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a b s t r a c t

The Gini coefficient of the life table is a concentration index that provides information on lifespan
variation. Originally proposed by economists to measure income and wealth inequalities, it has
been widely used in population studies to investigate variation in ages at death. We focus on the
complement of the Gini coefficient, Drewnowski’s index, which is a measure of equality. We study its
mathematical properties and analyze how changes over time relate to changes in life expectancy.
Further, we identify the threshold age below which mortality improvements are translated into
decreasing lifespan variation and above which these improvements translate into increasing lifespan
inequality. We illustrate our theoretical findings simulating scenarios of mortality improvement in the
Gompertz model, and showing an example of application to Swedish life table data. Our experiments
demonstrate how Drewnowski’s index can serve as an indicator of the shape of mortality patterns.
These properties, along with our analytical findings, support studying lifespan variation alongside life
expectancy trends in multiple species.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The life table is an essential tool in mortality studies. It rep-
esents the current mortality experience of a population and
t is usually summarized by life expectancy at birth (eo). Life
expectancy at birth is the average years a synthetic cohort of
newborns is expected to live if individuals were to experience the
current mortality conditions throughout their lives. It is, however,
an average indicator that masks variability in ages at death, which
can be substantial. This variability is often referred to as lifespan
variation or lifespan inequality, and has received increasing atten-
tion over the past two decades (see, to mention a few, Wilmoth
and Horiuchi, 1999; Edwards and Tuljapurkar, 2005; Smits and
Monden, 2009; Baudisch, 2011; Vaupel et al., 2011; Fernández
and Beltrán-Sánchez, 2015; Colchero et al., 2016; Ebeling et al.,
2018; van Raalte et al., 2018; Permanyer and Scholl, 2019; Aburto
et al., 2020; Vaupel et al., 2021). Lifespan variation reveals the
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nc-nd/4.0/).
uncertainty about the eventual age at death at the individual
level, and measures how evenly mortality conditions are shared
at the population level. There exist several indicators to measure
lifespan variation (for an overview, see Shkolnikov et al., 2003;
van Raalte and Caswell, 2013), such as the entropy of the life
table (Leser, 1955; Keyfitz, 1977; Demetrius, 1978), the standard
deviation or variance of the age-at-death distribution (as applied
by Tuljapurkar and Edwards, 2011), the coefficient of variation
(as applied by Aburto and van Raalte, 2018; Aburto et al., 2018),
years of life lost (e†) (Goldman and Lord, 1986; Vaupel, 1986;
Hakkert, 1987; Vaupel and Canudas Romo, 2003), or the Gini
coefficient (Hanada, 1983).

Here we study in greater detail the Gini coefficient of the life
table (G) and its complement, Drewnowski’s index (D)
(Drewnowski, 1982; Hanada, 1983), from a formal demographic
perspective. While the properties of these two indicators in the
demographic sense are analogous, D directly provides an added
meaningful interpretation: it reflects the proportion of life ex-
pectancy that two newborns of a cohort are expected to live
together when the life table assumptions hold. We additionally
aim to understand how changes in age-specific mortality un-

derpin trends in lifespan variation. We focus on how changes
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ver time in D relate to changes in eo, and highlight a new
measure of absolute variation related to perturbation theory,
named ϑ . This new indicator gives the value of life expectancy if
the hazard is doubled at every age. We provide the mathematical
foundation of how Drewnowski’s index (and analogously the Gini
coefficient) evolves over time, and give analytical formulae to
find the threshold age below which mortality improvements are
translated into decreasing lifespan variation and above which
these improvements translate into increasing lifespan inequality.

2. The Gini coefficient and Drewnowski’s index

The Gini coefficient is one of the most popular indices em-
ployed in social sciences to measure concentration in the dis-
tribution of a non-negative random variable (Gini, 1912, 1914).
Originally proposed by economists to measure income or wealth
inequality, this coefficient has been applied in demography and
survival analysis to investigate within-group inequality in terms
of ages at death (see, for instance, Hanada, 1983; Shkolnikov et al.,
2003; Bonetti et al., 2009; Gigliarano et al., 2017; Barthold Jones
et al., 2018; Diaz et al., 2018; Basellini and Camarda, 2019; Aburto
et al., 2020).

