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The International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in
multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study
was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish
Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical
and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic
precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk
stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a
significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for
newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in
order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised
machine learning clusterization brings a promising approximation to improve MM risk stratification.
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INTRODUCTION
The International Staging System (ISS) has been the most used
prognostic score employed for risk stratification in newly diagnosed
Multiple Myeloma (MM) patients. This score is based on surrogate
markers of myeloma cell biology and host factors: ß2-microglobulin
and albumin [1]. The ISS stratifies patients in three subgroups with an
overall survival (OS) of 62, 44, and 22 months respectively, and it has
been validated in several studies and clinical trials. The main
limitation of this model is that it does not incorporate any genetic or
proliferation biomarkers of the disease.
A revision of the ISS was presented in 2015 which incorporated

elevated lactate dehydrogenase (LDH) plus t(4;14), t(16;14) & del
(17p) as high-risk cytogenetics abnormalities [2]. This score
identified 3 risk groups with a median OS of 43, 83 months and
not reached. Only 10% of patients were allocated to the high-risk
group (R-ISS 3), 28% were assigned to the low-risk group (R-ISS 1)

and most patients (62%) were classified as intermediate risk (R-ISS
2). It has become progressively evident that some patients who
belong to the R-ISS 1 low-risk group have poor survival, whereas
the outcome of patients in the intermediate group (R-ISS 2) is very
heterogeneous. Additionally, recent reports highlight that both ISS
and R-ISS have similar predictive performance, suggesting that
optimized data exploitation tools might help to bring improved
risk stratification techniques to the field [3]. All these issues
highlight the limitations of these scores, which fail to properly
stratify many patients.
Survival prediction of patients with hematological cancer has

been extensively improved in the last years. For example, several
biomarker panels based on next-generation sequencing of
recurrently mutated or aberrantly expressed genes have been
proposed to facilitate prognostic stratification in acute myeloid
leukemia, myelodysplastic syndromes and lymphomas, and
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indeed various studies have proved that these novel personalized
models fitted with machine learning algorithms outperform the
precision of currently established prognostic tools [4–6]. More
recently, other sophisticated risk stratification methods, using
gene expression profiling, comprehensive cytogenetic assess-
ments or next generation sequencing strategies have been
published, but in clinical practice, these are rarely employed due
to the lack of availability, high cost as well as technical and
logistical difficulties [7–9].
Therefore, improved risk stratification of MM with ready-to-use

information is much awaited. In this line, the recent development
of machine learning in medicine has become key to overcome
some of the limitations of classical prognostic scores. Machine
learning is a field of artificial intelligence where prediction is based
on the modeling of outcomes considering complex interactions
between multiple variables derived from real examples, rather
than on the application of human-made rules. In the particular
case of MM, such advanced techniques can optimize the number
of prognostic groups and the assignment of patients to these
according to flexible data structures, instead of the rigid thresh-
olds implemented in the current clinical scores. With this in mind,
we have developed a new unsupervised machine learning model
for MM risk stratification by integrating clinical, biochemical and
cytogenetic data at diagnosis through the use of datasets
corresponding to series of MM patients homogeneously treated
in the context of clinical trials conducted by the Spanish Myeloma
Group. Our results indicate that this strategy can significantly
improve MM prognostication, particularly among patients
assigned to the R-ISS 2 intermediate-risk group.

MATERIALS AND METHODS
Data source
We retrieved original data from three clinical trials developed by the
Spanish Myeloma Group (Grupo Español de Mieloma, GEM), namely GEM05
under 65 years [10], GEM05 over 65 years [11] and GEM2012 under 65
years [12]. All trials evaluated different upfront treatments in newly
diagnosed MM.
Patients included in the GEM05 under 65 years trial were randomized

(1:1:1) to receive 4 alternating cycles of vincristine, BCNU, cyclopho-
sphamide, melphalan and prednisone (VBMCP) - vincristine, BCNU,
adriamycin, dexamethasone (VBAD)+ 2 cycles of bortezomib (Group A)
or 6 cycles of thalidomide + dexamethasone (TD) (Group B) or
thalidomide+ dexamethasone+ bortezomib (VTD) during 24 weeks

