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Abstract: Pineapple (Ananas comosus (L.) Merr.) is the second most important tropical fruit crop
globally, and ‘MD2’ is the most important cultivated variety. A high-quality genome is important for
molecular-based breeding, but available pineapple genomes still have some quality limitations. Here,
PacBio and Hi-C data were used to develop a new high-quality MD2 assembly and gene prediction.
Compared to the previous MD2 assembly, major improvements included a 26.6-fold increase in contig
N50 length, phased chromosomes, and >6000 new genes. The new MD2 assembly also included
161.6 Mb additional sequences and >3000 extra genes compared to the F153 genome. Over 48%
of the predicted genes harbored potential deleterious mutations, indicating that the high level of
heterozygosity in this species contributes to maintaining functional alleles. The genome was used
to characterize the FAR1-RELATED SEQUENCE (FRS) genes that were expanded in pineapple and
rice. Transposed and dispersed duplications contributed to expanding the numbers of these genes in
the pineapple lineage. Several AcFRS genes were differentially expressed among tissue-types and
stages of flower development, suggesting that their expansion contributed to evolving specialized
functions in reproductive tissues. The new MD2 assembly will serve as a new reference for genetic
and genomic studies in pineapple.

Keywords: pineapple MD2; Ananas comosus; improved assembly; haplotype diversity; FHY3/FAR1
genes; FRS/FRF genes

1. Introduction

Pineapple is the second most important tropical fruit globally. The fruit, which contains
nutritionally valuable vitamins and bioactive enzymes (e.g., bromelain), is consumed in
both fresh and processed forms. Worldwide production was estimated at over 30 million
tons in 2019 (http://www.fao.org/, accessed on 23 March 2021). The consumption of
pineapple fruit and the use of pineapple-derived supplements has been steadily increasing
over the past decade and continues to increase each year [1]. ‘MD2’ is the most widely-
grown fresh fruit market cultivar by major production companies due to its consistently
large fruit size and better fruit quality as compared to other cultivars [2].

Developing new cultivars with improved characteristics is key to overcoming pro-
duction challenges (e.g., disease or abiotic stress) and responding to changes in market
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demand. The use of genomic resources helps to accelerate the process of cultivar devel-
opment, allowing breeders to meet consumer and grower needs more quickly than with
traditional breeding approaches alone [3]. Incorporation of advanced genetic and genomic
resources into a breeding program provides several advantages, including increased effi-
ciency when breeding for specific traits and reduced screening time for determining the
presence/absence of those traits in a breeding population [3].

Pineapple is a highly heterozygous diploid species with 25 chromosomes and an
estimated haploid genome size of 563 Mb [4]. Multiple genome assemblies for pineapple
representing two cultivars (MD2 and F153) and a close relative species (Ananas bracteatus,
CB5) are currently available. However, the quality of these genomes in terms of sequence
contiguity (contig N50) is relatively low (MD2 v1 = 57 kb). The MD2 v1 genome that
represents the most commonly grown pineapple variety is not anchored at the chromosome
level, and only 56% of the estimated genome size is anchored at the chromosome level
for the F153 genome [2,5]. Homologous chromosomes have not been fully phased for any
MD2 pineapple genome to date. New long-read sequencing technologies, such as PacBio,
allow for the iterative improvement of genome assemblies for economically important
crops, such as pineapple [6]. Genomic interaction data, such as Hi-C, facilitate the assembly
of high-quality scaffolds and the reconstruction of haplotype phases [7,8]. Also, gene
predictions obtained from long-read sequencing technology, such as PacBio Iso-Seq, allow
researchers to obtain full-length transcripts, increasing the reliability of the predictions [9].

To continue building on recent advances in pineapple genetics and genomics, here
we present a high-quality, phased, chromosome-scale assembly of MD2. Comparative
haplotype analysis was performed to study the potential impact of heterozygosity on allele
diversity. Comparison with previous pineapple and other crop genomes was performed to
highlight assembly and gene prediction improvements, potential chromosome rearrange-
ments, and to characterize regulatory and resistance genes, including the genes that code
for the transcription factor (TF) FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its ho-
molog FAR-RED-IMPAIRED RESPONSE1 (FAR1), as well as FAR1-RELATED SEQUENCE
(FRS) and FRS-RELATED FACTOR (FRF). These TFs make up the FRS/FRF family, which
has been implicated in multiple developmental functions including chloroplast division
and chlorophyll biosynthesis, circadian clock regulation, flowering time regulation, starch
biosynthesis, and the biotic and abiotic stress responses [10–13]. The results of this study
provide novel resources for genetic and genomic analyses in pineapple that are critical for
advancing modern breeding strategies in this crop.

2. Materials and Methods
2.1. Plant Material Collection, DNA and RNA Extraction, and Sequencing

A diploid, commercial fresh-fruit market variety, MD2, was used for whole-genome
sequencing with Pacific Biosciences (PacBio, Menlo Park, CA, USA) and Hi-C proxim-
ity ligation. Pineapple MD2 plants were shipped to Dr. Iorizzo’s lab from Dole in La
Ceiba, Honduras and grown in the greenhouse at the North Carolina Research Campus,
Kannapolis, NC, USA.

For DNA extraction, young leaves were harvested and then immediately frozen in
liquid nitrogen, stored at −80 ◦C, and freeze-dried for 24 h before use. Dried leaves were
ground into powder using a Genogrinder 2000 tissue homogenizer (SPEX SamplePrep,
Metuchen, NJ, USA). High molecular weight genomic DNA was extracted from dry pow-
dered leaf tissue using the CTAB method outlined in Charlotte et al. (2016) [14]. The DNA
quantity and purity were determined using a Qubit fluorometer (Invitrogen, Carlsbad, CA,
USA) and NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA),
respectively. DNA was also evaluated on a 0.8% agarose gel and Agilent 4200 TapeSta-
tion instrument (Agilent Technologies, Santa Clara, CA, USA) to determine the fragment
size distribution.

For RNA extraction, fresh tissues from the leaf, meristem, stem, root, flower, and
fruit of greenhouse-grown MD2 pineapples were harvested and ground in liquid nitrogen.
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Total RNA was extracted from collected tissues using the Sigma Spectrum Total RNA kit
(Sigma-Aldrich, St. Louis, MO, USA). RNA integrity was evaluated on a 1% agarose gel
and Agilent 2100 Bioanalyzer instrument. RNA was quantified using Qubit and the purity
was tested using NanoDrop.