2.1. Definition

As thoroughly discussed by Yitzhaki and Schechtman (2013),
there are several equivalent ways to define the Gini coefficient.
Let X be a non-negative random variable with probability density
function f (x) and expected value E[X], a common definition is

=
1

2 E[X]

∫
∞

0

∫
∞

0
|x1 − x2| f (x1) f (x2) dx1 dx2 .

Accordingly, if X is a random variable of the ages at death in a
population, the Gini coefficient expresses the average of absolute
differences in individual lifespans relative to the mean length of
life E[X].

Michetti and Dall’Aglio (1957), and later Hanada (1983), sug-
gest a re-formulation of the Gini coefficient in terms of the life
table functions, given by

G = 1 −

∫
∞

0 ℓ(x, t)2 dx∫
∞

0 ℓ(x, t) dx
= 1 −

ϑ

eo
, (1)

where ℓ(x, t) is the life table survival function at time t , eo =∫
∞

0 ℓ(x, t) dx the life expectancy at birth at time t , and ϑ =∫
∞

0 ℓ(x, t)2 dx is the resulting life expectancy at birth of doubling
the hazard at all ages. Barthold Jones et al. (2018) interpret ϑ

as a measure of shared life expectancy, that is, the average time
two newborns at time t are expected to survive together. For the
purposes of this article, the definition of the Gini coefficient in (1)
will be used in the following.

2.2. Main properties

The Gini coefficient takes values between 0 and 1, and can be
interpreted as a measure of inequality. A value of 0 denotes equal-
ity in ages at death, i.e. when every individual in the population
has the exact same length of life. The index increases approaching
1 as lifespans become more spread and unequal in the population.
This makes the interpretation clear and intuitive: higher values
correspond to greater within-group inequality in ages at death.

An additional attractive feature of the Gini coefficient is that
it fulfills three important properties for inequality indices (Sen,
1973; Anand, 1983): (i) it does not change if the number of
individuals at each age at death is changed by the same pro-
portion (population-size independence); (ii) it does not change if
 r

2

each individual lifespan is changed by the same proportion (scale
independence); and (iii) it decreases if years of life are transferred
from a longer to a shorter lived individual (Pigou-Dalton condi-
tion). Note that property (i) enables straightforward comparison
between populations, including comparisons between different
species (Wrycza et al., 2015). Furthermore, the coefficient is not
too sensitive to redistributions at early ages of life, and it well
reflects changes at adult ages (Shkolnikov et al., 2003).

Being bounded between 0 and 1, the Gini coefficient can be
readily transformed from a measure of inequality into a measure
f equality of lifespans. From (1), its complement indicator of
ifespan equality immediately derives, the Drewnowski index,
efined as

= 1 − G =
ϑ

eo
=

∫
∞

0 ℓ(x, t)2 dx∫
∞

0 ℓ(x, t) dx
, (2)

and sharing all the important properties of G. In the case of the
Pigou-Dalton condition, though, the effect is the opposite and
D increases as years of life are transferred from a longer to a
shorter lived individual without changing their relative ranks.
According to Hanada (1983), this index was first proposed by
Jan Drewnowski on a working group on health indicators at
the World Health Organization in the early 1980s (Drewnowski,
1982).

In addition to its interpretation as the proportion of life ex-
pectancy that will be shared by two newborns (if mortality rates
do not change over their lives), D is akin to already established
demographic measures. Specifically, D is similar both in its con-
struction and age pattern to e† (Vaupel and Canudas Romo, 2003),
to the life table entropy (Leser, 1955; Keyfitz, 1977; Demetrius,
1978), and to the variance or standard deviation (Edwards and
Tuljapurkar, 2005). Moreover, following (2), and similarly to other
indicators, D has the advantage that it can be interpreted as the
weighted average of the survival function (with weights equal to
the survival function itself).

3. Changes over time in Drewnowski’s index

In order to analyze changes over time in Drewnowski’s index –
or, equivalently, the Gini coefficient – we aim to find an analytical
expression for the time derivative of D. In the following, a dot
over a function will denote the partial derivative with respect to
time, but variable t will be omitted for simplicity.