(Group C). Eligible patients underwent autologous stem cell transplanta-
tion, and 3 months after transplant patients were randomized to three
different maintenance arms: either Interferon a-2b, thalidomide or
thalidomide plus bortezomib for 2 years.
Patients included in the GEM05 over 65 years trial were randomized 1:1

to receive melphalan+ prednisone+ bortezomib (VMP, Group A) or
thalidomide+ prednisone+ bortezomib (VTD, Group B). All patients
received induction treatment for up to 30 weeks. Patients were further
randomized 1:1 to receive maintenance treatment: either Thalidomide+
Bortezomib (Group M1) or Prednisone+ Bortezomib (Group M2) for three
years after four weeks if no progression or toxicity.
Patients included in the GEM2012 under 65 years trial were treated with

six cycles of induction treatment with bortezomib+ lenalidomide+
dexamethasone (VRD). After induction, patients were randomized 1:1 to
receive an autologous transplant with melphalan 200mg/m2 (MEL200)
versus Busulfan 12mg/kg plus melphalan 140mg/m2 (BUMEL) as
conditioning regimens. Three months after transplantation, patients
received two cycles of consolidation treatment with VRD at the same
doses administered during induction treatment. Those patients in
response after two cycles of consolidation therapy with VRD were further
included in a second maintenance trial (GEM MAIN 2014), being
randomized to lenalidomide +/− ixazomib for 2–5 years depending on
MRD analysis.
Cytogenetic analysis was performed using fluorescence in situ hybridi-

zation (FISH) on whole bone marrow (GEM05 trials) or CD138-selected
plasma cells (GEM2012 trial), and included t(4;14), t(14;16) and 17p
deletion in all trials. Among the remaining annotations, the following
common baseline variables were retrieved: immunoglobulin light and
heavy chain type, Durie-Salmon staging, monoclonal spike in blood and
urine, hemoglobin, creatinine, albumin, albumin-adjusted calcium, ß2-
microglobulin, elevated LDH and percentage of plasma cells in bone
marrow aspirate smear. Note that in the case of Durie-Salmon annotation,
both parts of the staging system were analyzed separately. In this regard,
one variable analyzed the presence of kidney disfunction (Durie-Salmon
stages A and B), whereas another variable reflected the classification of
patients in 3 groups (Durie-Salmon stages I, II & III) based on hemoglobin,
calcium, presence of bone X-ray abnormalities/plasmocitomes and
monoclonal components in serum and urine. Patients who had incomplete
annotation for any of the variables were discarded from downstream
analysis.
Overall survival (OS) was defined as time from diagnosis to death from

any cause, and progression-free survival (PFS) was defined as time from
diagnosis to disease progression or death from any cause.

Variable selection and model development
Statistical analysis was performed on R version 4.1.0 [13]. Survival analysis
was performed with the “survival” package version 3.2.11 [14]. Univariate

Table 1. Baseline characteristics of selected patients in the different trials.

GEM05 under 65 GEM05 over 65 GEM2012 under 65

N 305 218 229

% High Risk Cytogenetics 19.34% 18.80% 26.63%

Durie-Salmon stages: I, II & III 6.23%, 48.85%, 44.92% 7.34%, 51.83%, 40.83% 10.48%, 38.43%, 51.09%

Durie-Salmon stages A & B 96.40%, 3.60% 95.87%, 4.13% 97.82%, 2.18%

ISS stages: I, II, III 38.36%, 41.31%, 20.33% 24.31%, 43,58%, 32.11% 43.23%, 30.57%, 26.20%

RISS stages: I, II, III 28.52%, 62.62%, 8.85% 19.72%, 70.64%, 9.63% 27.94%, 61.57%, 10.48%