A PacBio genomic library for MD2 was prepared using the SMRTbell Express Tem-
plate Prep Kit (Cat. #101-357-000) following the protocol for preparing >15 kb libraries
(PN 101-397-100) (Pacific Biosciences, Menlo Park, CA, USA). The SMRTbell library was
analyzed on the Agilent 4200 TapeStation instrument to determine if size-selection was
necessary prior to sequencing with the PacBio Sequel system at the David H. Murdock
Research Institute (DHMRI, Kannapolis, NC, USA). PacBio Iso-Seq libraries were pre-
pared with the SMRTbell Express Template Prep Kit 2.0 (Cat. #100-938-900) according
to the Iso-Seq Express Template Preparation for Sequel and Sequel II Systems protocol
(PN 101-763-800). For Iso-Seq library preparation, RNA from leaf, root, fruit, and flower
tissues were maintained separately to prepare one library each, while RNA from meristem
and stem tissues were combined in equimolar amounts to prepare one combined library.
A total of five libraries were prepared and each library was sequenced on a SMRT cell
with the PacBio Sequel system. The Hi-C library for MD2 was prepared using the Phase
Genomics Proximo Hi-C Plant Kit (Seattle, WA, USA). Quantity and quality checks were
performed by Phase Genomics, including qPCR analysis, electrophoretic assay on the
Agilent 2100 Bioanalyzer instrument, and spike-in control. Hi-C libraries were sequenced
with the Illumina HiSeq 2500 using 150 bp paired-end (2 × 150 bp) run chemistry.

The PacBio genomic reads were processed for error correction and to generate con-
sensus sequences using the FALCON pipeline [15]. Iso-Seq reads were further pro-
cessed with IsoSeq3 pipeline (https://github.com/PacificBiosciences/IsoSeq (accessed on
29 January 2019), with the ccs considering -min-rq 0.9, lima considering –isoseq –dump-
clips –no-pbi –peek-guess, and refine considering –require-polya and cluster), generating
circular consensus sequence (CCS) reads for subsequent data analysis. The Illumina Hi-C
sequences were quality-checked with FastQC (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/, accessed on 23 May 2019) and cleaned using Trimmomatic [16] (pa-
rameters: ILLUMINACLIP:2:30:10:2:TRUE SLIDINGWINDOW:10:30 LEADING:30 TRAIL-
ING:30 HEADCROP:10 MINLEN:45), which removed adapter sequences. PCR duplicates
were flagged for removal using SAMBLASTER [17]. After this step, cleaned sequences
were retained for downstream analysis.

2.2. Genome Assembly, Phasing, and Scaffolding

To generate an improved MD2 pineapple genome assembly, newly generated PacBio
long reads and Hi-C data were integrated. The new MD2 v2 genome assembly presented
here was generated using a de novo assembly approach, and four published pineapple
genome assemblies (MD2 v1, F153 v3, F153 v7 and CB5) [2,5,18] were used only for
comparative analysis.

A de novo assembly for MD2 was generated using a FALCON assembler [15]. FALCON-
UNZIP was later used to reconstruct the un-phased contigs (haplotigs) from the initially
assembled contigs [15]. In addition to the sequence error correction implemented in the
FALCON pipeline, Pilon v.1.24 [19] was used to further polish the assembled sequences
using the Hi-C Illumina short reads. Hi-C data were subsequently incorporated for further
phasing of the genome using FALCON-Phase [7], resulting in a fully-phased genome
assembly (phases P0 and P1).

Scaffolding of the MD2 v2 genome assembly was performed by Phase Genomics
using the Proximo pipeline (https://phasegenomics.com/products/proximo/, accessed on
26 August 2019). The haplotype-phased contigs (haplotigs) obtained from FALCON-Phase
were used as the input for scaffolding with Proximo, to create a chromosome-scale genome
assembly. A linkage map including 46,860 SSR markers was used to support cluster-
ing of contigs into pseudomolecules during the scaffolding analysis [20]. SSR marker
sequences developed for pineapple variety F153 were obtained from the Pineapple Ge-

https://github.com/PacificBiosciences/IsoSeq
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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nomics Database [20] and aligned against the MD2 v2 FALCON-Phase genome assembly
using BWA-aln (default parameters) [5,20]. Note that only the physical coordinates of
each SSR marker mapped in the F153 genome were publicly available and not the genetic
distance (cM).

The Hi-C interaction heat map in conjunction with the published SSR linkage map
were used to identify and correct chimeric regions following two conditions: (1) non-
collinearity with the order of the markers in the SSR linkage map, and (2) the presence of
gaps in the Hi-C interaction along the heatmap diagonal. The positions of these chimeric
regions were corrected to maximize the Hi-C interaction signals along the diagonal. After
this correction process, the F153 SSR linkage map aligned with high collinearity to the
25 chromosomes of the MD2 v2 assembly.

In both phases, the longest 25 scaffolds represented the 25 pineapple chromosomes.
The P0 and P1 assemblies were used as input files for a final step of error correction and
gap filling.

2.3. Assembly Error Correction and Gap-Filling

Assembly errors were manually corrected in Juicebox (v.1.8.8) [21]. Misassemblies and
incorrect sequence orientations were detected in the phased, scaffolded MD2 v2 assembly
by examining the Hi-C heatmap for zones of depleted genomic interaction (no red signals
along diagonal) and by performing a collinearity analysis with the linkage map as described
above. The genomic positions of the F153 SSR marker sequences in the MD2 v2 scaffolds
were compared to their genomic positions in the F153 v3 reference genome. The Hi-C
interaction heatmap provides a visual guide for assessing assembly quality. The red color
along the diagonal indicates points of interaction between neighboring genomic regions.
Off-diagonal red indicates: (1) highly repetitive genomic regions, such as centromeres or
telomeres, or (2) misassembled/chimeric sequences. When performing manual corrections,
in those cases where the collinearity analyses with the F153 SSR linkage map and Hi-C
interaction heatmap were not in agreement for a region, preference was given to the Hi-C
data. The rationale behind this criterion was based on the fact that the Hi-C data represent
the MD2 genome while the linkage map represents a different genetic background, and it
cannot be excluded that the differences between the linkage map and the MD2 genome
represent true structural differences.

The first round of manual corrections was based on the collinearity between the
F153 SSR linkage map (using marker locations of the F153 v3 genome) and the scaffolded
MD2 v2 genome. Assembly error corrections were only kept if they both improved the
collinearity with the SSR map and did not negatively affect the Hi-C interaction heatmap.
The second round of manual corrections was based solely on the Hi-C interaction heatmap
visualization. These first and second rounds of manual corrections were conducted on
each phase separately. Both phases were aligned to each other using the Nucmer module
of MUMmer4 [22] to identify regions of non-collinearity between individual haplotype
assemblies. Non-collinear regions, including differences in the order and orientation of
contigs between phases, were corrected based on the linkage map collinearity and the Hi-C
interaction heatmap as described above. After manual correction of the MD2 v2 genome
assembly, LR_GapCloser [23] was run with three iterations for gap-filling using the cleaned
genomic PacBio reads.

