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A B S T R A C T   

High rates of relapsed and refractory diffuse large B-cell lymphoma (DLBCL) patients and life-threatening side 
effects associated with immunochemotherapy make an urgent need to develop new therapies for DLBCL patients. 
Immunotoxins seem very potent anticancer therapies but their use is limited because of their high toxicity. 
Accordingly, the self-assembling polypeptidic nanoparticle, T22-DITOX-H6, incorporating the diphtheria toxin 
and targeted to CXCR4 receptor, which is overexpressed in DLBCL cells, could offer a new strategy to selectively 
eliminate CXCR4+ DLBCL cells without adverse effects. In these terms, our work demonstrated that T22-DITOX- 
H6 showed high specific cytotoxicity towards CXCR4+ DLBCL cells at the low nanomolar range, which was 
dependent on caspase-3 cleavage, PARP activation and an increase of cells in early/late apoptosis. Repeated 
nanoparticle administration induced antineoplastic effect, in vivo and ex vivo, in a disseminated immunocom
promised mouse model generated by intravenous injection of human luminescent CXCR4+ DLBCL cells. More
over, T22-DITOX-H6 inhibited tumor growth in a subcutaneous immunocompetent mouse model bearing mouse 
CXCR4+ lymphoma cells in the absence of alterations in the hemogram, liver or kidney injury markers or on- 
target or off-target organ histology. Thus, T22-DITOX-H6 demonstrates a selective cytotoxicity towards 
CXCR4+ DLBCL cells without the induction of toxicity in non-lymphoma infiltrated organs nor hematologic 
toxicity.   

Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; AUC, area under the curve; BLI, bioluminescence imaging; BM, bone marrow; CLS, 
capillary leak syndrome; DLBCL, diffuse large B-cell lymphoma; FDA, Food and Drug Administration; H&E, hematoxylin and eosin; IHC, immunohistochemistry; IV, 
intravenous; LN, lymph node; MFI, mean fluorescence intensity; PARP, poly (ADP-ribose) polymerase; PLT, platelets; RBC, red blood cells; SC, subcutaneous; WBC, 
white blood cells. 
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1. Introduction 

Diffuse large B cell lymphoma (DLBCL) is the most common subtype 
of non-Hodgkin lymphoma accounting around 30–40% of all cases [1]. 
First-line therapy for these patients combines the monoclonal antibody 
anti-CD20 (rituximab) with cyclophosphamide, doxorubicin, vincris
tine, and prednisone (R-CHOP). Nevertheless, between 40% and 50% of 
DLBCL patients relapse or have refractory disease [2,3]. R-CHOP is the 
common treatment for DLBCL and combines Rituximab immunotherapy 
with chemotherapy agents that damage the DNA or 
microtubule-destabilizing agents that kill dividing cells but spare 
non-dividing cells [4]. Moreover, chemotherapy passively diffuses 
through all organs killing both tumor cells and normal cells. For this 
reason, patients can experience severe side effects, including 
life-threatening effects such as bone marrow (BM) myelosupression, 
cardiotoxicity or neurotoxicity [5–8]. Thus, targeted therapeutic ap
proaches are needed aiming to increase the cytotoxicity of lymphoma 
cells whereas reducing the off-target toxicity. 

Bacterial toxins are increasingly used as potent anticancer agents due 
to their high cytotoxicity and they are usually linked to a monoclonal 
antibody (as immunotoxins) that confers them the specificity towards a 
target molecule in order to reduce the unspecific toxicity. Three 
immunotoxins have been approved by the Food and Drug Administra
tion (FDA), denileukin diftitox, moxetumomab pasudotox and 
tagraxofusp-erzs, containing a monoclonal antibody conjugated to a 
toxin payload, either the diphtheria or the Pseudomonas aeruginosa toxin 
[9–12]. However, the possible drug leakage in the bloodstream and the 
small amount of the injected dose (<1%) reaching the tumor can limit 
the development of immunotoxins [13,14]. 

Taking into account the risks and limitations of immunotoxins, we 
developed a new strategy based on a self-assembling toxin-based 
nanoparticle named T22-DITOX-H6, with a size over 30 nm. The 
nanoparticle is composed of monomers, each being constructed by a 
single polypeptide chain that includes the translocation and catalytic 
domains of the diphtheria toxin. Moreover, this nanoparticle construct 
includes a hexa-histidine tail (H6) for nanoparticle purification by af
finity chromatography and the T22 ligand for the targeting to CXCR4 
receptor. Our group reported that CXCR4 is a good target for DLBCL 
patients since CXCR4 overexpression is found in around 30–50% of 
DLBCL patient samples [15,16]. Moreover, CXCR4 overexpression in 
DLBCL patients is involved in relapse and resistance to R-CHOP and 
confers them poor progression-free survival and overall survival 
[15–18]. Furthermore, the nanoparticle includes a natural 
furin-cleavage site between the T22 ligand and the toxin domains for the 
release of the toxin once internalized into target cells, as well as another 
furin-cleavage site that separates the catalytic domain from the trans
location domain, allowing to exert its cytotoxic function into target cells. 
Once into the cytoplasm, the catalytic domain inactivates protein syn
thesis to induce cell death [19,20]. 