Median serum monoclonal spike (g/dL) 3.9 3.6 2.8

Median urine monoclonal spike (g/dL) 0.19 0.20 0.14

Median hemoglobin (g/dL) 10.8 10.4 11.1

Median albumin-adjusted calcium (mg/dL) 9.68 9.95 9.58

Median B2-microglobulin (mg/dL) 3.3 4.0 3.4

Raised LDH 15.73% 12.84% 16.52%

Median plasma cells in bone marrow smear 36% 35% 28%

Presence of major myeloma-related skeletal injuries 33.44% 25.23% 35.81%

Presence of plasmocitomes 17.05% 13.30% 22.71%
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cox-regression was used to test the association of each variable with
overall survival in the largest cohort (GEM05 under 65 years). Principal
components were extracted using Factor Analysis for Mixed Data (FAMD)
implemented in the FactoMineR version 2.4 package [15], which can accept
continuous and categorical variables as input. In each case, we selected as
many principal components as variables included in the model.
Unsupervised clustering was performed using Gaussian Mixture Model-

ing fitted with an Expectation Maximization algorithm (GMM-EM model
implemented in the “Mclust” algorithm version 5.4.7) [16]. Briefly, the
Mclust algorithm determines the most likely set of patient clusters
according to geometric properties (distribution, volume, and shape). An
EM algorithm is used for maximum likelihood estimation, and the best
model is selected according to Bayes information criteria. Inferred clusters
in the GEM05 under 65 years trial were used to predict clusterizations in
the remaining datasets (GEM05 over 65 years and GEM2012 under 65
years). Cox regression was used to analyze the association of such clusters
with OS and PFS, as well as their relationship with the International Staging
System (ISS) and revised ISS (R-ISS) scores. Assumption of proportional
hazards was tested with Schoenfeld’s method. Model’s precision was
assessed using cross-validated cox models and time-dependent Area

Under the Curve (AUC) were calculated at different time points with 500
bootstraps using the riskRegression package version 2021.10.10 [17].
Model’s discriminative power was assessed using 10-fold cross-validated
Harrel’s concordance indexes (c-indexes) implemented in the RMS package
version 6.2.0 [18]. Finally, survival curves were plotted using the Kaplan-
Meier method.

RESULTS
Variable selection and unsupervised model fitting
Baseline characteristics of the patients included in each cohort are
represented in Table 1. The first analysis was done in the cohort of
patients included in the GEM05 under 65 years trial, as this was
the study with the largest number of patients with complete
annotation data available. We identified 10, 14 and 16 variables
which were associated with OS at p value thresholds of 0.01, 0.05
and 0.1 (Table 2). FAMD decomposition was performed taking as
input all cytogenetic variables (17p deletion, t(4;14), t(14;16) and
any high risk cytogenetic alteration) plus any of the remaining
variables at p-value thresholds of 0.01, 0.05 and 0.1. Afterwards,
GMM-EM was implemented to identify the optimal two clusters in
the database (Table 3). Clusterization results were significantly
associated with OS regardless of the p value threshold used, but
statistical significance was superior with the p value threshold of
0.01 (p value 7.44 × 10−8, HR 0.35) compared with the p value
thresholds of 0.05 (p value 1.63 × 10−4, HR 0.47) and 0.1 (p value
2.65 × 10−5, HR 0.42).
Aside from cytogenetic data, this optimal model included the

following variables: Durie-Salmon staging (I, II and III), hemoglobin,
albumin-adjusted calcium, ß2-microglobulin and elevated LDH.
We also tested the prognostic impact of GMM-EM-based models
with 3 and 4 optimal clusters using this set of variables, but results
were inferior to the model based on 2 optimal clusters
(Supplementary Fig. 1).
Predictions created by this model on GEM05 under 65 years

were confirmed on GEM05 over 65 years and GEM2012 and two
different clusters of patients were identified in both cases (Fig. 1).
Additionally, this clusterization was significantly associated with
OS in both cohorts (cox p value 1.42 × 10−3, HR 0.36 in the
GEM2012 under 65 years cohort & cox p value 8.07 × 10−5, HR 0.51
in the GEM05 over 65 years cohort; Table 3).
Furthermore, the clusterization was significantly associated

with PFS in all cohorts. (Fig. 1). The characteristics of cluster 1
and cluster 2 patients according to the constituting variables of
the unsupervised model are represented in the Supplementary
Table 1.

Table 3. Distribution of 2 clusters detected with unsupervised clustering across cohorts, as well as cox regression testing the association with overall
survival and progression-free survival.

