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SUMMARY
The human face is one of the most visible features of our unique identity as individuals. Interestingly, mono-
zygotic twins share almost identical facial traits and the same DNA sequence but could exhibit differences in
other biometrical parameters. The expansion of the world wide web and the possibility to exchange pictures
of humans across the planet has increased the number of people identified online as virtual twins or doubles
that are not family related. Herein, we have characterized in detail a set of ‘‘look-alike’’ humans, defined by
facial recognition algorithms, for their multiomics landscape. We report that these individuals share similar
genotypes and differ in their DNA methylation and microbiome landscape. These results not only provide in-
sights about the genetics that determine our face but also might have implications for the establishment of
other human anthropometric properties and even personality characteristics.
INTRODUCTION

The discussion about the relevance of ‘‘nature versus nurture,’’

or, in a similar manner, of ‘‘genotype versus phenotype,’’ in hu-

man biology and medicine is a long-standing issue that still re-

mains largely unsolved. Relevant studies in this area include

our original observation that monozygotic twins show epigenetic

differences (Fraga et al., 2005), understood as the chemical

marks such as DNA methylation and histone modifications that

regulate gene expression, that might explain different population

traits and distinct penetrance of diseases in these people, a

finding supported in later studies (Kaminsky et al., 2009),

including The NASA Twins Study (Garrett-Bakelman et al.,

2019). These questions can be more easily addressed in exper-

imental models where the researcher can intervene, such as the

Agouti mice (Wolff et al., 1998) and cloned animals (Rideout

et al., 2001), whereas in humans, the investigator has a more

passive role, waiting for the right sample to appear. In this re-
This is an open access article und
gard, one of the most documented cases is the Dutch famine

at the end of WWII that was associated with less DNA methyl-

ation of the imprinted IGF2 gene compared with their unex-

posed, same-sex siblings (Heijmans et al., 2008).

Human individual identity also relates to biological properties

and environment. In this regard, the way we initially recognize

each other relies often on our unique face, and there is a sophis-

ticated brain code to distinguish facial identities (Tsao et al.,

2006; Chang and Tsao, 2017; Quian Quiroga, 2017). This ex-

plains why so commonly twins catch our attention and are

used to understand how the balance between nature and nurture

generates a phenotype. Here, we present a study that, on a mo-

lecular level, aims to characterize random human beings that

objectively share facial features. This extraordinary set of individ-

uals, characterized by their high likeliness, are what are called, in

lay-language, look-alike humans, unknown twins, twin

strangers, doubles, or doppelgänger, in German. This unique

set of samples has allowed us to study how genomics,
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Figure 1. Recruitment and objective determination of look-alike human pairs

(A) Representation of the global worldwide distribution of 32 look-alike pairs (n = 64) in this study.

(B) 27 facial parameters by which the Microsoft Oxford Project face API (Microsoft) objectively performs face detection.

(C) Venn diagram showing the number of look-alike pairs discerned and jointly identified in the three facial recognition programs: MatConvNet, Custom-Net, and

Microsoft. Numbers within the semi-circle present the pairs that did not cluster in each software.

(D) Boxplots showing unbiased quantitative similarity scores comparing each facial recognition software (MatConvNet, Custom-Net, Microsoft) for monozygotic

twins (MZs; blue), look-alike pairs (LALs; rose), and random non-LALs (red). The x axis represents the different cohorts analyzed. The y axis exhibits similarity

scores measured between 0 and 1. 1 represents identical facial image, and 0 represents two totally different photographic entities. ‘‘N’’ indicates the number

of couples. Differences calculated using two-sided Mann-Whitney-Wilcoxon test: ****p < 0.0001; ***p < 0.001; ns, non-significant.

(E) Photographic examples of LALs used in this study.
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epigenomics, andmicrobiomics can contribute to human resem-

blance. Our study provides a rare insight into human likeness by

showing that people with extreme look-alike faces share com-

mon genotypes, whereas they are discordant at their epigenome

and microbiome. Genomics clusters them together, and the rest

set them apart. These findings do not only provide clues about

the genetic setting associated with our facial aspect, and prob-

ably other traits of our body and personality, but also highlight

howmuch of what we are, and what defines us, is really inherited

or instead is acquired during our lifetime.

RESULTS

Facial recognition algorithms and multiomics
approaches for look-alike humans
Human doubles were recruited from the photographic work of

François Brunelle, a Canadian artist who has been obtaining

worldwide pictures of look-alikes since 1999 (http://www.

francoisbrunelle.com/webn/e-project.html). We obtained head-

shot pictures of thirty-two candidate look-alike couples. All par-
2 Cell Reports 40, 111257, August 23, 2022
ticipants completed a comprehensive biometric and lifestyle

questionnaire in their native language (English, Spanish, and

French) (Methods S1). Their geographic locations are shown in

Figure 1A. We first determined an objective measure of ‘‘like-

ness’’ for the candidate double pairs. We used three different

methods of facial recognition: the custom deep convolutional

neural network Custom-Net, (www.hertasecurity.com), the

MatConvNet algorithm (Vedaldi and Lenc 2015), and the Micro-

soft Oxford Project face API (https://azure.microsoft.com/es-es/

services/cognitive-services/face/) (STAR Methods). We used

three methods because each system can yield variable results,

andwe selected those systems to reflect the diversity of possible

outcomes. MatConvNet was designed for facial classification,

Custom-Net for surveillance, and Microsoft API for generalized

facial analysis. These models have millions of learned parame-

ters and have been trained with millions of facial images from

thousands of subjects, in a variety of unconstrained situations:

differences in pose, hairstyle, expression, age, and accessories

within a subject. Thus, the impact of these attributes is likely min-

imal. Each software provides a facial similarity score between

http://www.francoisbrunelle.com/webn/e-project.html
http://www.francoisbrunelle.com/webn/e-project.html
http://www.hertasecurity.com
https://azure.microsoft.com/es-es/services/cognitive-services/face/
https://azure.microsoft.com/es-es/services/cognitive-services/face/


Figure 2. Genetic analysis of look-alike human pairs

(A) Saliva DNA was obtained from 32 LALs recruited to this study. DNA was subjected to genotyping (Omni5-4 SNP arrays Illumina), DNA methylation (Infinium

MethylationEPIC arrays, Illumina), and microbiome analysis (16S Metagenomics sequencing, Illumina).

(B) Heatmap of hierarchical genetic clustering with bootstrap of genome-wide SNP genotyping arrays in the 16 LALs. Genotype clustering was performed using

Euclidean distances and Ward.D2 cluster method. Blue rectangles represent 9 LALs that unbiasedly clustered. 0 = homozygous reference SNPs (green), 1 =

heterozygous SNPs (black), and 2 = homozygous alternate SNPs (red).

(C) Boxplot showing Kinship scores betweenMZs, LALs, and random non-LALs. Kinship scores range between�0.2 (it represents two unrelated individuals) and

0.5 (it represents duplicated genotypes and MZs). ‘‘N’’ indicates the number of couples. Differences calculated using two-sided Student’s t test: ****p < 0.0001;

**p < 0.01.

(D) Gene Ontology (GO) analysis performed using all SNPs found to be shared in all LALs (19,277 SNPs in 3,730 genes). GO enrichments were ran using EnrichGO

R package for the 3,730 genes, and the top 10most significant hits are plotted in network graphs. GO terms are presented with circles. The size and color of each

circle represents numbers of genes in each GO term and its statistical significance, respectively. The gray lines represent the interaction of genes, and the thick-

ness is proportional to the number of genes interacting in each GO term. GO subcategories are presented: Biological Process, Cellular Component, and Molec-

ular Function.
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0 and 1, where 1 is the same facial image and 0 is two different

entities. Comparisons are pairwise, with every image compared

with every other image. As an example of the parameters

computed, the 27 face landmarks of the Microsoft algorithm

are shown in Figure 1B. The results obtained from the different

combinations of each approach are shown in a Venn diagram

in Figure 1C. Interestingly, the number of pairs that were consid-

ered to be correlated by at least two of the facial models was very

high (25 out of total 32, >75%), closer to the human ability to

recognize identical twins (Biswas et al., 2011). Most importantly,

we found that 16 of the original 32 (50%) look-alike pairs were

matched by all three facial recognition systems. As an internal

positive control for high similarity score, we ran the three facial

recognition software in monozygotic twin photograph images

from the University of Notre Dame twins database 2009/2010

(https://cvrl.nd.edu/projects/data/). Importantly, similarity scor

es from the 16 look-alike couples were similar to those obtained

from monozygotic twins according to MatConvNet and signifi-
cantly higher than those observed in random non-look-alike

pairs (Figure 1D). Thus, these highly look-alike humans were

the focus of our further research. Illustrative examples of these

‘‘double’’ individuals are shown in Figure 1E.

Saliva DNA for these cases was analyzed by multiomics at

three levels of biological information: genome, by means of an

SNP microarray that interrogates 4,327,108 genetic variants

selected from the International HapMap and 1,000 Genomes

Projects, which target genetic variation down to 1% minor allele

frequency (MAF) (Xing et al., 2016); epigenome, using a DNA

methylation microarray that studies over 850,000 CpG sites

(Moran et al., 2016); and microbiome, by ribosomal RNA direct

sequencing (Klindworth et al., 2013) (Figure 2A; STAR Methods).

Genomic characterization of look-alike humans
Genomic analyses of these 16 couples provided a striking result:

more than half (9 of 16, 56.2%) of these look-alike pairs clustered

together in the unsupervised clustering heatmap with bootstrap
Cell Reports 40, 111257, August 23, 2022 3
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(Figure 2B). These nine couples were denominated as ‘‘ultra’’

look-alike. K-means algorithm represented by principal-compo-

nent analysis (PCA) and t-distributed stochastic neighbor

embedding (t-SNE) also showed that the look-alike couples

that clustered by the unsupervised clustering heatmap analysis

were in close proximity (Figure S1), indicating a likely genotyping

resemblance of the studied pairs. In contrast, the 16 candidate

look-alike cases that did not cluster by the three facial recogni-

tion (FR) networks (Figure 1C) showed that only one pair clus-

tered together (1 of 16, 6.2%) (Figure S1).

We studied two possible confounding factors: population

stratification (ancestry) and kinship. Using KING Relationship

Inference (Manichaikul et al., 2010) to determine kinship scores,

we discarded the possibility of unknown familial relationships

(first and second degree) between look-alike pairs (Figure 2C).

We observed that look-alike pairs were more similar to non-

look-alike pairs than to monozygotic twins (Figure 2C); support-

ing that look-alike pairing in the SNP clustering is not related to

familyhood genotype but instead to a distinct subset of genetic

similarity. Using PLINK (Purcell et al., 2007) (STAR Methods),

close kinship could be excluded in almost all cases: only one

pair share SNPs in proportions that could be compatible with

up to third-degree relatives and only one pair share a long (>10

cM) identity by descent (IBD) segment that could suggest co-

ancestry in the last few hundreds of years. Interestingly, the latter

is a French-Canadian pair, a population known to have experi-

enced a dramatic founder effect in the 17th century. Importantly,

when we conducted all the downstream analyses without this

French-Canadian pair, the remaining eight ultra-look-alike pairs

clustered together (Figure S2). The detailed kinship assessment

data are provided in Table S1.

