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Simple Summary: Aberrations of normal DNA methylation patterns are observed in many cancers
and are associated with chromatin alterations, changes in gene expression and genomic instability,
making the study of DNA methylation paramount to our understanding of cancer biology and
evolution and the development of biomarkers. Here, we present an overview of genome-wide
approaches for the analysis of DNA methylation with relevance to cancer research and clinics.

Abstract: DNA methylation is an essential epigenetic mark. Alterations of normal DNA methylation
are a defining feature of cancer. Here, we review experimental and bioinformatic approaches to
showcase the breadth and depth of information that this epigenetic mark provides for cancer research.
First, we describe classical approaches for interrogating bulk DNA from cell populations as well
as more recently developed approaches for single cells and multi-Omics. Second, we focus on the
computational analysis from primary data processing to the identification of unique methylation
signatures. Additionally, we discuss challenges such as sparse data and cellular heterogeneity.
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1. Introduction

DNA methylation, as supposed to other epigenetic marks, represents a direct mod-
ification of the genome, that is, the addition of a methyl group at the 5th Carbon of the
cytosine base. In mammalian genomes predominantly found at CpG dinucleotides, it is
an essential mark for normal mammalian development and a defining feature of cellular
identity [1]. Aberrant DNA methylation patterns have been observed in numerous diseases,
particularly in cancer where global hypomethylation and promoter hyper-methylation are
characteristic of the disease [2]. The combined potential to identify subtypes in genetically
highly heterogenous cancers and its relative stability during cell proliferation has made
DNA methylation an attractive mark for cancer research and diagnostics [3].

DNA methylation is thought to alter chromatin structure in concert with other epi-
genetic marks, such as histone modifications, transcription factors, etc., and henceforth
modify transcriptional potential or, in other words, regulate gene expression. However,
the associated biological phenomena are manifold. Initially, much attention was given
to the excessive methylation of CpG-rich promotors that occurs at many cancer-related
genes. Hyper-methylation in these regions is associated with repression of transcrip-
tion, whereas in normal tissues, these are generally unmethylated and associated with
active gene expression [4,5]. More recently, technological advances of genome-wide high-
throughput technologies have revealed that a large proportion of regulatory elements for
which DNA methylation marks tissue specificity are located in CpG-poor regions far away
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from genes [6]. Additionally, DNA methylation may be altered dynamically, affecting
TF-binding [7] and thus gene expression in an environmentally dependent manner. Finally,
DNA methylation within large hypo- or partially methylated regions occurs in a stochastic
manner and follows heterochromatic domains—a phenomena that ultimately has been
observed not only in cancers but also in normal cells and that has been associated with cell
proliferation history [8,9].

Not only have recent technological advances allowed analysing the smallest amounts
of input material down to individual cells but also made it possible to simultaneously
capture information from multiple omics essays. These, together with the existing tech-
nologies for high-throughput genome-wide analysis, have resulted in a large diversity
of computational tools to process and analyse methylation data. Here, we provide an
overview of approaches for DNA methylation analysis. We do not attempt to include all
available tools but rather have selected the most popular methods to showcase the breadth
and depth of information that this epigenetic mark provides for cancer research. We first
review established and recent experimental approaches used in the field; second, we focus
on bioinformatic data processing and analysis. Finally, we discuss outstanding challenges
and future perspectives.

2. DNA Methylation Assays

In short, DNA methylation can be interrogated based on three approaches: (1) bisul-
fite conversion-based (chemical conversion of unmethylated cytosine to uracil, whereas
methylated cytosines are not converted); (2) methylation-sensitive-enzyme-restriction-
based (MSRE, restriction site includes methylated or unmethylated cytosine); or (3) affinity
enrichment-based (active binding site includes methylated cytosine). Once established, the
methylation signal is then analysed by either DNA hybridization or sequencing. To date,
analyses of bisulfite-converted DNA by microarray or Next Generation Sequencing are
the most commonly employed approaches for methylome studies (Figure 1A). MSRE ap-
proaches are limited to the existing restriction sites; therefore, their resolution is limited to
fragment size, which particularly for CpG-poor regions, is low. Affinity-based approaches,
such as methylated DNA immunoprecipitation sequencing (MeDIP-seq), methylated DNA
capture by affinity purification (MethylCap-seq) or methylated DNA binding domain se-
quencing (MBD-seq), enrich for CpG-rich regions. Although they avoid the DNA damaging
bisulfite-treatment, they are more labour intensive, requiring an additional step to retrieve
the DNA fragments bound by the respective proteins, and the interpretation of the DNA
methylation signal is somewhat difficult.

