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Abstract

High-throughput genomic technologies are increasingly used in personalized cancer medicine. However, computational tools to
maximize the use of scarce tissues combining distinct molecular layers are needed. Here we present a refined strategy, based on
the R-package ‘conumee’, to better predict somatic copy number alterations (SCNA) from deoxyribonucleic acid (DNA) methylation
arrays. Our approach, termed hereafter as ‘conumee-KCN’, improves SCNA prediction by incorporating tumor purity and dynamic
thresholding. We trained our algorithm using paired DNA methylation and SNP Array 6.0 data from The Cancer Genome Atlas
samples and confirmed its performance in cancer cell lines. Most importantly, the application of our approach in cancers of unknown
primary identified amplified potentially actionable targets that were experimentally validated by Fluorescence in situ hybridization
and immunostaining, reaching 100% specificity and 93.3% sensitivity.

Keywords: somatic copy number alterations, DNA methylation, gene amplification, actionable target identification, cancers of
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Introduction
Deoxyribonucleic acid (DNA) methylation alterations,
particularly the epigenetic inactivation of tumor sup-
pressor genes, are a hallmark of human tumors and are
increasingly used as biomarkers and drug targets [1–3].
For this reason, epigenomic tools that are cost-effective,
such as DNA methylation microarrays, are gaining
momentum for translational purposes [1–3]. In recent
years, as a potential alternative to the use of SNP-based
SNP Array 6.0 (SNP6) arrays, several approaches to detect
genome-wide Somatic Copy Number Alterations (SCNAs)
from Infinium Human Methylation 450K/EPIC arrays
have been developed [4–6] and are applied in several
fields, including cancer research [i.e. 7–9]. Herein, we
present a refined strategy to predict SCNAs using 450K
DNA methylation microarrays [10], based on conumee

[4], that allow to detect SCNAs quantitatively in cancer.
Our approach, hereafter referred as conumee-KCN,
refines conumee’s calling of SCNAs by estimating a
dynamic sample-dependent threshold for different copy
number states while accounting for tumor purity-, intra-
sample- and copy number state-associated variation.
Commonly, SCNAs are detected by a fixed threshold
(e.g. >0.3) or by n SDs from the sample mean/median
and are not further distinguished [4–6]. Previous studies
showing associations between high amplifications and
high drug response rates have encouraged us to refine
the SCNA calling from DNA methylation arrays to
further be able to distinguish between gains, moderate
amplifications and high amplifications. For instance, the
highest responses to crizotinib are observed among non-
small cell lung cancer patients harboring high levels
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of MET amplification [11]. Similarly, high responses to
FGFR inhibitors are detected in high-level clonal FGFR2-
amplified gastric cancer patients [12].

The dual detection of DNA methylation and copy num-
ber alterations using only the epigenomic platform could
be particularly relevant in the clinical setting, consider-
ing the common limitations in the amount of available
tissue as well as the short timing usually available for
oncology patients to receive the best tailored individual
treatment. We highlight the application of our algorithm
in a cohort of 211 cases of Cancer of Unknown Pri-
mary (CUPs), previously profiled by our group using DNA
methylation arrays [13]. The intrinsic features of CUPs,
including their early dissemination, aggressive clinical
course and lack of evident pharmacological targets [14–
16], provide an ideal scenario to demonstrate the advan-
tages of identifying potentially druggable somatic ampli-
fied targets to broaden the therapeutic alternatives to
treat this orphan tumor type and to eventually improve
its dismal clinical outcome.

Materials and methods
Affymetrix SNP6 microarray processing
Affymetrix SNP6 array data (.CEL files) from The
Cancer Genome Atlas (TCGA) were downloaded from
Genomic Data Commons (GDC) Data Portal (https://
portal.gdc.cancer.gov/) and were processed in our pre-
vious study [17]. In brief, SNP6 array data were processed
together, quantile-normalized and median-polished with
Affymetrix power tools. Genotyping was performed with
the Birdseed algorithm. PennCNV [18] was employed to
generate log2 R ratio and B-allele frequencies. Total-
and allele-specific somatic copy number calls, as well
as purity estimation, were generated with ASCAT
[19].