GEM05 under 65 GEM05 over 65 GEM2012 under 65

% patients in each cluster 36.72%, 63.28% 34.86%, 65.13% 44.10%, 55.90%

p value OS 7.44 × 10−8 8.07 × 10−5 1.42 × 10−3

HR (95% CI) for OS 0.35 [0.24, 0.52] 0.51 [0.36, 0.71] 0.36 [0.19, 0.68]

p value PFS 2.48 × 10−4 1.16 × 10−3 5.47 × 10−4

HR (95% CI) for PFS 0.60 [0.45, 0.79] 0.60 [0.45, 0.82] 0.50 [0.34, 0.74]

p value OS (RISS adjusted) 0.01 9.85 × 10−3 0.02

HR (95% CI) for OS (RISS adjusted) 0.56 [0.36, 0.87] 0.591 [0.40 0.88] 0.42 [0.20, 0.89]

p value PFS (RISS adjusted) 0.15 0.12 0.02

HR (95% CI) (RISS adjusted) 0.79 [0.57, 1.09] 0.75 [0.53, 1.07] 0.57 [0.36, 0.92]

p value OS (ISS adjusted) 1.96 × 10−5 1.01 × 10−3 3.47 × 10−3

HR (95% CI) for OS (ISS adjusted) 0.42 [0.28, 0.63] 0.55 [0.39, 0.79] 0.39 [0.20, 0.73]

p value PFS (ISS adjusted) 5.37 × 10−3 0.01 1.24 × 10−3

HR (95% CI) (ISS adjusted) 0.66 [0.50, 0.89] 0.67 [0.49, 0.91] 0.52 [0.35, 0.77]

Table 2. Cox regression testing the association of the 18 variables
with overall survival in the GEM05 under 65 years cohort.

Variable p value

High risk cytogenetics 5.36 × 10−5

t(14;16) 0.04

17p deletion 0.09

t(4;14) 1.91 × 10−5

Immunoglobulin subclass 0.51

Durie-Salmon stages (I, II & III) 1.86 × 10−3

Durie-Salmon stages (A & B) 0.21

Serum M spike 0.98

Urine M spike 0.15

Hemoglobine 2.06 × 10−3

Creatinine 0.80

Albumin 0.01

Albumin-adjusted calcium 4.49 × 10−3

B2-microglobulin 9.29 × 10−8

Raised LDH 1.75 × 10−6

% of bone marrow plasma cells 0.04
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Fig. 1 Patient outcomes according to the novel prognostic score. Kaplan–Meier curves representing the impact of the 2 clusters detected
through unsupervised machine learning on overall survival (OS) and progression-free survival (PFS) in the 3 trial cohorts. “P” symbol indicates
p-value. A, B OS and PFS for the GEM2005 under 65 years trial. C, D OS and PFS for the GEM2012 under 65 years trial. E, F OS and PFS for the
GEM2005 over 65 years trial.
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Relationship of unsupervised clusterization with ISS and R-ISS
The unsupervised clusterization model was associated with OS
independently of ISS and R-ISS scores in all cohorts (multivariate
cox p value <0.05, Table 3). Additionally, the clusterization was
associated with PFS independently of ISS stages in all cases,
although the GEM2012 under 65 years trial was the only
population in which it was independent of R-ISS stage (Table 4).
These findings motivated a subanalysis by ISS and R-ISS scores
(Table 4, Supplementary Fig. 2 and 3). Interestingly, we observed
that the unsupervised model was particularly useful to stratify
patients with R-ISS 2 into two clusters with significantly divergent
OS curves in all cohorts (Fig. 2). Indeed, only a minority of patients
with either R-ISS 1 or R-ISS 3 were reclassified to a higher or lower
risk classification, respectively: 1 R-ISS 3 patient was assigned to
the lower risk cluster, and 6 R-ISS 1 patients were assigned to the
higher risk cluster. On the contrary, remarkable changes in risk
group assignment were observed between ISS scores and these
new risk clusters (Fig. 3).
On the other side, the distribution of ISS scores in patients

assigned to both prognostic clusters was more heterogeneous,
and our new clusterization tended to provide additional
prognostic stratification in most cases (particularly in ISS 2 and 3
groups; Table 4).