Whole Genome Bisulfite Sequencing (WGBS) constitutes the gold standard for DNA
methylation analysis, providing single-base-pair, genome-wide resolution at a coverage of
up to 95% of all CpGs in the human genome (~28 × 106 CpG). More cost efficient due to
less sequencing required, Reduced Representation Bisulfite Sequencing (RRBS) enriches for
CpG-rich fragments via Msp1 restriction and fragment size selection, covering mainly CpG
islands and providing coverage of 2–4.5 × 106 CpGs. By far, the most popular approach,
due to its low cost and fast turnaround, is the analysis of a fixed set of CpG probes via
DNA hybridization microarrays. The widely distributed Illumina BeadChip microarray
can cover 27,578 (27K), ~450,000 (450K) [10], or in its latest generation, ~850,000 human
CpGs (EPIC array) [11]. Probes mostly include CpG-rich regions, gene promoters, and
known cis- regulatory elements (EPIC array). Importantly, for its potential clinical use, the
described DNA methylation microarrays perform well for DNA extracted from paraffin-
embedded (FFPE) sections [12]. Costs for studies with high sample through-put can be
reduced by using targeted sequencing approaches or custom design microarrays (for
comprehensive reviews see [13,14]. With the increased application of single-cell and single-
cell multi-omics approaches, studies using approaches based on bulk DNA sequencing
(WGBS, RBBS) have seemingly declined in popularity compared to microarray-based
studies. (Figure 1B–D) However, bioinformatics tools for analysing bisulfite sequencing
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data, such as Bismark [15], have retained traction since processing of single-cell DNA
methylation data is mostly the same as for bulk DNA (Figure 1B).

Figure 1. Popularity (Pubmed Citations) of DNA methylation approaches. (A) Bulk DNA methylation
assays. (B) Experimental and bioinformatic approaches for bisulfite sequencing (WGBS + RRBS) and
bisulfite arrays (450K and EPIC). Bismark, popular BS-seq analysis tool; Minfi, popular microarray
analysis tool. (C) Single-cell DNA methylation sequencing assays. (D) Single-cell multi-omics
sequencing assays.

Bisulfite-based approaches do not distinguish between 5-methyl-(5mC) and 5-
hydroxymethyl Cytosine (hmC) modifications. 5-hmC is generated by oxidation of 5mC
by TEN-Eleven Translocation (TET) enzymes and was initially perceived as intermediate
in a replication-independent demethylation pathway leading to unmodified cytosine [16].
Studies, however, have reported abundant tissue specific stable hydroxymethylation in neu-
rons and embryonic stem cells making 5-hmC, an epigenetic mark in its own right [17,18].
Additionally, loss of 5-hmC has been observed hematopoietic malignancies and solid can-
cers [19,20]. Hydroxymethylation can be assessed via oxidative bisulfite sequencing (oxBS)
or TET-assisted bisulfite sequencing (TAB-seq). oxBS involves the specific oxidation of
5hmC to 5-formylcytosine (5fC) and conversion of the newly formed 5fC to uracil (under
bisulfite conditions) [21]. TAB-seq involves β-glucosyltransferase (β-GT)-mediated protec-
tion of 5-hmC (glucosylation) and recombinant mouse Tet1(mTet1)-mediated oxidation of
5-methylcytosine (5-mC) to 5-carboxylcytosine (5-caC). After the subsequent bisulfite treat-
ment and PCR amplification, both cytosine and 5-caC (derived from 5-mC) are converted
to thymine (T), whereas 5-hmC reads as C [22].