450K DNA methylation microarrays processing
Illumina Infinium HumanMethylation450 (450K) Bead-
Chip array data from TCGA was downloaded from
GDC Data Portal (https://portal.gdc.cancer.gov/) using
the R package TCGAbiolinks. From the 7009 TCGA
samples with matched genotyping (SNP6 array) and
DNA methylation (450K) data, 442 samples across
18 cancer types were used as our training cohort
(Supplementary Table S1 available online at https://
academic.oup.com/bib), and 151 samples across 11
cancer types were used as our validation cohort
(Supplementary Table S2 available online at https://
academic.oup.com/bib). The 450K data from 75 normal
samples across 18 different tissues were also retrieved
from TCGA. The 450K data from 96 whole-blood (WB)
samples from healthy individuals were available from a
previous study [20]. In addition, 450K data from cancer
cell lines (CCLs) were downloaded from the Cancer
Cell Line Encyclopedia (CCLE, Broad Institute) using
the R-package GEOquery Gene Expression Omnibus
(GEO) database (GSE68379). The 450K data from 211

samples of CUPs were available in house from our
previous study [13]. For all 450K datasets, we used
the R-package minfi [21] for processing and quality
control. We applied quantile normalization and a
minimum detection threshold with P-value < 0.01 per
probe and a maximum of 10% of failed probes per
sample. Sex chromosomes and cross-reactive probes
were excluded from the analysis, and probes that were
located +/− 10 bases away from known SNPs were also
filtered out.

Improved quantitative SCNA calling from 450K
data based on conumee
We based our SCNA calling strategy on conumee [4],
a popular tool for SCNA calling from DNA methyla-
tion arrays. Conumee calculates copy number alterations
based on the signal intensity (I) ratio between tumor
and normal samples (R = ITumor/INormal) using the follow-
ing steps: (1) normalized intensity values of both the
‘methylated’ and ‘unmethylated’ signals are added; (2) a
‘best-linear-fit’ is performed between the query sample
(tumor, in our case) and all normal healthy samples
([20], in our case); (3) the log2-ratio of probe intensities
between the two is calculated; (4) from those median
log2-ratio of all probes intensities for predefined genomic
bins are derived (log2[R]) and (5) copy number alterations
are estimated as difference of these ratios from the mean
of all bins (mean(log2[R]):

cn = log2[R]–mean(log2[R]).

Note that the intercept, mean(log2[R]), represents the
copy number neutral state (baseline), since ITumor = INormal.
(6) Final segments are derived from the predefined bins
using circular binary segmentation (DNAcopy package
[22]). Finally, SCNAs can be detected when the copy
number estimate (cn) exceeds a certain threshold, either
a fixed value or measured as units of SD.

We refined this approach by (1) estimating dynamic
thresholds for different types of SCNAs (‘copy number
states’) and (2) incorporating tumor purity, intra-
sample variability and copy-number-state-dependent
noise.

To define a threshold for copy number estimates (cn)
above which we denote a certain copy number state
(CN) (‘Amp10’, ‘Amp’, ‘Gain’, ‘HetLoss’ or ‘HomDel’, see
Results), we assume that this threshold is array (a) depen-
dent and proportional to the tumor purity (ρ), the intra-
sample variation of the array (sd(log2[Ra])) and a constant
(KCN) that reflects the copy number-state-associated
biological/technical variation:

TCN = mean(log2[Ra]) + KCN ∗ ρ ∗ sd(log2[Ra]).

Tumor purity (ρ) is calculated using the ‘ABSOLUTE’
method within the ‘RF_Purify’ R package [23].

Similarly, we denote that the difference between inten-
sity ratios of segments with copy number alterations
(log2[RCN]) and the overall array mean (mean(log2[Ra])
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varies with the tumor purity (ρ) and the intra-sample
variation of the array (sd(log2[Ra]):

ρ ∗ sd(log2[Ra]) ∼ log2[RCN]–mean(log2[Ra]).

For each copy number state (CN), we perform a linear
regression and retrieve KCN:

ρ ∗ sd(log2[Ra]) ∼ 0 + (
log2[RCN]–mean(log2[Ra])),

y = 0 + Bx,
B = y/x,
KCN = 1/B → x/y,
∗y = ρ ∗ sd(log2[Ra]), x = log2[RCN]–mean(log2[Ra]),
KCN = (log2[RCN]–mean(log2[Ra]))/ρ ∗ sd(log2[Ra])

An example of linear regression is shown in
Supplementary Figure S1A available online at https://
academic.oup.com/bib. We have termed our method
‘conumee-KCN’.

