
ARTICLE

Single-cell Atlas of common variable
immunodeficiency shows germinal center-
associated epigenetic dysregulation in B-cell
responses
Javier Rodríguez-Ubreva 1,2,20✉, Anna Arutyunyan3,4,20, Marc Jan Bonder5,6,7, Lucía Del Pino-Molina 8,

Stephen J. Clark 9, Carlos de la Calle-Fabregat1,2, Luz Garcia-Alonso3, Louis-François Handfield3,

Laura Ciudad1,2, Eduardo Andrés-León 10, Felix Krueger 11, Francesc Català-Moll1,2,

Virginia C. Rodríguez-Cortez2, Krzysztof Polanski3, Lira Mamanova3, Stijn van Dongen3, Vladimir Yu. Kiselev3,

María T. Martínez-Saavedra 12, Holger Heyn 13,14, Javier Martín10, Klaus Warnatz 15,16,

Eduardo López-Granados8, Carlos Rodríguez-Gallego 12,17, Oliver Stegle 5,6,7,18, Gavin Kelsey 4,9,

Roser Vento-Tormo 3,4,21✉ & Esteban Ballestar 1,2,19,21✉

Common variable immunodeficiency (CVID), the most prevalent symptomatic primary

immunodeficiency, displays impaired terminal B-cell differentiation and defective antibody

responses. Incomplete genetic penetrance and ample phenotypic expressivity in CVID sug-

gest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins dis-

cordant for CVID are uniquely valuable for studying the contribution of epigenetics to the

disease. Here, we generate a single-cell epigenomics and transcriptomics census of naïve-to-

memory B cell differentiation in a CVID-discordant MZ twin pair. Our analysis identifies DNA

methylation, chromatin accessibility and transcriptional defects in memory B-cells mirroring

defective cell-cell communication upon activation. These findings are validated in a cohort of

CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of

alterations in naïve-to-memory B-cell transition in CVID and indicate links between the

epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell

Atlas, gives insight into future diagnosis and treatments of CVID patients.
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Common variable immunodeficiency (CVID), the most
frequent symptomatic primary immunodeficiency1, is
represented by a heterogeneous group of patients with low

serum immunoglobulin concentrations, defective specific anti-
body production and increased susceptibility to bacterial infec-
tions of the respiratory and gastrointestinal tracts2. A high
proportion of CVID patients have a low frequency of memory B
cells3. In fact, CVID is mainly considered to be a humoral
immunodeficiency, although several immune cell types might be
affected4–7.

CVID is usually detected sporadically in patients with no
family history of immunodeficiency. However, for about 10% of
subjects, other first-degree relatives may either be hypo-
gammaglobulinemic or present selective IgA deficiency8. The
existence of a genetic component in CVID has been recognized
for decades and next-generation sequencing has revealed a
number of pathogenic genes9. However, CVID pathogenesis
remains largely unexplained, given that only 20% of CVID cases
can be accounted for by monogenic gene defects, and genetic
mutations remain elusive in the majority of CVID cases. The
absence of mutations for a high proportion of CVID patients
together with the incomplete disease penetrance for those har-
boring mutations suggest the operation of additional, as yet
undefined, mechanisms (e.g., polygenic, epigenetic, and envir-
onmental contributors) that help determine the CVID clinical
phenotype.

Recently, it was reported the occurrence of DNA methylation
alterations associated with CVID, using a pair of monozygotic
(MZ) twins discordant for the disease and a cohort of patients
and controls, providing a concrete proof-of-principle of an epi-
genetic dimension to CVID10. That work provided the first evi-
dence of epigenetic dysregulation in primary antibody
deficiencies (PADs) and has spearheaded interest in epigenetic
aberrancies in the broader field of primary immunodeficiency
research11. However, that study only interrogated a limited set of
CpG sites and did not explore links with the functional impact of
such epigenetic defects. DNA methylation has an established
function in B-cell differentiation and biology12,13. It is likely that
DNA methylation alterations are accompanied by other epige-
netic changes and by transcriptional alterations in the B-cell
compartment of CVID patients. In this regard, single-cell tran-
scriptomics and epigenomics emerge as appropriate approaches
for studying the diversity, plasticity and adaptability of immune
cell subsets14.

In this work, we generate and integrate single-cell multi-omics
datasets (DNA methylation, chromatin accessibility, and tran-
scriptomics) corresponding to the aforementioned pair of CVID-
discordant MZ twins and a cohort of patients and healthy donors
to understand the heterogeneity and impact of epigenetic dysre-
gulation in CVID. Our data indicate prevalent and widespread
alterations affecting DNA methylation and chromatin accessi-
bility of memory B cells, and provide evidence that these changes
impact the transcriptome of these cells following activation. These
epigenetic and transcriptional alterations show defective immune
cell–cell communication, which may explain the impaired
immune responses observed in these patients.

Results
DNA methylation alterations in CVID in memory B-cell dif-
ferentiation. To define the DNA methylation profiles in CVID, we
performed single-cell whole-genome bisulfite sequencing of B cells
isolated from a pair of CVID-discordant MZ twins (Fig. 1a) without
identified pathogenic mutations. Clinical information, vaccination
response and B-cell phenotype of these individuals are displayed in
Supplementary Data 1. Specifically, we generated the whole DNA

methylomes15 of around 200 single cells (Supplementary Data 2)
corresponding to naïve, unswitched memory (US-mem) and swit-
ched memory (S-mem) B cells from the control and CVID twins
(Fig. 1a and Supplementary Figs. 1 and 2). We then imputed
missing methylation values using DeepCpG16 per cell type, and
generated merged data from the same subpopulations from each
donor (pseudo-bulks) to outline their methylomes.

In parallel, we performed whole-genome sequencing (WGS) of
the MZ twins to study a potential genetic origin of the CVID
discordance observed in these individuals. WGS analysis revealed
the existence of 1,400 somatic variants in the CVID twin
(Supplementary Data 3), which is in the same range as the
variants observed in twin cohorts17,18. According to ClinVar19

there are only two differential SNPs and two differential indels
between the twins in genes potentially related to a disease
(VCV000332641.2, VCV000670396.1, VCV000801645.1 and
VCV000402355.1), although none of these genetic variants have
previously been linked to CVID. We also analyzed the effect of
the identified genetic variants using SNPEff20 and observed that
only one of them induced a relevant effect on the gene TAS2R31.
The link of this gene to CVID or to any other disease has not
been described (Supplementary Data 3). Of note, we identified
genetic variants shared by both CVID-discordant twins affecting
genes previously associated with CVID, such as CR2, NFKB2,
CD19 and TNFRSF13B. This observation reinforces the hypoth-
esis that additional alterations, such as epigenetic changes, might
be contributing factors to the differential phenotype of these
siblings to the development of CVID.

In relation to the single-cell methylation analysis, in the control
twin, DNA methylation levels of both US-mem and S-mem B cells
decreased relative to naïve B cells (Fig. 1b, top, and Supplementary
Fig. 3a), consistent with the progressive demethylation occurring
during B-cell differentiation12,13. However, we found that S-mem B
cells in CVID displayed impaired DNA demethylation throughout
the entire genome (Fig. 1b, bottom, and Supplementary Fig. 3a). The
methylomes of naïve and US-mem B cells from the CVID sibling
were virtually identical to those of their control counterparts,
whereas the methylomes of S-mem B cells displayed profound
differences between the two twins, as ascertained by Pearson
correlation and principal component analysis (PCA) (Fig. 1c and
Supplementary Fig. 3b, c).

To identify the functional loci potentially involved in transcrip-
tional regulation, we defined differentially methylated regions
(DMRs) using Metilene21 (Supplementary Data 4 and Supplemen-
tary Fig. 1). In the transition from naïve-to-US-mem B cells, we
detected 1537 DMRs that underwent hypomethylation in both
control and CVID twins. However, of the 628 DMRs that became
hypermethylated in control, 192 were not hypermethylated in
CVID (Fig. 1d). The most dramatic alterations were found in the
transition from naïve-to-S-mem B cells. Specifically, 3745 of the
9204 hypomethylated DMRs (40.7%) of the naïve-to-S-mem B cells
comparison of the healthy twin, did not undergo demethylation in
his CVID sibling. Of the 1555 hypermethylated DMRs in the naïve-
to-S-mem B-cell differentiation in the healthy control, 404 (26%)
were not hypermethylated in CVID (Fig. 1d, e). No DMRs were
found in the comparison of naïve B cells from CVID and healthy
control.

FACS analysis showed that the proportions of IgG+ and IgA+ B
cells within the memory compartment of the twins are comparable
(around 50% of each in both individuals), eliminating the possibility
that altered methylation observed in the CVID twin was a
consequence of a different memory B-cell subtype abundance.

Our results indicate that CVID patients display methylation
defects that do not preexist in naïve B cells but are established
during memory B-cell differentiation, and affect only specific
genomic regions. Since most of the alterations detected in CVID
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affected DNA methylation loss and occurred in S-mem B cells, we
focused on those regions and referred to them as CVID.no-
demeth DMRs hereafter for brevity (Supplementary Data 5).

A high proportion of the DNA demethylation taking place
during cell differentiation occurs in genomic regions named
partially methylated domains (PMDs), which are characterized by
late replication and passive demethylation22,23. To test whether

the impaired DNA demethylation observed in CVID S-mem B
cells results from alterations in passive cell-division-associated
demethylation, we analyzed their replicative history using the
KREC assay24 (Formula 1). Consistent with our previous
findings25, S-mem B cells of the CVID twin displayed a lower
cell-division rate (Fig. 1f), which would be compatible with
reduced levels of passive PMD-associated demethylation.
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However, the majority of the CVID.no-demeth DMRs overlapped
with non-PMDs and with early replication genomic regions
(Fig. 1g and Supplementary Fig. 3d), indicating a prevalence of
alterations in active demethylation mechanisms during S-mem B-
cell differentiation in CVID. We found no significant differences
in the expression of methylcytosine dioxygenase Ten-eleven
translocation (TET) enzymes TET1, TET2, and TET3, involved in
active demethylation, in the different B-cell compartments
(Supplementary Fig. 3e), suggesting a defect in the enzyme
activity and/or its recruitment to genomic sites rather than an
alteration in the levels of these proteins.