An alternative approach to detect DNA modifications (5mC, hmC, 6mA and oth-
ers) without involving aggressive chemical treatment is direct long-read sequencing via
nanopore sequencing technology. Long reads also allow to study the co-occurrence of base
modifications along individual molecules, as well as their phasing with genetic variants,
opening up opportunities in exploring epigenetic heterogeneity (see Section 4.2.). Nanopore
sequencers (MinION, GridION and PromethION) measure ionic current fluctuation of
single-stranded nucleic acid polymers when passing through a biological nanopore [23].
Each nucleotide, including their chemical modifications, exhibits different alterations of
the current, and therefore the sequence of bases can be inferred from the specific patterns
of current variation. Modifications are inferred as differential patterns from modified
and unmodified base calls. Although nanopore basecalling has significantly improved in
recent years and there have been several proof-of-concept studies (see [24] for a review),
prediction of methylation states from basecalls are still somewhat suboptimal [25]. This
has prompted other innovative approaches such as enzymatic methyl-seq (EMseq), which
employs C-T conversion via 5-carboxylcytosine combined with nanopore sequencing to
increase prediction accuracy and show good accordance with standard approaches such as
WGBS [26].
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2.1. Single-Cell and Single-Cell Multi-Omics Approaches

During the previous two decades, NGS and microchip technology have elevated DNA
methylation studies to yield higher and wider genomic resolution and throughputs of
hundreds of samples. More recently, however, technological development has focused on
lower DNA input, such as single cells, and the simultaneous incorporation of other “Omics”
assays, so-called “multi-Omics methods” (Figure 1C,D).

The first single-cell protocol, scRRBS [27], was established as an adaptation of bulk
DNA sequencing for low input material but had only limited genomic coverage (40% of
conventional RRBS) and showed excessive PCR duplicates (a fall-back which was later
tackled by Q-RRBS with the addition of unique molecular identifiers (UMI) to each initial
DNA fragment [28]). scBS-seq [29] implemented post-bisulfite adapter tagging (PBAT) and
increased coverage to about 18% of genomic CpGs. Here, sequencing adapters are added
to the DNA after bisulfite treatment to prevent loss of fragmented DNA, which is a result
of the aggressive BS reaction. It was quickly followed by scWGBS [30] that also utilized
PBAT, although without a pre-amplification step that was used by scBS-seq and allowed
the preservation of strandedness and reduced amplification bias. Other approaches, such as
single nucleus methylcytosine sequencing (snmC-seq), improved the recovery of bisulfite-
converted, single-stranded DNA during library preparation [31], or such as sci-Met, added
high-throughput single-cell processing by combinatorial indexing [32].

Single-cell multi-omics approaches that included methylation analysis were devel-
oped starting in 2016: scMT [33] and scM&T to interrogate DNA methylation and the
transcriptome simultaneously [34]; and scTrio to interrogate methylome, transcriptome
and copy number variation at the same time [35]. DNA and RNA are physically separated
prior to bisulfite treatment and are analysed by scBS-seq or scRRBS, scWGS and Smart-
seq2, respectively. Shortly after, the Nucleosome Occupancy and Methylation sequencing
protocol (NoMe-seq) which interrogates open chromatin, nucleosome positioning and
DNA methylation was adapted for single-cell analysis with scNOMe-seq [36] and further
combined with Smartseq2 for transcriptome analysis with scNMT [37] (Figure 1D). Other
developments of multi-omics approaches are directed towards higher sample throughput
and systems that prevent DNA loss, such as single tube reactions and multi-fluid systems
(for an extensive review on single-cell/ single-cell-Omics methods, see [38]).