Software
We run conumee [4] (v. 1.26.0) with default parameters
using the option ‘exclude’ [excluded over 10 000 genomic
regions corresponding to common copy number poly-
morphisms in the otherwise healthy population (arising
from both tissue and blood samples), as described by
the authors in the conumee online manual]. For the
comparative benchmark, we run ChAMP [5] (v.2.22.) and
cnAnalysis450k [6] (v.0.99.26) with default parameters,
and according to the authors instructions, using a mini-
mum frequency of >0.3 and an effect size of >0.15 to call
amplifications, respectively.

Statistical analyses
All statistical analyses were performed under the R
package, R version 4.1.2 (2021-11-01)—‘Bird Hippie’.
The P-values, displayed in Supplementary Table S8
and Supplementary Figure S5B, available online at
https://academic.oup.com/bib, were calculated with a
two-sided Fisher exact test.

Experimental allidation of potential
actionable targets
Fluorescence in situ hybridization (FISH)
Formalin-fixed, paraffin-embedded (FFPE) tissue sec-
tions were analyzed using standard FISH techniques
using the following commercial probes: MYC IQFISH
Break-Apart Probe (Agilent Technologies, G111623-2,
Santa Clara, CA, USA), CCND1 IQFISH Break-Apart Probe
(Agilent Technologies, G111622-2), PIK3CA Spectrum
Green FISH Probe Kit/CEP3 SpectrumOrange (Vysis,
06N10-001/06J36-003, Abbott Laboratories, Chicago,
IL, USA), LSI MET SpectrumRed FISH probe Kit/CEP7
SpectrumGreen (Vysis, 06N05-020/06J37-007), LSI BCL6
(ABR) Dual Color, Break Apart Rearrangement Probe
(Vysis, 01N23-020), PathVysion LSI HER-2/neu Spectru-
mOrange/CEP17 SpectrumGreen (Vysis, 02J01/06J37-017
and CCNE1 BAC-Spectrum Red labeled probe (RP11-
104J24). Preparation of slides, hybridization and analysis

were performed according to standard procedures
[24–27].

Hybridizations were analyzed using a standard flu-
orescence microscope (Leica DM5500 B Fluorescence
microscopy, Leica Biosystems Newcastle Ltd, Newcastle
upon Tyne, UK Nikon Eclipse 50i, Tokyo, Japan, or Zeiss,
Oberkochen, Germany) equipped with appropriate filter
sets. Acquisition and processing of digital images were
performed using CytoVision Imaging System (Leica
Biosystems Newcastle Ltd) or the ISIS FISH Imaging
System (MetaSystems, Altlussheim, Germany).

Immunohistochemistry (IHC)
FFPE tissue sections were analyzed using standard
IHC techniques. The primary antibodies used were:
anti-CCND1 (Cyclin D1 P211F11 clone, PA0046), anti-c-
MYC antibody (c-MYC Y69 clone, 3PR00355) and anti-
BCL6 (BLC-6 LN22 clone, PA0204) from Leica Biosystems
(Leica Biosystems Newcastle Ltd); anti-CCNE1 (HE12,
sc-247, Santa Cruz Biotechnology, Dallas, TX, USA)
and anti-HER2/ERBB2 [PATHWAY HER-2/neu (4B5),
TA9145, Ventana, Roche Diagnostics, Basel, Switzerland].
Immunostainings were performed automatically using
automatized protocol ‘F’ on Leica BOND-MAX platform
(Leica Biosystems) except for HER2, where the Bench-
Mark ULTRA IHC/ISH system (Roche Diagnostics) was
used. Positive staining for anti-CCND1, anti-CCNE1,
anti-c-MYC and anti-BCL6 antibody was localized in
the nucleus of the neoplastic cells. The evaluation
was semiquantitative (weak, moderate or intense),
indicating the percentage of positive nuclei. Positive
staining for anti-HER2/ERBB2 antibody was localized in
the membrane of the neoplastic epithelial cells. The
evaluation was performed according to the criteria
described in the CAP/ASCO guidelines [25]. For each
staining, an external positive control was included.