3.1. Relative derivative of D

Proposition 1. Let D = ϑ / eo be Drewnowski’s index, where
=
∫

∞

0 ℓ(x)2 dx, eo =
∫

∞

0 ℓ(x) dx is the life expectancy at birth, and
(x) the probability of surviving from birth to age x. Then, relative
hanges over time in D are given by

Ḋ
D

=
ϑ̇

ϑ
−

ėo
eo

. (3)

Proof. Note that D = ϑ / eo implies that D eo − ϑ = 0.
ifferentiating with respect to time yields

˙ eo + D ėo − ϑ̇ = 0 .

olving for Ḋ and dividing both sides by D, we get (3). □

Eq. (3) decomposes relative changes in D into relative changes
f the shared life expectancy between two individuals ϑ , and
elative changes in the life expectancy at birth e .
o
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.2. Time derivatives of eo and ϑ

Vaupel and Canudas Romo (2003) showed that changes over
ime in life expectancy at birth are a weighted average of the total
ates of mortality improvement, expressed as

˙o =

∫
∞

0
ρ(x)w(x) dx . (4)

Function ρ(x) = −µ̇(x) / µ(x) stands for the age-specific rates
of mortality improvement, where µ(x) is the force of mortality
(hazard rate) at age x. The weights w(x) = µ(x) ℓ(x) e(x) are
a measure of the importance of death at age x, where e(x) =∫

∞

x ℓ(a) da / ℓ(x) is the remaining life expectancy at age x. Fol-
lowing a similar approach, we aim to express the time derivative
of ϑ as a weighted average of mortality improvements, but with
different weights.

Definition 1. Let ℓ(x) be the probability of surviving from birth
to age x. A measure of lifespan equality at age x is Drewnowski’s
index conditional upon survival up to age x, defined as

D(x) =
1

ℓ(x)

∫
∞

x ℓ(a)2 da∫
∞

x ℓ(a) da
. (5)

Proposition 2. Let ϑ =
∫

∞

0 ℓ(x)2 dx, where ℓ(x) is the probability of
surviving from birth to age x. Then, its partial derivative with respect
to time can be expressed as

ϑ̇ =

∫
∞

0
ρ(x)w(x) 2 ℓ(x)D(x) dx , (6)

where ρ(x) are the age-specific rates of mortality improvement, w(x)
the same weights defined in (4), and D(x) as defined in (5).

Proof. Applying the chain rule, the time derivative of ϑ is simply

ϑ̇ =

∫
∞

0
2 ℓ(x) ℓ̇(x) dx .

Using that ℓ̇(x) = −ℓ(x)
∫ x
0 µ̇(a) da, and reversing the order of

integration, we get

ϑ̇ = −2
∫

∞

0
ℓ(x)2

∫ x

0
µ̇(a) da dx = −2

∫
∞

0
µ̇(a)

∫
∞

a
ℓ(x)2 dx da

= 2
∫

∞

0
ρ(x)µ(x) ℓ(x) e(x)

∫
∞

x ℓ(a)2 da∫
∞

x ℓ(a) da
dx

=

∫
∞

0
ρ(x)w(x) 2 ℓ(x)D(x) dx ,

where w(x) = µ(x) ℓ(x) e(x), which proves (6). □

3.3. Changes over time in D in terms of mortality improvements

Eqs. (4) and (6) enable us to express changes over time in D
in terms of mortality improvements. Using (2), and subsequently
replacing (4) and (6) in (3), yields

Ḋ = D
(

ϑ̇

ϑ
−

ėo
eo

)
=

ϑ̇ − ėoD
eo

=

∫
∞

0
ρ(x)w(x)

2 ℓ(x)D(x) − D
eo

dx

=

∫
∞

0
ρ(x)w(x)W (x) dx . (7)

This result shows that changes over time in D (and analogously
in G) are a total average of mortality improvements weighted by
3

w(x)W (x), where w(x) = µ(x) ℓ(x) e(x) are the same weights as
n (4) and

(x) =
2 ℓ(x)D(x) − D

eo
. (8)

4. The threshold age

4.1. Positive and negative contributions to lifespan equality

Because Drewnowski’s index is a measure of equality, Ḋ > 0
indicates that lifespan variation decreases over time, whereas
Ḋ < 0 implies that lifespan variation increases over time. Eq. (7)
can then be used to analyze the existence of a threshold age that
separates positive from negative contributions to lifespan equality
as a result of mortality improvements.