To evaluate the functional relevance of the CVID.no-demeth
DMRs, we analyzed publicly-available gene expression data from
various B-cell populations (accession numbers indicated in
Methods). We observed that a large number of the nearest genes
to these CVID.no-demeth DMRs were specifically upregulated in
germinal center (GC) B cells compared with naïve B cells, S-mem
B cells or plasma cells (PCs) from healthy individuals (Fig. 1h)
and corresponded to functional categories related to B-cell
biology (Supplementary Fig. 3f). Additionally, the vast majority
of the CVID.no-demeth DMRs were located at intronic and
intergenic regions (Supplementary Fig. 3g), suggesting a function
in modulating regulatory elements. In this regard, using publicly-
available ChIP-seq data of histone marks (accession numbers
indicated in Methods), we observed that CVID.no-demeth DMRs
were more highly enriched in active enhancer histone marks
(H3K4me1 and H3K27ac) in GC B cells, S-mem B cells and PCs
than in naïve B cells (Fig. 1i). All these results suggest that CVID
aberrant hypermethylation in S-mem B cells occurs at genomic
regions that control B-cell function, comprising genes and
enhancer regions that become activated during GC reaction.

Heterogeneous DNA methylation alterations define key TFs in
CVID. We assessed the heterogeneity of DNA methylation pro-
files in the S-mem B-cell compartment from the CVID-
discordant twins. PCA based on hypomethylated DMRs in the
naïve-to-S-mem B-cell transition revealed greater methylation
heterogeneity in S-mem than in naïve B cells (Fig. 2a). Some of
the cells within the CVID S-mem B-cell compartment displayed
similar DNA methylation profiles to those of control cells,
whereas others clustered separately and showed aberrant hyper-
methylation (Fig. 2a, b). In-depth analysis of the data (see
Methods) showed that the entire set of S-mem B cells from the
CVID twin displayed methylation alterations, although the fre-
quency of these alterations was highly variable (Fig. 2c).

Transcription factor (TF) motif-enrichment analysis of CVID.no-
demeth DMRs revealed significant enrichment of several TFs

involved in B-cell differentiation and function, including members
of the bZIP family (e.g., BATF, JUNB, Fosl2, and Fra2), NF-kB (p65
and p50), CTCF, IRFs and PU.121 (Supplementary Fig. 4a). Using
publicly-available ChIP-seq data from human primary B cells and
immortalized B cells (accession numbers indicated in Methods), we
observed a greater degree of binding for several of these TFs, such as
CTCF, BATF and JUNB in CVID.no-demeth DMRs, which implies
that the regions are indeed bound to these TFs in vivo in B cells
(Fig. 2d and Supplementary Fig. 4b). Motif-enrichment analysis of
CVID.no-demeth DMRs at the single-cell level showed similar motif
enrichment for TFs, such as CTCF, NF-kB-p65, IRF8, and members
of the bZIP family, in almost all of the individual cells, regardless of
the number of altered DMRs they presented (Fig. 2e).

Our results indicate that, despite the heterogeneous demethy-
lation defects affecting CVID S-mem B cells, the entire
compartment displayed DNA methylation alterations in common
TF binding sites that might compromise the proper binding of
those TFs.

Chromatin accessibility changes in regulatory regions in CVID.
In addition, we performed single-cell assay for transposase-accessible
chromatin with sequencing (scATAC-seq) of the B-cell compart-
ment to determine chromatin accessibility profiles and explore their
relationship with the previously identified DNA methylation
alterations in CVID. Uniform Manifold Approximation and Pro-
jection (UMAP) visualization showed that the three B-cell subsets
analyzed (naïve, US-mem and S-mem B cells) were clustered on the
basis of their chromatin accessibility status (Fig. 3a).

We then used cisTopic26 to identify chromatin accessibility
modules (groups of co-occurring accessible chromatin regions
referred to hereafter as topics) in scATAC-seq data for the three
B-cell subpopulations (Supplementary Fig. 1). A topic may be
linked to a particular biological feature in the cell. As in the
previous DNA methylation analysis, most CVID-associated
differences in chromatin accessibility occurred in the S-mem
B-cell compartment (Fig. 3b). Among the 18 regulatory topics
identified using cisTopic, we selected six of them with the greatest
differences (above the 95th and below the 5th percentiles). Topics
2, 7, and 8 corresponded to less accessible regions in CVID
S-mem B cells (CVID-depleted topics), whereas topics 4, 5, and 6
defined more accessible regions in CVID S-mem B cells (CVID-
enriched topics) (Fig. 3b). TF binding motif analysis of these
topics indicated the significant enrichment of several members of
the bZIP, bHLH and ZF TF families in CVID-depleted topics, and
enrichment of CTCF in CVID-enriched topics (Fig. 3c), coin-
cident with several of the TF binding motifs enriched in the
CVID.no-demeth DMRs.

Fig. 1 CVID methylation defects take place in the memory compartment at genomic regions involved in B-cell function. a Scheme depicting sorter
strategy for B-cell isolation from the CVID-discordant twins and the cohort of CVID patients and healthy controls, as well as the multi-omics single-cell
approaches used. b Circular representation of DNA methylation levels in naïve B cells, US-mem B cells, and S-mem B cells from control and CVID twins.
Histogram tracks represent the average methylation levels over 5Mb windows throughout the genome. Autosomal chromosomes from 1 to 22 are
represented. c Heatmap showing Pearson correlation coefficients from the comparison between control and CVID within the various B-cell compartments.
d Bar plot representing the number of significant DMRs identified (q < 0.05 and meth.diff > 20%) in the transition from naïve to US-mem B cells or from
naïve to S-mem B cells. e Selected examples of smoothed DNA methylation data in altered DMRs in the CVID twin. f Bar plot indicating the total number of
cell divisions in naïve, US-mem and S-mem B cells in control and CVID twins. g Overlap of CVID.no-demeth DMRs with partially methylated domains
(PMDs, light blue; non-PMDs, dark blue). h Violin plots representing normalized expression levels of the genes nearest to CVID.no-demeth DMRs in naïve,
GC and S-mem B cells, as well as in PCs. Gene expression data (n= 1 biological independent sample for each B-cell population) were obtained from
publicly-available RNA-seq datasets (see Methods). Whiskers correspond with the minimum and maximum values of the dataset (excluding any outliers).
The box is drawn from Q1 to Q3 with a horizontal line to indicate the median. i Plots showing odds ratios in CVID.no-demeth DMRs ± 5 Kb flanking regions in
naïve, GC and S-mem B cells, as well as PCs for different enhancer-associated histone modifications (H3K4me1, H3K27ac, and H3K27me3). Active
enhancer regions were defined for the concurrence of H3K4me1 and H3K27ac, repressed enhancers by H3K4me1 and H3K27me3, whereas primed
enhancers by H3K4me1 exclusively. Histone modifications data were obtained from publicly-available ChIP-seq datasets (see Methods). Source data for
panels in this figure are provided in the Source Data Fig. 1 file.
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Subsequently, we defined active (H3K4me1 and H3K27ac),
primed (H3K4me1) and repressed (H3K4me1 and H3K27me3)
enhancers occurring in naïve, S-mem and GC B cells as well as in
PCs, and investigated how the identified topics were associated
with those regulatory elements. We observed a stronger
association of CVID-depleted topics with active enhancers in
GC B cells and PCs (Fig. 3d). Our results indicate the existence of
CVID chromatin accessibility defects in regulatory elements that
undergo activation upon antigen encountering by naïve or
memory B cells. Consistent with this observation, we detected
greater motif enrichment of several TFs involved in enhancer
regulation, such as BATF, IRF4, and CTCF27–29 in CVID-
depleted topics (Fig. 3e).

In order to validate the findings obtained with cisTopic, we also
performed an unsupervised clustering of the cells based on
scATAC-seq data (Supplementary Fig. 4c). Of note, among the

nine identified clusters, cluster 3 (in red) was significantly
enriched in CVID B cells compared with control B cells (Fisher’s
test p= 0.0001). This cluster also displayed the highest number
(384) of significant differentially accessible regions (DARs,
calculated with limma, p < 0.05). Among those regions, 356
DARs were less accessible in the CVID sample (CVID-depleted),
and 28 were more accessible (CVID-enriched). To further give
those DARs meaning in terms of the previous features that we
had inspected (Fig. 3d, e), we examined the overlap of TFs
binding or enhancer regions (see Methods, using the same
publicly-available files as for Fig. 3d, e) with those DARs
(Supplementary Fig. 4d, e). The analysis of this specific cluster
3 showed that CVID-depleted DARs were enriched in active
enhancers in GC or post-GC states (memory B cells and plasma
cells), which is in line with our previous findings using the
cisTopic tool (Supplementary Fig. 4d). It also indicates that all the
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TFs peaks examined were more enriched in CVID-depleted
DARs which is consistent with our previous observations for
topics 2 and 8 in cisTopic analysis (Supplementary Fig. 4e). These
results may suggest that chromatin accessibility dysregulation in
the CVID twin is taking place in a specific subset of memory
B cells.

