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Abstract. One of the classical and difficult problems in the theory of planar differential
systems is to classify their centers. Here we classify the global phase portraits in the Poincaré

disc of the class continuous piecewise differential systems separated by one straight line and

formed by two Z2-equivariant cubic Hamiltonian systems with nilpotent bi-centers at (±1, 0).

1. Introduction and statement of the main results

The problem in the qualitative theory of planar differential equations of distinguishing be-
tween a focus and a center is known as the center-focus problem. This classical problem started
with Poincaré [36] in 1881 and Dulac [15] in 1908, and nowadays the center-focus problem
remains as one of main subjects in the qualitative theory of planar polynomial differential
systems.

We say that a singular point p of a planar differential system is a center if it has a neighbor-
hood U filled with periodic orbits with the unique exception of this singular point.

If a planar polynomial differential system has a linear type center, or a nilpotent center, or
a degenerate center at the origin of coordinates, after making a time rescaling and a linear
change of variables, this differential system can be written as

(1) (ẋ, ẏ) =





(−y, x)

(y, 0)

(0, 0)





+ (f(x, y), g(x, y)),

respectively. Here the dot denotes derivative with respect to the time t, and f(x, y) and g(x, y)
are real polynomials without constant and linear terms.

The focus-center problem for the quadratic polynomial differential systems has been solved
see [3, 7, 15, 23, 24, 37, 40, 43]. There are partial results in the classification of the centers
for the cubic polynomial differential systems, see for instance [9, 11, 32, 41, 44, 45], but the
focus-center problem for the cubic polynomial differential systems still remains open.

Recently Colak el at. [12, 13] studied the phase portraits of some cubic Hamiltonian dif-
ferential systems with a linear type center and a nilpotent center at the origin, respectively.
Liu and Li [30] investigated the linear type bi-center problem for Z2-equivariant differential
systems. Here we shall study the Z2-equivariant polynomial systems having two centers at the
singular points.

The study of Zq-equivariant polynomial systems, whose phase portraits are unchanged by a
rotation of 2q (q ∈ Z+) radians around one point, is closely related to the well-known Hilbert
16th problem, for more details see [22, 27, 28]. Chen el at. [10] provided all possible phase
portraits of Z2-equivariant cubic polynomial Hamiltonian vector fields with a linear type bi-
center. Li el at. [25, 26] studied the bi-center and isochronous bi-center problems in some
Z2-equivariant cubic systems.
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However many natural phenomena have been modeled more accurately by dynamical systems
whose differential systems are non-smooth (see for instance [1, 6, 31]), increasing contributions
have been attracted to the qualitative analysis of non-smooth systems, see [2, 17]. In this paper
we deal with the following family of piecewise smooth systems,

(2) (ẋ, ẏ) =

{(
f+(x, y), g+(x, y)

)
if S(x, y) > 0,

(
f−(x, y), g−(x, y)

)
if S(x, y) < 0,

where S : R2 → R is a C∞ function and (f±(x, y), g±(x, y)) are smooth vector fields. In fact,
systems (2) have two different regions Γ± = {(x, y) ∈ R2 : ±S(x, y) > 0} separated by the
discontinuity line Γ = S−1(0).

The focus-center problem in piecewise smooth systems becomes much more difficult and
complicated than for the smooth systems. For example, a singular point of systems (2) on the
discontinuous curve S(x, y) = 0 can be a center even it is neither a center for the first system,
nor a center for the second system of (2).

Some methods have been developed for studying the linear type focus-center problem of
the piecewise smooth systems (2). Thus Gasull and Torregrosa [20] developed an efficient
method for computing the Lyapunov constants of switching polynomial systems, which can be
used to determine the center conditions for a linear type singular point. By computing the
Lyapunov constants, the authors of [8, 39] gave a complete classification on the linear type
center conditions of the origin in several classes of Bautin switching systems. For more results
on the focus-center problem of the piecewise smooth systems with the linear type singular
points, see [14, 21].

The focus-center problem for the nilpotent singular points is much more challenging com-
pared to the study for the linear type singular points. Computationally efficient methods have
been developed for studying the focus-center problem of the planar smooth systems with nilpo-
tent singular points, see [18, 29, 30, 38]. However there are no work for studying the nilpotent
focus-center problem in piecewise smooth polynomial systems.