Survival analysis of R-ISS 2 subgroups
We analyzed the survival of the two new clusters of R-ISS 2
patients identified with this novel approach (low-risk and high-
risk), and compared them with the survival of patients with R-ISS 1
and 3 MM, respectively (Supplementary Table 2, Supplementary
Fig. 4). Interestingly, we found no significant differences in survival

between these subgroups in the three different clinical trials
evaluated, with the exception of a significant difference between
R-ISS 1 and R-ISS 2 low-risk groups in the GEM05 under 65
years trial.
A focused analysis on R-ISS 2 patients evidenced that the key

variables to stratify patients in two different risk clusters was the
presence of high-risk cytogenetics or raised LDH, as all R-ISS 2
patients with any of these features were assigned to the higher-
risk cluster I. However, a variable proportion of R-ISS 2 cluster I
patients had standard-risk cytogenetics and normal baseline LDH.
Importantly, their survival was similar to that of patients with high
risk cytogenetics or raised LDH (Supplementary Table 3), reinfor-
cing their membership to the higher risk cluster.

Discriminative power and precision of the different risk
stratification models
We used cox c-indexes to investigate the discriminative capacity
of each score and score combination on the different cohorts
(Table 5). R-ISS was superior to ISS only in GEM05 under 65 years,
and both scores performed similarly in the remaining datasets.
Additionally, our unsupervised clusterization model achieved
superior c-indexes than ISS in all cohorts, superior c-indexes than
R-ISS in the cohorts of patients included in the GEM05 over 65
years and GEM12 under 65 years, and similar concordance to R-ISS
in the GEM05 under 65 years cohort. Importantly, the combination
of ISS and R-ISS achieved inferior c-indexes than any of the
combinations that included our unsupervised clusterization
model. 10-fold cross-validation confirmed the robustness of the
prognostic clusters (Supplementary Table 4).
Time-dependent AUCs revealed that the precision in survival

prediction of the unsupervised clusterization was clearly superior
to ISS and R-ISS in most cases (Supplementary Fig. 5). In the case
of GEM 2005 < 65 years, we observed a less superior performance
when compared to the R-ISS. However, this cohort was used to
develop the R-ISS score itself, so some degree of overfitting could
exist [2].

Relationship of unsupervised clusterization with treatment
outcomes in the different clinical trials
In the GEM05 under 65 years trial, survival of both clusters of
patients was similar regardless of the assignment to the different
induction or post-transplant maintenance arms. Similarly, survival
of the two clusters was similar regardless of the type of
conditioning regime evaluated in the GEM2012 under 65 years
trial. Finally, a benefit in terms of OS was identified for patients in
the low-risk cluster when treated with VMP compared with VTD in
the GEM05 over 65 years trial (p value 0.03, Fig. 4). However, no
significant differences were observed between both clusters when
considering the different maintenance strategies performed in this
trial.

DISCUSSION
In the present work, we describe a new prognostic classification of
newly diagnosed MM based on the application of intelligent
information technologies to clinical trial data produced by the
Spanish Myeloma Group. During the last 20 years, different
prognostic models have been developed to stratify newly
diagnosed MM patients, among which ISS and R-ISS are the most
commonly used. Both models appear useful in identifying a small
subgroup of high risk patients. However, the main limitation
resides in the fact that most patients are categorized in low or
intermediate categories. Unfortunately, some patients classified as
low-risk (ISS 1 and R-ISS 1) have a short survival, whereas the
majority of patients included in the largest R-ISS 2 group have
unpredictable outcomes.Therefore, new approximations based on
advanced data analytics are needed in the prognostic stratification
of MM patients.

Table 4. Patient distribution according to ISS/R-ISS scores and
unsupervised clustering results.