2.4. Genome Quality Analysis

Assembly quality was determined using several metrics that assess correctness, conti-
guity, and completeness. Assembly correctness was determined using the Hi-C heatmap,
F153 SSR linkage map collinearity, and by performing a contamination check against
fungal, bacterial, and viral genomes with NCBI BLASTn. Contiguity was determined
based on the contig and scaffold N50 lengths, the percentage of contigs anchored to
chromosomes, and the ratio of the overall number of contigs assembled to total assem-
bly length. Completeness was determined based on the overall percentage of estimated
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genome size assembled, long terminal repeat (LTR) assembly index (LAI) score [24], and
by using Benchmarking Universal Single-Copy Orthologs (BUSCO) v.3 [25] against the
embryophyta_odb10. The completeness of the assembly gene space was assessed using the
percentage of mapped transcriptome reads and the BUSCO score. Published transcriptomic
data for pineapple were obtained from the NCBI SRA database (project accession nos.
PRJNA648819, PRJNA648693, PRJNA494788, PRJNA393610, PRJNA356904, PRJNA331052,
PRJNA310033, PRJNA305042, PRJNA237705), and sequences were cleaned using Trim-
momatic [16] and quality-checked with FastQC. Transcripts were aligned to the MD2 v2
assembly P0 and P1 haplotypes separately using STAR [26] (–outSAMstrandField intronMotif
–outSAMattrIHstart 0 –outFilterMismatchNmax 2 –outSAMtype BAM SortedByCoordinate).

The MD2 v2 assembly was aligned against a previously sequenced pineapple genome
(F153 v7) and one representing a wild relative A. bracteatus (CB5) [5,18]. Both of these
assemblies were assembled at chromosome level. Alignment of the genomes was performed
using the Nucmer module of MUMmer4 (default parameters) and visualization of the
alignments was performed using the web-based tool, Dot (https://dnanexus.github.io/
dot/, accessed on 19 March 2020).

2.5. Genome Annotation

Gene models were predicted by implementing a hybrid strategy using the MAKER
pipeline, a tool for annotating a reference genome using empirical and ab initio gene
prediction deploying AUGUSTUS v.2.5.5 [27] and SNAP [28], as well as the GeMoMa
pipeline [29,30], a homology-based gene prediction program that predicts gene models
in target species based on gene models in evolutionary-related reference species. These
processes involved several iterations of homology-based and in silico gene prediction steps,
using high-throughput short- and long-read sequences as well as gene models obtained
from multiple closely related species and model organisms (A. comosus [5], Arabidopsis
thaliana [31], Carica papaya [32], Musa acuminata [33], Oryza sativa [34], Solanum lycoper-
sicum [35], Sorghum bicolor [36], Vitis vinifera [37], and Zea mays [38]), downloaded from
Phytozome and used as the input for training.

Structures of the predicted gene models were manually verified by aligning PacBio
Iso-Seq full-length transcripts using GMAP aligner (–min-identity = 0.99 –min-trimmed-
coverage = 0.95 –nosplicing) [39].

The putative function of the predicted genes was annotated using public databases,
including NCBI non-redundant protein, KOG, GO, and InterPro. NCBI BLASTx was
used to compare the predicted coding sequences (CDS) (e-value ≤ 1 × 10−10) with the
non-redundant protein database (downloaded in December 2020). Blast2GO v.1.4.11 was
used to annotate the GO terms of genes with default parameters. The protein domains
were annotated using the Blast2GO InterProScan module [40] based on all available pro-
tein databases.

Eukaryotic clustering of orthologous group (KOG) analysis was performed with
the eggNOG Mapper v.5.0 Blast2GO extension [41]. The eggNOG Mapper tool assigns
orthologs and transfers functions to query genes using phylogenetic inference.

Reciprocal, ungapped BLASTn alignments of MD2 v2 P0 and MD2 v1 CDSs with
query coverage and percent identity parameters set to 100 (-ungapped, -qcov_hsp_perc
100, and -perc_identity 100) revealed which genes had structural differences between the
two MD2 genomes. Additionally, a reciprocal BLASTn alignment (default parameters)
of MD2 v2, MD2 v1, and F153 v3 CDSs indicated which genes predicted in the MD2 v2
genome were not predicted in the previous genomes.

Salmon [42] (default parameters) was used to align Illumina RNA-seq reads from
the NCBI SRA database (project accession no. PRJNA305042) with the predicted genes to
determine if the new genes identified by BLASTn were expressed (TPM > 0).

Disease resistance genes (R-genes) and regulatory genes were predicted to assess how
the new MD2 v2 genome affected the prediction of some known important gene families.
Transcription factors (TFs), transcriptional regulators (TRs), and chromatin regulators (CRs)

https://dnanexus.github.io/dot/
https://dnanexus.github.io/dot/
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were identified using PlantTFcat [43] on pineapple MD2 v2, MD2 v1, and F153 v3 gene
models, as well as for various other species. R-genes were identified using DRAGO2 [44]
for the same set of gene models/species. The number of genes in each gene family was
compared between MD2 v2 and the published pineapple genomes to determine the number
of extra TFs, TRs, CRs and R-genes that were identified in this study.

The EDTA pipeline [45] was used to obtain a non-redundant catalog of TE families
using MD2 v2 P0. This step included running LTRharvest [46], LTR_FINDER_parallel [47],
and LTR_retriever [48] for detecting LTR-retrotransposons, GRF [49] and TIR-Learner [50]
for detecting TIR transposons, and HelitronScanner [51] for detecting Helitrons. Finally,
RepeatModeler (http://www.repeatmasker.org/RepeatModeler/, accessed on 20 March
2020) was used to complement the library with non-LTR retrotransposons and other TE
families bypassed by the previous tools.

RepeatMasker (http://www.repeatmasker.org, accessed on 3 April 2020) was used
to annotate the two MD v2 haplotypes, as well as the MD2 v1 [2], CB5 [18], and F153
v7 [18] genomes using our TE library (Supplementary Dataset S1). In parallel, intact LTR-
retrotransposons, TIRs, and Helitrons were identified in the four genomes by running the
corresponding ltr, tir, and helitron modules of the EDTA pipeline.

Then, a Perl script (parseRM.pl -p option, available at https://github.com/4ureliek/
Parsing-RepeatMasker-Outputs, accessed on 9 April 2020) was used to parse the raw
alignment outputs from RepeatMasker and get a detailed summary for each repeat family
and class as well as the total amount of repeats per genome. LTR-assembly index (LAI) [24]
and LTR-retrotransposon insertion age were calculated using LTR-retriever and compared
across the four genomes to provide additional support for the high quality of the MD2 v2
genome assembly.

2.6. Haplotype Comparison

Alignment-based comparison of the phased haplotypes of the MD2 pineapple assem-
bly was conducted using the pipeline recently developed for the phased diploid potato
genome [52]. Syntenic regions between the P0 and P1 haplotypes were identified and
plotted using MCScanX [53]. Homologous chromosomes were aligned using MUMmer
v.4.0 and structural variants (≥100 bp) were detected from differences reported by the
show-diff function. Presence and absence variation (PAV) genes were identified and defined
as genes that lacked a homolog on the complementary haplotype, while its surrounding
genes had homologs that were collinear in position between the two haplotypes. SNPs and
indels between haplotypes were annotated using SnpEff [54].

2.7. Identification and Characterization of FRS/FRF Transcription Factors

TFs identified with PlantTFcat were compared across multiple monocot and dicot
species to determine if any contraction or expansion of specific gene families occurred
in pineapple. Based on the prediction of TFs in pineapple and other genomes, and in
pineapple and rice, both members of the order Poales within the monocot lineage had a
larger number of genes belonging to the FRS/FRF family (see Section 3.6). Therefore, this
gene family was characterized in terms of the mode of duplication, shared ancestry, and
pattern of expression across different tissue and flower developmental stages.