In this paper we will study the global dynamics of a class of piecewise Z2-equivariant differ-
ential systems formed by two cubic Hamiltonian systems separated by the straigh line y = 0,
and having nilpotent bi-centers at the points (±1, 0). In section 3 we prove that such class of
piecewise differential systems can be written as

(3)

(
ẋ
ẏ

)
=







− a21y + 3b03y

2 + a21x
2y − 3b03xy

2 − 2(1 + a221)y3

− 1

2
x+

1

2
x3 − a21xy2 + b03y

3


 if y > 0,



− a21y − 3b03y

2 + a21x
2y − 3b03xy

2 − 2(1 + a221)y3

− 1

2
x+

1

2
x3 − a21xy2 + b03y

3


 if y < 0,

where b03 < 0 and the singular point (1, 0) of the first system of (3) is a third-order singular
point, see section 3 for the definition of third-order singular point. The Hamiltonian functions
for these two Hamiltonian systems are

H(x, y)+ =
1

4
x2 − 1

8
x4 − 1

2
a21y

2 + b03y
3 +

1

2
a21x

2y2 − b03xy3 −
1

2
(1 + a221)y4,

for the Hamiltonian system in y > 0, and

H(x, y)− =
1

4
x2 − 1

8
x4 − 1

2
a21y

2 − b03y3 +
1

2
a21x

2y2 − b03xy3 −
1

2
(1 + a221)y4,

for the Hamiltonian system in y < 0.

Note that the piecewise differential systems (3) only are continuous on the straight line y = 0,
so they are non-smooth piecewise differential systems. We also remark that the piecewise
differential system (3) only depends on two parameters a21 and b03.
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1.1 S = 25, R = 8,

1.4 S = 21, R = 7,

1.7 S = 13, R = 4,

1.10 S = 6, R = 3.

1.2 S = 27, R = 9,

1.5 S = 23, R = 8,

1.8 S = 9, R = 3,

1.3 S = 25, R = 7,

1.6 S = 21, R = 4,

1.9 S = 10, R = 4,

Figure 1. The ten topological phase portraits in the Poincaré disc of Theorem 1.1.

Theorem 1.1. In the Poincaré disc the phase portraits of the continuous piecewise Z2-equivariant
cubic Hamiltonian systems (3) with a nilpotent bi-center at (±1, 0) are topologically equivalent
to one of the 10 phase portraits showed in Figure 1.

In section 2 we provide a brief introduction to the Poincaré compactification, a summary on
how to determine the phase portrait using the separatrix skeleton, and some basic results on
the topological indices that we shall need for proving Theorem 1.1. In section 3 we show how
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to obtain the continuous piecewise Z2-equivariant cubic Hamiltonian systems (3). Finally in
section 4 we characterize the global phase portraits of systems (3) in the Poincaré disc, that is
we prove Theorem 1.1.

2. Preliminaries

2.1. Poincaré compactification. In order to classify the global dynamics of the piecewise
differential systems (3), the first crucial step is to characterize their finite and infinite singular
points in the Poincaré compactification, as we shall see such compactification is possible due
to the fact that our Hamiltonian systems are polynomial. This tool is described in chapter 5 of
[16]. The second main step for determining the global flow in the Poincaré disc of polynomial
differential systems is the characterization of their separatrices. For the polynomial differential
systems in the Poincaré disc it is known that the separatrices are all the infinite orbits, all
the finite singular points, the separatrices of the hyperbolic sectors of the finite and infinite
singular points, and the limit cycles. If Σ denotes the set of all separatrices in the Poincaré
disc D2, Σ is a closed set and the components of D2 \ Σ are called the canonical regions. We
denote by S and R the number of separatrices and canonical regions, respectively.

Roughly speaking this compactification identifies the plane R2 with the interior of the closed
unit disc D2 centered at the origin of R2, and extends analytically the differential system to its
boundary, usually called the circle of the infinity. Now we shall describe the equations of the
Poincaré compactification for a polynomial differential system in R2.

We consider the set of all polynomial vector fields in R2 of the form

(4) (ẋ1, ẋ2) = X(x1, x2) = (P (x1, x2), Q(x1, x2)),

where P and Q are real polynomials in the variables x1 and x2 of degree d1 and d2, respectively.
Taking d = max{d1, d2}.

Denote by TpS2 be the tangent space to the 2-dimensional sphere S2 = {s = (s1, s2, s3) ∈
R3 : s21 + s22 + s23 = 1} at the point p. Assume that X is defined in the plane T(0,0,1)S2 = R2.

Consider the central projection f : T(0,0,1)S2 → S2. This map defines two copies of X, one in
the open northern hemisphere and other in the open southern hemisphere. Denote by X′ the
vector field Df ◦X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1
is identified to the infinity of R2. If X is a planar polynomial vector field of degree d, then
p(X) is the only analytic extension of yd−13 X′ to S2, the vector field p(X) is called the Poincaré
compactification of the vector field X, for more details see Chapter 5 of [16].