In this work, we aim at evaluating the specific in vitro cytotoxic effect 
of T22-DITOX-H6 in human and murine CXCR4+ DLBCL cells as well as 
the in vivo anti-lymphoma effect and on-target as well as off-target 
toxicity using both xenograft immunocompromised and immunocom
petent mice. Thus, we expect that the combination of our compact and 
multivalent T22-DITOX-H6 nanoparticle, with its active targeting to 
CXCR4-overexpressing lymphoma cells and the potent mechanism of 
action of diphtheria toxin, will make for an effective and safe strategy to 
eliminate CXCR4+ DLBCL cells. 

2. Material and methods 

2.1. Therapeutic T22-DITOX-H6 nanoparticle construction 

The T22-DITOX-H6 nanoarchitecture, production and purification 
were described in our previous work [20]. 

2.2. Cell culture 

Human Toledo and U-2932 DLBCL cell lines were cultured with 
RPMI 1640 medium whereas the human SUDHL-2 DLBCL cell line was 
cultured in IMDM medium. All cell lines were supplemented with 10% 
fetal bovine serum (FBS), 1% glutamine and 100 U/mL penicillin- 
streptomycin (Thermo Fisher Scientific, Waltham, MA, USA). Toledo 
cell line was purchased from the American Type Culture Collection 
(ATCC, Manassas, Virginia, USA) and U-2932 cell line from the German 
Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, 
Germany). Finally, SUDHL-2 cell line was kindly provided by Dr L. 
Pasqualucci (Columbia University, NY, USA) and its cell line identity 
was verified at genomics and transcriptomics platform at IIB-Sant Pau. 

As reported in previous works [21,22], Toledo and U-2932 cells 
express high membrane CXCR4 levels whereas SUDHL-2 does not. The 
SUDHL-2 cell line was transfected by nucleofection (Nucleofector TM 2b 
Device, Lonza, Basel, Switzerland) with the pCXCR4 plasmid, kindly 
provided by Dr. Jun Komano (Osaka Prefectural Institute of Public 
Health, Osaka, Japan) and CXCR4 positive cells were selected with 0.4 
mg/mL of geneticin (Thermo Fisher Scientific), resulting a new cell line 
named CXCR4+ SUDHL-2. Furthermore, the Toledo cell line was 
nucleofected with the Luciferase gene (pPK-CMV- F3, Promokine, TE 
Huissen, The Netherlands) and the resulted Toledo-Luci cells were 
selected with 0.2 mg/mL of geneticin in order to achieve stable clones. 

Additionally, the murine A-20 lymphoma cell line was cultured with 
RPMI 1640 medium, 10% FBS, 1% glutamine, 100 U/mL penicillin- 
streptomycin, 0.05 mM 2-mercaptoethanol (Sigma-Aldrich, Saint 
Louis, MO, USA) and 10 mM Hepes (Thermo Fisher Scientific). A-20 cell 
line was purchased from the ATCC. 

2.3. Cell viability assays 

Cell viability assays were used to assess the nanoparticle cytotoxicity 
in human and murine lymphoma cell lines. Lymphoma cells were 
seeded, in 96-well plates, from 2.5⋅105 to 3.5⋅105cells/mL depending on 
their growth rate. After 24 h, cells were exposed to different concen
trations of T22-DITOX-H6 or buffer (166 mM NaCO3H, pH=8). More
over, for competition assays, aiming to test if nanoparticle entrance in 
cancer cells is mediated by the CXCR4 receptor, cells were pretreated 
with the CXCR4 antagonist AMD3100 (Sigma-Aldrich) 1 h before the 
nanoparticle addition (10 AMD3100: 1 T22-DITOX-H6 concentration 
ratio). Thus, cancer cell exposure to AMD3100 blocks its membrane 
CXCR4 receptors, leading to the inhibition of the internalization of the 
CXCR4-targeted nanotoxin. Evaluation of cell death caspase- 
dependence was performed adding z-VAD-FMK pancaspase inhibitor 
(Adooq Bioscience, Irvine, CA, USA) at 100 μM 1 h prior nanoparticle 
exposition. 