In the assumption that mortality improvements occur at all
ages, ρ(x) = −µ̇(x) / µ(x) > 0 is a strictly positive function.
herefore, from (7),

1. Those ages x for which w(x)W (x) > 0 will contribute
positively to Drewnowski’s index D and increase lifespan
equality;

2. Those ages x for which w(x)W (x) < 0 will contribute
negatively to Drewnowski’s index D and favor lifespan in-
equality;

3. Those ages x for which w(x)W (x) = 0 will have no effect
on the variation over time of D.

Any existing threshold age that separates positive from nega-
ive contributions to lifespan equality will occur whenever w(x)
W (x) = 0. Since µ(x), ℓ(x), and e(x) are all positive functions, so
re w(x) and eo. Hence,

(x)W (x) = 0 ⇐⇒ 2 ℓ(x)D(x) − D = 0 . (9)

4.2. Existence and uniqueness of the threshold age

By means of the following two propositions and one theorem,
we aim to prove that when mortality improvements occur at all
ages and ρ(x) > 0 for all x ≥ 0, there exists a unique threshold
age aD that separates positive from negative contributions to
lifespan equality (measured by D) as a result of those improve-
ments. The assumption of ρ(x) being a strictly positive function
is necessary to ensure that the existence of a threshold age and
its uniqueness only depend on the weights and the ages at which
ω(x)W (x) = 0. The same assumption was made in previous
works that identified the threshold age of other lifespan variation
indicators (Zhang and Vaupel, 2009; Gillespie et al., 2014; Aburto
et al., 2019). If ρ(x) were to take both positive and negative
values, the threshold age may not be unique. Following (7), the
threshold age would also be unique if ρ(x) were strictly nega-
tive and there were mortality increases for all ages over time.
However, we did not explore that scenario.

Remark. Following (2), Drewnowski’s index D is bounded be-
tween 0 and 1, reaching a value of 1 at complete equality in the
ages at death within a population. A score of 0 would express
maximum inequality in the ages at death. By definition, however,
this value can never be reached:

D = 0 ⇐⇒

∫
∞

0 ℓ(x)2 dx∫
∞

0 ℓ(x) dx
= 0 ⇐⇒

∫
∞

0
ℓ(x)2 dx = 0

⇐⇒ ℓ(x) = 0 (10)

for all ages x ≥ 0. This implies that the denominator in (10) equals
0 because ℓ(x) ≥ 0 is always positive and, consequently, D would
be undefined. Hence, 0 < D ≤ 1.
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roposition 3. Let ℓ(x) be the probability of surviving from birth
to age x, D Drewnowski’s index as defined in (2), and D(x) as defined
n (5). Define the function g(x) := 2 ℓ(x)D(x)−D. Then, there exists
at least one age aD such that g(aD) = 0.

Proof. At age x = 0,

g(0) = 2 ℓ(0)D(0) − D = 2D − D = D > 0 (11)

by definition, since 0 < D ≤ 1.
When ages become arbitrarily large,

lim
x→∞

g(x) = lim
x→∞

(2 ℓ(x)D(x) − D) = 2 lim
x→∞

ℓ(x)D(x) − D ,

which only depends on the behavior of ℓ(x)D(x). Because ℓ(x) ∈

[0, 1] for all ages x ≥ 0, we have that 0 ≤ ℓ(x)2 ≤ ℓ(x) and

0 ≤ lim
x→∞

∫
∞

x
ℓ(a)2 da ≤ lim

x→∞

∫
∞

x
ℓ(a) da . (12)

Let e(x) be the remaining life expectancy at age x, since

lim
x→∞

∫
∞

x
ℓ(a) da = lim

x→∞
e(x) ℓ(x) = 0 ,

both integrals in (12) tend to 0 as x approaches ∞. Consequently,

lim
x→∞

ℓ(x)D(x) = lim
x→∞

∫
∞

x ℓ(a)2 da∫
∞

x ℓ(a) da

s indeterminate, but applying L’Hôpital’s rule, we get

lim
→∞

ℓ(x)D(x) = lim
x→∞

∂
∂x

∫
∞

x ℓ(a)2 da
∂
∂x

∫
∞

x ℓ(a) da
= lim

x→∞

−ℓ(x)2

−ℓ(x)

= lim
x→∞

ℓ(x) = 0 .