On the Poincaré sphere S2 we use the following six local charts to do the calculations, which
are given by Ui = {s ∈ S2 : si > 0} and Vi = {s ∈ S2 : si < 0}, for i = 1, 2, 3, with the
corresponding diffeomorphisms

(5) ϕi : Ui → R2, ψi : Vi → R2,

defined by ϕi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n 6= i. Thus (u, v) will
play different roles in the distinct local charts. The expression of the vector field p(X) are

(u̇, v̇) =

(
vd
(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
,−vd+1P

(
1

v
,
u

v

))
in U1,

(u̇, v̇) =

(
vd
(
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

))
,−vd+1Q

(
u

v
,

1

v

))
in U2,

(u̇, v̇) = (P (u, v), Q(u, v)) in U3.

We note that the expressions of the vector field p(X) in the local chart (Vi, ψi) is equal to the
expression in the local chart (Ui, φi) multiplied by (−1)d−1 for i = 1, 2, 3.

The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed northern hemisphere of
S2 onto the plane s3 = 0 is a closed disc D2 of radius one centered at the origin of coordinates
called the Poincaré disc. Since a copy of the vector field X on the plane R2 is in the open
northern hemisphere of S2, the interior of the Poincaré disc D2 is identified with R2 and the
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boundary of D2, the equator of S2, is identified with the infinity of R2. Consequently the phase
portrait of the vector field X extended to the infinity corresponds to the projection of the phase
portrait of the vector field p(X) on the Poincaré disc D2.

The singular points of p(X) in the Poincaré disc lying on S1 are the infinite singular points
of the corresponding vector field X. The singular points of p(X) in the interior of the Poincaré
disc, i.e. on S2 \ S1, are the finite singular points.

For polynomial vector fields (4) if s ∈ S1 is an infinite singular point, then −s ∈ S1 is
another infinite singular point. Thus the number of infinite singular points is even and the
local behavior of one is that of the other multiplied by (−1)d+1. This symmetry property in
general does not hold for piecewise smooth differential systems (2) because the singular points
at infinity are not diametrically opposite. But in our case systems (3) are symmetry with
respect to the origin, so we just need to analyze the phase portraits of the infinite singular
points in the local chart U1|v=0 and at the origin of the local chart U2.

2.2. Separatrix skeleton. Given a flow (D2, φ) by the separatrix skeleton we mean the union
of all the separatries of the flow together with one orbit from each one of the canonical regions.
Let C1 and C2 be the separatrix skeletons of the flows (D2, φ1) and (D2, φ2) respectively. We
say that C1 and C2 are topologically equivalent if there exists a homeomorphism h : D2 → D2

which sends orbits to orbits preserving or reversing the direction of all orbits. From Markus
[33], Neumann [34] and Peixoto [35] it follows the next theorem which shows that is enough
to describe the separatrix skeleton in order to determine the topological equivalence class of a
differential system in the Poincaré disc D2.

Theorem 2.1 (Markus–Neumann–Peixoto Theorem). Assume that (D2, φ1) and (D2, φ2) are
two continuous flows with only isolated singular points. Then these flows are topologically
equivalent if and only if their separatrix skeletons are equivalent.

2.3. Topological index. Next we introduce the topological index of the singular points, which
is one useful tool to determine the type of the singular points. Here we will present two
important theorems, the Index Poincaré Formula and the Poincaré–Hopf Theorem, for more
details see Chapter 6 of [16].

Theorem 2.2. We denote by p an isolated singular point with the finite sectorial decomposi-
tion property. Let q, h and e be the number of parabolic, hyperbolic and elliptic sectors of p,
respectively. Then the topological index of the singular point p equals 1 + (e− h)/2.

Corollary 2.3. The topological indices of a center, a cusp, a saddle and a node equal 1, 0, −1
and 1, respectively.

Theorem 2.4. For any continuous vector field on the sphere S2 with finitely many singular
points, the sum of their topological indices is 2.

Remark 2.5. Since the flow of Hamiltonian smooth systems preserves the area, we have that
any finite singular point of a Hamiltonian smooth system must be either a center, or union
of an even number of hyperbolic sectors. In particular, the finite nilpotent singular points of
Hamiltonian planar differential systems are either saddles, centers, or cusps, for more details
see Theorem 3.5 of [16].

3. Obtaining systems (3)

Here a vector field X(x, y) is Z2-equivariant if −X(x, y) = X(−x,−y). Then Z2-equivariant
piecewise cubic polynomial differential systems (3) separated by the straight line y = 0 are
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differential systems of the form

(6)

(
ẋ
ẏ

)
=








a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2 + a30x
3

+ a21x
2y + a12xy

2 + a03y
3

b00 + b10x+ b01y + b20x
2 + b11xy + b02y

2 + b30x
3

+ b21x
2y + b12xy

2 + b03y
3




if y > 0,




− a00 + a10x+ a01y − a20x2 − a11xy − a02y2 + a30x
3

+ a21x
2y + a12xy

2 + a03y
3

− b00 + b10x+ b01y − b20x2 − b11xy − b02y2 + b30x
3

+ b21x
2y + b12xy

2 + b03y
3




if y < 0.