Results
We developed a refined strategy, based on conumee [4],
that allows us to dynamically define a threshold to quan-
titatively call copy number variations from 450K DNA
methylation data in cancer (Figure 1A). The algorithm
was trained using 442 tumor samples publicly available
from TCGA, representing 18 cancer types with sample-
matched genotyping (SNP6 array) and DNA methylation
(450K array) data (Figure 1A).

For our method, we define five copy number states
(CN): (1) Homozygous deletions ‘HomDel’ (complete loss
of all the alleles) = 0 copies; (2) Hemizygous deletions
‘HetLoss’ (loss of one allele) = 1 copy; (3) Gains ‘Gain’ = 3–4
copies; (4) Moderate amplification ‘Amp’ = 5–9 copies and
(5) High amplification ‘Amp10’ = ≥10 copies. We used as
reference a list of 94 genes that include 83 frequently
amplified genes [28] and 11 frequently deleted genes
[29, 30] across cancers (Supplementary Table S3 avail-
able online at https://academic.oup.com/bib).
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Figure 1. Computational prediction of SCNA from DNA methylation arrays using conumee-KCN. (A) Workflow for the developed strategy to refine SCNA
detection, ‘conumee-KCN’, trained over 442 primary tumor samples from TCGA, across 18 cancer types, with matched genotyping (SNP6 array) and
DNA methylation array (450K) data. Our thresholding strategy refines conumee outputs and quantitatively calls SCNA from 450K arrays by considering
tumor purity ρ (RF_Purity) and rigorous estimation of copy-number-state (CN)-dependent constants KCN. ∗A list of 94 genes frequently amplified or
deleted in cancer was used as reference to define the copy number states. Thus, by using calibrated KCN’s and considering tumor purity, intra-sample
variability and copy-number-state-dependent noise, thresholds for each CN can be estimated for each 450K profiled sample to accurately identify SCNA.
(B) Benchmarking of our strategy (conumee-KCN) against conumee (fixed threshold of 0.3), cnAnalysis450k and ChAMP in an independent, validation
set consisting of 151 TCGA samples, with matched genotyping (SNP6 array) and DNA methylation array (450K) data. True positive (TP) and false-positive
(FP) rates of 450K-derived calls versus SNP6-derived calls (ASCAT) for amplifications are depicted, showing the improved performance of our approach.
(C) TP and FP rates of conumee-KCN versus ASCAT in the TCGA validation set for the three amplification copy number states (Amp10, Amp and Gain).
(D) Representative examples of gene amplifications in two samples from the TCGA validation cohort. Thresholds estimated by conumee-KCN for Amp
and Amp10 are depicted (dotted grey lines). TP = #True positives/#True positives + #False Negatives; FP = #False positives/#False positives + #True Negatives.

As a first step, for each sample of our TCGA training
cohort (Supplementary Table S1 available online at
https://academic.oup.com/bib), we called SCNA from
genotyping data using ASCAT (see Materials and Meth-
ods) and created gene subsets for each copy number
state (CN) based on the respective calls. Next, we used
conumee and the corresponding DNA methylation data

to calculate for each of the samples and each of the copy
number state: (1) the intra-sample variation of the signal
intensity ratio (sd(log2[Ra]), (2) the mean signal intensity
ratio (mean(log2(RCN)) for all genes in the corresponding
gene list and (3) the global array mean signal intensity
(mean((log2[Ra]). To broaden the applicability of this tool
to any tissue type, we used WB samples from healthy
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individuals [20] as normal control, as is often done in
large scale studies such as TCGA (GISTIC and ASCAT). We
verified the suitability of this type of samples as normal
counterpart by testing for significant DNA methylation
differences between our sample set (96 samples from
48 men and 48 women, all young adults, to avoid biases
regarding age and gender) and a set of 75 normal samples
spanning 18 tissues. In 97% (1269) of the 1307 CpGs, used
to infer the copy number state of the 94 genes frequently
amplified or deleted in cancer, we observed no significant
differences (Supplementary Table S4 available online at
https://academic.oup.com/bib).