2.2. Cell-Free Circulating Tumour DNA (ct) from Liquid Biopsies

Analysis of cell-free circulating tumour DNA (ct) from liquid biopsies provides a
minimal-invasive approach for the study and monitoring of tumour evolution. Epigenomic
analyses, including DNA methylation, can significantly contribute to information gained
from genomic analysis of cf-DNA and have outperformed classifications and cell-of-origin
assignments based on SNP and CNV calling [39]. Ct-DNA is highly fragmented (mostly
130–160 bp fragment length) and may make up 3–90% of the total cell-free DNA, depending
on cancer type and stage [40], which requires highly sensitive analysis methods such as
deep sequencing (BS-seq) or targeted approaches (hybrid capture, PCR). Alternatively,
pooled cf-DNA extractions have been used for microarray analysis to reach sufficient
amounts of required inputs [41]. Additionally, affinity-based approaches, specifically
cfMeDIP-seq, have proven particularly successful, as they only require minute amounts
of input material [42]. Due to the peculiarities of the input material, studies generally
first establish reference panels to identify significant marker loci, then subsequently assay
these [39,40].

3. Processing of DNA Methylation Data

All data processing, whether based on bisulfite sequencing, bisulfite microarrays or
affinity enrichment, starts with an initial step of raw data quality control (Table 1). From
here, sequence-based approaches perform trimming of unwanted bases from the reads,
such as sequencing adapters or unwanted bases resulting from enzymatic end repair. How-
ever, alignment for BS-seq reads needs to consider the bisulfite-induced conversion of
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un-methylated Cytosine to Uracil (and subsequently to Thymine through PCR amplifica-
tion). As such, BS aligners either perform a wild-card alignment against C or T equally
(e.g., BSMAP [43]) or, more common, align against a converted and un-converted version of
the reference genome (so-called ‘three-letter aligners’ such as Bismark [15], BS-seeker [44],
gem3 [45]; for a recent benchmark of BS aligners, see [46]). MBP-seq approaches, since they
do not undergo bisulfite treatment, require only standard genomic read alignment tools.
The post-alignment removal of PCR duplicates (usually by identifying reads with the same
start and end coordinates) is performed for all approaches involving sequencing, but due to
the enrichment step, approaches such as RRBS or MeDiP-seq and MethylCap only remove
duplicates above a certain coverage threshold. Since naturally occurring single-nucleotide
variants (SNPs) affect the methylation estimates from BS-treated DNA, known SNPs are
mostly filtered out. Some processing pipelines such as gemBS [45] incorporate SNP calling
from BS-seq to detect additional SNPs.

Table 1. Data analysis and methylation calling.

Description Software Bulk BS-Seq scBS-Seq AE-Seq BS-
Arrays Ref

Quality control FastQC yes yes yes [47]
Adapter/end-
base trimming TrimGalore yes yes [48]

BS-aware
read alignment

BISMARK, BS Seeker2, gemBS,
BSMAP yes yes [15,43–45]

Remove PCR duplicates PicardTools yes yes yes [49]
Variant calling gemBS, Bis-SNP, GATK yes [45,50,51]

Methylation calling BISMARK, Bis-SNP, gemBS,
MethylExtract yes yes [15,45,50,52]

standard read alignment bowtie2, BWA yes [53,54]
Normalization DESeq2, MEDIPS, Diffbind yes [55–57]

Enrichment analysis QSEA, RaMWAS, Diffbind yes [57–59]

Quality control minfi, limma, wateRmelon yes [60–62]
Normalization minfi, limma, wateRmelon yes [60–62]

Methylation calling
(bvalues, mvalues) minfi, wateRmelon yes [60,62]

Finally, methylation levels are estimated from read coverage. For BS-seq data, this
is commonly calculated from reads containing unconverted (=methylated) or converted
(=unmethylated) cytosines as the proportion of unconverted cytosines over all counts
(unmethylated + methylated). More accurately, this can be estimated in a probabilistic
manner, taking into account bs-conversion rates and sequencing errors as well as a beta-
binomial distribution dependent on read counts, although in practise, the differences are
marginal and become only significant at low read coverage [63]. For MeDIP-seq and
MethylCAP, methylation levels are estimated as local enrichment of reads, which is derived
from a normalized signal against the background [56,64].

