells, revealed a complex clonal landscape within heterogeneous breast tumors expressing
KRASG12D [100].

Notably, over the last years, single-cell RNA sequencing has emerged as a new tool to
replace lineage tracing studies, since it provides a recapitulation of the clonal dynamics of
different cell populations within a tumor in a retrospective manner; however, the question of
the identity of the tumor-initiating cell still remains to be solved with this type of technology.
Combining both approaches would allow us to genetically and phenotypically trace each
individual cell, redefining the phylogenetic trees, cell trajectories, and cell–cell interactions.
In keeping with recent breakthroughs, the development of barcode systems has enabled us
to target individual cells with unique nucleic acid sequences [101]. This technology could be
used for lineage tracing together with the sc-RNAseq technique to reveal the transcriptomics
of each cell population within heterogeneous mammary tumors, and also to perform high-
throughput genetic screening to discover key plasticity factors and tumor drivers, being
potential druggable targets for breast cancer therapeutics [102]. For example, Ying and
Beronja employed long-term lineage tracing using stable barcodes to study mammary tissue
hierarchy, ensuring each progenitor was labeled with a single barcode [102], and designed
a large-scale genetic screening with a barcoded lentivirus library that targeted multiple
clinically relevant mutations [102]. Definitively, the combination of multiple technologies
will allow us to identify new crucial biomarkers and novel therapeutic targets, especially
for TNBC patients who have no targeted therapies available.

Beyond lineage tracing, multi-omic and high-throughput methods will help us to
understand the complex genomics that underlie the human cancer disease. Indeed, single-
cell genomics has enabled us to associate specific genetic mutations with different molecular
subtypes [103], and single-cell transcriptomics has provided cancer-specific gene signatures
that could help clinicians to determine the prognosis of patients [104]. For instance, there
are currently different gene expression profiling tests for breast cancer in clinics, such
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as MammaPrint® and Oncotype DX®, both of which predict the risk of distant disease
recurrence. Moreover, among some spatial transcriptomic technologies, fluorescence in situ
hybridization (FISH) methods are commonly used in cancer diagnosis as they allow the
detection and chromosomal location of specific genes which are aberrantly expressed or
harbor rare mutations in tumors [105]. On the other hand, there are other techniques such
as laser capture microdissection and photoactivatable transcriptome in vivo analysis that
could be combined with sequencing-based approaches to decipher the genetic information
of the desired area of the tissue [105]. The integration of all these spatial data promises
the identification of multiple reliable molecular biomarkers that would be helpful for the
diagnostics and therapeutics of breast cancer patients in the near future.
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