Related to population stratification, among the 16 look-alike

pairs, 13 were of European ancestry, 1 Hispanic, 1 East Asian,

and 1 Central-South Asian. Although background genetic

ancestry is a principal determinant for genetic variance between

human populations, we observed that of the 13 White look-alike

pairs, 7 (54%) did not cluster genetically, suggesting alternative

purposes for shared genetic variation between look-alike pairs.

To further determine ancestry, genotyping of the 16 look-alike

cases was performed using GenomeStudio v.2.0.5 to create

PACKPED Plink files (STAR Methods). Their genomic data

were merged with 1,980West Eurasian, Asian, and Native Amer-

ican individuals genotyped in the Affymetrix Human Origins (HO)

array (Lazaridis et al., 2014), where the remaining dataset held

175,469 common SNPs. PCA was generated with the HO indi-

viduals (Figure S3) and look-alike individuals (Figure S3B for

West Eurasia and Figure S3C for West Eurasia, Asia, and Amer-

ica) (Price et al., 2006; Patterson et al., 2006) (STAR Methods).

We observed that almost all the look-alike pairs cluster close

to each other according to their countries of origin (or self-attrib-

uted ethnic background) (Figure S3). However, they are not more

closely related than other pairs of individuals from the same pop-

ulations taken at random. The detailed population stratification

data are provided in Table S1.

Among the 9 couples of ultra-look-alikes, 19,277 SNP posi-

tions annotated for 3,730 genes (Table S2) were defined as

SNPs with shared genotypes in each look-alike pair. These

SNPs correspond to non-monomorphic positions in which every
4 Cell Reports 40, 111257, August 23, 2022
pair of ultra-look-alikes shared the genotype. For example,

where one individual in a pair was heterozygous for a given

SNP, the corresponding individual in the pair was also heterozy-

gous. This genotype match must be consistent across all pairs

for an SNP to be considered shared and therefore represented

indicative SNPs relevant for look-alike resemblance. The number

of shared SNP positions was significantly higher compared with

random non-look-alike pairs in the studied population

(p < 2.2 3 10�16, Pearson’s chi-squared test). Taking into ac-

count ethnicity, shared SNP positions by the European ultra-

look-alike pairs was significantly higher compared with random

non-look-alike pairs in the studied population (p = 0.03, Pear-

son’s chi-squared test). For the remaining three ethnicities,

only one individual from each group was available in our dataset.

Thus, we interrogated the individuals genotyped in the 1000 Ge-

nomes database (https://www.internationalgenome.org/). The

number of shared SNP positions by the Hispanic ultra-look-alike

pair was significantly higher compared with random individual

pairs from the same ethnicity (p < 2.2 3 10�16, Pearson’s chi-

squared test). No significant enrichment was observed for the re-

maining two couples, one East Asian and one Central-South

Asian. Importantly, only 16 variants of the 19,277 SNPs

(0.08%) selected from the ultra-look-alikes presented a linkage

disequilibrium detected by iterative pruning analysis (Weir

et al., 2014).

The identified genetic variants might have a profound impact

on the degree of similitude between the phenotype of humans.

Using the clusterProfiler R package (Yu et al., 2012), we per-

formed gene enrichment analyses using the list of look-alike

SNPs compared with the background of all genes annotated in

the SNP microarray. We observed an enrichment for Gene

Ontology (GO) Biological Processes related to anatomical,

developmental, and adhesion terms (Figure 2D; Table S3), in

addition to ion and anion binding for GO-Molecular function

(gene subsets related to bone and skin properties) and many

cellular compartments. Enrichment analysis using the DAVID

signature database collection noted that the most significantly

enhanced ontology was ‘‘cell junction,’’ a critical determinant

of tissue morphology (Table S4). To evaluate the face genes

enrichment in our selected 19,277 SNPs corresponding to

3,730 genes (Table S2), we gather all the genes related with

face traits from recent data (Claes et al., 2018; Xiong et al.,

2019; White et al., 2021), Facebase dataset (https://www.

facebase.org/), and Genome-wide Association Study (GWAS)

Central (study HGVST1841, http://www.gwascentral.org) and

applied a hypergeometric test and a Monte Carlo simulation us-

ing 10,000 iterations (STAR Methods). In no iteration of random

set of genes did we observe a number equal to or higher than

the face genes represented in our 19,277 SNP selection

(p < 1e�4). We observed a total of 1,794 face genes in our

19,277 SNP selection, constituting 26%of all the face genes pre-

sent in the array (hypergeometric test p: 6.31e�172;Monte Carlo

empirical p < 1e�4). When we added the reported face associ-

ated SNPs to our 19,277 SNPs, we observed that 11 of the 16

(68.7%) look-alike pairs clustered together (Figure S4), therefore

adding two new couples.

The study of the functional nature of the SNPs loci shared by

the ultra-look-alikes showed that 171 caused amino acid

https://www.internationalgenome.org/
https://www.facebase.org/
https://www.facebase.org/
http://www.gwascentral.org
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changes, affecting 158 genes (Table S5). GOrilla analysis for GO-

Molecular function found an enrichment in anion transport

descriptors (Table S3). Using the GWAS catalog database

(https://www.ebi.ac.uk/gwas/), we found that 113 SNPs corre-

sponded to 130 GWAS associations and 84 traits (Table S6).

These last traits included many related to facial determinants

or physical features such as cleft palate/lip, eye color, hip

circumference, body height, waist-hip ratio, balding measure-

ment, and alopecia (Table S6) with an enrichment for lip and fore-

head morphology, body mass index, bone mineral density, and

attached earlobe (Table S6).We observed an enrichment of traits

that included the word morphologytagged to the terms nose, lip,

mouth, facial, cranial vault, forehead, hair, and cheekbone

(Fisher’s exact test, odds ratio [OR] = 4.2, p = 0.04). Using the

GWAS Central database (http://www.gwascentral.org), we

found an enrichment (OR = 1.2782, p = 0.0007364) for SNPs

associated with human facial variation (Adhikari et al., 2016).

The analyses of the look-alike SNPs according to trait in

GWAS Central showed an enrichment for the phenotype names

‘‘lip’’ (OR = 1.8321, p = 0.000327) and ‘‘forehead’’ (OR = 1.886,

p = 0.010389). The identified look-alike SNPs were also enriched

(OR = 2.201156, p = 0.04884) for genes included in the FaceBase

dataset (https://www.facebase.org/). Finally, we studied the

overlap between the herein discovered look-alike SNPs and

expression quantitative trait loci (eQTLs). Using the Genotype-

Tissue Expression (GTEx) Portal (https://www.gtexportal.org/

home/), we observed that look-alike SNPs were more frequently

associated with gene-expression changes than expected by

random chance (Fisher’s exact test, OR = 1.1, p = 0.0001). The

enrichment was observed among different morphological struc-

tures and organs (Table S6). We also used the stratified linkage

disequilibrium score regression (S-LDSC) (Finucane et al.,

2015) to determine the enrichment of GWAS signals from the

GWAS catalog for our SNPs. We observed that these SNPs

were overrepresented for the pronasale-right chelion (enrich-

ment score [ES] = 13.84, p = 0.018) and pronasale-left chelion

(ES = 12.26, p = 0.04) face traits (Figure S4) (Xiong et al.,

2019). The SNPs were also overrepresented for features that

define 63 facial segments (Hoskens et al., 2021) considering

the entire, mid, and outer face (p < 0.05) (Figure S4). These

data indicate that the 19,277 characterized SNPs exert a major

impact in the way the face of humans is defined.

The SNPmicroarray can also be used to determine copy-num-

ber variations (CNVs) (Feber et al., 2014). Unsupervised clus-

tering heatmap with bootstrap clustered only one couple

together of the 16 look-alikes according to CNVs (Figure 3A).

Interestingly, three CNVs were shared by three look-alike pairs

(Table S6), including a locus in chromosome 11 that targets

genes involved in craniofacial dysmorphic features such as

HYLS1 (Mee et al., 2005).

Other multiomics views of look-alike humans
Similar ‘‘identities’’ of look-alikes could also reside in other

‘‘omic’’ components such as the DNAmethylome and themicro-

biome. According to DNA methylation patterns, only one of the

sixteen (6.25%) look-alike pairs matched both individuals

together, as shown in the unsupervised clustering heatmap (Fig-

ure 3B). This couple also clustered together according to SNP
genotyping (Figure 2B). The comparison of DNAmethylation pat-

terns among the nine look-alike couples with the observed

genetic overlap (Figure 2B) only clustered one additional pair

(Figure S4). K-means algorithm represented using PCA and the

t-SNE plot did not show significant clustering (Figure S5).

Thus, overall, human look-alikes are diverse in their epigenome

settings.

However, two avenues might provide a role for DNA methyl-

ation in facial morphology: epigenetic age and methylation QTL

(meQTLs). The aging process changes facial morphology, and

DNA methylation is used as a proxy for ‘‘biological age’’ that

can or can not be directly related to the ‘‘chronological age.’’

One example is the premature epigenetic aging observed in car-

riers of viral infections (Esteban-Cantos et al., 2021; Cao et al.,

2022). We have calculated the intrapair absolute age differences

in our 16 look-alike cohort according to chronological age (date

of birth) or epigenetic age (DNA methylation clock) (Hannum

et al., 2013). We found no differences in intrapair chronological

age between the ultra-look-alike group and the non-ultra-look-

alike group. In contrast, intrapair ‘‘epigenetic’’ age differences

were smaller among ultra-look-alike pairs compared with the

non-ultra-look-alike group (two-sided Mann-Whitney-Wilcoxon

test, p = 0.0052) (Figure S6). DNA methylation is also associated

with genetic variation (Villicaña and Bell, 2021) and could

contribute to individual similarity acting as meQTLs. Using the

methylation status of 1,379 CpG sites located within a window

of +100 bp from the identified 19,277 SNPs, we observed that

3 of the 16 (18.7%) look-alike pairs clustered together (Figure S6).

All three of these pairs were among the 9 ultra-look-alike couples

(Figure 2B). Thus, DNAmethylation, as amarker of biological age

and meQTL, can also provide phenotypic commonality for ultra-

look-alikes.

A similar scenario was found for the microbiome. From a qual-

itative standpoint (alpha diversity), according to the type of bac-

teria present in the studied oral sample (STAR Methods), only

one look-alike pair clustered together (Figure 3C). This couple

did not cluster together according toSNPgenotyping (Figure 2B).