Ortholog prediction of FRS/FRF genes from pineapple and other species was per-
formed using OrthoMCL v.2.0.9 (https://orthomcl.org, accessed on 7 January 2021) [55].
To explore the evolutionary relationships of FRS/FRF gene family members in pineapple,
the FRS/FRF amino acid sequences from pineapple and other species were used. Mul-
tiple sequence alignments of all FRS/FRF proteins were performed by using MUSCLE
(https://www.ebi.ac.uk/Tools/msa/muscle/, accessed on 17 August 2021) [56], with
default parameters. Subsequently, phylogenetic trees were constructed using MEGA-X
v.10.2.6 software (http://www.megasoftware.net, accessed on 17 August 2021) [57] via the
maximum-likelihood (ML) method with the following parameters: node robustness was
detected using the bootstrap method, and the bootstrap was set to 100 replications.

http://www.repeatmasker.org/RepeatModeler/
http://www.repeatmasker.org
https://github.com/4ureliek/Parsing-RepeatMasker-Outputs
https://github.com/4ureliek/Parsing-RepeatMasker-Outputs
https://orthomcl.org
https://www.ebi.ac.uk/Tools/msa/muscle/
http://www.megasoftware.net
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The tissue-specific expression, level of expression (measured as FPKM), and differential
expression between tissues were evaluated with RSEM [58] using RNA-seq data from NCBI
Bioprojects 483249 and 656750. An AcFRS gene was considered not to be expressed if it
had FPKM <2. AcFRS genes with FPKM ≥2 were considered to be expressed and AcFRS
genes with FPKM ≥10 were considered “highly” expressed. NCBI Bioprojects 483249 and
483249 were used for differential expression analysis (up- or downregulated genes). For
RNA-seq data analysis and interpretation of the results, each Bioproject was treated as an
independent experiment. NCBI Bioproject 483249 is comprised of 11 different pineapple
tissues representing the transcriptome during fruit development, and NCBI Bioproject
656750 is comprised of 27 different pineapple floral tissues representing the transcriptome
during flowering.

3. Results and Discussion
3.1. Genome Assembly and Quality Assessment

In total, 32.6 Gb of raw PacBio whole-genome sequences, 52 Gb of Hi-C interaction
data, and 143.7 Gb of Pacbio Iso-Seq sequences were generated (Supplementary Tables
S1 and S2). Error correction and consensus generation of the raw PacBio genomic reads
resulted in 2,014,848 (~25 Gb) high-quality error-corrected consensus sequences. A total
of 125,054 (~201 Mb) polished, high-quality full-length circular consensus sequence (CCS)
Iso-Seq reads were generated for subsequent data analysis (Supplementary Table S1).
After trimming the Illumina Hi-C reads and removing PCR duplicates, 49 Gb of cleaned
sequences were retained for downstream analysis.

PacBio sequences were used to perform de novo assembly and Hi-C sequences along
with a linkage map were used to scaffold and phase the assembly [8], correct chimeric
regions, and anchor the assembly to chromosomes (Supplementary Table S3). Gap-filling
of the assembly with LR_Gapcloser resulted in ~63 kb additional known sequence added
(Supplementary Table S4). The final phased assembly spanned 1.075 Gb, including 543.5 Mb
for P0 and 531.6 Mb for P1 (Table 1 and Supplementary Table S3), accounting for ~96.5% (P0)
of the estimated genome size (563 Mb per haploid phase) [4]. Each phase of the assembly
contained 63 scaffolds and contigs, and 99.7% of the P0 and P1 assembled sequences were
anchored to 50 chromosomes (25 chromosomes for each phase) (Figure 1a).

Table 1. Statistics of the MD2 v2 pineapple genome assembly and gene prediction.

MD2 v2 P0 MD2 v2 P1

# Length [bp] % # Length [bp] %

Assembly feature
Sequences 63 543,505,080 96.5 */101.0 ** 63 531,615,398 94.4 */98.8 **

Contigs 812 543,433,016 96.5 */101.0 ** 805 531,544,088 94.4 */98.8 **
Max. sequence length 43,498,842 42,511,760

Min. contig length 5678 4092
Max. contig length 5,969,083 5,971,173
Contig N50 length 1,524,720 1,521,169

Scaffold N50 length 21,996,178 23,016,244
Chromosome-anchored sequence 541,772,120 99.7 529,885,665 99.7

Genome annotation
Transposable element content 337,179,261 62.0 329,341,567 62.0

Gene models 30,591 35,382,141 29,550 34,906,836
Genes in pseudomolecules 30,590 35,382,088 100 29,550 34,906,836 100

* Estimated genome size of 563 Mb. ** Estimated genome size of 526 Mb. # indicates number of sequences for a
given metric.

The F153 SSR linkage map aligned with high collinearity to the 25 chromosomes,
demonstrating correct ordering and orientation of the final MD2 v2 assembly (Supplemen-
tary Figure S1). Similarly, the Hi-C heatmap showed a uniform distribution of genomic
interactions along the diagonal, demonstrating the proximity of the assembled sequences
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and the quality of the assembly (Figure 1b and Supplementary Figure S2). The overall
N50 in P0 and P1 was >22 Mb and the contig N50 was >1.5 Mb, similar to those of other
high-quality genome assemblies, such as Actinidia chinensis v3.0 and S. bicolor v3.0 [36,59].
The longest chromosome (Chr 1) spanned 43.5 Mb and the shortest (Chr 25) spanned 4.4 Mb
(Supplementary Table S5). The length of the longest contig was >5.9 Mb, covering a large
part of the chromosome 13 long arm.

Figure 1. MD2 v2 P0 genomic features’ landscape and comparative analysis. (a) CIRCOS plot
illustrating the location/density of gene models, Ty3/Gypsy LTR, Ty1/Copia LTR, and LTR Assembly
Index (LAI) score along the MD2 v2 P0 assembled chromosomes; (b) Visual representation of the
quality of the MD2 v2 genome compared to other high-quality pineapple genomes (F153 v7 and CB5).
Numbers in the x and y axes represent Mb sequences. Additional sequences assembled in MD2 v2
were primarily located in regions with high amounts of repeats (i.e., centromeres, highlighted with
red shaded boxes). Contiguous interaction along the Hi-C plot validates the quality of the newly
assembled regions. In each chromosome comparison, the number highlighted in red indicates the
additional sequences assembled in the MD2 v2 assembly.

Gene space in the MD v2 assembly was assessed using transcriptome sequences
and BUSCO analysis. Mapping 222 sets of transcriptome sequences from the NCBI SRA
database indicated that 95.5% aligned with the MD2 v2 genome assembly (Supplementary
Table S6). BUSCO analysis indicated that >97% conserved genes had a match in the MD v2
genome, of which >95% were detected as a complete structure. These results demonstrated
that this assembly covered the majority of the gene space. Finally, no significant sequence
contamination was detected by BLASTn alignment against a custom-made database that
included bacterial, viral, and fungal DNA sequences.
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3.2. Genome Assembly Comparisons

Comparison of all the currently available Ananas sp. genomes highlighted major im-
provements in the MD2 v2 assembly and some interspecific chromosomal rearrangements.