Then, the colorimetric cell proliferation kit reagent (Roche Di
agnostics, Basel, Switzerland) was added after 48 h of nanoparticle 
exposure and, after 4 h of incubation, cell viability was quantified by 
measuring the absorbance at 492 nm wavelength using a FLUOstar 
OPTIMA spectrophotometer (BMG Labtech, Ortenberg, Germany). Re
sults were expressed as percentage of cell viability in relation to the 
corresponding vehicle control (negative controls, 100% of cell viability), 
e.g. cytotoxicity assays testing T22-DITOX-H6 alone, the vehicle control 
was the nanoparticle buffer (166 mM NaCO3H, pH=8); in competition 
assays the negative control was the AMD3100 together with the nano
particle buffer and in cell death caspase-dependence assays, the negative 
control was zVAD-FMK together with the nanoparticle buffer. 

2.4. Flow cytometry 

For determining the membrane CXCR4 expression, cells were firstly 
washed with PBS 0.5% BSA. Then, human SUDHL-2 and CXCR4+

SUDHL-2 cells were incubated with PE-Cy5 mouse anti-human CXCR4 
monoclonal antibody (BD Biosciences, Franklin Lakes, NJ, USA) or PE- 
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Cy5 Mouse IgG2a isotype control antibody (BD Biosciences) and murine 
A-20 cells with PE anti-mouse CD184 (CXCR4) antibody (Biolegend, San 
Diego, CA, USA) or PE Rat IgG2b isotype control antibody (Biolegend). 
Incubation with antibodies was performed for 20 min at 4ºC followed by 
another PBS 0.5% BSA wash. Finally, cells were captured by FACS 
Calibur flow cytometry (BD Biosciences) and the results were analyzed 
using the Cell Quest Pro software and expressed as mean fluorescence 
intensity (MFI). 

2.5. Western blot 

Toledo and U-2932 cells were seeded in flasks at 3.5⋅105 and 3.0⋅105 

cells/mL, respectively, and treated with buffer or 5 nM of T22-DITOX- 
H6 for 24 h and 48 h. For SUDHL-2 and CXCR4+ SUDHL-2 extracts, 
cells were seeded at 2.5⋅105 and 3.0⋅105 cells/mL, respectively. Cells 
were washed twice with PBS and resuspended in lysis buffer (1 M Tris/ 
acetate, 1 M sucrose, 100 mM EDTA, 100 mM EGTA, 10% TritonX-100, 
100 mM Naorto, 100 mM Naβglycerol, 0.5 M NaF, 100 mM Napyro, 1% 
β-mercapto, 100 mM Benzamidine, 1.74 mg/mL PMSF and 2 mg/mL 
leupeptin). The cell suspension was sonicated and rested for 20 min on 
ice and, then, centrifuged for 10 min at 14,000 rpm and 4 ºC. Protein 
concentration in supernatant was determined using the Bradford protein 
assay, according to the manufacturer’s instructions (BioRad). Cell ly
sates (50 μg) were mixed with LB6X-DTT 3 M, separated using 12–15% 
SDS-PAGE and transferred to a nitrocellulose blotting membrane (GE 
Healthcare life sciences). Membranes were blocked with 5% skim milk 
in TBST for 2 h at room temperature. Then, membranes containing 
Toledo and U-2932 cell lysates were incubated with the following pri
mary antibodies: 1:2000 PARP (556494, BD Biosciences), 1:1000 
caspase-3 (610322, BD Biosciences) and 1:1000 cleaved caspase-3 
(9661, Cell Signaling Technology, Danvers, MA, USA); SUDHL-2 and 
CXCR4+ SUDHL-2 membranes were incubated with 1:1000 CXCR4 
(1009, Prosci, Fort Collins, CO, USA). The loading control antibody used 
was α/β tubulin (2148, Cell Signaling Technology) at 1:1000. Mem
branes were washed with TBST and then incubated with the appropriate 
secondary antibody (1:10,000, Jackson Immune Research). Western blot 
visualization was performed using the SuperSignal West Pico Chemilu
minescent Substrate (Thermo Fisher Scientific) and the G:BOX iChemi 
XT Imaging System (Syngene). 

2.6. Annexin/PI assay 

Toledo and U-2932 cells were seeded at 3.5⋅105 and 3.0⋅105 cells/ 
mL, respectively, and treated with buffer (166 mM NaCO3H, pH=8) or 5 
nM T22-DITOX-H6 for 15 h, 24 h or 48 h. The percentage of cell 
viability, early apoptosis and late apoptosis was evaluated using the 
Annexin V-CF Blue/PI apoptosis detection kit (Abcam, Cambridge, UK) 
and following the manufacturer’s instructions. Data were analyzed by 
MACSQuant analyzer flow cytometry using the MACS Quantify version 
2.3 software (Miltenyi Biotec, Bergisch Gladbach, North Rhine- 
Westphalia, Germany). 