As a result,

lim
x→∞

g(x) = 2 lim
x→∞

ℓ(x)D(x) − D = 0 − D < 0 . (13)

Finally, using (11) and (13), on a continuous framework the
intermediate value theorem guarantees the existence of at least
one positive age aD at which g(aD) = 0. □

Proposition 4. Let ℓ(x) be the probability of surviving from birth
to age x, D Drewnowski’s index as defined in (2), and D(x) as defined
in (5). Then, g(x) := 2 ℓ(x)D(x)−D is a strictly decreasing function.

Proof. In order to demonstrate that g(x) is a strictly decreasing
function it suffices to show that its first derivative is negative for
all ages x ≥ 0. Note that since D does not depend on age,

∂

∂x
g(x) < 0 ⇐⇒

∂

∂x

(
ℓ(x)D(x)

)
< 0 .

Applying the quotient rule together with the fundamental
heorem of calculus, we get

∂

∂x

(
ℓ(x)D(x)

)
=

∂

∂x

(∫
∞

x ℓ(a)2 da∫
∞

x ℓ(a) da

)

=

∫
∞

x ℓ(a) da ∂
∂x

(∫
∞

x ℓ(a)2 da
)
−
∫

∞

x ℓ(a)2 da ∂
∂x

(∫
∞

x ℓ(a) da
)(∫

∞

x ℓ(a) da
)2

=

∫
∞

x ℓ(a) da
(
−ℓ(x)2

)
−
∫

∞

x ℓ(a)2 da (−ℓ(x))(∫
∞

x ℓ(a) da
)2 .

Hence,

∂

∂x
g(x) < 0 ⇐⇒ ℓ(x)

∫
∞

x
ℓ(a)2 da − ℓ(x)2

∫
∞

x
ℓ(a) da < 0

⇐⇒
1

∫
∞

ℓ(a)2 da <
1
∫

∞

ℓ(a) da .

ℓ(x)2 x ℓ(x) x

/

4

Note that ℓ(x) = exp
[
−
∫ x
0 µ(a) da

]
for a given age-specific

azard function µ(x). Therefore, ℓ(x)2 = exp
[
−
∫ x
0 2µ(a) da

]
an be interpreted as the survival schedule with doubling haz-
rd 2µ(x) at all ages x ≥ 0. We can then define ẽ(x) =
∞

x ℓ(a)2 da / ℓ(x)2 as the remaining life expectancy at age x of
population with survival schedule ℓ(x)2 and age-specific force
f mortality 2µ(x). Accordingly,

∂

∂x
g(x) < 0 ⇐⇒

1
ℓ(x)2

∫
∞

x
ℓ(a)2 da <

1
ℓ(x)

∫
∞

x
ℓ(a) da

⇐⇒ ẽ(x) < e(x)

or all x ≥ 0, which holds true since doubling the hazard corre-
ponds to a lower remaining life expectancy, in the reasonable
ssumption that µ(x) > 0 for all ages. □

Theorem. Let D = ϑ / eo be Drewnowski’s index, where ϑ =
∞

0 ℓ(x)2 dx, eo =
∫

∞

0 ℓ(x) dx is the life expectancy at birth, and
(x) the probability of surviving from birth to age x. Assume mor-
ality improvements over time occur at all ages. Then, there exists
unique threshold age aD that separates positive from negative

ontributions to lifespan equality, measured by D, as a result of those
mprovements.

roof. Following (7), changes over time in D can be expressed as
weighted average of mortality improvements, given by

˙ =

∫
∞

0
ρ(x)w(x)W (x) dx ,

here ρ(x) are the age-specific rates of mortality improvement
ver time, and w(x)W (x) the weights. By assumption, ρ(x) > 0
or all ages x ≥ 0. Therefore, any threshold age that separates pos-
tive from negative contributions to lifespan equality as a result
f mortality improvements will occur whenever w(x)W (x) = 0.
rom (9),

(x)W (x) = 0 ⇐⇒ 2 ℓ(x)D(x) − D = 0 ,

here D(x) is as defined in (5). Proposition 3 guarantees the
xistence of at least one positive age aD such that 2 ℓ