In parallel, we estimated the tumor purity (ρ) of
each sample using the RF_Purify software [23], results
that were strongly correlated with the purity estimates
from genotyping data (SNP6 array) derived with ASCAT
(R2 = 0.573; R = 0.76; Supplementary Figure S2 avail-
able online at https://academic.oup.com/bib). Finally,
implementing the above estimates, we performed a
linear regression and extracted the copy number-state-
dependent constants KCN required for our thresholding
strategy (see Materials and Methods). This workflow is
summarized in Figure 1A. We additionally estimated
mean KCN’s from 10 000 randomizations with 442 sam-
ples each, drawing from the total set of 7009 TCGA sam-
ples from 18 cancer types (Supplementary Figure S1B
available online at https://academic.oup.com/bib). The
obtained KCN values highly reflect the values derived
from the 442 TCGA samples used as training set.

Next, using a validation cohort consisting of an
independent set of 151 TCGA tumor samples across
11 cancer types (Supplementary Table S2 available
online at https://academic.oup.com/bib), we bench-
mark the performance of our thresholding strategy
against conumee using a fixed threshold (>0.3) and
two other commonly used tools, namely, ChAMP [5]
and cnAnalysis450k [6] (Figure 1B). We compared the
concordance between SCNA calls from SNP6 genotyping
arrays (ASCAT) and SCNA calls from 450k methylation
arrays using the respective approaches, focusing on
amplifications (Gains, Amp and Amp10), the center of
our additional analyses. Figure 1B shows how, while the
call concordance [true-positive (TP) rate] is similar for
the three standard approaches (TP = 0.051 for conumee-
fixed threshold 0.3, TP = 0.043 for ChAMP and TP = 0.060
for cnAnalysis450k), our strategy conumee-KCN sensibly
improves SCNA prediction with a TP = 0.218, demonstrat-
ing the superiority of our method in comparison with
previously developed tools.

Moreover, a significant improvement of our strategy
in comparison with previous methods [4–6] is that it
allows to detect SCNAs quantitatively to distinguish
Gains, Amps or Amp10s. As shown in Figure 1C, the con-
cordance of Amps (TP = 0.224) and Amp10s (TP = 0.236)
further support the added value of our approach.
Representative examples of ERBB2 amplification in a
breast cancer (BRCA) sample and MET amplification in a

lung adenocarcinoma sample, predicted by our approach
from the TCGA validation cohort, are shown in Figure 1D.

The performance of conumee-KCN was further assessed
in CCLs available from the CCLE (Broad Institute). The
higher concordance with SNP6-derived calls (TP = 0.247),
in comparison with conumee (TP = 0.109), corroborates
the superiority of our approach (Supplementary Figure S3
available online at https://academic.oup.com/bib).

Once we confirmed the robustness of our strategy, we
applied it to a set of CUP samples aimed to illustrate
its usefulness in the clinical setting (Figure 2A). First, we
applied conumee to the DNA methylation arrays from
211 CUP cases previously profiled by our group [13].
Next, using the KCN’s calibrated from 442 TCGA primary
tumors (Figure 1A) along with tumor purity estimates
from RF_Purity (Supplementary Table S5 available online
at https://academic.oup.com/bib), we annotated the dif-
ferent copy number states (CN): Amp10, Amp, Gain, Het-
Loss or HomDel. Aiming to identify gene amplification
events with a relevant role in CUP pathogenesis, we
dropped gains as it is not uncommon for cancer genomes
to undergo whole genome doubling [31] and selected
those genes that were amplified (CN = Amp or Amp10)
in at least 5 CUPs (2.4% of 211 CUPs; Figure 2A). Consid-
ering the clinical potential of our findings, we focused
on gene amplifications given the progress of inhibitory
drugs for cancer treatment, and restricted the analysis
to protein coding genes (as annotated by Gencode_v34),
also taking into account that 450K arrays are enriched
in CpGs located in promoters and gene bodies [10]. After
this filtering process, a total of 1159 candidate genes
amplified in CUPs were selected for further analysis
(Figure 2A; Supplementary Table S6 available online at
https://academic.oup.com/bib).