2.7. DAPI staining 

Lymphoma cells were seeded from 2.5⋅105 to 3.5⋅105cells/mL 
depending on their growth rate and treated with buffer (166 mM 
NaCO3H, pH=8) or 2.5 nM or 5 nM T22-DITOX-H6 for 48 h. After that 
time, cells were washed with PBS, incubated with 3.7% para
formaldehyde for 10 min at − 20 ºC, washed again and placed on a slide. 
Finally, these cells were stained with DAPI mounting medium (Thermo 
Fisher Scientific) and visualized using a fluorescence microscope 
(Olympus BX53, Olympus). Representative pictures were taken using an 
Olympus DP73 digital camera and processed with the cellSens Dimen
sion 1.9 software (Olympus) at 1000X magnification. 

2.8. Animal maintenance 

Four-week-old female NOD/SCID mice and seven-week-old female 
BALB/cByJ mice were obtained from Charles River Laboratories (Wil
mington, MA, USA). Mice were housed in microisolator units with sterile 
food and water ad libitum. All procedures were conducted in accordance 
with the guidelines approved by the institutional animal Ethics Com
mittee of Hospital Sant Pau and performed following the European 
Union Directive 2010-63-EU for welfare of the laboratory animals. 

2.9. In vivo T22-DITOX-H6 antineoplastic effect in Toledo-Luci 
disseminated mouse model 

After one week of quarantine, eighteen immunocompromised 
NODSCID mice were intravenously injected with 20⋅106 Toledo-Luci 
cells. Three days later, mice were randomized and divided into two 
groups (n = 9/group), the control group was treated with buffer (166 
mM NaCO3H, pH=8) and the experimental group was treated with 10 μg 
T22-DITOX-H6. The treatment administration was performed intrave
nously three times per week in a total of thirteen doses. In vivo lym
phoma dissemination was monitored using bioluminescence imaging 
(BLI) as total radiance photons in the IVIS Spectrum (Perkin-Elmer, 
Waltham, MA, USA). For that, mice were anesthetized with 3% iso
flurane in oxygen and BLI was captured 5 min after intraperitoneal in
jection of firefly D-luciferin (2.25 mg/mouse, Perkin Elmer). In addition, 
mouse body weight was registered at least twice per week. All mice were 
euthanized the day that the first animal presented relevant signs of 
disease such as lack of mobility or 10% weight loss. At that day, the BLI 
signal from lymphoma-infiltrated organs was quantified ex vivo as 
average radiance photons and then all organs were embedded in paraffin 
for further histological analyses. 

2.10. In vivo T22-DITOX-H6 antineoplastic effect in A-20 subcutaneous 
(SC) mouse model 

After one week of quarantine, ten immunocompetent BALB/cByJ 
mice were subcutaneously injected with 5⋅105 A-20 cells. Tumor growth 
was monitored twice a week with bilateral caliper measurements 
(width2 x length/2). When tumors reached a volume between 50 and 
100 mm3, mice were randomly divided in control group (n = 5), treated 
intravenously with 166 mM NaCO3H, pH= 8 buffer, and experimental 
group (n = 4), treated intravenously with 5 μg T22-DITOX-H6. One 
mouse was excluded from the experiment because of technical problems 
during the intravenous injection. Mice were treated three times per 
week until the first mice achieved a tumor volume size of 500 mm3. 
Then, animals were euthanized and all organs were embedded in 
paraffin for further histological analyses. 

The area under the curve (AUC) of tumor size from buffer and 
nanoparticle-treated mice was calculated using the GraphPad Prism 6 
program. 

2.11. Paraffin-embedded cell blocks 

A-20 cells were paraffin-embedded from the centrifuged cell sus
pension by adding five drops of plasma and thrombin to enmesh the 
cellular material in a clot. Then, cell clots were placed in a cassette, fixed 
in 4% paraformaldehyde and paraffin-embedded in a tissue processor 
(Sakura, Tokyo, Japan). 

2.12. Hematoxilin and eosin (H&E) and immunohistochemical staining 

Paraffin-embedded organs from immunocompromised and immu
nocompetent mice were analyzed histopathologically (H&E staining) by 
two independent observers to assess the possible toxicity. 

CXCR4 (1:300, Abcam) expression was evaluated in cellular blocks. 
Immunohistochemistry staining was performed in a DAKO Autostainer 
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Link48 following the manufacturer’s instructions. Representative pic
tures were taken using an Olympus DP73 digital camera and processed 
with the Olympus CellD Imaging 3.3 software at x400 or x1000 
magnifications. 

2.13. Hematological toxicity 

Blood was obtained by intracardiac punction (25G) the day that 
immunocompetent mice were killed and blood samples were collected 
in EDTA-tubes for the hematological analysis using the BC-5000 Vet 
(Mindray, Madrid, Spain). This device allowed us to count the number of 
white blood cells (WBC), platelets (PLT) and red blood cells (RBC), but 
also the percentage and number of each type of WBC (neutrophils, 
lymphocytes, monocytes, eosinophils and basophils). 