(
aD
)
D
(
aD
)
−

= 0. In addition, from Proposition 4 the function g(x) :=

ℓ(x)D(x) − D is strictly decreasing. Hence, assuming continuity,
(x) is a one-to-one function and therefore the threshold age aD
s unique. □

orollary. Let G be the Gini coefficient as defined in (1). Provided
hat G = 1 − D, following (7)

˙ = −Ḋ = −

∫
∞

0
ρ(x)w(x)W (x) dx .

ence, G and D have the same threshold age, which is unique
n the assumption that mortality improvements occur at all ages.
mprovements below the threshold age will reduce lifespan variation
lowering G, but enlarging D), and improvements above will increase
ifespan inequality (enlarging G, but lowering D).

. Application

We illustrate our theoretical findings first by simulating sce-
arios under the Gompertz mortality model, and next by showing
n example of application to Swedish life table data from the 20th
entury. The R code (R Core Team, 2021) and data to reproduce
ll the figures and results presented in the following are publicly
vailable for research purposes from the GitHub repository https:

/github.com/panchoVG/Drewnowski.

https://github.com/panchoVG/Drewnowski
https://github.com/panchoVG/Drewnowski
https://github.com/panchoVG/Drewnowski
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Fig. 1. Gompertz mortality model with positive aging (β > 0) for different levels of baseline mortality α and a fixed rate of aging β = 0.1.
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.1. The Gompertz model and the threshold age

We explore different scenarios of mortality improvement de-
ending on level versus rate changes in the Gompertz mortality
odel (Gompertz, 1825). This model captures an exponential
hange of the force of mortality µ(x) = α · eβ x over age x,
here α is the baseline level of mortality and β the rate of
ging. As previously mentioned, for any hazard function µ(x)

the corresponding survival is ℓ(x) = exp
[
−
∫ x
0 µ(a) da

]
, and the

distribution of deaths d(x) = µ(x) ℓ(x) follows immediately. The
survival function of the Gompertz model is given by

ℓ(x) = exp
[

α

β

(
1 − eβ x)] . (14)

pplying (14) to (2), (5), (8) and (9), and using different values of
and β , we calculate the corresponding Drewnowski indices D,
eights W (x), and threshold ages aD reported in Figs. 1 to 5.
Specifically, we explore patterns of increasing, constant, and

decreasing mortality with age. While our simulations are hypo-
thetical, these patterns are found across the tree of life (Jones
et al., 2014). Humans and non-human primates experience in-
creasing exponential mortality from early ages (Colchero et al.,
2021), but constant patterns of mortality with unchanged risk of
death over age are observed in organisms such as Hydra (Schaible
et al., 2015). Some species like turtles may show declining rates
of mortality in adulthood (Jones et al., 2014), something that
is commonly referred to as ‘negative senescence’ (Vaupel et al.,
2004; Baudisch, 2008; Cayuela et al., 2019).

5.1.1. Gompertz force of mortality with positive aging: Level vs. rate
change

Our first scenario demonstrates how improvements in mor-
tality affect our outcome variables when progress results from
reducing the level of mortality, but not from slowing the rate
of aging. Fig. 1 depicts the Gompertz mortality function on a
log-scale (Panel A), the corresponding age-at-death distribution
(Panel B), and associated weights W (x) (Panel C), for a fixed rate
of aging β = 0.1 and changing levels of baseline mortality α.
alues of Drewnowski’s index D and corresponding threshold
ges aD are reported in Panels B and C, respectively.
 t

5

Lower levels of baseline mortality α translate into vertical
downward shifts in the log-hazard (Panel A). Correspondingly,
lifespan variation falls as deaths concentrate at older ages, as
captured by larger values of D (Panel B). Lower levels of mortality
raise the threshold age aD at which the weights W (x) switch sign
from positive to negative (Panel C). Positive weights at some age
imply that saving lives at that age increases equality, i.e. enlarging
D; negative weights imply that saving lives decreases equality,
i.e. lessening D. The threshold age aD marks the boundary be-
ween these positive and negative effects of life saving on lifespan
quality and is indicated by the dashed vertical lines. Panel C
hows that under the assumption of mortality improvements
ver all ages, this threshold age is unique and that the magnitude
f the weights W (x) over age changes depending on the different
hapes of the distribution of deaths, supporting our theoretical
esults.