Compared to the previous MD2 v1 assembly, the MD2 v2 assembly had a 26.6-fold
increase in contig N50 length, 19.4 Mb of total additional sequence (including Ns), and
33.5 Mb of additional known sequence at the contig level (Table 2). Most importantly, the
MD2 v2 was assembled at the chromosome level and phased, while the MD2 v1 was only
assembled at the scaffold level and not phased. The MD2 v2 assembly had a 13.3-fold
increase in contig N50 length over the F153 v7 genome, 161.6 Mb of total additional
sequence, and 168.3 Mb of additional known sequence at the contig level (Table 2). This
represented >30% of the estimated genome size.

Table 2. Assembly statistical comparisons between MD2 v2 and publicly available pineapple genomes.

MD2 v2 P0 vs. MD2 v1 MD2 v2 P0 vs. F153 v7 MD2 v2 P0 vs. CB5

# Length [bp] %/Fold
Change # Length [bp] %/Fold

Change # Length [bp] %/Fold
Change

Assembly feature

Sequences −8385 +19,435,418 +3.5% */
+3.6% ** −3070 +161,599,861 +28.7% */

+30.7% ** −40 +30,269,689 +5.4% */
+5.6% **

Contigs −20,927 +33,521,821 +6.0% */
+6.2% ** −8550 +168,298,756 +29.9% */

32.0% ** −1158 +30,384,325 +5.4% */
+5.6% **

Max. sequence length +42,211,785 +33.8
Fold +26,164,174 +2.5 Fold +16,366,087 +1.6 Fold

Min. contig length +5677 +5678
Fold +5497 +30.4

Fold −6456 −2.1
Fold

Max. contig length +4,742,061 +4.9 Fold +4,957,247 +5.9 Fold +3,781,837 +2.7 Fold

Contig N50 length +1,467,419 +26.6
Fold +1,410,093 +13.3

Fold +1,098,024 +3.6 Fold

Scaffold N50 length +21,843,094 +143.7
Fold +10,290,687 +1.9 Fold +1,817,735 +1.1 Fold

Chromosome-anchored sequence * +541,772,120 NA +225,928,334 +40.1% +55,160,525 +9.8%
Genome annotation

Transposable element content +26,531,143 +2.76% +136,080,198 +10.03% +38,062,886 +3.76%
Gene models +6993 +7,217,109 +3567 +3,729,585 NA NA NA

Genes in pseudomolecules NA NA +6698 +6,439,201 NA NA NA

* Estimated genome size of 563 Mb. ** Estimated genome size of 526 Mb. NA indicates cases where data for
calculating differences were not available for the published genomes. # indicates number of sequences for a
given metric.

Compared to the A. comosus genomes that are assembled at the chromosome scale [18],
MD2 v2 had 40.1% more of its sequence anchored to chromosomes than F153 (Table 2).

At the structural level, the comparison with F153 v7 [18] indicated that the assemblies
were highly collinear; however, several novel sequences appeared to be inserted into the
MD2 v2 assembly (Supplementary Figure S3). Over 33 Mb (76% of its length) of new known
sequences were assembled in chromosome 1, and a total of 10 chromosomes in the MD2
v2 assembly had >10 Mb of additional known sequence compared to the corresponding
chromosomes from F153 v7 (Supplementary Table S7). The increase in known sequence
content could be partially attributed to the fact that more repetitive regions were sequenced
and assembled in the MD2 v2 assembly (Figure 1a,b). Regions of high repeat density in
the MD2 v2 chromosomes coincided with newly assembled sequence regions (Figure 1b).
MD2 v2 chromosome 25 was the only chromosome in the assembly that was smaller than
(and, therefore, had less known sequence) the corresponding chromosome in F153 v7.
This difference was due to chimeric sequences identified in the F153 v7 chromosome 25.
Indeed, the F153 SSR linkage map and MD2 Hi-C data supported the assembled structure
of MD2 v2 chromosome 25 (Supplementary Figure S4). Other potential chimeric regions
and very large gaps in the F153 v7 chromosomes also existed (Supplementary Figure S3).
For example, the MD2 v2 chromosome 1 was collinear to F153 v7 chromosome 1 and 24,
indicating that the F153 v7 chromosome 1 and 24 should be combined into one sequence
(Supplementary Figure S3). These results were supported by the contiguous interaction in
the Hi-C heatmap for MD2 v2 chromosome 1 (Supplementary Figure S2).
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Comparison with the CB5 genome (A. bracteatus) [18] revealed moderate collinearity
with multiple rearrangements, including a small and large inversion in CB5 chromosomes
12 and 8 (Supplementary Figure S5a,b), respectively, and large translocations in CB5
chromosomes 3, 7, 11, 19, and 20 (Figure 1b and Supplementary Figure S6). To gain some
preliminary support for the presence of these chromosome rearrangements, the interaction
signals of the MD2 Hi-C data mapped to the CB5 genome were used for verification.
Non-collinear regions of CB5 chromosomes 8 and 12 were manually inverted to establish
putative collinear regions. After the manual inversions, the sequence spanning the breaking
points of the inverted regions had strong Hi-C interaction signals outside of the diagonal,
indicating that these regions were more proximal, consistent with the original CB5 assembly
(Supplementary Figure S7). These results suggested that the rearrangements represented
true interspecific chromosomal differences between the CB5 and MD2 genomes.

3.3. Repetitive Sequence Annotation and Analysis

TEs accounted for about 62% of the MD2 v2 pineapple genome (P0 and P1) (Supple-
mentary Table S8). The two phases slightly differed, with the sequence masked 337.17 Mb
for P0 and 329.34 Mb for P1. On average, the MD2 v2 class I elements (LTR, LINE, and
SINE) and class II elements (TIR, MITE, and Helitron) occupied 211.85 and 121.4 Mb
DNA sequences, accounting for 39.41% and 22.58% of the genome, respectively. Among
LTR-TE, Ty3/Gypsy and Ty1/Copia represented approximately 24.94% and 6.72% of the
genome, respectively.

Compared to the previous MD2 v1 assembly, the MD2 v2 has about 22.61 Mb ad-
ditional sequence annotated as TE, with most of this difference being due to an increase
(1.76%) in Ty3/Gypsy LTR elements (Figure 1). Wider differences were instead observed in
comparisons with the other pineapple genomes considered, showing an increase of about
4% and 10% over CB5 and F153 v7, respectively (Supplementary Table S8).