2.14. Hepatic and renal functionality 

Blood collected in EDTA-tubes was centrifuged at 600g for 10 min at 
4 ºC for obtaining plasma. Then, plasma samples were analyzed for 
determining the aspartate transaminase (AST), alanine transaminase 

(ALT) enzyme activities, as well as creatinine and uric acid levels, using 
commercial kits (ASTL ref. 20764949 322; ALTL ref. 20764957 322, 
CREJ2 ref. 04810716 190 and UA2 ref. 03183807 190, Roche Di
agnostics) and adapted for a COBAS 6000 autoanalyzer (Roche 
Diagnostics). 

2.15. Statistical analysis 

All in vitro experiments were performed in triplicate and in vivo ex
periments at least in quadruplicates. Numerical data were expressed as 
mean ± standard error. Differences between groups were analyzed 
using the Mann-Whitney U test and were considered statistically sig
nificant at p ≤ 0.05. Statistical calculations were performed using SPSS 
software v21. 

3. Results 

The first step was to assess the specific cytotoxic effect of the T22- 
DITOX-H6 therapeutic nanoparticle in human CXCR4+ DLBCL cell 
lines. For that, we used two DLBCL cell lines (Toledo and U-2932) which 

Fig. 1. T22-DITOX-H6 specific cytotoxicity in human CXCR4+ DLBCL cell lines. (A) Cell viability assays performed after 48 h of T22-DITOX-H6 incubation at 
different concentrations (0.05–5.00 nM) in Toledo and U-2932 cells. (B) Competition assays in Toledo and U-2932 cells with or without pretreating with the 
antagonist of CXCR4 AMD3100 followed by the nanoparticle incubation for 48 h (ratio 10 AMD3100: 1 T22-DITOX-H6). (C-D) CXCR4 determination in SUDHL-2 and 
CXCR4+ SUDHL-2 cells by flow cytometry and Western blot. In panel D, α/β tubulin antibody is used as endogen control. (E) Cell viability assays performed in 
SUDHL-2 and CXCR4+ SUDHL-2 cells after 48 h of T22-DITOX-H6 incubation (0.10–5.00 nM). *p ≤ 0.05. 
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Fig. 2. Cell death mechanism induced by T22-DITOX-H6 in human CXCR4+ DLBCL cell lines. (A) Cell viability assays, pretreating Toledo and U-2932 cells with 
100 μM of z-VAD-FMK pan caspase inhibitor, followed by the incubation of 5 nM of T22-DITOX-H6 for 48 h. (B) Western Blot analysis for the detection of pro- 
caspase-3, cleaved-caspase-3, full length Poly (ADP-ribose) polymerase (PARP) and cleaved PARP in Toledo and U-2932 cells, treated with buffer or 5 nM T22- 
DITOX-H6 for 24 h and 48 h. α/β tubulin antibody is used as endogen control. (C) Representative dot-plot from Annexin-PI assay showing the percent of viable 
cells (V), early apoptotic cells (EA) and late apoptotic cells (LA) in Toledo an U-2932 cells treated with buffer or 5 nM T22-DITOX-H6 at different time points (15 h, 
24 h and 48 h) and (D) their respective quantification in triplicates. (E) DAPI staining images (1000X) of Toledo and U-2932 cells treated with buffer or 2.5 nM T22- 
DITOX-H6 for 48 h. White arrows point out apoptotic bodies. *p ≤ 0.05. 
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were previously reported to show high CXCR4 membrane expression 
[21,22]. After the exposure of these CXCR4+ DLBCL cell lines to the 
nanoparticle for 48 h, cell viability was reduced in a 
concentration-dependent manner reaching 12.4 ± 1.6% and 20.8 ±
3.8% of cell viability in Toledo and U-2932 cells, respectively, at the 
maximum concentration of 5 nM (Fig. 1A). 

As we wanted to determine whether the nanoparticle cytotoxic effect 
was due to its specific entrance through the CXCR4 receptor, Toledo and 
U-2932 cells were pretreated with the CXCR4 antagonist, AMD3100, 
following the nanoparticle addition. Cells treated with both AMD3100 
and nanoparticle reversed significantly the cytotoxicity reaching up to 
90.7% of cell viability compared to cells treated with the nanoparticle 
alone in both cell lines (Fig. 1B). Moreover, we used the parental 
SUDHL-2 cell line (CXCR4-) and the CXCR4+ SUDHL-2 cell line, previ
ously transduced with the CXCR4 receptor, for testing the nanoparticle 
cytotoxic effect. After checking the absence of CXCR4 in SUDHL-2 cells 
and its presence in CXCR4+ SUDHL-2 cells by flow cytometry and by 
Western Blot (Fig. 1C-D and Supplementary Figure 1), we demonstrated 
that T22-DITOX-H6 did not show cytotoxic effect in the negative-CXCR4 
SUDHL-2 cell line (94.4 ± 4.4%) whereas it did in CXCR4+ SUDHL-2 
cells with 57.3 ± 3.8% of cell viability at 5 nM (Fig. 1E). 