From a quantitative standpoint, according to the amount of each

bacteria strand present (STAR Methods), we found clustering of

one look-alike pair (6.25%, 1 of 16) (Figure 3D). This couple also

paired together by unsupervised SNP clustering (Figure 2B). The

study of the nine couples with SNP similarity did not provide

further pairing of look-alikes (Figure S6). K-means algorithm illus-

trated by PCA and t-SNE did not demonstrate clustering (Fig-

ure S7). Thus, look-alikes do not mostly share a microbiome.

However, oral microbiome relates to obesity (Yang et al.,

2019), and fat in the face could relate to similarities. We found

that intrapair weight differences were smaller among ultra-

look-alike pairs compared with non-ultra-look-alike pairs (two-

sided Student’s t test test, p = 0.035) (Figure S7). Thus, it is

possible that the oral microbiome, through its relation to fat con-

tent, contributes to look-alike phenotypes.

Traits of look-alike humans beyond facial features
The likeness between the identified human pairs is not limited to

the shared facial traits. All the recruited participants in the study

completed a comprehensive biometric and lifestyle questionnaire

(Methods S1), and the collected information is summarized in
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Figure 3. Copy-number variation, DNA methylation, and microbiome analysis of LALs

(A) Heatmap shows the hierarchical clustering of the samples based on the copy number (scale of 0–4) of all copy-number variation (CNV) regions, defined as

regions in which at least one individual carried a different copy number. A random selection of one-fifth of such CNV regions is represented in this plot, but the

clustering of samples had been obtained considering all CNV regions. The blue rectangle represents a LAL that clusters together.

(B) Heatmap shows unsupervised genome-wide DNA methylation hierarchical clustering with bootstrap of the 16 LALs, using the methylation b-values obtained

from MethylationEPIC arrays. A random selection of 5000 CpGs is represented. Colors represent a continuous quantification of methylation beta values at each

CpG site, where green highlights unmethylated CpGs (0), black, 50%methylated CpGs (0.5), and red, fully methylated CpGs (1). Clustered look-alikes are shown

in a blue rectangle.

(C and D)Microbiome analysis of 16 LALs. Heatmaps show the distances from differences in pairwise bacterial counts of species found in themicrobiome of each

LAL (variation in alpha diversity scores) of counts from 0–55 (3C) and relative proportions of the taxonomic profiles at the genus level (3D) for each sample

calculated on a scale of 0–0.5. Only the most represented genera are shown. Meta-genomic clustering of each look-alike sample was constructed using

Euclidean distances and Ward.D2 hierarchical cluster method. Blue rectangle represents LALs whose microbiome is closely related.
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Figure 4A. Overall, 68 parameters (Table S7) were included and

converted to numerical or logical (0/1) variables (STAR Methods,

(custom scripts GitHub: https://github.com/mesteller-bioinfolab/

lookalike). The input curated questionnaire is shown in Table S7.

We used a cosine similarity method (STAR Methods) to calculate

likeness between the studied individuals according to the ques-

tionnaire answers. Studying the original 32 look-alike couples,

we observed that the 16 look-alike pairs that matched together

by all three facial recognition software showed shorter Euclidean

distances within pairs (p = 0.03475) and higher cosine similarity

scores (p = 0.00321) than those pairs that did not match by the

facial algorithms (Figure 4B). According to their SNPs, the 16

look-alike pairs showed shorter Euclidean distances compared

with those pairs that did not match by the three facial algorithms
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(p = 0.00006) (Figure 4B). Examples of independent questionnaire

variables (such as height, weight, smoking habit, or level of educa-

tion) further demonstrate that look-alike pairs are closer than non-

look-alikepairs (Figure4C). Thus, humanswitha similar facemight

also share a more comprehensive physical, and probably behav-

ioral, phenotype that relates to their shared genetic variants. Our

study supports the concept of heritability estimation that individ-

uals correlated at the phenotype level share a significant number

of genotypic correlations (Visscher et al., 2008). Our results are

germane to the ongoing efforts to predict biometric traits

from genomic data (Lippert et al., 2017) and the diagnosis of ge-

netic disorders using facial analysis technologies (Gripp et al.,

2016; Hadj-Rabia et al., 2017; Hsieh et al., 2019; Gurovich et al.,

2019).

https://github.com/mesteller-bioinfolab/lookalike
https://github.com/mesteller-bioinfolab/lookalike


Figure 4. Biometric and lifestyle analysis of LALs using cosine similarity scores

(A) Representation of the biometric and lifestyle parameters considered to calculate cosine similarity scores.

(B) Euclidean distances between the individuals from a pair (intra-pair distance) compared with the distance between individuals from different pairs (extra-pair

distance). Distances were calculated for questionnaire (top) and SNP data (below). Statistics by Student’s t test.

(C) Distance boxplots for independent questionnaire variables generated by calculating, for all possible pairs of samples, their absolute differences for each

variable. We then classified all pairs between pairs of look-alikes and pairs of non-look-alikes. Statistics by Wilcoxon rank sum tests.
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DISCUSSION

Our study deciphers molecular components associated with

facial construction by applying a multiomics approach in a

unique cohort of look-alike humans that are genetically unre-

lated. Saliva DNA was subjected to genome-wide analyses of

common genetic variation, DNA methylation, and microbiome

analysis. We also performed a biometric and lifestyle analysis

for all look-alike pairs. We found that 16 of the 32 look-alike pairs

clustered in all three facial recognition software. Genetic analysis

revealed that 9 of these 16 look-alike pairs (Figure 2B) clustered,

identifying 19,277 common SNPs. Furthermore, analyses of

these shared variants in GWAS and GTEx databases revealed

enrichment for phenotypes related to body and face structures

and an association with gene-expression changes. Together,

this suggests that shared genetic variation in humans that look

alike likely contribute to the common phenotype.

Historically, research into face morphology was heavily

centered on craniofacial anomalies (Richmond et al., 2018).

However, there is a recent growing interest into normal-range

face variation, attributable to the necessity for facial recognition

software for everyday life (smartphones, CCTV cameras, etc.).

Easy access to low-cost, high-resolution pictures and advances

in genotyping technology has ignited an age-old question: what

makes humans look as they do? Association studies revealed

low-frequency genetic variants with relatively small penetrance

in facial features, suggesting a far more complex genetic role.
Non-genetic factors can affect the expression of genes that

form the face. Many epigenetic or imprinting disorders present

craniofacial anomalies, such as patients with Prader-Willi or An-

gelman syndrome (Girardot et al., 2013), and microbial disrup-

tion is associated with developmental defects (Robertson

et al., 2019). Despite evidence for epigenetic variation in human

populations (Heyn et al., 2013) and development (Garg et al.,

2018), only one look-alike pair clustered by DNA methylation.

This pair also clustered together by SNPs, suggesting that the

shared epigenetic profile is likely due to their underlining shared

genetics (Lienert et al., 2011), as it was also supported by

analyzing CpGs in the vicinity of the SNPs. In addition, ultra-

look-alike pairs showed similar epigeneticages. Similarly, only

one look-alike pair clustered by microbiome analysis, but ultra-

look-alike pairs displayed similar weights, and microbiome

composition could relate to obesity (Yang et al., 2019). These

findings support a modest role for these biological components

to determine facial shape; however, more evidence is required to

discard a greater impact.

Finally, 68 biometric and lifestyle attributes from the look-alike

pairs were studied. Physical traits such as weight and height as

well as behavioral traits such as smoking and education were

correlated in look-alike pairs, suggesting that shared genetic

variation not only relates to shared physical appearance but

may also influence common habits and behavior.

Overall, we provided a unique insight into the molecular char-

acteristics that potentially influence the construction of the
Cell Reports 40, 111257, August 23, 2022 7
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human face.We suggest that these same determinants correlate

with both physical and behavioral attributes that constitute hu-

man beings. These findings provide a molecular basis for future

applications in various fields such as biomedicine, evolution, and

forensics. Through collaborative efforts, the ultimate challenge

would be to predict the human face structure based on the indi-

vidual’s multiomics landscape.

Limitations of the study
Due to the difficulty to obtain look-alike data and biomaterial, the

sample size is small, restricting our ability to perform large-scale

statistical analyses. Thus, some partially negative results, such

as those derived from the non-genetic data, could relate to an

underpowered study. The used headshots were two-dimen-

sional, black and white images, and valuable information

regarding three-dimensional constructs, subtle skin tones, and

unique facial features are lacking. In addition, the used SNP array

does not allow for the analysis of other genetic components such

as structural variations and shared rare events. Another limita-

tion is that our samples were mostly from European origin.

Thus, the study could not effectively address the impact of the

used multiomics in other human populations.
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Suñer, D., Cigudosa, J.C., Urioste,M., Benitez, J., et al. (2005). Epigenetic differ-

ences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA

102, 10604–10609. https://doi.org/10.1073/pnas.0500398102.

Garrett-Bakelman, F.E., Darshi, M., Green, S.J., Gur, R.C., Lin, L., Macias,

B.R., McKenna, M.J., Meydan, C., Mishra, T., Nasrini, J., et al. (2019). The

NASA Twins Study: a multidimensional analysis of a year-long human space-

flight. Science 364, eaau8650. https://doi.org/10.1126/science.aau8650.

Garg, P., Joshi, R.S., Watson, C., and Sharp, A.J. (2018). A survey of inter-in-

dividual variation in DNAmethylation identifies environmentally responsive co-

regulated networks of epigenetic variation in the human genome. PLoS Genet.

14, e1007707. https://doi.org/10.1371/journal.pgen.1007707.

Girardot, M., Feil, R., and Llères, D. (2013). Epigenetic deregulation of genomic

imprinting in humans: causal mechanisms and clinical implications. Epige-

nomics 5, 715–728. https://doi.org/10.2217/epi.13.66.

Gripp, K.W., Baker, L., Telegrafi, A., and Monaghan, K.G. (2016). The role of

objective facial analysis using FDNA in making diagnoses following whole

exome analysis. Report of two patients with mutations in the BAF complex

genes. Am. J. Med. Genet. 170, 1754–1762. https://doi.org/10.1002/ajmg.a.

37672.

Gurovich, Y., Hanani, Y., Bar, O., Nadav, G., Fleischer, N., Gelbman, D., Basel-

Salmon, L., Krawitz, P.M., Kamphausen, S.B., Zenker, M., et al. (2019). Iden-

tifying facial phenotypes of genetic disorders using deep learning. Nat. Med.

25, 60–64. https://doi.org/10.1038/s41591-018-0279-0.

Hadj-Rabia, S., Schneider, H., Navarro, E., Klein, O., Kirby, N., Huttner, K.,

Wolf, L., Orin, M., Wohlfart, S., Bodemer, C., et al. (2017). Automatic recogni-

tion of the XLHED phenotype from facial images. Am. J. Med. Genet. 173,

2408–2414. https://doi.org/10.1002/ajmg.a.38343.

Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle,

B., Bibikova, M., Fan, J.B., Gao, Y., et al. (2013). Genome-wide methylation

profiles reveal quantitative views of human aging rates. Mol. Cell 49,

359–367. https://doi.org/10.1016/j.molcel.2012.10.016.

Heijmans, B.T., Tobi, E.W., Stein, A.D., Putter, H., Blauw, G.J., Susser, E.S.,

Slagboom, P.E., and Lumey, L.H. (2008). Persistent epigenetic differences

associated with prenatal exposure to famine in humans. Proc. Natl. Acad.

Sci. USA 105, 17046–17049. https://doi.org/10.1073/pnas.0806560105.
Heyn, H., Moran, S., Hernando-Herraez, I., Sayols, S., Gomez, A., Sandoval,

J., Monk, D., Hata, K., Marques-Bonet, T., Wang, L., et al. (2013). DNAmethyl-

ation contributes to natural human variation. Genome Res. 23, 1363–1372.

https://doi.org/10.1101/gr.154187.112.

Hoskens, H., Liu, D., Naqvi, S., Lee, M.K., Eller, R.J., Indencleef, K., White,

J.D., Li, J., Larmuseau, M.H.D., Hens, G., et al. (2021). 3D facial phenotyping

by biometric sibling matching used in contemporary genomic methodologies.

PLoS Genet. 17, e1009528. https://doi.org/10.1371/journal.pgen.

Hsieh, T.C., Mensah, M.A., Pantel, J.T., Aguilar, D., Bar, O., Bayat, A., Becerra-

Solano, L., Bentzen, H.B., Biskup, S., Borisov, O., et al. (2019). PEDIA: priori-

tization of exome data by image analysis. Genet. Med. 21, 2807–2814. https://

doi.org/10.1038/s41436-019-0566-2.

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and inte-

grative analysis of large gene lists using DAVID bioinformatics resources. Nat.

Protoc. 4, 44–57. https://doi.org/10.1038/nprot.2008.211.

Kaminsky, Z.A., Tang, T., Wang, S.C., Ptak, C., Oh, G.H.T., Wong, A.H.C.,

Feldcamp, L.A., Virtanen, C., Halfvarson, J., Tysk, C., et al. (2009). DNA

methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 41,

240–245. https://doi.org/10.1038/ng.286.

Keegan, K.P., Glass, E.M., and Meyer, F. (2016). MG-RAST, a metagenomics

service for analysis of microbial community structure and function. Methods

Mol. Biol. 1399, 207–233. https://doi.org/10.1007/978-1-4939-3369-3_13.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Oragene DNA tubes DNA Genotex OG-500

Pico Green fluorescence kit Life technologies/thermos P7589

EZ DNA Methylation Kit Zymo Research D5003

Deposited data

HumanOmni5-Quad BeadChip This paper GEO: GSE142304

Infinium MethylationEPIC BeadChip This paper GEO: GSE142304

16S metagenomics sequencing This paper BioProject: PRJNA596439

Custom scripts This paper https://github.com/mesteller-bioinfolab/lookalike

Look-alike photographs www.francoisbrunelle.com/

webn/e-project.html

https://github.com/mesteller-bioinfolab/lookalike/

blob/master/FB_LAL_images.zip

Experimental models: Organisms/strains

Humans (Homo sapiens) Look-alike individuals upon

consent.

N/A

Software and algorithms

R R Core team., 2019 www.r-project.org/

MatConvNet VLFeat http://www.vlfeat.org/matconvnet

Microsoft Oxford Project face API Microsoft Azure https://azure.microsoft.com/en-us/services/

cognitive-services/face/

Herta CNN algorithm Herta Security www.hertasecurity.com

GenomeStudio (v2.0.4) Illumina https://support.illumina.com/downloads/

genomestudio-2-0.html

pvclust Suzuki and Shimodaira, 2006 http://stat.sys.i.kyoto-u.ac.jp/prog/pvclust/

hclust M€ullner, 2013 https://stat.ethz.ch/R-manual/R-devel/library/

stats/html/hclust.html

Kinship-based INference for

GWAS (KING v2.2.3)

Manichaikul et al., 2010 http://people.virginia.edu/�wc9c/KING/

Minfi (v1.32.0) Aryee et al., 2014

Fortin et al., 2017

https://bioconductor.org/packages/release/

bioc/html/minfi.html

clusterProfiler Yu et al., 2012 https://guangchuangyu.github.io/2016/01/

go-analysis-using-clusterprofiler/

Database for Annotation,

Visualization and Integrated

Discovery (DAVID v6.8)

Huang et al., 2009 https://david.ncifcrf.gov/

GOrilla

Eden et al., 2007, 2009

http://cbl-gorilla.cs.technion.ac.il/

GTEx portal (v7) https://gtexportal.org/ N/A

GWAS catalog Buniello et al., 2019 https://www.ebi.ac.uk/gwas/

GWAS central Beck et al., 2020 https://www.gwascentral.org/

MG-RAST Keegan et al., 2016 https://www.mg-rast.org/

Greengenes rRNA database McDonald et al., 2012 https://greengenes.secondgenome.com/

Other

François Brunelle website www.francoisbrunelle.com/webn/

e-project.html

N/A

University of Notre Dame twins

database 2009/2010

https://cvrl.nd.edu/projects/data/ N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents and resource may be directed to and will be fulfilled by the lead contact, Dr. Manel

Esteller (mesteller@carrerasresearch.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d SNP and DNAmethylation data have been deposited at GEO and are publicly available as of the date of publication. Accession

numbers are listed in the key resources table. Microbiome data have been deposited on the BioProject repository and are pub-

licly available as of date of publication. Photographs of the look-alike pairs that were matched together for all three different

independent facial recognition softwares have been deposited at GitHub and is publicly available as of the date of publication.

The DOI is listed in the key resources table.

d Original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recruitment of look-alikes
32 Look-alike pairs (n = 64 individuals) that were initially recruited and photographed by François Brunelle (http://www.

francoisbrunelle.com/webn/e-project.html) were enrolled to this study. All 64 individuals [42 females (65.6%) and 22 males

(34.4%) with a median age of 40 years (range from 21 to 78 years), Table S7] were required to complete an extensive biometric

and life-style questionnaire (Methods S1: Data collection questionnaire, related to STAR Methods) as well as provide legally signed

consent forms approved by our bioethics committee for usage of both their facial images and DNA samples for this study. The study

protocol was approved by the Clinical Research Ethics Committee of the Bellvitge University Hospital with the reference number

PR348/16. To compliment this study, wewere also providedwith access to 100monozygotic twin photos from the University of Notre

Dame twins database 2009/2010 (https://cvrl.nd.edu/projects/data/). License agreements for data accesswere reviewed and signed

by legal representatives of all entities involved in this study. 50 monozygotic twin pairs (n = 100) photographs were subsequently

downloaded and analysed with the facial recognition algorithms detailed below.

METHOD DETAILS

Facial recognition algorithms
Three facial recognition algorithms were used to objectively analyze look-alike pairs: MatConvNet CNN algorithm, provided by the

University of Pompeu i Fabra, Barcelona (Vedaldi and Lenc 2015); Microsoft Oxford Project face API by Microsoft; and the custom

deep convolutional neural network Custom-Net (www.hertasecurity.com). The quantitative assessment of pairwise similarity be-

tween face photographs was calculated as follows. For the MatConvNet algorithm, the face biometric template from each photo

was extracted from each processed face by means of a deep convolutional neural network (CNN) built into MatConvNet software.

The resulting templates are represented as integer sparse descriptors of 8,192 values, which effectively encode the identity features

of a face image (Vedaldi and Lenc 2015). Final pairwise similarity scores were set on a scale of 0–1where 1 represents identical faces.

The custom deep convolutional neural network Custom-Net was developed by a leader in facial recognition platforms (www.

hertasecurity.com). Firstly, a generic face detector optimized for unconstrained video surveillance scenarios was used to obtain

the locations of all faces in each image (Zhang and Zhang, 2010). The threshold was adjusted to find all targeted faces in each photo,

and a subsequent manual exploration was conducted to ensure that no false positives were included. Each face was cropped with a

25% extra margin from the original bounding box, converted to grayscale and resized to 250 3 250 pixels. Next, a face biometric

template was extracted from each processed face by means of a deep convolutional neural network of 32 layers. The resulting tem-

plates were represented as integer sparse descriptors of 4,096 values, which effectively encode the identity features of a face image.

Finally, the similarity score between a pair of images was computed as a negative mean square deviation between their template

values. The final scores were mapped to a range 0–1, where 1 indicated identical faces, according to landmarks taken from the his-

togram of imposter pairs extracted from the well-known database (http://vis-www.cs.umass.edu/lfw/).

In the case of the customdeep convolutional neural network, themodels have tens ofmillions of learned parameters and have been

trained with more than 10 million facial images from over a hundred thousand subjects from different human populations, in a variety

of unconstrained situations: differences of pose, expression, age and accessories within a subject. Moreover, the training process of

a face recognition algorithm typically involves "data augmentation" operations, in which input images are randomly modified, e.g. by
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artificially synthesizing glasses, adding facial occlusions, mirroring faces, etc. in order to add intraclass variability to the images and

confer robustness to the resulting model. As a consequence, modern face verification algorithms have recently achieved near-per-

fect accuracy, as high as 99.97% on NIST’s Facial Recognition Vendor Test (https://pages.nist.gov/frvt/html/frvt11.html#overview),

for passport photo or mugshot scenarios, to the point that banks worldwide have widely adopted such systems for user verification.

Particularly, these algorithms have become extremely reliable on controllable, almost ideal scenarios such as those captured by the

photographer: 1:1 verification between large resolution images with good illumination, non-lateral poses (less than 60�) and without

heavy occlusions; despite circumstancial similaritiy in interclass appearance like that given by glasses, facial expression or hairstyle.

Thus, the impacts of these attributes, such as pose, hairstyle etc can be considered minimum, because the incorporated models

have been exposed to these variations, in addition to additional features aspects such as colour styles, image degradations etc.

The VGG dataset (https://www.robots.ox.ac.uk/�vgg/data/vgg_face/) shows examples of facial data used to train Matconvnet (Par-

khi et al., 2015) and CustomNet (http://vis-www.cs.umass.edu/lfw/).

The Microsoft Oxford Project face API by Microsoft operates on a number of attributes that affect facial features such as age,

gender, pose, smile, and facial hair along with 27 other landmarks for each face. These landmarks are left pupil, right pupil, nose

tip, left mouth, right mouth, outer left eyebrow, inner left eyebrow, outer left eye, top left eye, bottom left eye, inner left eye, inner right

eye, outer right eyebrow, inner right eye, top right eye, bottom right eye, outer right eye, left nose root, right nose root, top left nose

alar, top right nose alar, left outer tip of nose alar, right outer tip of nose alar, top upper lip, bottom upper lip, top under lip and

bottom under lip (https://azure.microsoft.com/en-us/services/cognitive-services/face/). The final similarity scores were also set

on a scale of 0–1.