Up to 12,630 and 12,439 intact TEs were annotated in the MD2 v2 P0 and P1 haplotypes,
respectively, in contrast to the 5721 annotated in the previous MD2 v1 genome (Figure 2a).
This increment was found in LTR, TIR, MITE, and Helitron, but it was especially evident in
the LTR order. These elements occupied up to 61.9% of the MD2 v2 genome and 59.11%
in the MD2 v1 genome. The LTR-assembly index (raw LAI) of MD2 v2 ranged from
21.29 (P0) to 21.77 (P1), whereas for MD2 v1 it was 6.63 (Figure 2b), indicating a much
higher proportion of intact vs. total LTR-retrotransposons in the MD2 v2 genome, the
result of an improved assembly. The LAI score was evenly high across all the chromosomes
(Figure 1a). The corrected LAI index of MD2 v2 (19.66, P1) was comparable or superior to
other high-quality plant reference genomes (i.e., Arabidopsis TAIR10: 14.9, rice MSU7: 21.1,
and maize B73 v4: 20.7 [24]). In comparison to the CB5 and F153 v7 genomes, MD2 v2 also
showed a significantly higher LAI and proportion of intact elements (Figure 2a,b).

Analysis of the LTR-retrotransposon insertion time in MD2 v2 showed a strong peak
of activity at 200 Ky and a very low number of old elements (Figure 2c). A similar profile
was found in the CB5 genome, and to a lower extent, in MD2 v1. F153 v7 lacked recent LTR-
retrotransposon peaks and had a peak of activity at approximately 1.6 My. The distribution
of elements per age suggested that the younger elements, likely forming large regions of
repetitive sequences with high similarity, could not be assembled in the F153 v7, but were
assembled in the MD2 V2 assembly.

3.4. Gene Prediction and Annotation

In total, 60,141 gene models for the diploid-phased MD2 v2 genome were predicted;
30,591 and 29,550 in P0 and P1, respectively. This represented over 6000 and 3000 extra
genes compared with the MD2 v1 and F153 genomes, respectively. Overall, the general
statistics (e.g., gene length, intron and exon length) of the predicted MD2 v2 gene models
were in line with previously predicted gene sets for pineapple MD2 v1 and F153 v3, as well
as gene sets for eight non-pineapple species (Supplementary Table S9). The same set of
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predicted genes was reported for both F153 v3 [5] and F153 v7 [18]; therefore, one gene
prediction was used for comparisons of MD2 v2 and F153.

Figure 2. Annotation of repetitive sequences in MD2 v2 and other pineapple genomes (MD2 v1, F153
v7, and CB5). (a) Intact transposable elements (TEs) assembled in each pineapple genome; (b) Raw
LTR Assembly Index (LAI) score for each pineapple genome. The LAI score is calculated as the
ratio of intact elements to total elements in the assembly; therefore, a higher LAI score indicates a
higher quality assembly with a larger proportion of intact elements assembled; (c) Insertion time for
Ty3/Gypsy LTR and Ty1/Copia LTR elements in pineapple genomes. Lower insertion time indicates
more recent origin. Density was calculated using the function geom_density from ggplot2 using the
insertion time of all intact elements in million years.

In the MD2 v2 assembly, the structures of 15,275 and 13,655 genes were supported
by PacBio Iso-Seq transcript alignment in the P0 and P1 haplotypes, respectively. BUSCO
analysis of MD2 indicated that the v2 predicted gene set had an 11.8% and 4% higher
rate of completeness compared to v1 and F153 v3, respectively and the least number of
fragmented genes (Supplementary Table S10).

BLASTn alignments of MD2 v2 P0 and MD2 v1 CDSs revealed that only 3612 genes had
an identical structure, while the majority of the predicted genes had a different structure.
Iso-Seq data supported the quality of the MD2 v2 gene prediction (Supplementary Figure
S8a,b). Additionally, reciprocal BLASTn alignment of MD2 v1 and v2 CDS indicated that
a total of 5689 genes predicted in the v2 genome were not predicted in the v1 genome.
Also, a total of 2060 genes predicted in the MD2 v2 genome were not predicted in the F153
v3 genome and 1483 genes had no BLAST hits to genes in either the MD2 v1 or F153 v3
genomes; therefore, these were designated as novel genes in pineapple.
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Alignment of Illumina RNA-seq reads from the NCBI SRA database with the full set
of predicted genes showed that 911 of the new genes were expressed, providing additional
evidence for the functional relevance of these novel pineapple genes.

In MD2 v2 P0, 19,552 (64%) genes were fully annotated with computationally reliable
GO terms, 2709 (9%) genes were assigned a putative GO term, and 6384 (21%) genes had
BLAST hits, but no associated GO terms. Overall, only 1946 (6%) genes had no functional
annotation assignments. In the MD2 v2 P1 haplotype, 19,832 (67%) genes were annotated
with GO terms and 2412 (8%) genes had a putative GO assignment. One hundred and
fifty (1%) genes had protein domain hits to the InterProScan database, but did not have
any BLAST hits to the non-redundant protein database. Finally, 5729 (19%) genes had
BLAST hits but no associated GO terms and 1427 (5%) genes had no functional annotation
assignments.

Overall, 26,982 KOGs were obtained from the analysis. A total of 25,368 (83%) genes
were assigned to at least one KOG functional category based on orthologous proteins
(Supplementary Figure S9), which means that some of the annotated genes were assigned
to more than one orthologous group. A large portion (83%) of the predicted genes were suc-
cessfully assigned a function based on orthologous group clustering, providing additional
evidence for the new predictions.

Forty-eight percent of the novel MD2 v2 genes were annotated with at least one of
the databases used (Supplementary Figure S10) and the distribution of KOG functional
categories assigned to the novel genes (Supplementary Figure S11) was similar to that of
the complete set of predicted genes, except the set of novel genes had a higher proportion
of sequences associated with DNA replication, recombination, and repair functions. Direct
GO counts of the novel genes indicated that they function in a diverse array of biological
processes, including DNA integration and repair, telomere maintenance, protease activity,
and flowering (Supplementary Figure S12).

The pineapple MD2 v2 P0 assembly encoded 3550 regulatory genes (TF, TR, and CR)
and 1467 R-genes (Supplementary Tables S11 and S12). The MD2 v2 predicted gene set en-
coded 686 and 662 additional regulatory genes (TF, TR, and CR) and 118 and 211 additional
R-genes compared to former pineapple gene sets MD2 v1 and F153 v3, respectively.

3.5. Haplotype Comparison

To provide insight into the divergence between the two haplotypes, we estimated
polymorphisms between the 25 homologous chromosome pairs. Based on the alignment of
the genes on the two haplotypes, 185 syntenic blocks were identified. Between homologous
chromosomes, 13,367,404 SNPs, 1,998,259 INDELs, and 12,468 structural variants (SVs,
>50 bp) were identified (Figure 3 and Supplementary Figure S13; Supplementary Table S13).
Among the SVs identified, 548 SVs spanned >10 kb. Comparison of the two haplotypes
exhibited an intragenomic diversity ranging from 1.1% on chromosome 6 to 4.5% on
chromosome 18 (Figure 3 and Supplementary Figure S13; Supplementary Table S13). Based
on synteny and annotation, out of 60,141 predicted genes in the two haplotypes, 28,811 pairs
(56,167 genes, 93% of all predicted genes) were identified as having homologs on the two
haplotypes, and therefore, were considered as homologous gene pairs.