Going one step further with the CUP cohort, in
order to identify actionable gene amplifications with
a potential relevance in the clinical setting and thus
broaden the therapeutic opportunities for this dismal
tumor type, we used publicly available data and online
tools to further explore the 1159 amplified genes,
including the Cancer Genome Interpreter (https://www.
cancergenomeinterpreter.org/) [32], Precision Oncology
Knowledge Base (https://www.oncokb.org) [33], Clin-
ical Interpretations of Variants in Cancer (https://
civicdb.org/) and Clinical Trials (www.clinicaltrials.gov).
The inclusion criteria to identify potential action-
able targets were as follows (Figure 2A): (1) Is that
gene a known or predicted driver in cancer?; (2) Is
there a drug (preclinical or clinical) to target that
gene? and (3) Is the amplification of that gene a
potential biomarker for the drug response?. Preclin-
ical evidences, early and late clinical trials and FDA
guidelines were also considered (Figure 2A). According
to these criteria, we identified 15 potential action-
able targets (Figure 2A; Supplementary Table S7 avail-
able online at https://academic.oup.com/bib), includ-
ing well-recognized oncogenes such as MYC, CCND1,
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Figure 2. Epigenomic-based computational prediction of SCNA in CUP using conumee-KCN. (A) Workflow for the detection of SCNA in CUPs using
conumee-KCN and further identification of gene amplifications with clinical relevance. (B) Experimental validation of conumee-KCN predicted SCNA in
CUP patient samples. Representative images of copy number state validation by FISH and protein expression by IHC are shown for three well-recognized
oncogenes: MYC (c-MYC), CCND1 (Cyclin D1) and ERBB2 (HER2). ∗Orange/green break-apart FISH probes were used.

ERBB2 (Supplementary Figure S4 available online at
https://academic.oup.com/bib), BCL6, PIK3CA, MET and
CCNE1. Furthermore, we found some of these genes
to be significantly co-amplified, not only those within
the same amplicon (e.g. role of amplicon 8q24 in
cancer [34], Supplementary Figure S4 available online at
https://academic.oup.com/bib) but also genes located
on different chromosomes [i.e. FGF3/FGF4 (11q13.3)
co-amplified with PIK3CA/PIK3CB (3q26.32/3q22.3)]

(Supplementary Figure S5, Supplementary Table S8 avail-
able online at https://academic.oup.com/bib).

Finally, to demonstrate the robustness of our strat-
egy in a bona fide manner, we sought to experimen-
tally validate our predictions using the gold standard
approach to assess copy number: FISH. The results of
the experimental validation of 21 cases are summa-
rized in Supplementary Figure S6 available online at
https://academic.oup.com/bib. FISH assays confirmed
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the predicted SCNA calls in 95.2% of cases (14/14
amplification events and 6/7 non-amplifications). In
terms of the confusion matrix, we obtained a sensitivity
of 93.3% and a specificity of 100%. Representative
examples of amplified and non-amplified CUP cases
for three well-recognized oncogenes, ERBB2 (HER2),
MYC (c-MYC) and CCND1 (Cyclin D1), are shown in
Figure 2B. Importantly, in comparison to non-amplified
cases, these gene amplification events were clearly
associated with protein upregulation detected by IHC
(Figure 2B). Additional validations of BCL6 and MET are
shown in Supplementary Figure S7 available online at
https://academic.oup.com/bib. Thus, our experimental
results confirmed the SCNA predictions provided by our
DNA methylation microarray-based strategy conumee-
KCN herein presented.

Conclusion and Discussion
The occurrence of shared molecular alterations in
different tumor types has supported the emergence
of tissue-agnostic approaches, which have led to a
revolutionary paradigm shift in drug development and
cancer treatment. Novel precision oncology trial designs,
such as basket trials, which eligibility is based on
the presence of specific genetic alterations, irrespec-
tive of histology, are opening bright opportunities for
patients with tumors harboring actionable alterations.
The tissue-agnostic arsenal of FDA-approved drugs is
increasing, and considering this scenario, optimization
of computational strategies to maximize the identifi-
cation of actionable alterations that guide the targeted
treatment choice is paramount. The more actionable
alterations identified, the more tools for precision
medicine.