Facial similarity
Pair-wise facial similaritymatrices were provided as an output for all three facial recognition software. Similarity scoreswere assigned

as numerical values ranging between 0 – 1where 1 represents identical images and 0, two opposed images. To obtain objective look-

alike pairs, we performed unsupervised hierarchical clustering with bootstrap using the pvclust (Suzuki and Shimodaira 2006) in R

statistical environment (v3.6.1) (https://www.R-project.org/).

Sample preparation
Genomic DNA from look-alike pairs in this study were isolated from saliva and self-collected into Oragene 500 DNA tubes and ex-

tracted according to the manufacturers instructions (DNA genotek). >10% of the extracted DNA corresponded to microbial DNA.

DNA was quantified using Pico Green fluorescence kit/Qubit� 2.0 Fluorometer (life technologies). Bisulfite modification of genomic

DNA was carried out with the EZ DNA Methylation Kit (Zymo Research) following the manufacturer’s protocol.

HumanOmni5-Quad BeadChip
Comprehensive cross-examination of genome-wide single nucleotide variation of 4.3 million SNVs across all Look-alike pairs was

performed using HumanOmni5-Quad BeadChip (Illumina). 400 ng of genomic DNA was applied to HumanOmni5-Quad BeadChip

and scanned using HiScan SQ system (Illumina). The signal raw intensities for each array were assessed and analyzed with

GenomeStudio Software (v2.0.4) (Illumina) using default normalization to generate X and Y intensity values for A and B alleles (generic

labels for two alternative SNP alleles), respectively. Genotype calling were performed by using GenomeStudio GenCall method and

only genotypes with high GenCall scores (GC) were selected (according to Illumina standards). The positions corresponding to Illu-

mina internal controls were also removed from the analysis. In order to remove the positions shared between look-alike pairs by

chance, a bootstrap look-alike control analysis was performed. Briefly, we generated 100 datasets of 16 random pairs extracted

from the initial 32 pairs (64 individuals) used in the study and the complete SNP set from the Omni5 array (4MSNPs). The only require-

ment was that none of the generated random pairs in the 100 datasets included a candidate look-alike pair from the initial 32 couples.

We applied to each of these new 100 "non-look-alike" datasets the same SNP selection protocol used in the look-alike datasets, i.e.

removing monomorphic and non-autosomal positions and selecting the shared inter-look-alike genotypes for each of the 16 pairs.

This iterative process produced 100 independent SNP datasets that represented shared genotypes between non-look-alike pairs.

Each of the SNP lists obtained contained an average of 5000 SNPs. The plot of the cumulative distribution of these shared SNPs after

100 iterations shows that the number of observed SNPs tends to plateau, indicating that we are reaching amaximumnumber of SNPs

shared by the non-look-alike pairs is being reached. Next, we pooled all 100 SNP datasets into one table removing all redundant

variants. This table of unique SNPs was considered as the SNP positions shared between pairs independent of their look-alike status

(by chance) and were subsequently removed from our analysis of the look-alike pairs. Then the XY and monoallelic positions for the

16 original pairs were removed. Finally, the SNPs with identical genotypes in each of the 16 pairs and located in genes were selected

for further analysis. CNV calling was performed by using PennCNV plugin in GenomeStudio with default parameters.

Infinium MethylationEPIC BeadChip
Genome-wide DNA methylation interrogation of >850,000 CpG sites was performed using the Infinium MethylationEPIC BeadChip

(Illumina) according to manufacturer’s recommended protocol, as previously described (Moran et al., 2016). Briefly, 600 ng of DNA

was used to hybridize to the EPIC BeadChip and scanned using HiScan SQ system (Illumina). Raw signal intensity data were initially

QC’d and pre-processed from resulting idat files in R statistical environment (v3.6.1) using minfi Bioconductor package (v1.32.0).
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A number of quality control steps were applied to minimize errors and remove erratic probe signals. Firstly, interrogation of sex chro-

mosomes was performed to identify potential labeling errors. Next, the removal of problematic probes was carried out, such as failed

probes (detection p value > 0.01), cross-reacting probes and probes that overlapped single nucleotide variants within +/� 1bp of

CpG sites followed by background correction and dye-based normalization using ssNoob algorithm (single-sample normal-expo-

nential out-of-band). Lastly, we removed all sex chromosomes. Final DNA methylation scores for each CpG were represented as

a b-values ranging between standard 0 and 1 where 1 represents fully methylated CpGs and 0, fully unmethylated. All downstream

analyses were performed under R statistical environment (v3.6.1).

16S meta-genomics sequencing
We identified and compared bacterial populations from diverse microbiomes from all look-alike pairs using 16S metagenomics

sequencing (Illumina) (Klindworth et al., 2013). Salival DNA was extracted and bacterial libraries prepared following the Illumina

16S Library preparation protocol. The variable V3 and V4 regions of 16S rRNA was amplified in order to obtain a single amplicon

of approximately 460 bp that underwent paired-end sequencing using MiSeqDx (Illumina). Resulting fastq files were analysed using

MG-RAST. The counts corresponding to taxonomic abundance profiles for each sample were retrieved by using MG-RAST tools.

Particularly, we retrieved the bacterial counts from sequences aligned to Genus taxonomic categories in the Greengenes rRNA data-

base with the following cutoffs: an alignment length of 15 bp, a percent identity of 60% and an e-value equal or lower to 13 10�5. The

relative proportions for each genus and sample were calculated and only the most represented genus were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Population-level vs shared SNPs in look-alike pairs
In order to define the number of SNPs shared between non look-alike pairs by chancewe generated 55 random combinations of the 9

ultra look-alike pairs avoiding in each dataset the presence of a look-alike pair. We selected the SNP positions with the same geno-

type for each of the 9 non look-alike pairs in any of the 55 control datasets, obtaining the percent of randomly shared variants in a data

set of 9 non look-alikes. Finally, we calculated the statistical significance of the comparison between SNPs shared in look-alike and

non look-alike pairs by a Pearson’s chi-squared test (p value <2.2 10�16). However, since different pairs of look-alikes were frommul-

tiple different ethnicities, but individuals in the same look-alike pair shared the same ethnicity, we also performed the enrichment

analysis to determine if the number of shared SNPswasmore than expected by chance accounting to ethnicity. Thus, we tested pairs

of European ancestry individuals with other Europeans and repeated the same for each of the different ethnicities. To this end, we

downloaded the most recent set of Omni genotypes from 1000 Genomes available in the phase 3 release directory (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/). The downloaded 1000 Genomes phase 3 vcf

file was transformed to Genomic Data Structure (GDS) format using the function seqVCF2GDS from SeqArray R package (version

1.36.0). Look-alike PLINK PED files were also transformed to GDS format using the fucntion snpgdsPED2GDS from SNPRelate R

package (version 1.30.1). The 1000 Genomes genotyping data was merged with the ‘‘ultra’’ look-alikes genotyping data and the re-

maining dataset held 67,312 common SNPs. Finally, for each ethnicity we generated 55 random combinations of non look-alike pairs

to test if the number of shared SNPs in our ‘‘ultra’’ look-alike population was more than expected by chance. Considering the Euro-

pean ancestry of the majority of ‘‘ultra’’ look-alike (6 out of 9) and non-‘‘ultra’’ look-alike (7 out of 7) pairs in our study, we used the 7

non-‘‘ultra’’ look-alike pairs with European ancestry to create 55 random combinations of 6 random non look-alike pairs to compute

the number of shared SNPs with the same genotype as a proxy for the European population. For East Asia, Central-South Asia and

Hispanic populations, we generated 55 random combinations of 1 randomnon look-alike 1000Genomes pair to compute the number

of shared SNPs in each of the aforementioned populations. Finally, the number of SNPs shared by ‘‘ultra’’ look-alike pairs in each

population was tested for statistical significance enrichment against the background number of shared SNPs in each non look-alike

population by means of the Pearson’s chi-squared test.

Copy number variant (CNV) calling and functional annotation
The impact of CNVs on genes was calculated in two different ways. First, we looked at whole-gene CNVs, and then partially-over-

lapping CNVs. Copy number of all genes in the genome was calculated by first establishing CNV breakpoints. Breakpoints were as-

signed to the outermost SNP positions of regions with the same copy number. The breakpoints were calculated separately for each

sample. Using these coordinates, the copy number of whole protein-coding and RNA genes was calculated for all individuals. Gene

coordinates were obtained from Ensembl v75 (build GRCh37). We took the genes that had a shared copy number in all pairs of look-

alikes (both individuals within the pair had the same number of copies), and we selected those genes for which at least one pair of

look-alikes had a different number of copies than the rest of the pairs. For example, to look for partially-overlapping CNVs, we

selected all positions in the genome in which the copy number matched within all pairs, but for which at least 2 pairs of lookalikes

had a different copy number to the rest of the pairs. We then looked for overlaps with partial overlaps with coding or non-coding

genes. As an example, region chr11:125778219-125780253, which overlaps with a lncRNA that has a regulatory relationship with

the HYLS1 gene, there are three pairs of look-alikes that carry three copies of this lncRNA, while the remaining pairs have two copies

of it. All custom R scripts for CNV analysis are deposited in GitHub repository: https://github.com/mesteller-bioinfolab/lookalike.
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CNV clustering and heatmap
Clustering of CNVs was done after filtering out all positions with the same copy number in all samples and merging all contiguous

positions with the same copy number. Positions from the X and Y chromosomes that showed the same copy number in all males

and the same copy number in all females were also filtered out. The clustering of the samples was calculated using pvclust (Suzuki

and Shimodaira 2006). Variants represented in the heatmap are a random selection of one fifth of the total number of variants.

Genome-wide SNP arrays from monozygotic twins
We obtained single nucleotide polymorphism (SNP) data for 38 monozygotic twins from two publicly available studies. Both were

downloaded from NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession No. GSE33598 and

GSE9608. The signal raw intensities for each array were assessed and analyzedwith GenomeStudio Software (v2.0.4) (Illumina) using

default normalization to generate X and Y intensity values for A and B alleles (generic labels for two alternative SNP alleles), respec-

tively. All downstream analyses were performed in the R statistical environment (v3.6.1) (https://www.R-project.org/).

Cryptic relatedness
Robust relatedness inference and genetic correlation estimates between monozygotic twins, look-alike pairs and random non look-

alikes were calculated using the software KING (Kinship-based INference for GWAS) (version 2.2.3). Student’s t-test was applied to

calculate statistical significance between populations.