Among them, 12,745 gene pairs harbored variants with moderate to high impact on
the protein coding regions, which could represent potential alternative alleles. Furthermore,
a total of 3974 present and absent (PAV) genes were identified between the two haplotypes.

GO enrichment analysis for the PAV genes identified 26 GO terms including 18 biologi-
cal processes, five molecular functions and three cellular components that were significantly
enriched. Biological processes such as DNA integration, positive regulation of the hydrogen
peroxide metabolic process, base-excision repair, and AP site formation via deaminated
base removal were the most enriched GO terms (Supplementary Table S14). ADP bind-
ing, pre-mRNA 5′-splice site binding, and 5′-deoxyribose-5-phosphate lyase activity were
among the molecular functions that were significantly enriched in the GO terms; these
biological processes were located in cellular components such as the spindle pole body and



Genes 2022, 13, 52 13 of 20

eukaryotic translation initiation factor 3 complex. In addition to these genes with GO term
annotation, 219 were also identified as R-genes. These results suggested that PAV genes
may play an important role in cellular maintenance and defense.

Figure 3. Haplotype diversity in the MD2 chromosome 3. The central blue bars represent the
two haplotypes of chromosome 3. The gray lines indicate collinear genes. Outer plots include:
distribution of genes (green), SNP density (cyan), INDEL density (pink), and density of potential
deleterious effect variants (red). All numbers were determined in 200 kb windows.

3.6. Characterization of FRS/FRF Family Transcription Factors

Comparative analysis of TFs revealed that pineapple and rice harbored a larger number
of FRS/FRF genes. A total of 82 pineapple MD2 v2 and 84 rice genes were identified
as proteins containing the FAR1 DNA binding domain (IPR004330). Among the other
genomes included in this analysis, the number of genes predicted as FRS/FRF family genes
was much lower, ranging from six in banana (M. acuminata) to 49 in sorghum (S. bicolor)
(Supplementary Table S11). Interestingly, the number of FRS/FRF genes was also lower in
F153. It is unlikely that the larger number of genes detected in MD2 represents an expansion
relative to F153 since they represent the same species and germplasm pool. Given the
overall lower number of genes predicted in the F153 genome (Table 2), we readily suggest
that this difference is due to misprediction in F153. Due to the large number of FRS/FRF
genes in pineapple MD2 and rice, we wanted to investigate to what degree the expansion of
this gene family was the result of shared duplications versus lineage-specific duplications.
Also, we wanted to investigate which specific subgroups expanded their potential function
by orthology, and their possible functional specialization. In the model species Arabidopsis,
the FRS/FRF family has been implicated in multiple developmental functions related to
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traits of particular importance for pineapple cultivar development [5], including circadian
clock regulation and flowering time regulation [10–13]. Recent work in pineapple identified
FRS genes as being implicated in flower ovule development [60]. Characterizing this family
of genes will lay the foundaition for future genetic studies in pineapple. To this end, the
curated annotation, mode of duplication, evolutionary/phylogenetic relationships, and
pattern of expression were characterized. Since the FRS/FRF family of TFs is derived from
ancient transposases and contains a transposase domain, all AcFRS genes were searched
against a plant TE database using BLASTn. None of the predicted AcFRSs had significant
similarity with TEs. In addition, predicted AcFRS genes harbored other conserved domains
including: Nuclear transcription factor Y subunit A (IPR001289), Zinc finger CCHC-type
(IPR001878), WRKY domain (IPR003657), and Zinc finger PMZ-type (IPR006564). These
results demonstrated that the predicted AcFRS genes were not TEs. It is also important to
note that 19 AcFRS genes (23%) were PAV genes and 10 were part of the novel genes that
were not predicted in the previous pineapple genome assemblies. This observation further
demonstrated the value of the MD2 v2 assembly and gene prediction improvements.

The AcFRSs were grouped into one of seven groups (A–G) based on their domain
content (Supplementary Table S15) and named as AcFRS1-AcFRS82. Specific DNA binding
domains within a TF protein determine its potential targets for transcriptional regulation.
All identified MD2 v2 FRS/FRF family genes contained at least a FAR1 DNA binding
domain (IPR004330), and the majority (62) contained the MULE transposase domain
(IPR018289) (Supplementary Figure S14). Group G, containing genes with a FAR1 DNA
binding domain (IPR004330) and Zinc finger PMZ-type domain (IPR006564), made up
the majority of AcFRS genes (46, 56%). The second largest group (F, 29 genes) contained
genes with only the FAR1 DNA binding domain (IPR004330). Groups A–D each contained
only a single gene. Group A contained a single gene with the Nuclear transcription factor
Y subunit A (IPR001289), FAR1 DNA binding (IPR004330), and Zinc finger PMZ-type
(IPR006564) domains. Group B contained a single gene with four domains: Zinc finger
CCHC-type (IPR001878), WRKY (IPR003657), FAR1 DNA binding (IPR004330), and Zinc
finger PMZ-type (IPR006564). Group C contained a single gene with Zinc finger CCHC-type
(IPR001878) and FAR1 DNA binding (IPR004330) domains. Group D contained a single
gene with Zinc finger CCHC-type (IPR001878), FAR1 DNA binding (IPR004330), and Zinc
finger PMZ-type (IPR006564) domains. Finally, group E contained three genes with WRKY
(IPR003657), FAR1 DNA binding (IPR004330), and Zinc finger PMZ-type (IPR006564)
domains. We speculate that the differences in domain structure among the AcFRS groups
create a complex network of FRS/FRF family TFs with both new and overlapping functions
that are capable of binding a wide range of cis-elements of target genes. Among the AcFRSs,
group G appears to be expanded, and therefore, is more likely to contain genes that serve
redundant roles; some may have acquired new functions or new targets as a result of
expansion in this group.

Orthologous analysis of FRS TF proteins from all species resulted in 57 total groups
(Supplementary Table S16). Twenty-three of those groups included at least one FRS genes
from pineapple genomes (MD2 and F153) and nineteen groups included at least one FRS
gene from rice. The majority (>65%) of the pineapple FRS genes grouped with orthologous
FRS from other species, including some that have been functionally characterized. For
instance, orthogroup 533 included nine AcFRSs, as well as Arabidopsis orthologs FHY3
and FAR1 that respond to light signals to regulate/modulate multiple processes including
flowering time, seed dormancy, starch synthesis, the shade avoidance response, and balance
between growth and defense responses under shade conditions [10,61]. Orthogroup 304
included eight AcFRSs and Arabidopsis FRS7 and FRS12, which coregulate flowering time
and glucosinolate biosynthesis [62,63]. Orthogroup 756 included six AcFRSs and Arabidopsis
FRS6 and FRS8, which have been suggested to regulate flowering time [64]. Interestingly, in
these three orthogroups (304, 533, and 756), the number of AcFRS genes was higher than in
the other species, suggesting that pineapple may have evolved FRS orthologs with new or
specialized functions. In comparison with rice FRS (OsFRS) genes, we noted that although
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rice and pineapple share several FRS orthologous groups, the groups that harbor a larger
number of FRS genes in each species are different (e.g., group 240: 19 AcFRS and 1 OsFRS).
This demonstrated that independent duplication events contributed to accumulating the
larger number of FRS genes observed within the Poales lineage.