Complementing these findings, Fig. 2 analyzes how slowing
he rate of aging β affects lifespan variation. For a fixed baseline
evel of mortality α = e−6

≈ 0.0025, Panel A illustrates how
ower values of β translate, as expected, into a slower rise in the
og-hazard. In contrast to the first scenario, Panel B reveals that
lowing the rate of aging β reduces D (lighter colors) and widens
he distribution of ages at death. That is, extending lifespan by
lowing the rate of aging increases lifespan inequality, which
s consistent with previous research by Colchero et al. (2021).
he threshold age aD increases as lifespan equality decreases.
hile life saving has opposite effects on lifespan variability and

he level of the threshold age in the two scenarios, the general
ynamics of the weights W (x) remain similar. Saving lives before
he threshold age reduces inequality; saving lives later increases
nequality. The threshold age aD remains unique, independent of
pecific values of the mortality parameters, further supporting
ur theoretical predictions.

.1.2. Zero rate of aging
Fig. 3 captures a scenario in which the rate of aging equals

ero. Under varying but constant levels of mortality (Panel A),
ifespan variation remains unchanged at D = 0.5 and the largest
umber of deaths occur at the earliest ages (Panel B). The lower
he level of mortality, the longer the length of life, and the later

he threshold age (Panel C).
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Fig. 2. Gompertz mortality model with positive aging for different rates of aging β > 0 and a fixed level of mortality α = e−6 .
Fig. 3. Gompertz mortality model with zero rate of aging (β = 0) and different levels of baseline mortality α.
This can also be verified analytically. When β = 0, the survival
unction for the Gompertz mortality model simplifies to ℓ(x) =
−α x. Then, life expectancy as the integral of the survivorship
ver all ages becomes 1/α, which is the inverse of the force of
ortality. Following Definition 1, in this scenario the conditional
rewnowski index D(x) is

(x) =
1

e−α x

e−2α x / 2α

e−α x / α
= 0.5 .

n other words, when mortality is constant over age, D(x) = 0.5
for all ages and it is independent of the baseline mortality level
α. Accordingly, from Proposition 3

g(x) = 0 ⇐⇒ 2 e−α x 0.5 − 0.5 = 0 ⇐⇒ x = ln(2) / α ,
6

which implies that the threshold age is aD = ln(2) /α and ℓ(aD) =

e−α aD
= 0.5. This means that, when mortality is constant, the

threshold age and the median age at death are the same.

5.1.3. Negative rate of aging
To complete the analyses, Figs. 4 and 5 capture scenarios of de-

creasing mortality, which are consistently marked by values of D
below one half (Panels B). Different to the scenario with positive
aging rates, here effects of both level and rate changes point in the
same direction: higher mortality results in less lifespan variation
(higher values of D in Panels B). Both Drewnowski’s index and
the threshold ages barely change, and the latter remain close to
the earliest age (Panels C). This is because in these scenarios most
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Fig. 4. Gompertz mortality model with negative rate of aging (β < 0) for different levels of baseline mortality α and a fixed rate of aging β = −0.05.
Fig. 5. Gompertz mortality model with negative rate of aging (β < 0) for different rates of aging β and a fixed level of mortality α = e−0.5 .
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ndividuals die young, and life expectancy is extremely short for
ll cases.
The two negative aging scenarios substantially differ, however,

n the maximum age for the survivors (not shown). This reflects
he exceeding disparity among the majority of individuals who
ie upon – or shortly after – birth, and those few surviving to
anifold higher ages as they benefit from the improvements

n mortality over age. These differences are also reflected in
he density functions: while varying the rate of aging leaves no
istinguishable effect on the density function (Fig. 5, Panel B),
arying the baseline level of mortality α distinctly affects the
hape of the density function with lower mortality levels yielding
n increasing rectangularization (Fig. 4, Panel B).
7