Furthermore, the cytotoxic effect of the nanoparticle in CXCR4+

DLBCL cells was significantly reverted with the pretreatment of the 
caspase inhibitor z-VAD (2.0-fold in Toledo cells and 1.5-fold in U-2932 
cells) (Fig. 2A). By Western blot, we observed the reduction of pro- 
caspase-3 together with the induction of cleaved caspase-3 as well as 
the presence of cleaved PARP in Toledo and U-2932 cells after 24 and 
48 h incubation with 5 nM T22-DITOX-H6 (Fig. 2B and Supplementary 

Figure 1). Also, performing an Annexin/PI assay, we observed a signif
icant increase of the percentage of cells in early and late apoptosis after 
15, 24 and 48 h exposure with 5 nM of nanoparticle in CXCR4+ DLBCL 
cells (Fig. 2C). Indeed, the peak of the percentage of early apoptotic cells 
was reached at 24 h (17.8 ± 1.2% of total cells in Toledo cells and 12.1 
± 1.6% of total cells in U-2932 cells) and subsequently the peak of late 
apoptosis was achieved after 48 h (46.7 ± 4.3% of total cells in Toledo 
cells and 25.8 ± 2.2% of total cells in U-2932 cells) (Fig. 2D). In addi
tion, we observed, by DAPI staining, the formation of apoptotic bodies in 
the lymphoma cells treated with T22-DITOX-H6 for 48 h (Fig. 2E). These 
data suggest the induction of apoptosis by T22-DITOX-H6 in CXCR4+

DLBCL cells. 
At that point, we evaluated the nanoparticle cytotoxic effect in a 

CXCR4+ DLBCL luminescent disseminated mouse model generated by 
intravenous injection of Toledo-Luci cells. Three days after cell injec
tion, NODSCID mice were treated with buffer or 10 μg of T22-DITOX- 
H6, three days per week, in a total of thirteen doses. As observed by 
the bioluminescence (BLI) emitted by Toledo-Luci cells, the lymphoma 
was totally disseminated in buffer-treated mice at last days (days 30 and 
33) compared to mice treated with T22-DITOX-H6 (Fig. 3A). The BLI 
quantification exhibited highly significant differences between mice 
treated with buffer and nanoparticle-treated mice, already at day 17 and 
until day 33, point at which the BLI signal was 9.1-fold times reduced in 
mice treated with T22-DITOX-H6 (Fig. 3B). Neither macroscopic alter
ations (not shown) nor loss of mouse weight was found in nanoparticle- 
treated mice (Fig. 3C). An ex vivo analysis of lymphoma-infiltrated or
gans at the end of treatment found that nanoparticle-treated animals 
showed a significant reduction of invading lymphoma cells, detected by 

Fig. 3. In vivo antineoplastic effect of T22-DITOX-H6 in a disseminated CXCR4+ DLBCL mouse model. (A) BLI emitted by Toledo-Luci cells from four representative 
mice of each group (buffer and T22-DITOX-H6) at days 28, 30 and 33. (B) BLI quantification of mice treated with buffer or T22-DITOX-H6 during the follow-up 
(n = 9/group). (C) Body weight of mice treated with buffer or T22-DITOX-H6 during the follow-up (n = 9/group). *** p < 0.005. BLI: bioluminescence imaging; 
iv: intravenous. 
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BLI, in cervical and renal LNs (6.6-fold and 3.6-fold, respectively) as well 
as in BM, including backbone, hind limbs and cranium (6.7-fold, 15.4- 
fold and 2.3-fold, respectively) (Fig. 4). Moreover, no histopatholog
ical alterations were found in hematoxylin and eosin (H&E) stained 
tissue sections of liver, spleen, kidneys, lungs and BM in nanoparticle- 
treated mice (Supplementary Figure 2). 

Once we demonstrated the potent cytotoxic effect of the nanoparticle 
in human CXCR4+ DLBCL cells in vitro and in vivo in immunocompro
mised mice, next step was to evaluate the effect of the nanoparticle in 
murine CXCR4+ lymphoma cells and especially its toxicity (local, sys
temic and functional) in immunocompetent mice. First, we determined 
that murine A-20 cells expressed high levels of CXCR4 receptor in the 
cell membrane by IHC and flow cytometry (Fig. 5A-B). After exposure of 

these cells for 48 h to the nanoparticle, their viability was reduced up to 
38.33 ± 16.4% at 5 nM (Fig. 5C). Moreover, the cytotoxic effect was 
significantly reverted (90.9 ± 15.9%) when cells were preincubated 
with AMD3100 followed by the nanoparticle addition, confirming that 
the T22-DITOX-H6 cytotoxic effect in murine A-20 cells was performed 
specifically through the CXCR4 receptor (Fig. 5D). As we reported with 
human Toledo and U-2932 cells, the incubation with T22-DITOX-H6 for 
48 h produced the formation of apoptotic bodies in murine CXCR4+ A- 
20 cells as well (Fig. 5E). 