Since they are based on hybridization technology, data from microarrays do not
require any read alignments. For the Illumina BeadChip platforms, the initial chip image is
internally processed inside the scanner. The output signal, the chips’ two colour channels
(red and green), is then subsequently background corrected (quality controls probes) and
normalised using a variety of methods [65]. The popular analysis package minfi includes
several normalizations, amongst them, for example, ssNoob, which adjusts for technical
variation across platforms [60]. Finally, methylation levels are inferred from the ratio of
both colour channels as beta value or its log ratio, the M-value.

4. Analysis of DNA Methylation
4.1. Exploratory Data Analysis and Sparse Data

As a first step after the primary data processing, exploratory analysis usually involves
visualizing similarities between samples to check for technical biases (batch effects) or
phenotypes (Table 2). Principle component analysis (PCA) is useful for visualizing data
spread along individual components of sample variance. In the case of complex data, such
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as single-cell data, dimensionality reduction methods such as classical multidimensional
scaling (MDS), t-distributed stochastic neighbour embedding (t-SNE), or negative matrix
factorization (NMF) have proven successful [31,32]. Further, clustering approaches such as
k-means or hierarchical clustering (un-/supervised) are useful in identifying meaningful
groupings such as cancer sub-types, treatment conditions or cell populations. Specialized
algorithms have been used for single-cell data analysis (e.g., DBSCAN [32]) and multi-
omics data [66,67]. Multi-omics clustering leverages data from multiple assays and allows
for a more comprehensive insight into population structure, while at the same time facing
computational and statistical challenges of multi-dimensional integration (for in-depth
evaluation of different methods, see [66,67]).

Table 2. Methods for data imputation and exploratory analysis.

Process Description Method Software BulkBS-Seq scBS-Seq AE-Seq BS-Arrays Ref

Visualization
Variance decomposition PCA R yes yes yes yes [68]

Dimensionality reduction MDS, t-SNE, NMF MASS, stats,
Rtsne, NMF yes yes (yes) (yes) [69–71]

Clustering

Clustering
(nearest neighbour) k-means

Hierarchical clustering
(un-/supervised) hclust() stats, cluster, yes yes yes yes [72,73]

Imputation of
missing data

Based on local spatial
methylation correlation

Local
likelihood smoothing BSmooth yes (yes) [74]

Based on local spatial
methylation correlations
within and across cells

and different
genomic regions

glm,
Bayesian clustering Melissa yes [75]

Based on local spatial
methylation correlations
within and across cells

and different
genomic regions

Bayesian clustering,
hierarchical

mixture model
Epiclonal yes yes [76]

Based on neighbouring
CpG correlation and

sequence composition
Deep neural network DeepCpG yes [77]

Compared to bulk DNA, single-cell data are sparse and discrete. As there are the-
oretically only two copies of any given DNA fragment present and bisulfite treatment
aggressively attacks those, any failure of capturing a particular fragment or sequencing
error results in data loss. Sequencing data from single-cell DNA typically suffers generally
low mappability and reduced heterogenic genomic coverage. As a result, methylomes from
single-cell data are often composed of 10–100s of individual cells, or the methylation signal
is summarized over genomic regions [30]. To achieve more even genomic coverage and
facilitate downstream analysis, several algorithms have been developed that leverage the
correlation of methylation levels across neighbouring CpG as well as information from
across-cells information. For example, Melissa [75] and Epiclonal [76] use local regression
models combined with a (Bayesian) model prior to predict latent methylation profiles
of genomic regions. DeepCpG [77], on the other hand, employs deep learning (neural
networks) to predict methylation levels based on sequence composition (Table 2).

4.2. Deconvolution of Cellular Heterogeneity and Estimating Tumour Purity

When investigating bulk DNA, a major convoluting factor in analysing differential
methylation is that variance amongst conditions might be caused by factors not related to
differences in cellular phenotypes but rather to differences in the cell type composition of
samples. Surrogate variance analysis (SVA) is an established method to remove unwanted
variation (batch correction) of unknown origin, and it can similarly be applied to correct for
the difference in cell-type composition (Table 3). Other reference-free and semi-reference-
free approaches employ methods such as NMF and recursive Quantile Projection (QP)
which have been used to estimate cell type proportions. However, when the contributing
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cell types are known and/or reference data are available, reference-based approaches for
cell-type deconvolution such as robust partial correlations (RPC), support vector regression
(see CIBERSORT/METHYLCIBERSORT) or constrain projection (see Houseman CP) are
preferrable [78,79]. Naturally, the success of the deconvolution highly depends on the
quality and applicability of the reference and the knowledge about which cell types to
expect. Low or inappropriate reference data can lead to biased results. Classically, pure
sorted cell populations have been used as refences, but single-cell data are increasingly
incorporated. Teschendorff et al. [80] even developed deconvolution of bulk WGBS using
scRNA-seq data.