We also noted an increase in chromatin accessibility in CVID.no-
demeth DMRs in the naïve-to-S-mem B-cell transition. However,
those regions became accessible despite not being properly
demethylated in the CVID twin (Fig. 3f). This analysis suggests
that increased chromatin accessibility might be a prior process that
is necessary but not sufficient for DNA demethylation and that, in
the CVID twin, defects in the proper recruitment/activation of the
demethylating machinery is impaired.

Overall, our results indicate that chromatin accessibility
alterations in CVID S-mem B cells occur in regulatory elements
that become active during the B-cell response. Additionally, the
impaired DNA demethylation observed in CVID proves not to be
a consequence of changes in chromatin accessibility.

CVID epigenetic defects perturb transcription during B-cell
activation. DNA methylation and chromatin accessibility defects
in CVID S-mem B cells are likely to affect gene expression. We
therefore performed plate-based Smart-seq230 single-cell RNA-
sequencing (RNA-seq) in naïve, US-mem and S-mem B cells
from the aforementioned CVID-discordant twins. Unsupervised
dimensionality reduction, clustering and differential expression
analysis in each of the subsets revealed virtually identical tran-
scriptional profiles in both twins (Fig. 4a, Supplementary Fig. 1
and Supplementary Data 6).

The transcriptional signatures of naïve and memory B cells are
very similar despite the profound epigenetic reprogramming of
naïve B cells following antigen encounter31. We therefore
speculated that epigenetic alterations in CVID might influence
the transcriptome of activated B cells, instead of the transcrip-
tome of steady-state B cells (naïve and memory B cells without
any stimulus). This would also be consistent with our analysis
showing that DNA methylation and chromatin accessibility
alterations in CVID are both associated with activated B-cell
features (GC upregulated genes and GC active enhancers).

Therefore, we studied the transcriptome of activated B cells from
the CVID-discordant twins. To this end, we conducted in vitro
activation using peripheral blood mononuclear cells (PBMCs).
Specifically, we stimulated PBMCs using a combination of CD40L
and IL-21 (CD40L/21) (to directly activate B cells) or, alternatively,
using α-CD3/CD28 (CD3/28) (to define the influence of the T-cell
compartment on B cells). We then used droplet-based techniques32

to create a transcriptomic census of different immune cells of the
CVID-discordant twin pair and performed gene expression analysis
(Fig. 4 and Supplementary Fig. 1).

Under these experimental conditions, cell deconvolution using
logistic regression and cell markers expression analysis allowed us
to identify naïve and memory B-cell subsets (Fig. 4c, d and
Supplementary Fig. 5a). Despite the high similarities between the
control and the CVID individual in the expression of B-cell
activation marker genes (Supplementary Fig. 5b), differential
expression analysis identified 870 upregulated and 11 down-
regulated genes (FDR < 0.05) in the activated naïve B-cell cluster
of the CVID twin (Supplementary Fig. 5c and Supplementary
Data 7). However, in line with the previously identified epigenetic
defects occurring specifically in the memory B-cell compartment,
we detected 6-fold more dysregulated genes in activated memory
B cells (5116 upregulated and 179 downregulated genes) when the
CVID twin was compared with his healthy control sibling (Fig. 4e
and Supplementary Data 7). Dysregulated genes in activated

memory B cells included B-cell-related upregulated genes such as
FCGR2B, CD72, PTPRC, CD79A, CD22, and CCR6, as well as
downregulated genes such as CCL22, CD40, ICAM1, CCR7,
CCL17, CD80, and CD86 (Fig. 4e).

Separate differential gene expression analysis of the two
activation conditions (CD40L+ IL-21 or anti-CD3/CD28), iden-
tified that relevant genes such as CCL22, IL4R, IRF4, ATF5 and
IFNGR2 were specifically dysregulated upon CD40L+ IL-21
activation, whereas CD74, CD79A, CD79B, PTPN6, CD72,
CD22, or PTPN1 were dysregulated specifically upon anti-CD3/
CD28 stimulation. Interestingly, other genes such as CD19,
LGALS9, TGFB1, PTPRCAP, and LY6E were similarly dysregu-
lated regardless of the activation condition (Supplementary
Data 7). However, we noticed that separate analysis causes a
drastic decrease in the statistical power of the analysis with a
reduction of 50% in the number of detected differentially
expressed genes. In this regard, a large group of the previously
identified DEGs such as PTPRC, NFKB2, TNF, CD80, CD86,
CD40, CCR6, and CD70, among others, were not detected as
differentially expressed now (Supplementary Data 7). The
dysregulation of relevant genes for B-cell activation such as
CD79A, CD79B, CD22, CD72, and PTPN6, all of them genes
involved in the modulation of the B-cell receptor pathway,
specifically upon anti-CD3/CD28 treatment (indirect B-cell
activation via T-cell stimulation) and not upon CD40L+ IL-21
treatment (direct B-cell stimulation), would suggest the existence
of extrinsic B-cell defects that might contribute to the impaired
B-cell responses observed in CVID patients.

As shown above, most of the DNA methylation alterations in
the CVID twin occur in enhancers active during the B-cell
response. However, we identified a group of altered genes in
CVID activated memory B cells that were also in the proximity of
aberrantly hypermethylated regions (Fig. 4f). 907 (18%) of the
upregulated genes and 53 (30%) of the downregulated genes in
S-mem BCs of the CVID twin correspond to genes near CVID.no-
demeth DMRs. Interestingly, some of these hypermethylated and
downregulated genes were specifically upregulated in memory B
cells upon cell activation in comparison with naïve B cells. For
instance, selected members of the CD40 signaling pathway (e.g.,
CD40, TRAF1, and NFKB2), and other genes related to B-cell
response (e.g., CD70, ICAM1 (CD54), CCL17) were specifically
hypermethylated and downregulated in activated memory B cells
in the CVID twin (Fig. 4f).

To integrate the multiple single-cell-omic data generated in this
study (i.e., scBS-seq, scATAC-seq and scRNA-seq data), we firstly
analyzed the expression of relevant TFs. We then related the
concurrence of the dysregulated TF with the presence of TF
motifs in the regions with DNA methylation and chromatin
accessibility alterations. We identified that the expression levels of
members of the IRF, ETS and bZIP, TF families such as IRF1,
SPIB, JUN and FOS were significantly altered in the activated
memory B cells of the CVID twin (Supplementary Data 7).
Interestingly, several members of those TF families were also
significantly enriched in the genomic regions displaying epige-
netic alterations (Supplementary Fig. 5d), both in DNA
methylation (previously shown in Fig. 2e) and in chromatin
accessibility (previously shown in Fig. 3e).

Our findings demonstrate that the transcriptional program of
activated B cells is compromised in the CVID twin and that
CVID-associated epigenetic alterations might contribute to
transcriptional perturbations that occur during B-cell response.

Alterations in immune cell communication in B-cell responses
in CVID. Our single-cell transcriptomics census allowed us to
generate the transcriptional profiles of immune compartments
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additional to B cells from the CVID-discordant twin pair. Clus-
tering and cell type-specific marker gene expression allowed us to
identify several populations of immune cells: B cells (including
naïve and memory B cells), CD4+ and CD8+ T cells (naïve and
memory), CD8+ MAIT cells, Treg cells, γδ-T cells, two subsets of
NK cells, myeloid cells and their corresponding activated subsets
(Fig. 5a, b and Supplementary Fig. 6a). Differential gene expres-
sion analysis between the two CVID-discordant siblings within
each compartment revealed transcriptional dysregulation in
immune subsets other than B cells (Supplementary Data 8).

To systematically analyze the effect of cell–cell communication
on B-cell responses in the healthy and the CVID twins, we used
CellPhoneDB33 (Supplementary Fig. 1), our recent database of
ligands, receptors and their interaction. This approach, available
on GitHub (https://github.com/Teichlab/cellphonedb), allowed us
to generate a potential cell–cell communication network upon
immune cell challenge in the CVID-discordant twins.

CellPhoneDB analysis revealed defects in several ligand-
receptor (L/R) pairs relevant to B-cell regulation (Fig. 5c and
Supplementary Data 8). Remarkably, activated memory B cells
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displayed the highest number of dysregulated L/R pairs (Fig. 5c
and Supplementary Fig. 6b). For instance, several genes that code
for negative regulators of the BCR function, such as CD22, CD45
(PTPRC), Galectin-9 (LGALS9), and CD72, were significantly
upregulated in CVID B cells, which might explain the defective
B-cell response in CVID twins. The interacting partners of these
upregulated genes in B cells were expressed in several immune
cells that are present both in the NK and T-cell compartments
(Fig. 5c). Furthermore, we observed that the negative regulators
CD22 and CD45 were also upregulated in CVID B cells, which

might constitute a repressive autocrine/paracrine mechanism
affecting B-cell activation in the CVID twin (Supplementary
Fig. 6b). Conversely, we also observed that several genes, like
CD86 and the chemokine genes CXCL10, CCL22, and CCL17,
were significantly downregulated in CVID B cells. These
cytokines presented their receptor partners in both NK and
T-cell subsets (Fig. 5c). We also found expression changes in
other cell compartments that interact with B cells (Supplementary
Fig. 6c and Supplementary Data 8). For instance, in the CD4+

T-cell compartment, we observed significant downregulation of
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CD40L, the ligand of CD40, which is expressed in B cells and is
required for B-cell activation. This was also observed at the
protein level by FACS (Supplementary Fig. 6d), although due to
the inherent limitations of these particular rare samples, this is a
single experiment that should not be taken as definitive proof.

All these results indicate that, in addition to B-cell-intrinsic
alterations, defects in other immune cell compartments might
compromise the correct B-cell response in the context of this
primary immunodeficiency.