Then, we evaluated the in vivo antitumor effect of the nanoparticle in 
a SC A-20 mouse model generated in immunocompetent BALB/cByJ 
mice. When tumors were palpable (day 10), we started administering 
buffer or T22-DITOX-H6 three times per week until the first tumor of any 

Fig. 4. Ex vivo antineoplastic effect of T22-DITOX-H6 in a disseminated CXCR4+ DLBCL mouse model. BLI quantification and representative images of lymphoma- 
infiltrated organs (cervical LNs, renal LNs, backbone, hindlimbs and cranium) from Toledo-Luci mice treated either with buffer or T22-DITOX-H6 at the end of the 
experiment. *p ≤ 0.05, ***p ≤ 0.005. BLI: bioluminescence imaging; LNs: lymph nodes. 
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experimental animal reached 500 mm3, point at which we stopped the 
administration (day 20). As a result, nanoparticle administration 
decreased tumor growth along time. At day 17, tumors reached a vol
ume of 242.0 ± 25.9 mm3 in buffer-treated mice, whereas tumor vol
ume was significantly reduced in mice treated with the nanoparticle 
(121.4 ± 29.7 mm3) (Fig. 6A). Analyzing the area under the curve 
(AUC) from day 14 to the end of the experiment, a significant 46.9% 
reduction of tumor size was observed in mice treated with T22-DITOX- 
H6 compared to control mice (Fig. 6B). In addition, mouse body weight 
was not altered by the nanoparticle administration (Fig. 6C) and no 
histopathological alterations were observed in spleen, liver, kidneys and 
BM from nanoparticle-treated mice (Fig. 6D). 

Most importantly, we performed an exhaustive toxicity study to 
evaluate the potential clinical translation of the nanoparticle. This 
analysis showed a lack of significant differences between control and 
nanoparticle-treated mice regarding the number of WBC, PLT or RBC 
(Fig. 7A). Moreover, the percentage of cells in each WBC subtype 
(neutrophils, lymphocytes, monocytes, eosinophils and basophils) was 
not altered by nanoparticle treatment (Fig. 7B). We also checked the 
hepatic function by measuring the AST and ALT levels as well as the 
renal function determining creatinine and uric acid levels. These data 
showed the absence of hepatic and renal damage in mice treated with 
the nanoparticle since these parameters remained unaltered (Fig. 7C). 
Therefore, the T22-DITOX-H6 nanoparticle showed a selective cytotoxic 
effect in murine CXCR4+ lymphoma cells without inducing on-target or 
off-target toxicity. 

4. Discussion 

Actively targeted nanoparticles are promising toxin-delivery sys
tems. The T22-DITOX-H6 therapeutic nanoparticle has demonstrated 
not only a potent cytotoxic effect in vitro in CXCR4+ DLBCL cells at the 
low nanomolar range, but also a high in vivo efficacy by blocking the 
lymphoma dissemination in the immunocompromised mice and 
reducing tumor growth in immunocompetent mice. This observation 

means that our nanoparticle targets and kills murine and human 
CXCR4+ lymphoma cells independently of the presence of murine im
mune cells. 

It has been reported that immunotoxins incorporating the diphtheria 
toxin can cause severe side effects. One example is the diphtheria toxin 
attached to interleukin-2 (denileukin diftitox), a drug approved by the 
FDA to treat cutaneous T-cell lymphoma; however, it was withdrawn 
from the market in 2014 because of severe side effects [23]. Afterwards, 
a novel immunotoxin containing diphtheria toxin was generated by 
replacing interleukin-2 by interleukin-3 so that they targeted leukemic 
stem cells. The combination of diphtheria toxin and interleukin-3 
received the name of tagraxofusp-erzs, and it was approved by the 
FDA in 2018. Despite being in the market, several clinical trials using 
tagraxofusp-erzs reported serious adverse events in various hematologic 
neoplasms, including capillary leak syndrome (CLS) of grade ≤ 3 and 
three cases of fatal CLS especially in a trial for blastic plasmacytoid 
dendritic cell neoplasm (BPDCN). Moreover, across these trials, throm
bocytopenia was also a significant side effect reaching grade ≤ 4 as well 
as transaminitis grade ≤ 3.[24]. Additionally, other immunotoxins 
containing diphtheria toxin domains that targeted CD3 or GM-CSFR in 
hematologic malignancies showed off-target toxicities in phase I/II 
clinical trials, including CLS, rare immunocompromised host infections 
or liver injury [25–27]. 