.2. Rates of mortality improvement among Swedish females

To show the practical usefulness of our framework, we analyze
ortality patterns for Swedish females, whose life expectancy has

mproved over the last decades. We apply the discrete approxi-
ation suggested by Vaupel (1986) to estimate age-specific rates
f mortality improvement. Let nq

t1
x denote the probability of death

etween ages x and x + n at time t1 in a given population, and
nq

t2
x the corresponding probability at time t2 > t1. Then, the rate
f morality improvement from age x to x + n between times t1

and t2 can be approximated as

ρx =
ln(− ln(1 − nq

t1
x )) − ln(− ln(1 − nq

t2
x ))

. (15)

t2 − t1
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Fig. 6. Age-specific rates of mortality improvement (5-year age groups), Swedish females. Panel A shows estimated improvements in 5-year time intervals (1975–1980
and 1995–2000), whereas Panel B shows estimated improvements in 20-year time intervals (1960–1980 and 1980–2000). Dashed horizontal lines mark corresponding
threshold ages.
Source: Human Mortality Database, 2022.
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Fig. 6 illustrates the results of applying (15) to life table data
or Swedish females from the Human Mortality Database (2022).
anel A shows estimated improvements in 5-year time intervals
1975–1980 and 1995–2000), whereas Panel B shows estimated
mprovements for 20-year periods (1960–1980 and 1980–2000).

Although the assumption of ρ(x) being a strictly positive func-
tion does not hold for the whole time period, in these time
windows the threshold ages fall within the age ranges in which
mortality improvements are observed. Over time, threshold ages
are postponed to higher ages. Aligned with these dynamics, life
expectancy for Swedish females increased from 74.88 in 1960 to
82.02 in 2000 (Human Mortality Database, 2022). The improve-
ments depicted in Fig. 6 are responsible for these increments in
life expectancy. During the same period, lifespan equality mea-
sured by D increased from 0.899 to 0.921. This means that, on
average, lifespans increased and also became more predictable for
Swedish females.

The example of Sweden can only serve as an illustration, and
results may differ for other countries. In particular, mortality
improvements may be more volatile in low- and middle-income
countries, or during mortality crises such as the Covid-19 pan-
demic. Researchers should apply Eq. (15) to identify the age
ranges in which the assumption of positive rates of mortality
improvement holds.

6. Discussion

In this article we uncovered how age-specific patterns of
mortality underpin trends in lifespan variation as measured by
8

Drewnowski’s index D, the complement of the Gini coefficient of
the life table, by means of formal demography. We contribute to
the literature by disentangling how changes in age patterns of
mortality affect lifespan variation and provide an analytical proof
for the existence of a threshold age aD below which mortality
improvements are translated into increasing lifespan equality
and above which these improvements translate into increasing
lifespan inequality. Previous research determined such age for
the life table entropy (Aburto et al., 2019), the variance (Gillespie
et al., 2014) and years of life lost (Zhang and Vaupel, 2009).

We test and illustrate our results under multiple scenarios of
mortality changes with age, including positive, zero, and negative
rates of aging. This is relevant because shapes of mortality pat-
terns across the tree of life vary substantially (Jones et al., 2014).
Our experiments demonstrate how Drewnowski’s index D can
serve as an indicator of the ‘shape’ of mortality patterns (Baud-
isch, 2011; Wrycza et al., 2015), distinguishing between increas-
ing mortality (D > 0.5), constant mortality (D = 0.5), and
ecreasing mortality (D < 0.5) over age. These properties, along
ith our analytical findings, support studying lifespan variation
longside life expectancy trends in multiple species.
The existence of a unique threshold age, though, is conditioned

n having positive rates of mortality improvement throughout
he whole age range, which is certainly a strong assumption. Us-
ng Sweden as a benchmark, we hypothesize that among human
opulations this may be likely to hold at adult ages (60–95 years)
n which more deaths are concentrated, and where it may be
ore meaningful to identify a (unique) threshold age. Above that
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ange, one could argue that the small fraction of the remaining
eaths does not suffice to counterbalance the uniqueness of the
hreshold age, though we have not tested that explicitly. Our re-
ults also show that our framework may be suitable for studying
ong term trends (20 years), so that mortality improvement can
e substantiated across a wide age range.
This framework may also be applicable for non-human species

hen comparing populations, not chronologically over time, but
rdered from harsher to milder conditions, so that improve-
ents in survival can be studied across changing environments

Colchero et al., 2019). Such analyses may aid understanding
he principle limits of the plasticity of aging in different species
Colchero et al., 2021)
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