Here, we described conumee-KCN, an improved strat-
egy based on conumee [4], to detect SCNA in cancer
using DNA methylation microarrays as a surrogate
for genotyping arrays. Our approach shows significant
improvement over similar approaches, namely, con-
umee (standard) [4], ChAMP [5] and cnAnalysis450k
[6], that previously have been reported to have low
reliability [35]. Moreover, the refinement of our approach
estimates a dynamic threshold for each copy number
state, allowing differentiation between gains, moderate
amplifications and high amplifications, a functionality
that does not exist in the currently available tools.
Thus, with conumee-KCN, the user can estimate sample-
dependent thresholds for Gains, Amps or Amp10s by
using calibrated KCN’s and considering tumor purity
and intra-sample variability to accurately identify SCNA
from any 450K profiled sample. Considering previous
studies showing highest drug responses among patients
harboring high levels of amplifications of the target gene
[i.e. 11, 12], this feature of conumee-KCN is an added value
that could better guide treatment decision-making in
healthcare of cancer patients. Furthermore, whereas
genotyping-based SCNA callers generally take tumor

purity into account, among current DNA methylation-
based SCNA calling tools, this is unique for conumee-
KCN. Incorporation of tumor purity in the thresholding
function could improve SCNA prediction, considering
that cancer-cell intrinsic features could be hidden in
biological samples with a low proportion of tumor cells,
which is not uncommon in clinical setting.

The usefulness of conumee-KCN was illustrated in CUP,
a heterogeneous group of metastatic tumors that lack
an identifiable primary tumor despite a standardized
diagnostic work-up. Most CUP patients (80–85%) have
an unfavorable prognosis with a dismal survival of 3–
6 months despite empirical chemotherapy treatments
[16, 36, 37]. Thus, CUP management is an unmet medical
need. Using our epigenomic-based computational pre-
dictions of SCNA in CUPs, we identified many potential
drug-actionable targets, including well-recognized onco-
genes, such as MYC, CCND1, ERBB2, BCL6, PIK3CA, MET
and CCNE1. Noticeably, some of these genes had been
previously identified in CUPs with very similar amplifi-
cation frequencies [38–43], confirming the power of our
approach. More relevant, successful examples of CUP
cases harboring MET [43, 44] or ERBB2 [45] amplifications
with favorable response to the corresponding target ther-
apies (crizotinib or trastuzumab, respectively) reinforce
the importance of intensifying the research in this field.
Currently, an ongoing clinical trial is comparing the effi-
cacy of molecularly guided therapies versus platinum-
based standard chemotherapy in CUP patients [38].

The dual use of DNA methylation arrays to identify
both epigenomic and genomic SCNA alterations is a
significant advantage particularly evident in the clinical
practice, considering the need to maximize the use
of scarce tissues and the limited time to obtain the
most comprehensive molecular information to effi-
ciently guide therapeutic decision-making. In addition, a
genome-wide approach, as the herein described, boosts
the possibility of identifying co-amplification events,
which might open new venues for combination of
targeted therapies in CUPs in a tissue agnostic manner.
Intriguingly, preclinical studies have shown that the
combined use of FGFR and PI3K inhibitors resulted
in an enhanced efficacy in comparison with single
treatments [46, 47]. Furthermore, although we focused
the CUP analysis on the most promising actionable
targets considering the current evidences, further
studies of the remaining candidates identified by our
conumee-KCN approach could reveal genes or pathways
with key roles in CUP pathogenesis that might open
novel therapeutics opportunities for this dismal cancer
type.

The robustness of conumee-KCN is reflected by the
high sensitivity (93.3%) and specificity (100%) obtained
through the experimental validation by FISH. In this
regard, selective tissue-agnostic treatment of CUPs
focusing on the gene targets identified in this study
might improve the very scarce landscape of effective
therapies against this tumor type. Importantly, our
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approach is in principle flexible and generalizable to
other DNA methylation microarrays (e.g. EPIC Methyla-
tion Arrays) as well as potentially useful for any cancer
type. Thus, the application of conumee-KCN in further
biocomputational studies is warranted.
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is a critical need.

• We improved SCNA prediction from DNA methylation
arrays with our conumee-KCN strategy to further distin-
guish gains, moderate amplifications and high amplifi-
cations, a tool potentially useful for any cancer type.

• The added value of our strategy is significant, particu-
larly since none of the existing approaches using DNA
methylation arrays stratify gene amplifications, a fea-
ture especially relevant in clinical setting.

• The usefulness of conumee-KCN strategy was illustrated
in samples from CUP patients, an aggressive tumor type
with dismal prognosis.

• The identification of 15 candidate actionable targets
amplified in CUPs highlights the potential of our
approach in the clinical setting.

• The conumee-KCN SCNA predictions in CUPs were vali-
dated by experimental procedures (FISH, IHC), demon-
strating a very high sensitivity (93.3%) and specificity
(100%).
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