GEM05 under 65 Cluster 1 Cluster 2 Cluster 1 vs Cluster 2
p value

ISS 1 9.09% 29.18% <1 × 10−4

ISS 2 15.74% 25.57% 0.02

ISS 3 11.80% 8.52% 0.21

RISS 1 0.98% 27.54% 0.49

RISS 2 26.88% 35.74% 6.10 × 10−3

RISS 3 8.85% 0% NA

GEM05 over 65 Cluster 1 Cluster 2 Cluster 1 vs Cluster 2
OS p value

ISS 1 9.18% 28.18% 0.32

ISS 2 15.74% 25.57% 0.06

ISS 3 11.80% 8.52% 0.02

RISS 1 0.98% 27.54% NA

RISS 2 26.89% 35.74% 8.20 × 10−3

RISS 3 8.85% 0%% NA

GEM2012 under 65 Cluster 1 Cluster 2 Cluster 1 vs Cluster 2
OS p value

ISS 1 15.72% 27.51% 0.57

ISS 2 11.79% 18.78% 4.50 × 10−3

ISS 3 16.59% 9.61% 0.08

RISS 1 1.31% 26.63% 0.52

RISS 2 32.75% 28.82% 0.01

RISS 3 10.04% 0.44% 0.55

Statistical significance (cox p values) for differential OS between both
clusters in each subgroup is shown.
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Several reasons may explain the limitations of these scores. For
example, 19% of patients belonging to ISS 1 and 25% of patients
in ISS 2 present high risk cytogenetic abnormalities [2]. In addition
to that, the choice of cytogenetic abnormalities included in R-ISS
may be suboptimal. Indeed, some authors have associated other
cytogenetics abnormalities with long-term outcomes (e.g., 1p
deletion and 1q amplification) [19–21]. Moreover, it has been
reported that the weight of each cytogenetic alteration may be
different (additive score) [22], and that some cytogenetic
abnormalities can “modulate” the effect of others. In fact, a type
of double hit myeloma with very poor prognosis has been recently
described, which is characterized by either biallelic TP53 inactiva-
tion or amplification (≥4 copies) of CKS1B (1q21) on the
background of ISS III [23].
In an attempt to optimize prognostic scores, some groups

have reported prognostic models based on genetic factors,

using high-throughput genomic analysis that are more sophis-
ticated than FISH [7–9]. Although these approaches seem very
promising, they are not easily applicable in real life due to cost
and technological complexity. Beyond genetic factors, there are
other well-known prognostic factors such as renal failure,
extramedullary disease or circulating plasma cells that are not
openly present in either ISS nor R-ISS scores [24–26]. Notably, a
large list of new prognostic factors (socioeconomic status, some
comorbidities, frailty score, diagnostic delay, the specific type of
myeloma defining event, immunoparesia…) or those with a
lower level of evidence could also impact the outcome but they
are not usually taken into account [27]. Furthermore, MM clinical
evolution is recurrently impacted by the appearance of new
drugs & drug combinations, and the quality of the response to
these drugs is one of the most powerful prognostic factors.
Although current models cannot be used to predict optimal

Fig. 2 Survival of R-ISS 2 patients according to the new score. Impact of the 2 clusters detected with unsupervised machine learning on
overall survival of R-ISS 2 MM patients across the 3 trial cohorts, namely GEM2005 under 65 years trial (A), GEM2005 over 65 years trial (B) and
GEM2012 under 65 years trial (C).
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schemes, some groups, including ours [28], are working in this
area with encouraging results.
New information technologies, such as big data and machine

learning algorithms, provide the opportunity to create more
precise models in order to optimize risk stratification based on
individual clinical and biological factors. Particularly, unsuper-
vised machine learning algorithms (as the one used in this
paper) come along with substantial benefits when identifying
patient subgroups. Importantly, there is no prior assumption
about cluster composition, as these are inferred from complex
patterns in the data without the need to provide human-made
instructions. Therefore, this strategy does not rely on simple
optimal cut-offs, but can instead identify which is the most likely
composition of patient clusters and improve the assignment of
each patient even though he or she might be in the boundaries
of the distributions. In this way, unsupervised machine learning
strategies help researchers to maximize the value of the data by
facilitating the conversion of multidimensional data into
simplified, optimized and reproducible clusterizations. Using
such an approach, we have created a simple and easy to use
prognostic model based on 9 clinical and biological variables
which arose from patients included in GEM05 under 65 years
clinical trial. Although this trial included conventional

chemotherapy and interferon as maintenance in one of its
arms, we have subsequently validated the model in 2 other
clinical trials which used new drugs (proteasome inhibitors and
immunomodulatory drugs) with similar results. Importantly, all
variables included in this model are readily available to any
patient in clinical practice and there is no need for sophisticated
technologies.
The unsupervised model identified 2 clusters of patients with