Table 3. Methods for cell-type deconvolution and estimation of tumour purity.

Task Class Method Software Bulk BS-Seq scBS-Seq BS-Arrays Ref

Remove unwanted
variation (including

batch effects)

Reference-free
Surrogate and

independent surrogate
variable analysis

SVA yes yes [81]

Remove
unwanted variation RUV, missMethyl yes [82,83]

Intra-sample cell
type deconvolution

Reference-free,
semi-reference-free

NMF using
recursive QP RefFreeEWAS yes yes

Reference based

Robust partial
correlations,

CIBERSORT, Houseman
CP, COMBAT

HEpiDISH/EpiDISH yes [84]

CIBERSORT METHYLCIBERSORT yes yes [85]

Reference based
using scRNAseq EPISCORE yes

Estimate immune cell
fraction in tumours Reference based MethylResolveR [86]

Inference of tumour
burden and tissue of

origin from
plasma cfDNA

CancerDetector yes

Estimate tumour
purity from

plasma cf-DNA
Reference-free Concordance of

neighbouring CpGs CancerDetector [87]

Estimate
epipolymorphism,

methylation entropy,
clonal heterogeneity

Reference-free Epiallele frequency WSH yes (yes) [88]

The latter class of algorithms has been applied predominantly to blood since it is a
medium frequently used for research (and diagnostics) and is known for a cellular composi-
tion that readily changes depending on a variety of factors. In cancer research, however, an
important issue is to estimate tumour-purity by accounting for non-tumoral cells, but often
tumour reference data are rarely available. Here, the package HEpiDiSH uses reference data
from immune cells, fibroblasts, epithelial cells and adipocytes to infer the tumour model
(e.g., for oral and breast cancer) [84]. Other packages such as MethylResolveR [86] have
concentrated on using a set of distinct immune cell types or, similar to METHYLCIBER-
SORT (based on CIBERSORT) [85], have additionally established a large cancer reference
set from cell lines to demonstrate that the type and proportion of contributing/invading
immune cells are associated with survival and other characteristics.

Any deconvolution of heterogeny as described above has is based on differentially
methylated, cell specific informative sites, which have to be identified and extracted upfront
from the global set (see Section 5.1). Alternative approaches utilize information from
neighbouring CpGs that are co-located within sequencing reads from bisulfite sequencing
data. As mentioned before, methylation patterns tend to spread across a region such
that there is high correlation between neighbouring CpGs in normal cells. Cancers have
aberrant methylation, showing higher variations in DNA methylations than normal cells.
By stratifying sequencing reads from bisulfite sequencing data into concordant reads (all
CpGs are either methylated or unmethylated) and discordant reads (CpG have disordered
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methylation patterns), the proportion of discordant reads can be used to estimate the
tumour proportion in a given sample—an approach that has been successfully implemented
in predicting the tumour-derived cell free-DNA fraction in human cancer plasma [87].
Similarly, measures such as epipolymorphism and methylation entropy are based on
epiallele frequency (epiallele—unique combination of CpG methylation states within a
read) and have also been used to quantify within sample heterogeneity [89].

5. DNA Methylation Signatures
5.1. Differential Methylation

Identifying meaningful specific methylation signatures is the ultimate goal of methyla-
tion analysis. Differential methylation can be described for single sites (DMC—differentially
methylated CpGs; DMP—differentially methylated probes), sets of adjacent sites (DMR—
differentially methylated regions), or pre-defined genomic regions such as tiling windows,
promoters, enhancers, etc. (Table 4).