Epigenetic, transcriptional, and communication changes in a
CVID cohort. We performed DNA methylation and tran-
scriptomic analysis in a cohort consisting of 10 CVID patients
and an equivalent number of healthy controls and compared the
results obtained in our twin-study. The CVID patients—without
any known monogenic defect—represented the three CVID
subtypes (Ia, Ib, and II) according to the Freiburg classification34.
Clinical information and B-cell phenotype of these individuals are
provided in Supplementary Data 1.

We first performed amplicon sequencing to interrogate 1058
CpG sites corresponding to 162 selected CVID.no-demeth DMRs
(Supplementary Fig. 1 and Supplementary Data 9). We observed
that the main methylation alterations observed in the CVID-
discordant twin are also present in the validation cohort (Fig. 6a).
Selected DMRs (Fig. 6b), confirmed the occurrence of hypermethy-
lation in S-mem B cells. Methylation levels in S-mem B cells were
significantly higher for all 3 CVID subtypes represented in our
cohort (Fig. 6c). Interestingly, the effects were most accentuated for
those CVID patients of the Ib subtype (the subtype to which the
CVID twin belongs). Furthermore, in agreement with our previous
works10,25, we observed aberrant hypermethylation in genes such as
BCL2L1, TCF3, BCL6, BCL10, and AICDA among others
(Supplementary Fig. 7a). As in the case of the twins (Fig. 1f),
CVID patients showed lower proliferation rates in both naïve and
memory B cells after CD40L+ IL-21 stimulation (Supplementary
Fig. 7b). The existence of these proliferative alterations in the naïve
B-cell compartment raises the possibility of additional primed
defects established in previous steps of B-cell development.

We also obtained the single-cell transcriptomes of steady-state
and activated B cells in the cohort of CVID patients and healthy
controls. We obtained the transcriptome of ~100 K PBMCs
stimulated with (i) either CD40L and IL-21 (CD40L/21), or (ii) α-
CD3/CD28 (CD3/28) (Supplementary Fig. 1 and Supplementary
Fig. 7c). We observed shared transcriptomic signatures between
the CVID-discordant twin pair and the CVID cohort. Within the
B-cell compartment, activated memory B cells displayed the
highest number of dysregulated genes, as previously observed for
the CVID twin (Fig. 6d, e and Supplementary Data 10). Several of
these differentially expressed genes in both the CVID cohort and
the CVID twin, include relevant genes for B-cell immune

response such as CCL22, CD70, ICAM1, LGALS9, CD72 or
PTPRC. Inspection of the CVID Ib subcohort led us to identify
additional dysregulated genes shared with the CVID twin.
Examples of these genes include CCR6, PTPN1, CD81 and
CD79A (upregulated) and CCR7, CD80, CD86, and CCL17
(downregulated) (Fig. 6f and Supplementary Data 11). Some of
these dysregulated genes were validated at the protein level using
CITE-seq analysis (Fig. 6g and Supplementary Data 12, 13, and
14). For example, we detected protein downregulation of CD54
(ICAM1), CD86, CD80, CD70, CD71 and CD307d (FCRL4),
together with protein upregulation of IgB (CD79B), CD196
(CCR6), CD45 (PTPRC), CD32 (FCGR2), CD19, and CD35 (CR1)
in the activated memory B cells of the CVID patients compared
with the healthy donors. In addition, the analysis of a larger
number of cells in the CVID cohort allowed us to annotate
additional immune cell populations such as progenitors, DCs and
monocytes among others, besides the ones identified in the twin
analysis (Fig. 6h and Supplementary Fig. 7d). We also observed
shared dysregulated L/R pairs in the cohort analysis in
comparison to the twins dataset not only in the B-cell
compartment (eg. CD72:SEMA4D, CD74:APP, CCL22:CCR4,
LGALS9:HAVCR2, and CD40:CD40LG among others) but also
in compartments beyond B cells such as activated CD4+ T cells
(Fig. 6i, left panel, Supplementary Figs. 7e and 8a, b) As
previously observed for DEGs, we detected additional dysregu-
lated L/R pairs when focusing in CVID Ib subtype patients (eg.
CCR6:CCL20, CXCL9:CXCR3, CXCL10:DPP4, and CD86:CTL4
among others) (Fig. 6i, right panel and Supplementary Data 15).

Discussion
In this study, the use of multi-omics single-cell atlas technologies
allowed us to identify functional alterations occurring in specific
scarce immune cell populations that would have gone undetected
if conventional bulk-based approaches had been used. We show
that CVID B cells display widespread heterogeneous DNA
methylation and chromatin accessibility changes that are
restricted to the memory compartment. Similarly to other epi-
genomic studies for congenital syndromes35,36, the DNA
methylation patterns identified in this study might lead to the
identification of a diagnostic “episignature” for CVID. Epigenetic
signatures in the S-mem B-cell compartment can be used as a
historical record of epigenetic processes occurring during the GC
reaction. In this regard, we have demonstrated that epigenetic
alterations in CVID memory B cells affect genes and regulatory
elements that undergo activation in GC B cells and subsequent
PC differentiation.

DNA demethylation changes in CVID S-mem B cells are
mainly associated with altered active demethylation mechanisms,
as shown by the predominance of alterations outside PMDs. We
did not detect any significant changes in the expression levels of

Fig. 5 Cell–cell communication alterations in the CVID twin. a UMAP visualization showing different immune cell populations identified from Louvain
clustering and cell-specific marker gene expression (16,901 cells). The B-cell compartment is outlined with a blue dotted line and includes naïve BCs
(Bnaïve), memory BCs (Bmem) activated naïve BCs (act_Bnaïve), activated memory BCs (act_Bmem), and oligoclonal BCs (oligo BCs). The T-cell
compartment is outlined with a green dotted line and includes CD8+ naïve T cells (T8naïve), CD8+ memory T cells (T8mem), CD8+ activated T cells
(act1_T8 and act2_T8), CD8+ MAIT cells (T8MAI), CD8+ activated MAIT cells (act_T8MAI), CD4+ naïve T cells (T4naïve), CD4+ activated T cells
(act_T4), CD4+ regulatory T cells (Treg) and γδ-T cells (Tγδ). The NK cell compartment is outlined with a purple dotted line and includes NK CD16+ cells
(NK16), activated NK16 cells (act_NK16), NK CD56+ cells (NK56), and activated NK56 cells (act_NK56). Myeloid cells are also represented (b) Violin
plots representing the expression of selected marker genes in the cell populations identified. c Overview of selected dysregulated L/R interactions between
B cells and the other immune cell compartments in the CVID twin in naïve and memory B cells in steady state and following activation. The scale indicates
the log2(FC) gene expression of the defined B-cell subsets in the CVID vs. control comparison. Only differentially expressed genes with an FDR < 0.05 were
considered in the analysis. The percentage of other immune cells expressing the partner molecule is indicated by the circle size. Molecules of the L/R pairs
expressed in B cells are shown in blue; molecules of the L/R pairs expressed in other non-B immune cells are shown in red. Assays were carried out at the
mRNA level, but were extrapolated to protein interactions. Source data for panels in this figure are provided in the Source Data Fig. 5 file.
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ten-eleven translocation (TET) demethylating enzymes. However,
given that several TFs interact with TETs37–40, it is likely that
dysregulation of certain TFs might alter the recruitment of
demethylating activities to specific genomic loci.

Regardless of the heterogeneous degree of CVID-associated
methylation defects observed in the S-mem B-cell compartment,
we detected a common enrichment in the binding motif of TFs
associated with B-cell function in those altered regions. For
instance, Fra1 is involved in the regulation of follicular B-cell

differentiation into PCs41. In addition, IRF8 is crucial to the
development of GC B cells and to the maintenance of the B-cell
program42,43, and CTCF is required to sustain the GC tran-
scriptional program to avoid premature PC differentiation44.
Interestingly, several studies have shown how DNA methylation
may affect the binding of some TFs, including CTCF, AP-1 and
BATF45–47. Therefore, the observed methylation defects may
compromise the functionality of the entire memory B-cell com-
partment in CVID.
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CVID-associated epigenetic alterations are not reflected in the
transcriptomes of the few steady-state S-mem B cells that are
present in peripheral blood and which are virtually identical to
those in the healthy controls. Instead, B cells display transcrip-
tional differences upon activation. Since several donors included
in this study are healthy individuals, any invasive approach
including a lymph node biopsy would not be ethically justifiable
for research purposes. Given these constraints, we used in vitro-
activated B cells in order to partially emulate the GC reaction.
The GC reaction is a tightly regulated process in which the bal-
ance between survival and apoptotic signals is critical to promote
antigen affinity while simultaneously avoiding self-antigen
recognition. In this context, we identified significant down-
regulation of several chemokine genes in CVID B cells such as
CCL22 and CCL17, which have been described as fine-tuning
antibody affinity maturation and positive selection in GC pro-
moting B-cell interactions with follicular helper T cells48. Other
relevant downregulated genes in the B cells of CVID patients are
those encoding CD70, which has been involved in B-cell
activation49,50, and ICAM1 (CD54), whose interaction with the
integrin LFA-1 lowers the threshold for B-cell activation by
promoting B-cell adhesion and immunological synapse
formation51. Additionally, our data indicate that genes encoding
Gal-9, CD45, and CD22 are upregulated in the B-cell compart-
ment of the CVID twin. Gal-9 hampers BCR activation through
its interaction with the N-glycan repertoire of CD45 molecules,
which ultimately inhibits BCR signaling via CD2252. Another
study showed that Gal-9 facilitates the interaction of IgM-BCR
with the inhibitory molecules CD45 and CD2253. Additionally,
we observed significant upregulation of the CD72 gene in CVID B
cells, which is another molecule that induces cell-cycle arrest and
apoptosis in mature B cells and that is involved in the inhibition
of BCR downstream signaling pathways54,55. The aberrant
upregulation of these inhibitory molecules might interfere with
the appropriate activation of the BCR, and might be one of the
causes of the deficient immune responses and the defective B-cell
counts that characterize CVID patients.