different PFS and OS independently of ISS and R-ISS scores in all
cohorts. More interestingly, our model was particularly useful to
stratify patients with R-ISS score 2 into 2 clusters with
significantly divergent OS curves in the 3 cohorts, and of note,
all patients with high LDH or high-risk cytogenetics were
assigned to the high risk cluster. To our knowledge, this is the
first model that enables such differentiation. Importantly, the
model retained its predictive power independently of induction
type, transplantation conditioning and the different mainte-
nance schemes. Additionally, time-dependent AUCs and
c-indexes indicated that the new clusterization was superior to
either ISS or R-ISS in most cases. Despite the fact that both the
ISS and R-ISS share some variables with the new prognostic
model, the latter provides additional discriminative value to the
former two. Future efforts should pursue an optimal entangling
of the variables included in this new model with those of the ISS
and R-ISS, so as to achieve a single model on top of these that
can integrate all the prognostic information into well-defined
prognostic groups. Finally, the unsupervised clusterization
model identified a subgroup of low risk patients who had
longer OS when VMP was used as induction compared to VTD in
the GEM05 over 65 years trial. Although this information might
not be very relevant in clinical practice today because of new
standards of care, it must be evaluated whether this model can
help us to individualize the best option of therapy in the setting
of the new standards of care.
This analysis emphasizes the importance of an optimal

application of information technologies to patient data in order
to improve disease prognostication. Even though machine learning
models are frequently developed with big chunks of data which
might hinder their broad applicability [29], our results indicate that
it is possible to significantly improve disease prognostication by re-
interpreting a limited number of classical variables. Therefore,
relevant scientific advances might be achieved in similar scenarios
by revisiting relatively small amounts of data.
The main limitations of this study reside on the relatively short

sample size of the trials, the lack of patients treated with
immunotherapy and the geographical restriction of the trials to
Spain. Other pitfalls, such as the lack of complete annotation for
some relevant clinical and cytogenetic variables in all trials (e.g.,
performance status and chromosome 1 abnormalities), suggest
the existence of significant room for improvement. Future
advances in MM prognostication should move in these
directions.

Fig. 3 Transition plots between ISS scores and unsupervised risk
clusters in the 3 different clinical trials evaluated. ISS scores are
represented on the left column of each graph, and unsupervised
clusters are represented on the right side. Transition plots for the
GEM2005 under 65 years, GEM2005 over 65 years and GEM2012
under 65 years trials are represented in plots A, B and C, respectively.

Table 5. C-indexes and corresponding standard errors in cox regression including ISS scores, R-ISS scores and unsupervised clustering results.

GEM05 under 65 GEM2012 under 65 GEM05 over 65

ISS 0.619 (0.026) 0.596 (0.039) 0.577 (0.022)

RISS 0.653 (0.02) 0.606 (0.033) 0.570 (0.02)

UNSUPERVISED MODEL 0.645 (0.023) 0.636 (0.035) 0.593 (0.021)

ISS+ RISS 0.652 (0.024) 0.618 (0.038) 0.591 (0.024)

ISS+UNSUPERVISED MODEL 0.696 (0.023) 0.664 (0.04) 0.62 (0.025)

RISS+UNSUPERVISED MODEL 0.694 (0.023) 0.653 (0.038) 0.607 (0.024)

ISS+ RISS+UNSUPERVISED MODEL 0.704 (0.023) 0.661 (0.04) 0.621 (0.025)

Univariate and multivariate cox regression models were fitted.
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In conclusion, the present work describes a new, simple and
easy to use prognostic model in newly diagnosed MM whose
predictions are independent of ISS and R-ISS scores. Notably, the
model is particularly well suited in order to classify R-ISS score 2
patients in 2 subgroups with significantly different survival. The
reproduction of this clusterization in different MM databases
developed by other national and international working groups is
recommended, and their associations with drug response in
clinical trials should be studied. The combination of ISS, R-ISS and
unsupervised machine learning clusterization is a promising
approximation in order to improve MM risk stratification.
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