Table 4. Popular methods for differential DNA methylation.

Type Method Distribution Software Bulk BS-Seq scBS-Seq AE-Seq BS-
Arrays Ref

DMC,
DMR (predefined)

Fisher’s Exact test,
logistic regression Binomial (dispersion) MethylKit yes [88]

DMC,
DMR (predefined) Likelihood ratio Beta-binomial MethylSig yes [90]

DMC, DMR (defines) Wald test,
linear regression

Beta-
binomial (dispersion) DSS yes [91]

DMC, DMR (defines)

local linear
regression,
smoothing,

t-test similar

Binomial BSseq (BSmooth), yes [74]

DMC,
DMR (predefind)

Linear
regression, t-test Linear RnBeads yes yes yes [92]

DMC,
DMR (predefind) glm, likelihood ratio Negative-

binomial (dispersion) EdgeR yes yes [93]

DMC,
DMR (predefind) glm, Wald test Negative-

binomial (dispersion) DEseq2 (Diffbind) yes yes [54]

DMC non-parametric test,
beta-regression Gauss limma yes [60]

DMC, DMR (defines) local linear
models, smoothing Gauss minfi (bump

hunter, DMPfinder) yes [59]

DMC, DMR (defines) local linear
models, smoothing DMRcate yes [94]

DMC, DMR (defines) Linear models, com-
bining subregions Gauss dmrff yes [95]

For microarray derived beta-values, significant differences between two groups of sam-
ples are commonly estimated based on t-statistics (t-test, Welsh-test, Permutation test) or
moderated t-statistics (Empirical Bayes) since their distribution is approximately Gaussian.
Methylation values derived from count data such as methylated/unmethylated sequencing
reads follow a binomial distribution and are modelled by either a beta-binomial or negative-
binomial distribution variance across samples estimated by a dispersion parameter (edgeR,
DSS, MethylKit). For analysing multiple samples and/or to include covariates, regression
analysis is the natural choice. Once significance is established (e.g. p-value < 0.01), relevant
sites are usually selected by a minimum threshold of absolute differences between mean
methylation values which may depend on the phenotype in question. For example, many
smoking-associated DMCs show differences as low as 5%, whereas most cancer-associated
DMCs exhibit differences much larger (25–30%) [78].

In practice, changes in methylation are typically estimated for differentially methylated
regions (DMRs) rather than individual DMCs. This reduces data dimensionality and
increases the power of detection by employing nearby CpGs. In the case of pre-defined
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regions, the methylation signal is simply summarized over the entire region, and statistical
testing, similar as for single sites, is applied (e.g., MethylKit [88], RnBeads [92], edgeR [96],
MethylSig [90]). Alternatively, de novo DMRs can be defined as an extension of DMCs,
where a DMR constitutes a region containing a minimum number of DMCs at a maximum
distance and minimum/maximum absolute length (e.g., DSS package [97]). Other tools
take into account the correlation between nearby CpGs. Bumbphunter [98] (implemented
in the minfi package) first fits a linear regression model for each locus and then smooths
the coefficient within clusters along the genome to identity bumps, i.e., DMRs. Similarly,
DMRcate [94] first establishes local moderate t statistics (limmas t2s) and then applies a
Gausschian kernel for smoothing within a specific window—a method the authors claim to
be platform agnostic and to remove bias derived from sparse and irregularly spaced CpGs.
Dmrff [95] derives subregions from stretches of DMCs, evaluates and adjusts them, and
then combines the most significant into candidate DMRs which are then evaluated again.