It is of particular note that we also detected transcriptional
defects beyond the B-cell compartment. In this regard, we found
several dysregulated genes in the activated CD4+ T cells of the
CVID patients. For instance, we found downregulation of genes
such as SEMA4D (CD100), which is an interacting partner of
CD72, as well as upregulation of the B-cell inhibitory molecule
PTPRC (CD45). Additionally, we found a significant down-
regulation of CD40LG (CD40L) in this T-cell compartment as
previously described by others56,57, although the dysregulation of
this molecule is still a contentious topic in the field58. All these

alterations taking place in other immune subsets distinct to B
cells, together with the specific dysregulation in the B-cell com-
partment upon indirect B-cell activation through T-cell stimula-
tion, would constitute B-cell-extrinsic defects that also might
contribute to the failure of B-cell activation in CVID patients.

One of the major constraints of our study consists in the limited
size of the CVID patients’ cohort. In this sense, we mainly focused on
CVID Ib patients, being the other two subgroups (CVID Ia and
CVID II) barely represented. Moreover, our analyses are based on
immune cells isolated from peripheral blood, therefore CVID-
associated immune features taking place in secondary lymphoid
organs or in the bone marrow still need to be determined. In addition
to the cohort of CVID patients and healthy controls used, one of the
strong points of this study is the use of monozygotic twins, which are
genetically identical. It is likely that the exposure to different envir-
onments at prenatal or post-delivery time, or even their differential
early infection history, may have induced epigenetic alterations that
ultimately lead to a difference in gene expression and twin dis-
cordance in CVID. The reduction of both memory B cell and PC
counts in CVID patients, as well as the severe hypogammaglobuli-
nemia in one of the twins could be a consequence of the defects in
the proper activation of naïve B cells, alterations during memory and
PC generation, or even both. However, our results indicate that naïve
B-cell populations are almost identical in both twins in terms of their
DNA methylation, chromatin accessibility and transcription profile,
indicating that CVID epigenetic and gene expression defects are
established later on during naïve B-cell activation and memory B-cell
generation at secondary lymphoid organs, where the establishment of
appropriate cell–cell communication is crucial for mounting efficient
immune responses.

Methods
Patients and ethics approval. Human blood samples used in this study were
obtained from a pair of monozygotic twins discordant for CVID (the same pair
participating in a previous study10) and an additional cohort of ten CVID patients
and ten healthy donors (Supplementary Data 1). CVID patients were diagnosed
according to European Society for Immunodeficiencies (ESID) criteria59. They
were collected at the University Hospital Dr Negrín, Gran Canaria, Spain and at the
Hospital La Paz, Madrid, Spain. All donors received oral and written information
about the possibility that their blood would be used for research purposes, and any
questions that arose were then answered. Before giving their first blood sample the
donors signed a consent form approved by the Ethics Committee at their corre-
sponding hospital (Hospital La Paz PI-2833), which adhered to the principles set
out in the WMA Declaration of Helsinki. The protocol used to isolate B cells from
these donors was approved by the Ethics Committee of the Bellvitge University
Hospital (CEIC) on 9 March 2017 (PR053/17).

Sample collection and immune cell activation. PBMCs were obtained from
peripheral blood by Ficoll gradient using Lymphoprep (Stemcell Technologies, Cat.
No. # 07801). For the isolation of CD19+CD27negIgD+ naïve, CD19+CD27+IgD+

Fig. 6 DNA methylation, transcriptomic and cell–cell communication defects in a CVID cohort. a Box plot depicting DNA methylation levels of selected
DMRs in different B-cell subsets from CVID patients (n= 11) and healthy individuals (n= 10). Whiskers correspond with the minimum and maximum
values of the dataset (excluding outliers). The box is drawn from Q1 to Q3 with a horizontal line to indicate the median. Two-sided Wilcoxon test with no
multiple test correction, where **** represents p value≤ 0.0001. b Plot showing smoothed DNA methylation data in altered DMRs. c Box plots depicting
DNA methylation levels of the inspected CpG sites in S-mem B cells from CVID patients (n= 11) and healthy controls (n= 10). Two-sided Wilcoxon test
with no multiple test correction, where **** represents p value < 0.0001. d Volcano plot representing DEGs in activated memory B cells comparing healthy
donors (n= 8) and CVID patients (n= 10). Downregulated (green) and upregulated (orange) genes are plotted. Dysregulated genes in the CVID-
discordant twin are highlighted with a darker color. Relevant genes are labeled. e Box plots representing selected dysregulated genes in the CVID cohort
(n= 10) compared to healthy donors (n= 8). f Heatmap representing DEGs from the comparison of healthy controls and CVID Ib patients. Genes also
dysregulated in the discordant twins are labeled in red. g Dot plot representing selected differentially expressed proteins obtained from CITE-seq analysis
(gene name in brackets). Scale indicates the log2(FC) protein expression of the activated memory B-cell subset in the CVID or CVID Ib vs. control
comparison, logFDR is indicated by the circle size. N.S means not significant. h UMAP visualization showing different immune cell populations identified
(95,064 cells). i Overview of selected dysregulated L/R interactions. Scale indicates the log2(FC) gene expression of memory activated B cells in the CVID
or CVID Ib vs. control comparison. The percentage of other immune cells expressing the partner molecule is indicated by the circle size. Molecules of the
L/R pairs expressed in activated memory B cells are shown in blue; molecules of the L/R pairs expressed in the immune cell partner appear in red.
Validated gene expression at protein level is indicated with an asterisk. Source data for panels in this figure are provided in the Source Data Fig. 6 file.
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unswitched memory (US-mem) and CD19+CD27+IgDneg switched memory (S-
mem) B cells, PBMCs were stained with 2 μL/million cells of anti-CD19-FITC (BD
Biosciences, clone: 4G7, Cat. No. 15856028), 2 μL/million cells of anti-CD27-APC
(Miltenyi Biotec, clone: M-T271, Cat. No. 130-113-630) and 2 μL/100 million cells
of anti-IgD-PE (Southern Biotech, Birmingham, AL, USA, clone: NA, Ref: 2032-09)
in MACS buffer (PBS+ 2% FBS+ 2 mM EDTA).

For immune cell activation, PBMCs were resuspended in complete medium
(RPMI Medium 1640+GlutaMAX (Gibco, Life Technologies, Cat. No. 61870036)
containing 20% fetal bovine serum (Gibco, Life Technologies, Cat.No. 10270-106),
100 units/mL penicillin, and 100 μg/mL streptomycin). PBMCs were then activated
with a B-cell stimulus consisting of a combination of 0.1 µg/mL of CD40L
(MEGACD40L Protein, ENZO, Cat. No. ALX-522-110-C010) and 50 ng/mL of IL-
21 (Tebu-bio, Cat. No. 200-21), or with a T-cell stimulus consisting of α-CD3/
CD28 Dynabeads 20 μL of beads/million PBMCs (Invitrogen, Cat. No. 11131D) for
48 h. As a control, some PBMCs were also cultured with no stimulus. After
stimulation, PBMCs were harvested and a fraction of the cells were stained with
2 μL/million of cells of anti-CD19-FITC for B-cell sorting in Beckman Coulter
MoFlo Astrios EQ Cell Sorter instrument. Finally, PBMCs were mixed with sorted
CD19+ B cells in a 2:1 ratio in order to obtain PBMCs samples enriched in B cells.
This B-cell enrichment step was performed in order to avoid T cells and other
immune cell types mask the B-cell compartment due to the drastically reduced
levels of B cells observed in CVID patients.

For the analysis of CD40L expression in CD4+ T cells, PBMCs were isolated
from the CVID-discordant twins and cultured at a concentration of 200,000 cells/
200 μL of complete medium in a 96-well plate. Cells were stimulated with α-CD3/
CD28 Dynabeads 20 μL or 4 μL of beads/million of PBMCs for 48 h. As a control,
some PBMCs were also cultured with no stimulus. After stimulation, PBMCs were
harvested and stained with 2 μL/million cells of anti-CD4-APC (BD Biosciences,
clone: RPA-T4. Cat. No. 555349) and 2 μL/million cells of anti-CD40L-PE (BD
Biosciences, clone: TRAP1, Cat. No. 555700) in MACS buffer. Cells were acquired
using Gallios Flow Cytometer (Beckman Coulter, CA, USA) and analyzed using the
Flowjo software.

Whole-genome sequencing analysis. WGS of genomic DNA obtained from the
pair of monozygotic twins discordant for CVID. The quality of the isolated
genomic DNA was checked on 1% agarose gel. Besides, DNA concentration was
measured using Qubit DNA Assay Kit (Cat. No. 10146592) in Qubit 2.0 Fluo-
rometer (Life Technologies, CA, USA). The genomic DNA was randomly frag-
mented by sonication to the size of 350 bp, then DNA fragments were end
polished, A-tailed, and ligated with the full-length adapters of Illumina sequencing,
and followed by further PCR amplification. The PCR products as the final con-
struction of the libraries were purified with the AMPure XP system. Then libraries
were checked for size distribution using Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, CA, USA), and quantified by real-time PCR (to meet the criteria of 3 nM).

The 150 × 2 paired-end sequencing was conducted on a Novaseq sequencer
(Illumina, CA, USA) producing 612,180,910 raw paired reads on average.