In contrast to immunotoxins, the selective diphtheria toxin delivery 
accomplished by our T22-DITOX-H6 nanoparticle offers a more effective 
selectivity to target cancer cells since the self-assembled T22-DITOX-H6 
nanostructure incorporates multimeric T22 ligands for the CXCR4 re
ceptor that enhance internalization in target cells compared to the only 
two ligands displayed by the immunotoxins [28,29]. Importantly, the 
multi-valency based on a large number of ligand moieties in the nano
particle surface, confers super-selectivity to target cells, which means 
that T22-DITOX-H6 is able to interact with the CXCR4 receptor only 
when its density in the cell membrane is higher than a specific threshold 
[30,31]. As CXCR4+ DLBCL cells usually show extremely higher levels of 
the receptor than normal hematopoietic cells (140-fold higher) [18], the 

Fig. 5. T22-DITOX-H6 specific cytotoxicity in a murine CXCR4+ lymphoma cell line. (A-B) CXCR4 determination by immunohistochemistry and flow cytometry in 
murine A-20 cells. Scale bars: main picture at 50 µm (400X) and the inset at 20 µm (1000X). (C) Cell viability assays measuring the T22-DITOX-H6 cytotoxicity in A- 
20 cells at different concentrations of the nanoparticle (0.25–5.00 nM) for 48 h. (D) Competition assays in A-20 cells with or without the pretreatment of the CXCR4 
antagonist AMD3100 followed by the nanoparticle incubation for 48 h (ratio 10 AMD3100: 1 T22-DITOX-H6). MFI: mean fluorescence intensity. (E) DAPI staining 
pictures (1000X) of A-20 cells treated with buffer or 5 nM T22-DITOX-H6 for 48 h. White arrows point out apoptotic bodies. *p ≤ 0.05. 
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super-selectivity property conferred by the T22-DITOX-H6 aims to avoid 
or dramatically minimize any possible toxicity in normal cells that ex
press low or medium membrane CXCR4 levels. 

Furthermore, the tight T22-DITOX-H6 construction in a single 
polypeptide chain, without any subsequent chemical conjugation, 
potentially avoids the premature release of the toxin in the mouse 
bloodstream [20]. Consequently, with this notion, we did not observe 
any histopathological alteration in non-lymphoma infiltrated organs in 
immunocompromised nor immunocompetent mice treated with the 
nanoparticle. Most importantly, the administration of T22-DITOX-H6 in 

immunocompetent mice did not show hepatic and renal functional 
alteration nor hematological on-target toxicity. Although murine and 
human white blood cells, especially monocytes and lymphocytes, ex
press CXCR4 [32–34], the expression levels in those cells are much lower 
than those in human CXCR4+ DLBCL cell lines, as we described in our 
previous works [21,22]. 

According to our strategy, other researchers also used nanoparticle 
drug delivery systems for targeted delivery of diphtheria toxin in breast 
cancer and melanoma, with high efficiency and precision in vitro and in 
vivo [35,36]. In addition, our group has previously demonstrated the 

Fig. 6. T22-DITOX-H6 anti-tumor effect, and on-target and off-target toxicity in a SC mouse model bearing murine CXCR4+ lymphoma cells. (A) A-20 SC tumor 
volume from mice treated with buffer (n = 5) or T22-DITOX-H6 (n = 4) during the whole experiment. (B) AUC quantification of tumor volume from 14 to 20 days in 
buffer and nanoparticle-treated mice. (C) Body weight follow-up of mice bearing A-20 SC tumors, treated with buffer and T22-DITOX-H6. (D) Hematoxylin and eosin 
staining from on target and off-target organs (spleen, liver, kidneys and BM). Scale bars: 50 µm. *p ≤ 0.05. AUC: area under the curve; BM: bone marrow; iv: 
intravenous. 
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antitumor effect of T22-DITOX-H6 in CXCR4+ colorectal and lymphoma 
SC mouse models as well as in a disseminated CXCR4+ acute myeloid 
leukemia (AML) mouse model [20,21,37]. 

As a conclusion, we believe that the T22-DITOX-H6 diphtheria toxin 
delivery system that incorporates the natural toxin is capable of 
inducing cytotoxic killing of both dividing and non-dividing cells, as 
reported [38]. This effect shows specificity towards CXCR4+ DLBCL 
cells, therefore, sparing the on-target and off-target toxicities showed by 
the immunotoxins. Thus, this toxin-based nanoparticle drug could be a 
good strategy to target and kill CXCR4+ lymphoma cells from refractory 
or relapsed DLBCL patients. 
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