5.2. Methylome Segmentation and the DNA Methylation Landscape

Another approach to describe methylation signatures takes into account larger scale
methylation features in the form of genomic segments that have been shown to be asso-
ciated with certain chromatin states and 3D structures. Hidden Markov Models (HMMs)
have been implemented in several applications to identify regions of similar methyla-
tion states (Table 5). For example, Stadler et al. (2011) [7] implemented a three-state
HMM that identified unmethylated regions (UMRs), lowly methylated regions (LMRs)
and fully methylated regions (HMRs), which corresponded to unmethylated CpG islands,
short CpG-poor regions with intermediate methylation and the remaining bulk of the
genome, respectively. UMRs were associated with open chromatin and active transcrip-
tion start sites, whereas LMRs were identified as active enhancers. A two-state HMM by
Song et al. (2013) [99] identified hypo- and hypermethylated regions recorded in MethBase,
a public database of tissue-specific DNA methylation features. Longer hypo-methylated
regions of several kilobase pair lengths were coined ‘DNA methylation valleys (DMVs)
and canyons’ and have been implicated in developmental processes and cancers, such as
leukaemia and advanced prostate cancer [100–102].

Table 5. Popular approaches for methylome segmentation.

Type Method Model Software Bulk DNA BS-Seq Ref

UMR, LMR, HMR Segmentation 3-State HMM MethylSeekR yes [103]

PMD Segmentation 3-State HMM MethylSeekR yes

Hypo/Hypermethylated
regions, DMR, PMR,

PMD, AMR
Segmentation 2-State HMM,

genomic windows methPipe yes [100]

On a larger scale, at the size of tens of kilobase and megabase pairs, so called “hy-
pomethylated domains” or “partially methylated domains” (PMDs) are associated with
heterochromatin and transcriptional silencing and coincide with topologically associated
domains (TADs) and lamina-associated domains (LADs) [9,104]. The stochastically oc-
curring methylation in these domains and the associated global hypomethylation are
characteristic for many cancers. However, several studies have shown they also occur in
normal tissues, such as fibroblast, adipocytes or mature lymphocytes [6,8].

6. Downstream Analysis: Interpretation and Application of DNA Methylation
Signatures for Research and Clinics

Interpretating DNA methylation signatures generally involves other types of omics
data for additional downstream analysis. For example, the correlation of DNA methylation
with gene expression via RNA-seq or expression arrays allows assessing the phenotypic im-
pact of epigenetic modifications and insights into biological processes via pathway and/or
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network analysis. Associating DNA methylation states with histone modifications and TF
motif binding (e.g., from ChIP-seq experiments) as well as chromatin accessibility (e.g., via
DNAseq, ATAC-seq) and conformation (e.g., Hi-C seq) allows to unravel mechanisms of
gene regulation (see https://epigenie.com/epigenetic-tools-and-databases/, last accessed
on 1 January 2022, for a list of epigenetic tools and databases for downstream analysis
and visualization).

A vital output of DNA methylation analysis for cancer diagnostics is the identification
of novel and clinically relevant subtypes. Recent statistical approaches for integrative multi-
omics analysis (including similarity- and correlation-based, Bayesian, fusion and other
multi-variate methods) have greatly improved subtyping of cancers and feature selection
identifying novel biomarkers and driver genes [105]. Machine learning algorithms, such as
random-forest or neural networks, have enabled the classification of brain tumours [106]
and sarcomas [107] and even the assignment of primary tumour sites for metastases of
unknown origin [108]. Similarly, important for the clinic, they have been applied to predict
responses to pharmacological [109] and cellular immunotherapy [110] and model patient
survival [111].

7. Conclusion and Remaining Challenges

Next generation sequencing and microarray technology have allowed to interrogate
DNA methylation at unpreceded genomic resolution and sample throughput, while recent
low input and single-cell technologies have enabled interrogation of cell-free DNA and
rare-cell populations. Through computational tools, these data have yielded insights into
the interplay of DNA methylation and chromatin structure and have greatly improved
our understanding of cancer biology and evolution. Together, they have greatly aided the
molecular characterisation, classification and ultimate detection of cancers and their tissue
of origin. While genome-wide methylation analyses are paramount for the development
of biomarkers, for clinical practice, they are further informative to determine treatment
resistance and predict cancer risk, fragility, and mortality rates.

Challenges remain in areas of deconvoluting cellular heterogeneity, where clonal or
and/or cellular heterogeneity is excessive, or reference data are sparse or not available.
Furthermore, cell–cell interactions represent an important characteristic in tumour biology
and remain largely unaccounted for by most algorithms.
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