Quality check (QC) and read alignment were performed using miARma-seq
pipeline60. This software uses FastQC (version 0.11.5)61 to detect adapter
contamination and low quality reads. Reads with a quality lower than 30 were
stringently eliminated to reduce false positives from the sequencing output. After
QC, the sequence data were subjected to BWA (version 0.7.13)62 for alignment to
the human reference genome (GRCh38p12). The alignment data (BAM files) were
processed by GATK (version 4.1.7.0)63 according to their best practices workflows.
In that sense markduplicates, base recalibration, covariate analysis and variant
filtration (for SNPs: Variant Confidence/Quality by Depth (QD) < 2.0, Phred-
scaled p value using Fisher’s exact test to detect strand bias (FS) > 60.0, RMS
Mapping Quality (RMQ) < 40.0, Symmetric Odds Ratio of 2 × 2 contingency table
to detect strand bias (SOR) > 4.0, Z-score From Wilcoxon rank sum test of Alt vs.
Ref read mapping qualities (MQRankSum) <−12.5 and Z-score from Wilcoxon
rank sum test of Alt vs. Ref read position bia (ReadPosRankSum) <−8.0. For
indels: QD < 2.0, FS > 200.0, SOR > 10.0) was performed to optimize the final depth
and base-call quality for variant detection.

The set of common variants between both individuals was obtained using the
intersectBed tool from the bedtools suite64. Furthermore, putative somatic
mutations were detected with the MuTect2 software by GATK (version 4.1.7.0) by
comparing BAM files from the twin and the co-twin. A base recalibrator process
was performed providing known sites of variation such as the allele frequency by
the Genome Aggregation Database (gnomAD)65, high confidence SNPs and indels
from the 1000 Genomes project66 and the NCBI database of genetic variation
(dbSNP)67, to label sequencing errors and distinguish poor base quality from
variants. These fine-tuned parameters allowed to optimize the final depth and base-
call quality for somatic mutation Identification. Then, the FilterMutectCalls tool
from the GATK toolbox was applied to use allele fractions to distinguish somatic
variants from sequencing errors.

The relationship of identified variants with phenotypes was performed with the
intersectBed utility using the data provided by the ClinVar database19. The impact
of the sequence modification by these variants at the functional level was annotated
using SNPEff20.

WGS results are not publicly-available due to ethical regulations, but are
available from the corresponding authors upon request.

KREC assay. The replication history of naïve, US-mem and S-mem B cells from
CVID MZ discordant twins, was inferred from isolated DNAs by the κ− deleting
recombination excision circle (KREC) assay, as previously described24. In brief, the
replication history is estimated by the ratio between genomic coding joints and
signal joints on KRECs of the Igκ intron RSS-K deleting rearrangement, which are
quantified by Real-Time PCR, applying the formula: ΔCT sample= Ct (signal
joint)− Ct (coding joint) (formula 1).

Single-cell library preparations. For single-cell bisulfite sequencing (scBS-seq)
assays, naïve, US-mem and S-mem B cells were collected by sorting in 12 μl of lysis
buffer (10 mM Tris-Cl pH 7.4, 0.6% SDS, 0.5 μl proteinase K) using a Beckman
Coulter MoFlo Astrios EQ Cell Sorter instrument in single-cell 1 drop mode.
ToPro-3 and Hoechst 33342 staining were used to select for live cells with low
DNA content (i.e., in G0/G1). Negative controls were sorted using BD Accudrop
Beads on lysis buffer, and were prepared and processed concomitantly with all
single-cell samples. Libraries for scBS-seq were generated as previously described15.
Briefly, bisulfite conversion was performed on cell lysates using the Imprint DNA
Modification Kit (Sigma, Cat. No. MOD50-1KT) with the following modifications:
all volumes were halved, and chemical denaturation was followed by incubation at
65 °C for 90 min, 95 °C for 3 min and 65 °C for 20 min. DNA was purified and
eluted in 10 mM Tris-Cl (pH 8.5) and combined with 0.4 mM dNTPs, 0.4 μM
oligo1 ([Btn]CTACACGACGCTCTTCCGATCTNNNNNNNNN) and 1× Blue
Buffer (Sigma) (24 μl final) before incubation at 65 °C for 3 min followed by 4 °C
pause. 50U of Klenow exo- (Sigma) were added and the samples incubated at 4 °C
for 5 min, +1 °C/15 s to 37 °C, 37 °C for 30 min. Samples were incubated at 95 °C
for 1 min and transferred immediately to ice before addition of fresh oligo1
(10pmol), Klenow exo- (25U), and dNTPs (1nmol) in 2.5 μl total. The samples
were incubated at 4 °C for 5 min, +1 °C/15 s to 37 °C, 37 °C for 30 min. This
random priming and extension was repeated a further 3 times (5 rounds in total).
Samples were then incubated with 40U exonuclease I (NEB) for 1 h at 37 °C before
DNA was purified using 0.8× Agencourt Ampure XP beads (Beckman Coulter, Cat.
No. A63881) according to the manufacturer’s guidelines. Samples were eluted in
10 mM Tris-Cl (pH 8.5) and incubated with washed M-280 Streptavidin Dyna-
beads (ThemoFisher Scientific, Cat. No. 11205D) for 20 min with rotation at room
temperature. Beads were washed twice with 0.1 N NaOH, and twice with 10 mM
Tris-Cl (pH 8.5) and resuspended in 48 μl of 0.4 mM dNTPs, 0.4 μM oligo2
(TGCTGAACCGCTCTTCCGATCTNNNNNNNNN) and 1× Blue Buffer. Sam-
ples were incubated at 95 °C for 45 s and transferred immediately to ice before
addition of 100U Klenow exo- (Sigma, Cat. No. KEM0026) and incubation at 4 °C
for 5 min, +1 °C/15 s to 37 °C, 37 °C for 90 min. Beads were washed with 10 mM
Tris-Cl (pH 8.5) and resuspended in 50 μl of 0.4 mM dNTPs, 0.4 μM PE1.0 forward
primer (AATGATACGGCGACCACCGAGATCTACACTCTTTC-CCTA-
CACGACGCTCTTCCGATCT), 0.4 μM indexed iPCRTag reverse primer20, 1U
KAPA HiFi HotStart DNA Polymerase (KAPA Biosystems, Cat. No. KAPA
KK2502) in 1× HiFi Fidelity Buffer. Libraries were then amplified by PCR as
follows: 95 °C 2min, 12–13 repeats of (94 °C 80 s, 65 °C 30 s, 72 °C 30 s), 72 °C
3 min, 4 °C hold. Amplified libraries were purified using 0.8× Agencourt Ampure
XP beads, according to the manufacturer’s guidelines, and were assessed for quality
and quantity using High-Sensitivity DNA chips on the Agilent Bioanalyser, and the
KAPA Library Quantification Kit for Illumina (KAPA Biosystems, Cat. No.
KK4824). Pools of 12–14 single-cell libraries were prepared for 100 bp paired-end
sequencing on a HiSeq2500 in rapid-run mode (2 lanes/run).

The plate-based single-cell ATAC-seq assay was performed as previously
described68. Briefly, naïve, US-mem and S-mem B cells were collected by FACS in
MACS buffer, and cells were centrifuged at 500 × g at 4 °C for 5 min. Cell pellets
were resuspended in 50 μl tagmentation mix (33 mM Tris-acetate, pH 7.8, 66 mM
potassium acetate, 10 mM magnesium acetate, 16% dimethylformamide, 0.01%
digitonin and 5 μl of Tn5 from the Nextera kit from Illumina, Cat. No. FC-121-
1030). The tagmentation reaction was done on a thermomixer at 800 rpm, 37 °C
for 30 min. The reaction was then stopped by adding equal volume (50 μl) of
tagmentation stop buffer (10 mM Tris-HCl, pH 8.0, 20 mM EDTA, pH 8.0) and left
on ice for 10 min. A volume of 200 μl MACS buffer with 0.5% BSA was added and
the nuclei suspension was transferred to a FACS tube. DAPI was added at a final
concentration of 1 μg/μl to stain the nuclei. DAPI-positive single nuclei were sorted
into 96-well full-skirted Eppendorf plates chilled to 4 °C, prepared with 2 µl 2X lysis
buffer (100 mM Tris.HCl, pH 8.0, 100 mM NaCl, 40 µg/ml Proteinase K (Ambion,
AM2546, 20 mg/ml stock) and 0.4% SDS) and 2 µl of 10 µM S5xx/N7xx Nextera
Index Primer Mix (5 µM each). Plates were immediately sealed, spun down at
300 × g at 4 °C for 1 min and stored at −80 °C.

For single-cell RNA-seq using the plate-based Smart-seq2 (SS2) protocol, naïve,
S-mem and S-mem B single cells were collected in 96-well full-skirted Eppendorf
plates chilled to 4 °C, prepared with lysis buffer consisting in 10 μl of TCL buffer
(Qiagen, Cat. No. 1070498) supplemented with 1% β-mercaptoethanol. Plates were
sealed, vortexed, spun down at 300 × g at 4 °C for 1 min, immediately placed on dry
ice and transferred for storage at −80 °C. The Smart-seq2 protocol was performed
basically as previously described69. Libraries were sequenced, aiming for an average
depth of 1 million reads per cell, on an Illumina HiSeq 2000 with version 4
chemistry (paired-end, 75-bp reads).