Ancestry assessment
Genotyping was performed using GenomeStudio v2.0.5; PACKPED Plink files were created using the software PLINK Input Report

Plug-in v2.1.4 (https://emea.support.illumina.com/downloads/genomestudio-2-0-plugins.html). To analyze the look-alike pairs in

the context of world-wide genetic diversity, their genomic data wasmerged using with 1,980West-Eurasian, Asian and Native Amer-

ican individuals genotyped in the Affimetrix HO array (Lazaridis et al., 2014); the remaining dataset held 175,469 common SNPs. Prin-

cipal Component Analysis (PCA) was generated with the HO individuals. Look-Alike individuals were then projected onto the first

two components (PC1 and PC2) using options ‘lsqproject: YES’ and ‘shrinkmode: YES’ of smartpca built-in module of

EIGENSOFT (v. 7.2.1) (Patterson et al., 2006; Weir et al., 2014) (https://www.hsph.harvard.edu/alkes-price/software/).

Kinship assessment
Kinship coefficients between look-alike pairs was first estimated with PLINK. PLINK uses amethod-of-moments approach where the

total proportion of shared SNPs IBD is calculated based on the estimated allele frequency of all SNPs in a dataset assumed to be

homogeneous (Purcell et al., 2007). PLINK-indep-pairwise option was used with parameters 50 5 1.5. to generate a pruned subset

of genotypes in low linkage disequilibrium of 282,122 SNPs in comparisons with 1000G dataset and 103,256 in comparisons with HO

dataset; pairwise relatedness between individuals of each pair was calculated with the –genome–min-0.05 command to detect pairs

with levels of IBD sharing compatible with up to a 3rd degree relationship (Manichaikul et al., 2010). Potential relatedness between

pairs was subsequently explored by estimating long (>10 cM) IBD blocks that might be indicative of co-ancestry among individuals

occurring in the last few hundreds or years (Ralph and Coop, 2013).

Functional enrichment of shared SNPs using Gene Ontology
Enrichment analysis was done with the enrichGO function from the clusterProfiler R package (Yu et al., 2012), using the org.Hs.eg.db

genome annotation. The tested 3,730 genes annotated to the 19,277 SNPs with a matching genotype in all pairs of look-alikes. The

background list of genes were all genes annotated to SNPs detected in HumanOmni5-Quad BeadChip analysis. Parameters min-

GSSize and maxGSSize from the enrichGO function were set to 1 and 22000, respectively, in order to capture all gene ontologies.

Additional enrichment analyses were done using DAVID v6.8 and GOrilla.

Enrichment of eQTLs in the look-alike SNPs set was calculated using data from the GTEx portal, release v7 (GTEx_Analy-

sis_v7.metasoft.txt.gz). eQTLs with a fixed effect model p-values < 0.05 were selected for the analysis. A Fisher’s test was

performed to calculate if the overlap between look-alike SNPs and eQTLs was bigger than expected by chance. The same

enrichment analysis was done with each tissue independently, considering the eQTLs with a tissue-specific p-value <0.05.

Gene ontology analysis was performed using GOrilla.

Face gene enrichment in the identified SNPs
In order to statistically evaluate the face genes enrichment in our selected 19,277 SNPs corresponding to 3,730 genes shared by all

‘‘ultra’’ look-alike pairs, we gather all the genes related with face traits (face genes) from recent comprehensive genomic screenings

related to facial shape (Claes et al., 2018; Xiong et al., 2019; White et al., 2021), the Facebase dataset (https://www.facebase.org/)

and GWAS central (study HGVST1841, http://www.gwascentral.org) and applied two different approaches. In the first approach, we

applied a hypergeometric test, as it is implemented in the R ‘‘phyper’’ function, from the package ‘‘stats’’. In the second, we also

performed a Monte Carlo simulation using 10,000 iterations. In each iteration, we selected a random set of 3,730 genes (the

same number of genes in our 19,277 SNPs) from the total genes represented in the array (23,774 genes) and we counted the number

of face genes found in this random selection. All the analyses were performed in R statistical programming language v.4.0.3.
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GWAS analysis
The overlap betweenmatching sets of SNPs called from look-alike pairs andGWASSNPswas performed using data from twoGWAS

databases: GWASCatalog andGWASCentral. In GWASCatalog v1.0.2, all GWAS SNPs were retrieved and lifted over fromGRCh38

to GRCh37 using the R package liftOver. To calculate trait enrichment, we performed Fisher’s exact tests, computing matching ge-

notypes from look-alike pairs against all SNPs detected in the HumanOmni5-Quad BeadChip. For GWAS Central analysis, studies

related to facial morphology (HGVST1044, HGVST1625, HGVST1841, HGVST1892, HGVST1933, HGVST2265, HGVST2325,

HGVST2359, HGVST2363 and HGVST2597) were selected. Fisher’s exact tests were performed to calculate significant overlaps

in the different studies and correction for multiple testing was done with Benjamini and Hochberg’s adjustment method (a = 0.05).

All custom R scripts for SNP functional analysis are deposited in GitHub repository: https://github.com/mesteller-bioinfolab/

lookalike.

GWAS functional enrichment of shared SNPs using S-LDSC
In order to determine the enrichment of GWAS signals for specific annotations we used the stratified LD score regression (S-LDSC)

tool (github.com/bulik/ldsc). S-LDSC is a method to estimate heritability enrichment for selected functional annotations. To this end,

we followed the partitioned heritability analysis tutorial (github.com/bulik/ldsc/wiki/Patitioned-Heritability) using the last and recom-

mended version of the baseline-LD model (version 2.2) with 97 annotations. To asses the heritability enrichment of our 19,277 SNPs,

we included a ‘‘look-alike’’ custom functional annotation, defined by the set of 19277 SNPs, on top of the baseline-LD model v2.2.

Since S-LDSC is typically applied to large annotations, we included a 500-bp window around the set of 19,277 SNPs to define our

custom ‘‘look-alike’’ functional annotation category, following the annotation format of the baseline-LD model v2.2. Considering the

European ancestry of the majority of samples in our study, we performed the S-LDSC analysis using European LD scores and allele

frequencies from the 1000 Genomes Phase 3 project. Full summary statistics available for ‘‘facial morphology’’ trait in European

ancestry individuals were downloaded from GWAS Catalog, corresponding to two studies (Xiong et al., 2019; Hoskens et al.,

2021). Finally, partition heritability analysis was performed with default parameters and facial traits with ES >1 and enrichment p

value < 0.05 were considered.

DNA methylation age estimation
Epigenetic age estimation was computed using the Hannum method using the function methyAge from the ENmix R package

(version 1.32.0).

Multiomics clustering analyses
To genetically, epigenetically and metagenomically categorize inherent similarities between all look-alike pairs, shared SNV, CNV,

DNA methylation and microbiota profiles, robust correlations and unsupervised hierarchical clustering with bootstrapping were per-

formed with R function packages pvclust (Suzuki and Shimodaira 2006). Euclidean distance scores and ward.d2 minimum variance

method were applied to attain hierarchical clustering represented as heatmaps using R statistical environment (v3.6.1). K-means

clustering was also performed and represented using the first two dimensions of a Principal Component Analysis (PCA). To perform

k-means clustering, 16 ‘‘centers’’ (clusters) were indicated. The SNP set was also visualized using t-SNE representation, selecting 2

dimensions and adjusting ‘‘perplexity’’ parameter to 6 and ‘‘max_iter’’ to 5,000. All the analysis were performed in R statistical pro-

gramming language v.4.0.3 using the packages ‘‘SNPRelate’’, ‘‘gdsfmt’’,‘‘stats’’, ‘‘Rtsne’’, ‘‘ggfortify’’ and ‘‘ggplot2’’.

Questionnaires processing and similarity analysis
Data obtained through questionnaires was transformed into a table, which was processed and transformed into numerical format

with a custom script (deposited in GitHub; https://github.com/mesteller-bioinfolab/lookalike). In this script, all logical variables

were transformed to 0 (False/No) and 1 (True/Yes). When the variables could be ordered (e.g. Never - Sometimes - Often), they were

assigned numbers (0–1 - 2 in the example) that were afterwards normalized to 1. For non-sortable variables, the categories were split

into logical columns (e.g. Employment category was split into three logical variables - Executive, Salaried and Own business). Finally,

empty boxes were filled with the mode for each variable. Cosine similarity was calculated using the numerical matrix between all in-

dividuals. The look-alike intra and extra-pair distance analysis were defined and calculated as follows. Intra-pairs were defined as

look-alike pairs that clustered in all three facial recognition software (n = 16). The extra-pairs were defined as all other combination

pairs of non look-alikes in the initial 16 pairs. For 32 individuals, pairs of same individuals and their look-alike pair counterpart were

removed, leaving 30 possible combinations per 16 pair (n = 480). The euclidean distances between each individual and all other sam-

ples were calculated using the dist function from the R package pvclust (Suzuki and Shimodaira 2006). Distances were calculated on

SNP, CNV, methylome, quantitative and qualitative microbiome and questionnaire data. Intra-pair distances were compared to ex-

tra-pair distances using Student’s T test. Distance boxplots for independent variables were generated by calculating, for all possible

pairs of samples, their absolute differences for each variable. We then classified all pairs between pairs of look-alikes and pairs of

non-look-alikes. Finally, we calculated if the differences were significant with Wilcoxon rank sum tests.
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Figure S1. Clustering and visualization methods. Related to Figure 2. A. k-means clustering of the 16 look-alike couples 
using the whole array SNP set, excluding non-autosomic and monomorphic SNPs (2,409,249 SNPs). Each color
represents a cluster found by the k-means algorithm. B. t-distributed Stochastic Neighbor Embedding (t-SNE) 
visualization of the same SNP data. Each look-alike couple is depicted in a different color. Red circles were drawn to 
highlight the position of the 9 ultra look-alike couples in the plot. C. Heatmap of hierarchal genetic clustering with 
bootstrap of genome-wide SNP genotyping arrays in the 16 look-alikes that were not clustered by the three facial 
recognition networks. Genotype clustering was performed using Euclidean distances and ward.D2 cluster method. Blue 
rectangle represents one look-alike pair that unbiasedly clustered. 0 = homozygous reference SNPs (green), 1 = 
heterozygous SNPs (black) and 2 = homozygous alternate SNPs (red). 
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Figure S2. Genetic analyses of look-alike human pairs without the French Canadian pair. Related to Figure 2. A. 
Heatmap of hierarchical genetic clustering with bootstrap of genome-wide SNP genotyping arrays in the 15 look-alikes. 

Genotype clustering was performed using Euclidean distances and ward.D2 cluster method. 0 = homozygous reference 

SNPs (green), 1 = heterozygous SNPs (black) and 2 = homozygous alternate SNPs (red). B. k-means clustering of the 15 

look-alike couples using the whole array SNP set, excluding non-autosomic and monomorphic SNPs (2,409,249 SNPs). 

Each color represents a cluster found by the k-means algorithm. C. t-distributed Stochastic Neighbor Embedding (t-SNE) 

visualization of the same SNP data. Each look-alike couple is depicted in a different color. Red circles were drawn to 

highlight the position of the 8 ultra look-alike couples in the plot.