Phylogenetic analysis clustered FRS/FRF genes into eight clades, four of which were
split into two subclades (Figure 4). In this analysis, only phylogenetic clades that contained
either pineapple or Arabidopsis FRSs were assigned a clade number (clade I–VII). Neither
orthologous nor phylogenetic analyses appeared to group the AcFRS proteins based on their
conserved domains. Phylogenetic clade VIB contained only pineapple-derived FRS/FRF
genes and clade IIB contained primarily pineapple FRS/FRF genes (pineapple and one
single papaya gene). One phylogenetic group containing O. sativa FRS/FRF genes (clade
VB) did not contain any pineapple FRS/FRF genes. Within clades containing both pineapple
and rice FRS/FRF genes, there was a clear separation between pineapple FRS/FRF genes
and O. sativa FRS/FRF genes. These results suggest that the expansion of the FRS/FRF
gene family in pineapple and rice was largely the result of independent expansion events.
However, some shared signatures of conservation within this lineage were observed. For
example, within clade VII, 84 out of 93 (90%) FRS/FRF genes belonged to Poales species,
suggesting that the ancestor of this clade was selected within this lineage and duplicated
independently after their divergence.

Figure 4. Phylogenetic tree of FRS/FRF genes from MD2 v2, other pineapple genomes (MD2 v1 and
F153 v3), and eight non-pineapple species (A. thaliana, C. papaya, M. acuminata, O. sativa, S. lycopersicum,
S. bicolor, V. vinifera, and Z. mays). Only clades containing FRS/FRF genes from MD2 v2 or Arabidopsis
were numbered (Clades I–VIII). Gene names in orange correspond to pineapple MD2 v2, yellow
correspond to other pineapple genomes (MD2 v1 and F153 v3), and green correspond to A. thaliana.
Duplication mode is indicated by branch color. Differentially expressed (DE) MD2 v2 genes are
indicated by colored circles or triangles next to gene names.



Genes 2022, 13, 52 16 of 20

To examine the potential mechanism underlying the FRS/FRF family expansion in
pineapple, AcFRS duplicated gene pairs were identified with DupGen_finder software [65],
which classified each pair into one of five categories of duplicated gene pairs: whole genome
duplication (WGD), tandem duplication (TD), proximal duplication (PD), transposed
duplication (TRD), and dispersed duplication (DSD) pairs. Among these categories, the
DSD category had the most duplicated gene pairs (121), followed by the TRD category
(38) (Supplementary Table S17). FRS/FRF genes are derived from TEs [12]; therefore, the
results of the duplication mode analysis were consistent with what would be expected for
these genes. In other genomes, such as rose, it has been demonstrated that the FRS/FRF
gene family likely expanded due to TE-associated DSD [66]. The DSD and TRD modes
of duplication contributed to accumulating a larger number of FRS genes in pineapple,
which evolved in pineapple-specific clades (IIB and VIB) and may have acquired new
specialized function within the pineapple lineage. For instance, 10 AcFRSs grouped in
the same subclade (IIA) as Arabidopsis AtFRS6 and AtFRS8, but subclade IIB has eleven
additional AcFRSs with no proximal Arabidopsis FRS/FRF genes. AtFRS6 and AtFRS8 have
been shown to negatively regulate flowering time [64]; therefore, AcFRSs in clade II may
play a role in regulating the flowering time in pineapple. AcFRSs in subclade IIB may have
acquired new functions related to flowering, leading to divergence from the AcFRSs in
subclade IIA.

Available RNAseq data were used to evaluate the tissue-specific expression, expression
level, and differential expression of AcFRS genes. This analysis revealed that 13 AcFRSs
were expressed in all tissues, while 69 were expressed in at least one tissue and 13 were not
expressed (Supplementary Table S18). Several AcFRSs were specifically expressed in bract,
ovule, petal, sepal, and/or stamen tissue and highly expressed in the ovule, stamen, and
gynoecium.

Differential expression analysis across 11 different pineapple tissues representing the
transcriptome during fruit development revealed that three AcFRS genes were specifically
upregulated in bract tissue and two were upregulated in both the bract and sepal (Sup-
plementary Table S19). Differential expression analysis across 27 different floral tissues at
different developmental stages identified 30 differentially expressed AcFRS genes. Of these,
18 were upregulated in one or more tissues, including a subset DE during ovule, sepal and
stamen development, and 12 were downregulated, including nine during the final stages
of petal development.

Overall, out of 32 unique DE genes, the majority (23, 72%) were derived from pineapple
lineage-specific duplication (e.g., clade VIB), through transposed or dispersed duplication
mechanisms (Figure 4). Similarly, all eight genes expressed in a tissue-specific manner were
duplicated through a dispersed or transposed mechanism. These results demonstrated
that expansion of AcFRS genes in the pineapple lineage contributed to evolving special-
ized expression patterns in reproductive tissues, which may have resulted in specialized
functions related to the light-signaling pathway in floral tissues and reproductive organ
development. These results complement previous findings, indicating that FRS/FRF genes
in pineapple are one of the TF gene families highly expressed in flower tissue [67].

4. Conclusions

The final MD2 v2 assembly presented in this study represents the first MD2 chromosome-
scale level assembly and the first pineapple phased genome assembly. Comparative analysis
with all available pineapple genomes demonstrated higher completeness in term of se-
quence contiguity, gene content, and structure. Haplotype analysis, uncovered at the
genomic level, the impact that the high level of heterozygosity maintained in this crop due
its outcrossing nature has on genes’ content and allelic diversity. Comparative analysis
with the genome of its close relative A. bracteatus highlighted some major genomic differen-
tiation. Overall, the MD2 v2 genome assembly represents the most complete assembly of
the pineapple cultivated germplasm. In conclusion, the MD2 v2 genome represents a new
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valuable resource for genetic and comparative genome analysis in pineapple that is critical
for advancing marker-assisted breeding strategies in this crop.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13010052/s1, Figure S1: Alignment of the SSR marker sequences representing the
F153 linkage map against the MD2 v2 chromosomes, Figure S2: MD2 v2 assembly Hi-C heatmap
showing a uniform distribution of genomic interactions along the diagonal (indicated by red color
on the diagonal), Figure S3: Nucmer alignment of the MD2 v2 P0 and F153 v7 genome assemblies.
Large gaps are circled in red to highlight improvements in the MD2 v2 assembly, Figure S4: SSR
linkage map (left) and Hi-C data (right) before (a) and after (b) correction of MD2 v2 chromosome 25,
Figure S5: Small (a) and large (b) inversions in CB5 chromosome 12 and chromosome 8, respectively,
Figure S6: Example of intrachromosomal translocation in CB5 chromosome 19, Figure S7: Manual
inversions of non-collinear regions in CB5 chromosome 8, Figure S8: Evidence of Iso-Seq transcript
data supporting the quality of the MDv2 gene prediction, Figure S9: KOG (euKaryotic Clustering
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