For the droplet scRNA-seq method, stimulated and unstimulated PBMCs
enriched with CD19+ B cells were counted using a Neubauer hemocytometer, and
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5,000 cells per sample were loaded in the 10x-Genomics Chromium. The 10x-
Genomics 5’ libraries were prepared following the manufacturer’s instructions.
Libraries were sequenced, aiming at a minimum coverage of 50,000 raw reads per
cell, on an Illumina HiSeq 4000 (paired-end; read 1: 26 cycles; i7 index: 8 cycles, i5
index: 0 cycles; read 2: 98 cycles). For samples of the expanded cohort of CVID
patients and healthy controls, we processed PBMC samples for scRNA-seq with
paired measurements of 192 surface proteins (CITE-seq, using TotalSeq reagents
from Biolegend). The list of the antibodies included in the TotalSeq custom panel
are detailed in Supplementary Data 12. Briefly, 1 million cells pooled from several
individuals were stained with TotalSeq-C custom human panel together with
Human TruStain FcX (Biolegend, Cat. No. 422301) on ice for 30 min. Then cells
were washed three washes with cold PBS+ 4% FBS. After completing the last
washing steps, cells were resuspended in PBS+ 0.04% BSA and filtered with a 40
um Bel-art Flowmi strainer into a new 1.5 ml lo-bind eppendorf tube. Cells were
counted and concentration adjusted to load 50,000 cells on the 10X-Genomics
Chromium Station. The 10x-Genomics 5’ libraries together with CITE-seq libraries
were prepared following the manufacturer’s instructions.

Single-cell whole-genome bisulfite sequencing. For DNA methylation data,
single-cell bisulfite sequencing (scBS-seq) data was processed as previously
described70. Reads were trimmed with TrimGalore! (https://www.bioinformatics
.babraham.ac.uk/projects/trim_galore/), Cutadapt71 and FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/), using default settings for DNA
methylation data and additionally removing the first 6 bp. Subsequently, Bismark72

(v0.16.3) was used to map the bisulfite data to the human reference genome
(GRCh38), in single-end non-directional mode, followed by de-duplication and DNA
methylation calling using default settings. We removed cells with a library size of
fewer than 3M reads, resulting in 196 cells with DNA methylation information.
Specifically, there were 55 S-mem (23 CVID), 69 US-mem (31 CVID) and 72 naïve
cells (37 CVID) (Supplementary Data 2).

Imputation of DNA methylation signals. To mitigate the incomplete coverage of
scBS-seq profiles, [healthy twin → naïve BCs= 27.0% ± 3.5%, US-mem BCs=
23.8% ± 5.9%, S-mem BCs= 21.8% ± 4.0%//CVID twin → naïve BCs= 23.0% ±
2.9%, US-mem BCs= 25.7% ± 8.5%, S-mem BCs= 24.2% ± 7.9%] (see Supple-
mentary Data 2 for coverage percentages per single-cell), we applied DeepCpG16 to
impute unobserved methylation states of individual CpG sites. DNA methylation
profiles of the three cell types were imputed separately; the two donors were jointly
imputed to mitigate potential imputation artifacts between the samples. The cell
type-specific models were developed using CpG and genomic information
according to DeepCpG’s setup of a joint model (see DeepCpG16 for details and
default values). The accuracy of the models per cell, as measured using AUC,
ranged between 0.78 and 0.93, see Supplementary Data 2 for imputation accuracy
per sample. Of note, the DNA methylation patterns after imputation recapitulates
better the methylation profiles obtained from WGBS than those before imputation
(when compared to data from the Blueprint consortium; EGAD00001002361 and
EGAD00001002354), indicating that imputation is an appropriate approach to
mitigate the technical noise associated with scBS.

DMR identification. After imputation we merged the data per cell type - donor
combination to identify differentially methylated regions (DMRs), using Metilene21

(v0.2.5) in de novo mode. We selected only DMRs with values of q < 0.05 and a
methylation difference of >20% for subsequent analysis.

To identify altered DMRs in the CVID twin, we analyzed the previously selected
DRMs using the limma package73, comparing the methylation values of those
DMRs in single cells (FDR < 0.05 and methylation difference >10%).

To define altered DMRs at the single-cell level in CVID, we first calculated the
methylation distributions of each DMR in healthy control S-mem B cells. We then
considered as altered DMRs those DMRs in CVID S-mem B cells whose mean
methylation was more than 1.5*IQR above the third quartile or below the first
quartile of the control DMR distributions.

Amplicon sequencing for DNA methylation analysis. B-cell subsets (naïve, US-
mem and S-mem B cells) from 10 healthy donors and 11 CVID patients were
sorted as described in the Sample collection section. Genomic DNA was then
isolated from each population using QIAamp DNA micro kit (QIAGEN, Cat. No:
56304) and was bisulfite converted using MethylCode Bisulfite Conversion Kit
(Thermofisher, Cat. No. MECOV50) following manufacturer instructions. From 1
to 10 ng of bisulfite converted DNA was used for amplicon generation using a
custom panel, as well as for library preparation. The list of analyzed CpG sites
(1058 CpG sites corresponding to 162 selected CVID.no-demeth DMRs) is available
in Supplementary Data 9. Libraries were sequenced using IonTorrent technology
(Thermofisher) according to manufacturer instructions. For methylation measure,
only those CpG sites with a coverage > 50 (methylated+ un-methylated reads)
were considered.

Analysis of the different-omics datasets in relation with several biological
features. Transcription factor motifs were enriched for each set of identified
CVID.hypo.DMRs in pseudo-bulk or in each single-cell using HOMER software

v4.10.3. Specifically, we used the findMotifsGenome.pl algorithm (with parameters
-size given -cpg) to search for significant enrichment compared with background,
adjusted to ensure an equal number of sequences with equal lengths and with equal
CpG and GC content.

DMR annotation for genetic context location was performed using the
annotatePeaks.pl algorithm in the HOMER software v4.10.3.

Replication timing data in the GM12878 and GM12801 lymphoblastoid cell
lines were obtained from the UW Repli-seq track of the UCSC Genome Browser.
Replication timing values were binned in deciles to perform the overlap with the
CVID.no-demeth DMRs.

GREAT software74 was used to enrich downstream pathways and gene
ontologies. We used the single nearest gene option for the association between
genomic regions with genes.

To define the genomic coordinates corresponding to active, primed or repressed
enhancers, we used the following command via bedtools (version v2.28.0):
“bedtools intersect file_A.bed file_B.bed”, in order to identify the regions with
specific histone marks: For active enhancers file_A.bed corresponded to H3K4me1
peak file of the cell type of interest, and file_B.bed to H3K27ac. For the repressed
enhancers file_A.bed corresponded to H3K4me1 peak file of the cell type of
interest, and file_B.bed to H3K27me3. For defining primed enhancers, H3K4me1
bed file of the cell type of interest was used. All of the above was done separately for
naïve, S-mem, GC B cells, as well as for plasma cells.

Inference of TF activities from expression values were calculated using
DoRothEA75. The B_viperRegulon.rdata dataset was loaded in R and its Integrated
Development Environment (RStudio) and used for the analysis.

Alignment, quantification, and quality control of scRNA-seq data. Smart-seq2
(SS2) sequencing data were aligned with STAR76 (version 2.5.1b) using the
GRCh38 (Ensembl release 84) STAR index and annotation. Gene-specific read
counts were calculated using HTSeq-count (version 0.10.0). Cells with fewer than
200 detected genes and more than 20% mitochondrial gene expression content
were removed. Genes expressed in fewer than 3 cells were removed.

Droplet-based RNA-sequencing data for B-cell receptor and T-cell receptor
(what we later on refer to as “BCR data” and “TCR data”) were aligned with Cell-
Ranger VDJ SingleCell Software Suite (version 3.0.2, 10x-Genomics Inc.) using the
GRCh38 official Cell-Ranger V(D)J reference, version 2.0.0. Downstream analysis
was performed using scirpy (https://icbi-lab.github.io/scirpy/).

Droplet-based RNA-sequencing data was aligned and quantified using the Cell-
Ranger SingleCell Software Suite (version 3.0.2, 10× Genomics Inc.) using the
GRCh38 human reference genome (official Cell-Ranger reference, version 1.2.0).
Cells with fewer 200 detected genes or more than 20% mitochondrial gene
expression content were removed. Genes expressed in fewer than 3 cells were
removed. For the SS2 and droplet-based datasets, the Scanpy (version 1.4.4) Python
package77 was used to load the cell-gene count matrix and perform downstream
analysis.

To remove cell-cycle-associated variation, cell cycle-associated genes were
removed from SS2 and droplet-based datasets. To do so, we normalized
(scanpy.pp.normalize_per_cell method, scaling factor 10000), log-transformed
(scanpy.pp.log1p) and subsetted the highly variable gene
(scanpy.pp.filter_gene_dispersion) count matrices of both datasets. Next, datasets
were transposed to operate in gene space with cells as features (gene-centered
analysis). Data-feature scaling (scanpy.pp.scale), PCA analysis (scanpy.pp.pca, from
variable genes), neighborhood graph building (scanpy.pp.neighbors) and Louvain
graph-based clustering (scanpy.tl.louvain, clustering resolution manually tuned)
were performed. Previously known cell-cycle genes (CDK1, MKI67, CCNB2,
PCNA) were used, and all genes that cluster together with any of these were
removed.

Deconvolution of donors in pooled CITE-seq samples. Pooled CITE-seq samples
containing cells from multiple individuals were demultiplexed using souporcell78.
Briefly, the algorithm identifies genotypic differences between single cells by variant
calling aligned reads using STAR76 and generating a VCF (Variant Call Format) file
using Freebayes (Marth 2012). Souporcell was run with the following command for
all samples (argument $1 corresponds to sample ID, and N is the number of
multiplexed individuals in a sample): /software/singularity-v3.5.1/bin/singularity
exec./souporcell.sif./souporcell_pipeline.py -i./cellranger302_count_$1_GRCh38-
1_2_0/possorted_genome_bam.bam -b./cellranger302_count_$1_GRCh38-1_2_0/fil-
tered_feature_bc_matrix/barcodes.tsv -f./refdata-cellranger-GRCh38-1.2.0/fasta/
genome.fa -t 8 -o souporcell_result_$1 -k N --skip_remap True --common_variants./
filtered_2p_1kgenomes_GRCh38.vcf, where the last VCF file with common variants
was downloaded as per instructions in https://github.com/wheaton5/souporcell
with the following command: wget --load-cookies /tmp/cookies.txt “https://
docs.google.com/uc?export=download&confirm=$ (wget-quiet-save-cookies/tmp/
cookies.txt-keep-session-cookies-no-check-certificate ‘ https ://docs.google.com/uc?
export=download&id=13aebUpEKrtjliyT9rYzRijtkNJVUk5F_’-O-|sed-rn’s/.
*confirm=([0-9A-Za-z_]+).*/\1\n/p’)&id=13aebUpEKrtjliyT9rYzRijtk
NJVUk5F_”-Ocommon_variants_grch38.vcf && rm-rf/tmp/cookies.txt.