−0.02 0.00 0.02 0.04

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

PCA  Look−Alike (West−Eurasia)

PC1

PC
2

−Look−Alike Pairs−
  LAL−01 (Caucasian, Canada)
  LAL−02 (Caucasian, Canada)
  LAL−03 (Caucasian, Canada)
  LAL−04 (Caucasian, Germany)
  LAL−05 (Caucasian, USA)
  LAL−08 (Caucasian, Germany/Belgium)
  LAL−09 (Caucasian, Spain)
  LAL−11 (Caucasian, Spain)
  LAL−12 (Caucasian, USA)
  LAL−13 (Caucasian, Netherlands)
  LAL−14 (Caucasian, UK)
  LAL−16 (Caucasian, Canada)
  LAL−17 (Caucasian, USA)
  LAL−18 (Caucasian, USA)
  LAL−19 (Caucasian, Germany)
  LAL−20  (Caucasian, Italy)
  LAL−21 (Caucasian, Portugal)
  LAL−22 (Caucasian, Germany
  LAL−23 (Caucasian, Bulgaria)
  LAL−24 (Caucasian, Netherlands)
  LAL−25 (Caucasian, Germany/France)
  LAL−26 (Caucasian, Germany)
  LAL−27 (Caucasian, USA/Canada)
  LAL−28 (Caucasian, Canada)
  LAL−29 (Caucasian, Canada)
  LAL−30 (Caucasian, Canada)

Present−day 
European Populations

Present−day 
Middle−Eastern

Populations

−0.02 −0.01 0.00 0.01 0.02 0.03

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

0.
06

PCA Look−Alike −− West Eurasia−Asia−America

PC1

PC
2

−Look−Alike Pairs−
  LAL−06 (Caucasian/Hispanic, USA)
  LAL−07 (Hispanic, USA/Chile)
  LAL−10 (Asian, USA)
  LAL−15  (Caucasian/Asian, USA)
  LAL−31 (Hispanic, Colombia)
  LAL−32 (Hispanic, Colombia)

−Present−day HO Populations−
  Central−South America
  North America
  Near−Middle East
  Europe
  Central−South Asia
  North Asia
  East Asia

LAL−0008 (Caucasian/Hispanic, USA)
LAL−0010 (Hispanic, USA/Chile)
LAL−0015 (Asian, USA)
LAL−0025 (Caucasian/Asian, USA)
LAL−0058 (Hispanic, Colombia)
LAL−0061 (Hispanic, Colombia)

Figure S3. Principal Component Analysis (PCA) generated with the genomic data from the 1,980 West-Eurasian, Asian 
and Native American individuals genotyped in the Affymetrix Human origins (HO) array (Lazaridis et al. 2014). 
Related to Figure 2. A. Modern West-Eurasia populations in the Affymetrix HO array. B. Look-alike individuals for 
West-Eurasia projected in the Affymetrix HO array. C. Look-alike individuals for West-Eurasia, Asia and America 
projected in the Affymetrix HO array.
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Figure S4. Heatmaps and Stratified LD score regression (S-LDSC) enrichment analysis. Related to Figure 2. A. Heatmap of 
hierarchical genetic clustering with bootstrap of genome-wide SNP genotyping arrays in the 16 look-alikes adding the reported 
face associated SNPs (Claes et al., 2018; Xiong et al., 2019; White et al., 2021; Facebase dataset; and GWAS central) to our
19,277 SNPs. Genotype clustering was performed using Euclidean distances and ward.D2 cluster method. Blue rectangles 
represent 11 look-alike pairs that unbiasedly clustered. 0 = homozygous reference SNPs (green), 1 = heterozygous SNPs (black) 
and 2 = homozygous alternate SNPs (red). B. S-LDSC enrichment estimates of selected facial traits for the 19,277 SNPs found
to be shared in all “ultra” look-alike pairs. Facial traits with full summary statistics available from two studies (Xiong, et al., 
2019 and Hoskens, et al., 2021) included in the GWAS catalog were analyzed. Only those traits with significant enrichment
(enrichment score > 1 and enrichment p value < 0.05) are shown. Dashed line indicates enrichment score threshold. Bar colors
indicate study of origin. Trait number indicates the features extracted per facial segment from Hoskens,et al., 2021. Prn: 
pronasale; ChL: left cheilion; ChR: right cheilion; Seg1: segment 1 (full face), Seg2: segment 2 (midface); Seg3 : segment 3 
(outerface).  C. Heatmap shows unsupervised genome-wide DNA methylation hierarchical clustering with bootstrap of the 9 
“ultra” look-alikes, using all the methylation β-values obtained from MethylationEPIC arrays after Quality Check (QC) and 
preprocessing steps described in methods. A random selection of 5000 CpGs is represented. Colors represent a continuous
quantification of methylation beta values at each CpG site where green highlights unmethylated CpG’s (0), black, 50% 
methylated CpG’s (0.5) and red, fully methylated CpG’s (1). Clustered look-alikes are shown in a blue rectangle.
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Figure S5. Alternative clustering and visualization methods for the DNA methylation data. Related to Figure 3. A. k-
means clustering of the 16 look-alike couples using the Illumina HumanMethylation EPIC array data. Each color
represents a cluster found by the k-means algorithm. B. t-distributed Stochastic Neighbor Embedding (t-SNE) 
visualization of the same DNA methylation data, using a random selection of 50,000 CpG sites. Each look-alike couple is 
depicted in a different color.
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Figure S6. DNA methylation age estimation, mEQTLs and microbiome analyses. Related to Figure 3. A. DNA methylation age 
estimation using the Hannum method for the 16 look-alike couples. Intrapair age estimation differences are significantly smaller 
(two-sided Mann-Whitney-Wilcoxon test P-value = 0.0052) among the 9 “ultra” look-alike pairs compared to the non-ultra 
look-alike pairs. B. Heatmap shows supervised genome-wide DNA methylation hierarchical clustering with bootstrap of the 16 
look-alikes, using the 1,379 methylation β-values obtained from MethylationEPIC array after selecting all those CpGs located
within a window of 100 base pairs from any of the 19,277 SNP’s found to be shared in all “ultra” look-alike pairs. Colors
represent a continuous quantification of methylation beta values at each CpG site where green highlights unmethylated CpG’s
(0), black, 50% methylated CpG’s (0.5) and red, fully methylated CpG’s (1) . Clustered “ultra” look-alikes are shown in a blue 
rectangle. C, D. Microbiome analysis of the 9 ultra” look-alikes. Heatmaps shows the distances from differences in pair-wise 
bacterial counts of species found in the microbiome of each look-alike pair (variation in alpha diversity scores) of counts from 0 
– 55 (C) and relative proportions of the taxonomic profiles at the genus level (D) for each sample calculated on a scale of 0 -
0.5. Only the most represented genera are shown. Meta-genomic clustering of each look-alike sample was constructed using 
Euclidean distances and Ward.D2 hierarchical cluster method. Blue rectangle represents look-alike pairs whose microbiome is 
more closely related.



W
ei
gh
td
iff
er
en
ce
(K
g)

Ultra look-alikeNon-Ultra
look-alike

20

15

10

5

0

A B

C

Figure S7. Clustering for metagenomics species data and intrapair weight differences. Related to Figure 3. A, B. 
Alternative clustering and visualization methods for the metagenomics species data. A. k-means clustering of the 16 look-
alike couples using the metagenomics species data. Each color represents a cluster found by the k-means algorithm. B. t-
distributed Stochastic Neighbor Embedding (t-SNE) visualization of the same data. Each look-alike couple is depicted in 
a different color. C. Weight difference of the 16 look-alike couples. Intrapair weight differences are significantly smaller 
(two-sided Student’s t-test P-value = 0.035) among the 9 “ultra” look-alike pairs compared to the non-ultra look-alike 
pairs. 
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If for any reason you feel uncomfortable answering some of these questions, 
feel free to leave the space in white. 
 
To the best of our knowledge, do you have any familiar relationship with 
your look-alike: NO YES  . If yes, specify __________________________ 
 
 
Name and Surname: _______________________________________________________ 
 
Gender: MALE  FEMALE  
 
Race: CAUSASIAN  HISPANIC     AFRICAN ASIAN  OTHER: _____ 
 
Age: ________  Date of birth: ___/___/___ (DD/MM/YY)    
 
Born in (location,country): _____________________________________________ 
 
Do you know how you were conceived? NO      YES 

 
Natural conceive      In Vitro Fertilization  

 
Current residence (locality and country): _______________________________ 
  

Location: CITY   TOWN  COUNTRYSIDE 
 
Did you live in other locations during your infancy / youth? Where?: 
 

Country: _____________ location: CITY  TOWN     COUNTRYSIDE 
Country: _____________ location: CITY  TOWN     COUNTRYSIDE 
Country: _____________ location: CITY  TOWN     COUNTRYSIDE 

 
 
BODY FEATURES:  
 
Weight: _________Kg 
 
Height: _________cm 
 
 
FACE FEATURES  
 
Hair: 
 

Natural color:  WHITE   BLOND   RED-HAIRED   BROWN    BLACK    BALD  
 
Natural shape:  STRAIGHT  WAVY     CURLY      

 
Eyes: 
  
 Color:  GREY  BLUE     GREEN    BROWN    DARK  
 
 Do you need glasses?  NO    SOMETIMES    YES     

 
If "sometimes" or "yes", why? _______________________________ 

Methods S1: Data collection questionnaire, related to STAR Methods
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PERSONAL FEATURES AND HABITS: 

Civil state: 
 

SINGLE   Lived in couple before? NO   YES t , time: ________ 
 

MARRIED/IN COUPLE  Time you live in couple: _________________ 
 

DIVORCED/SEPARATED /WIDOWED     Time you lived in couple: _______ 
 

DO YOU HAVE ANY DESCENDENCE?  NO  YES 
 
If "yes", how many?: ____ (nºsons: ___, nºdaughters: ___) 

 
 
What is the highest level of school you have completed or the highest degree 
you have received? 
 

Basic school  High school  University   Others 
   

If "University": Degree: ________________  PhD: YES NO 
 

If "Others", which kind: ____________________________________ 
 
 
Employment status:  
 

EMPLOYEE    AUTONOMOUS   UNEMPLOYEE     MEDICAL LEAVE     RETIRED  
  

WORK INDOOR  WORK OUTDOOR 
  
 PHISICAL WORK OFFICE WORK      TRAVEL WORK 
 

Kind of employment:  
 
  Category: EXECUTIVE     SALARIED  OWN BUSSINESS 
 
What are your approximately yearly incomings? ___________________________ 
 
 
Do you have any pet(s)?: NO  YES  ,  
 

If "yes": Kind of pet: ____________; Time: _________________ 
 
 
Do you have some significant alergies?:  NO  YES   

 
Gluten     Lactics    Nuts      Antibiotics      Dust/Polen  
Others: ___________________________________________________________ 

 
 
Blood group / RH: 
 

A B AB O    /    RH-positive  RH-negative 
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Smoking status: 
 

NEVER      FORMER    LIGHT SMOKER      HEAVY SMOKER 
 

If "former": Years since your last cigarrette: ______________ 
 
If "former","light","heavy": quantity (day/months) __________ 

 
 
Do you practice physical exercise?:   

 
NO  YES   Frequency: ___________ Indoor  Outdoor 

  
 
Diet habits: 
  

No vegetarian   Vegetarian   Vegan 
 
 
Drinking habits: 
 
 Alcohol:  Never   Sometimes  Often 
  
 Soft-drinks:  Never   Sometimes  Often 
 
 Other drinks : Coffee     Tea   Sometimes Often 
 
  
Have you suffered any significant illness?  NO  YES  
  

If yes, can you indicate which illness have you suffered? 
 