Furthermore, to find out the exact donor identity of each donor’s barcode
cluster in souporcell results, the cells in parallel have undergone genotyping using
Illumina Infinium Global Screening Array. In order to unambiguously identify
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every individual in the pooled samples, each donor’s variants were separated from
the pooled VCF and each single-donor VCF was matched to the genotype data
using PLINK79. This software matches each souporcell sample with the genotype
data giving a concordance ratio (based on the similarity of the variants) that allows
us to distinctly identify each sample with each donor ID.

Doublet removal from scRNA-seq and CITE-seq data. To exclude doublets from
single-cell RNA and CITE sequencing data, a previously described two-step
approach80 was used. Firstly, we applied the Scrublet81 algorithm for each sample
to calculate the scrublet-predicted doublet score per cell. Then, to ensure that small
clusters with high doublet density were not grouped with large numbers of singlets,
we overclustered the manifold (running a basic scanpy pipeline up to clustering,
additionally clustering each cluster separately), computed per-cluster Scrublet
scores as the median of the observed values, and computed normal distribution
parameters, centered on the median of the scores, with a MAD-derived standard
deviation (the score distribution is zero-truncated, so we used only above-median
values to compute the MAD). We then multiplied the MAD value by 1.4826 to
obtain a literature-derived normal distribution standard deviation estimate and
FDR-corrected the p values using the Benjamini–Hochberg method62. Secondly,
once the dataset had been processed and clustered with the Louvain algorithm as
described above, step 1 was repeated for each of the clusters identified, thus cap-
turing doublets within each cluster that were not detected with the initial doublet
calling. Cells called as doublets in this last step were flagged as “Doublets”. Fur-
thermore, we identified physical doublets of T and B cells using BCR data as cells in
T-cell clusters that had BCR data and, conversely, using TCR data as cells in B-cell
clusters that had TCR data. These cells were flagged as “B:T_doublets_by_TCR” or
“T:B_doublets_by_BCR”. In the zoomed in reanalysis of B-cell populations of the
twins we also labeled a cluster of cells expressing CD3E as “T_contaminants”. All
the three types of detected doublet populations were removed from subsequent
downstream analysis. In addition, for pooled samples, any cells that were called as
inter-individual doublets by souporcell were also removed from subsequent
downstream analysis.

Denoising protein counts in CITE-seq data. To remove ambient signal from
protein counts of the CITE-seq data, we used SoupX[https://academic.oup.com/
gigascience/article/9/12/giaa151/6049831] in the following way: first, we got the
expression profile of the ambient signal from empty droplets (estimateSoup with
soupRange= c (4, 100)), then we automatically calculated contamination fraction
(autoEstCont with soupQuantile= 0.1 and tfidfMin= 0.05) and removed back-
ground contamination from the count matrix (adjustCounts). The corrected pro-
tein counts were then merged with the gene expression part of CITE-seq data and
further treated as raw counts and analysed. Protein features in the CITE-seq data
were considered equal to gene features in subsequent downstream analysis.

Clustering and annotation of scRNA-seq data and CITE-seq data. Downstream
analysis included data normalization (scanpy.pp.normalize_per_cell method,
scaling factor 10000), log-transformation (scanpy.pp.log1p), variable gene detec-
tion (scanpy.pp.filter_gene_dispersion), data-feature scaling (scanpy.pp.scale), PCA
analysis (scanpy.pp.pca, from variable genes), batch-balanced neighborhood graph
building (scanpy.pp.bbknn) by experimental sample batch key ‘sample’ and Lou-
vain graph-based clustering (scanpy.tl.louvain, clustering resolution manually
tuned). Cluster cell identity was assigned by manual annotation using known
marker genes (Fig. 5b).

While annotating B-cell populations, we perform more resolved clustering of
the coarse “B cells” cluster (in the main manifold with all cells) to tease apart
subtler B-cell states (represented in Fig. 4c left panel) via (1) examining genes
defining those states (as shown in Fig. 4d) and (2) examining logistic regression
predictions from (a) unstimulated B-cell scRNA-seq of twins (used in the first part
of study and visualized in Fig. 4a) and (b) dataset from King et. al., Science
Immunology, 2021 to better tell apart naïve and memory phenotype.

Differential gene expression analysis in scRNA-seq. To calculate differentially
expressed genes in each comparison cell state between CVID and control twin we
adopted the limma73 approach (limma version 3.46.0, edgeR version 3.32.1).

Cell–cell communication analysis. Cell–cell interactions were inferred using
CellPhoneDB (www.CellPhoneDB.org), as previously described33,82. We modified
the statistical method to calculate significant L/R interactions enriched in disease.
To do this, instead of random shuffling of cells to select specific interactions, we
used genes differentially expressed between the twins in the different identified
immune cell subsets (FDR < 0.05) and only included an L/R pair in the analysis
when both molecules were present in at least 10% of the interacting cell clusters
and at least one of the molecules was DE between CVID and healthy controls.
Additionally, since CVID is considered a B-cell-centered disease, we focused our
analysis on the potential interactions between B cells and the other immune cell
compartments.

Alignment, quantification, and downstream analysis of single-cell ATAC-seq
data. Plate-based single-cell ATAC sequencing data were aligned and quantified as
previously described68 and further analyzed with the standard scanpy pipeline described
above (excluding cell-cycle genes removal and doublet detection). Further downstream
analysis was performed using cisTopic24 approach following the basic tutorial (https://
rawcdn.githack.com/aertslab/cisTopic/f628c6f60918511ba0fa4a85366ebf52db5940f7/
vignettes/CompleteAnalysis.html).

Transcription factor motif-enrichment analysis was performed for each
identified topic using HOMER software v4.10.3. We used the findMotifsGenome.pl
algorithm (with parameter -size given) to search for significant enrichment relative
to the background.

Differentially accessible region (DAR) calculation was performed in a scRNA-
seq like manner using limma73 approach as described above. We used.bed files
corresponding to significant DARs and.bed files corresponding to TF and enhancer
Chip-seq data (same publicly-available data as used for Fig. 3e, d) to first calculate
overlaps between them and then estimate the enrichment of target (TF or
enhancer) peaks in DARs as the ratio of total overlap length to length of
target peaks.

Statistical analysis. Statistical analyses were performed in R (v4.0.3). Data dis-
tributions were tested for normality. Normally distributed data were tested using
two-tailed unpaired Student’s t tests; non-normal data were analyzed with the
appropriate non-parametric statistical test.

DNA methylation correlations between different B-cell subsets were expressed
as Pearson correlation coefficients. The statistical significance of potential DMRs
was assessed by a two-dimensional version of the Kolmogorov–Smirnov test to
calculate P values during segmentation and to use it as a termination criterion
during recursive segmentations. The output of metilene provides the adjusted and
unadjusted P value for the 2D-KS test and additionally the results of an
independent Mann–Whitney U test.

Transcription factor motif enrichments were calculated using the cumulative
hypergeometric distributions (input vs. background sequences). Significance of
associations between topics from cisTopic and genomic features (enhancers, TF
motifs or TF peaks) were calculated with a Mann–Whitney test. Significance of B
cells enrichments in scATAC-seq clusters were calculated using a Fisher’s test.

Differentially expressed genes were calculated using a two-sided limma
moderated t-test with Benjamini-Horchberg correction for multiple testing.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scBS-seq data generated in this study is available under ENA study accession
PRJEB50820. Smart-seq2 (SS2) sequencing data, scATAC-seq data and 10x-Genomics
Chromium droplet-based scRNA-seq data can be accessed under EGA dataset accession
EGAD00001008575. Interactive visualizations of single-cell transcriptomic datasets from
this study can be accessed via https://www.immunodeficiencycellatlas.org/. WGS results
are not publicly available due to ethical regulations, but are available from the
corresponding authors upon request. RNA-seq and ChIP-seq publicly-available datasets
for naïve-, GC, S-mem B cells, as well as for PCs from healthy donors were obtained from
the Blueprint Consortium (http://dcc.blueprint-epigenome.eu/#/datasets), with the
following accession numbers: Naïve BCs RNA-seq (EGAD00001002315), GC BCs RNA-
seq (EGAD00001002452), S-mem BCs RNA-seq (EGAD00001002476), Plasma cells
RNA-seq (EGAD00001002323), Naïve BCs ChIP-seq (EGAD00001002466), GC BCs
ChIP-seq (EGAD00001002442), S-mem BCs ChIP-seq (EGAD00001002430), Plasma
cells ChIP-seq (EGAD00001002281). We used additional ChIP-seq publicly-available
datasets for several transcription factors with the following accession numbers: CTCF
from human B cells (GSM1003474), as well as JUNB (GSE96455), BATF (GSM803538),
CTCF (ENCSR184YZV) and PAX8 (GSE127505) from the GM12878 human
lymphoblastoid cell line. Genome Reference Consortium Human Build 38 patch release
12 (GRCh38p12). Source data are provided with this paper.

Code availability
All the code used in the analyses can be found at https://github.com/ventolab/CVID83.
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