  CHRONIC: Diabetes Chohn disease Others   _______________ 
  

 Cancer  Heart failure Cerebral stroke  
 
Others    _______________ 
 

 
Handwriting:  Left-hand writer  Right-hand writer  
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Si por alguna razón se siente incómodo respondiendo a algunas de estas 
preguntas, siéntase libre de dejar el espacio en blanco. 
 
Para nuestro mejor conocimiento, ¿tiene alguna relación familiar con su 
parecido?: NO   SÍ    En el caso "sí", especifique _____________________ 
 
 
Nombre y Apellidos: _____________________________________________________ 
 
Género: MASCULINO      FEMENINO 
 
Raza: CAUCÁSICA  HISPÁNICA    AFRICANA     ASIÁTICA  OTRA: _____ 
 
Edad: ________  Fecha de nacimiento: ___/___/___ (DD/MM/YY)    
 
Nacido en (localidad, país): ___________________________________________ 
 
¿Sabe usted cómo fue concebido?   NO       SÍ 

 
Concepción natural      Fecundación In Vitro  

 
Residencia habitual (localidad, país): _______________________________ 
  

Localidad: CIUDAD  PUEBLO  EN EL CAMPO 
 
¿Vivió en otros sitios durante su infancia/juventud? ¿Dónde?: 
 

País: _____________ localidad: CIUDAD      PUEBLO      CAMPO 
País: _____________ localidad: CIUDAD      PUEBLO      CAMPO 
País: _____________ localidad: CIUDAD      PUEBLO      CAMPO 

 
CARACTERÍSTICAS CORPORALES:  
 
Peso: _________Kg 
 
Altura: _________cm 
 
 
RASGOS FACIALES  
 
Cabello: 
 

 Color natural: BLANCO   RUBIO  PELIROJO   MARRÓN    NEGRO    CALVO  
 
 Forma natural: LISO    ONDULADO     RIZADO    CALVO  

 
Ojos: 
  
 Color:  GRIS  AZUL     VERDE      MARRÓN      OSCURO  
 
 Tamaño: PEQUEÑO  MEDIANO  GRANDE 
 

¿Necesita gafas?  NO    A VECES    SÍ     
 
Si "a veces" o "sí", por qué? _______________________________ 
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CARACTERÍSTICAS PERSONALES Y HÁBITOS: 

Estado civil: 
 

SOLTER@   Ha vivido en pareja? NO   SÍ  , tiempo: ________ 
 

CASAD@/EN PAREJA  Tiempo que ha vivido en pareja:___________ 
 

DIVORCIAD@/SEPARAD@/VIUD@     Tiempo que vivió en pareja:__________ 
 

HA TENIDO USTED DESCENDENCIA?  NO  SÍ 
 
En caso "sí", ¿cuánta?: ____ (nº hijos: ___, nº hijas: ___) 

 
 
¿Cuál es el nivel más alto de estudios que ha completado o el grado más 
alto que ha recibido? 
 

Escuela básica  Instituto     Universidad   Otros 
   

If "Universidad": Licenciatura: _________Doctorado: SÍ   NO 
 

If "Otros", ¿qué tipo?: ____________________________________ 
 
 
Estado laboral:  
 

EMPLEAD@    AUTÓNOM@  DESEMPLEAD@   BAJA MÉDICA    JUBILAD@  
  

TRABAJO EN INTERIOR EN EL EXTERIOR 
  
 TRABAJO FÍSICO DE OFICINA      VIAJANDO 
 

Clase de empleo:  
 
  Categoría: EJECUTIV@   ASALARIAD@      NEGOCIO PROPIO 
 
¿Cuánto son sus ingresos anuales aproximados? ___________________________ 
 
 
¿Tiene alguna mascota(s)?: NO  SÍ   ,  
 

En caso "sí": Qué clase: _______________; Tiempo: ___________ 
 
 
¿Tiene alguna alérgia(s) importante(s)?:  NO  SÍ   

 
Glúten    Lácticos   Frutos secos   Antibióticos     Polvo/Pólen  
Otras: ___________________________________________________________ 

 
 
Grupo sanguíneo / RH: 
 

A B AB O    /    RH-positivo  RH-negativo 
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Tabaquismo: 
 

NUNCA     EXFUMADOR/A FUMADOR/A LIGER@    FUMADOR/A SEVER@ 
 

Si "exfumador/a": Años des de su último cigarrillo:__________ 
 
Si "ex", "liger@","sever@": cantidad (día/mes) __________ 

 
 
¿Practica usted ejercicio físico?:   

 
NO  SÍ   Frecuencia: _______  Interior      Exterior 

  
 
Hábitos dietéticos: 
  

No vegetarian@   Vegetarian@   Vegan@ 
 
 
Hábitos de bebida: 
 
 Alcohol:  Nunca   A veces  A menudo 
  
 Refrescos:  Nunca   A veces  A menudo 
 
 Otras bebidas: Café     Té        A veces A menudo 
 
  
¿Ha sufrido alguna enfermedad importante?  NO  SÍ  
  

En caso "sí", ¿podría usted indicar cuál(es)? 
 
  CRÓNICA: Diabetes Chron  Otra(s)   ___________________ 
  

Cáncer  Fallo cardíaco Ictus  Otra(s    _____________ 
 

 
Escritura:     Zurd@  Diestr@ 
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Si pour une raison ou pour une autre vous ne souhaitez pas communiquer 
certaines informations, merci de laisser libre l’espace correspondant. 
 
 
Nom et Prénom : _______________________________________________________ 
 
 
A votre connaissance, avez-vous un lien de parenté avec votre sosie ? 
 
NO  YES     Si oui, précisez :  __________________________ 
 
 
Genre : Homme  Femme  
 
Ethnie : Caucasien    Hispanique    Aficain Asiatique          
Autre : _____ 
 
Age : ________  Date de naissance : ___/___/___ (j/ms/an)    
 
Lieu de naissance (localité,pays): 
_____________________________________________ 
 
Est-ce que vous savez comment vous avez été conçus ?  
 
NON      OUI 
 
Conception naturelle Fécondation in vitro 
 
 
Lieu actuel de résidence (localité, pays) : _______________________________ 
  

Localité : Ville   Village  Campagne 
 
Avez-vous vécu dans un autre endroit durant votre enfance/jeunesse ? 
 

Pays : ___________  localité: Ville   Village Campagne 
Pays : ___________  localité: Ville   Village Campagne 
Pays : ___________  localité: Ville   Village Campagne 
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Mesures corporelles :  
 
Poids : _________Kg 
 
Taille : _________cm 
 
 
Caractéristiques du visage 
 
Cheveux : 
 

Couleur naturelle :  BLANC    BLOND    ROUX    MARRON    NOIR    CHAUVE  
 
Allure naturelle :    RAIDE ONDULÉ     BOUCLÉ      

 
Yeux : 
  
 Couleur :  GRIS  BLEU     VERT    MARRON    NOIR  
 
 Portez-vous des lunettes ?  NON    PARFOIS   OUI     

 
Si “oui” ou “parfois”, précisez ______________________________ 

 
 

Caractéristiques personnelles et loisirs : 

Etat civil: 
 

Célibataire    
Avez-vous vécu en couple auparavant ? NON   OUI     
Combien de temps ? : ________ 

 
Marié/En couple   
Depuis combien de temps vivez-vous en couple ? _________________ 

 
DIVORCÉ/SÉPARÉ/VEUF/VEUVE      
Depuis combien de temps viviez-vous en couple ? : _______ 

 
AVEZ-VOUS DES ENFANTS ?  NON  OUI 

 
Si “oui”, combien : ____ (nb de fils : ___, nb de filles: ___) 

 
 
Quel le plus haut niveau d’étude scolaire ou le diplôme le plus élevé que 
vous avez atteint ? 
 

Collège   Lycée  Université   Autre 
   

Si "Université” : Niveau : ________________  PhD: OUI   NON 
 

Si "Autre", précisez : ____________________________________ 
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Emplois :  
 

Employé    Indépendant  Sans emploi    Congés maladie            
 
Retraité  

  
PAS DE TRAVAIL EN EXTERIEUR  TRAVAIL EN EXTERIEUR 

  
 TRAVAIL PHYSIQUE  TRAVAIL DE BUREAU    DEPLACEMENT FREQUENT 
 

TYPE DE TRAVAIL :  
 
  Catégorie : DIRIGEANT     SALARIÉ  ENTREPRENEUR 
 
Quels sont approximativement vos revenus annuels ? 
___________________________ 
 
 
Avez-vous un ou plusieurs animaux domestiques :  NON  OUI   
 

Si "oui” : quel(s) animal(s) ?: ____________  
Combien de temps ?: _________________ 

 
 
 
 
Souffrez-vous d’allergies gênantes ?  NON  OUI   

 
Gluten     Lactose    Noix     Antibiotique   Poussière/pollen 
Autre(s):__________________________________________________________ 

 
 
Groupe sanguin / Rhésus : 
 

A B AB O         Rhésus-positif  Rhésus-négatif 
 
 
Tabagisme : 
 

Non-fumeur      Sevré  Petit fumeur      Fumeur régulier 
 

Si "sevré” : date de sevrage (année) : ______________ 
 
Si "sevré”, "petit fumeur”, "fumeur régulier” : nombre de 

cigarettes par jour ou mois : __________ 
 
 
Pratiquez-vous une activité physique ?   

 
NON  OUI   Fréquence : ___________ Intérieur   Extérieur 

  
 
Habitudes alimentaires : 
  

Non végétarien  Végétarien   Végane 
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Habitudes de boisson : 
 
 Alcool : Jamais   Parfois  Régulièrement 
  
 Soda :  Jamais   Parfois  Régulièrement 
 
 Autres boissons : Café     Thé   Parfois   Régulièrement 
 
  
Avez-vous présenté des maladies ayant impactées ou impactant 
significativement votre quotidien ?  NO  YES  
  

Si oui, pouvez-vous préciser de quelle(s) maladie(s) s’agit-il ? 
 
 Chronique : Diabète Maladie de Crohn Autres   _______________ 
  

Cancer  Insuffisance cardiaque   Accident vasculaire cérébral  
 
Autres    _______________ 
 

 
 
 
 
Main dominante :  Gaucher   Droitier 
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