Assuming that (±1, 0) are two singular points of systems (6), we have

(7) a00 = −a20, a10 = −a30, b00 = −b20, b10 = −b30.

The Jacobian matrices of the first and second systems of (6) evaluated at (1, 0) are

(8) J± =

(
±2a20 + 2a30 a01 ± a11 + a21
±2b20 + 2b30 b01 ± b11 + b21

)
.

It follows from J+ = J− that

(9) a20 = a11 = b20 = b11 = 0.

If we assume that b30 = 0, then J+ = J− yields a triangular matrix having the two charac-
teristic roots

λ1 = 2a30, λ2 = b01 + b21.

Furthermore we take λ1 = λ2 = 0, because we want that the singular points (±1, 0) of the
piecewise differential systems (6) are nilpotent, so we obtain

(10) a30 = 0, b01 = −b21.

From (7), (9) and (10) the piecewise differential systems (6) become

(11)

(
ẋ
ẏ

)
=





(
y(a01 + a21x

2 + a02y + a12xy + a03y
2)

y(−b21 + b21x
2 + b02y + b12xy + b03y

2)

)
if y > 0,

(
y(a01 + a21x

2 − a02y + a12xy + a03y
2)

y(−b21 + b21x
2 − b02y + b12xy + b03y

2)

)
if y < 0.

Since the polynomials in (11) have a common factor y, the singular points (±1, 0) are not
isolated singular points. Hence in order to make the singular points (±1, 0) isolated nilpotent
singular points of system (11) we force that

J± =

(
0 0
1 0

)
,

consequently b30 = 1
2 . Then systems (6) can be rewritten as

(12)

(
ẋ
ẏ

)
=







− a21y + a21x

2y + a02y
2 + a12xy

2 + a03y
3 = X+(x, y)

− x

2
+
x3

2
− b21y + b21x

2y + b02y
2 + b12xy

2 + b03y
3 = Y +(x, y)


 if y > 0,



− a21y + a21x

2y − a02y2 + a12xy
2 + a03y

3 = X−(x, y)

− x

2
+
x3

2
− b21y + b21x

2y − b02y2 + b12xy
2 + b03y

3 = Y −(x, y)


 if y < 0.
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Next, let H+(x, y) be the Hamiltonian of the first system of systems (12). To find this
Hamiltonian, we integrate X+(x, y) of (12) with respect to y and obtain

(13)
H+

1 (x, y) =f(x) +

∫
X+(x, y)dy

=f(x)− 1

2
a21y

2 +
1

2
a21x

2y2 +
1

3
a02y

3 +
1

3
a12xy

3 +
1

4
a03y

4,

for some real polynomials f(x). And we integrate Y +(x, y) of (12) with respect to x and obtain

(14)
H+

2 (x, y) =g(y)−
∫
Y +(x, y)dx

=g(y) +
1

4
x2 − 1

8
x4 + b21xy −

1

3
b21x

2y − b02xy2 −
1

2
b12x

2y2 − b03xy3,

for some real polynomials g(y). Equating H+
1 (x, y) to H+

2 (x, y) we obtain

(15) b12 = −a21, a12 = −3b03, b02 = b21 = 0,

f(x) = x2/4− x4/8 and g(y) = −a21y2/2 + a02y
3/3 + a03y

4/4.

Then systems (12) become the piecewise Hamiltonian systems

(16)

(
ẋ
ẏ

)
=







− a21y + a21x

2y + a02y
2 − 3b03xy

2 + a03y
3

− x

2
+
x3

2
− a21xy2 + b03y

3


 if y > 0,



− a21y + a21x

2y − a02y2 − 3b03xy
2 + a03y

3

− x

2
+
x3

2
− a21xy2 + b03y

3


 if y < 0,

where systems (16) have the Hamiltonian

(17) H(x, y)+ =
1

4
x2 − 1

8
x4 − 1

2
a21y

2 +
1

2
a21x

2y2 +
1

3
a02y

3 − b03xy3 +
1

4
a03y

4,

for the Hamiltonian system in y > 0, and the Hamiltonian

(18) H(x, y)− =
1

4
x2 − 1

8
x4 − 1

2
a21y

2 +
1

2
a21x

2y2 − 1

3
a02y

3 − b03xy3 +
1

4
a03y

4,

for the Hamiltonian system in y < 0, respectively.

Introducing the transformation x→ x+ 1 into systems (16) we get
(19)

(
ẋ
ẏ

)
=








2a21xy + a21x
2y + (a02 − 3b03)y2 + a12xy

2 + a03y
3 = Ψ+(x, y)

x+
3x2

2
+
x3

2
+ a21y

2 − a21xy2 + b03y
3 = x+ Φ+(x, y)


 if y > 0,




2a21xy + a21x
2y − (a02 + 3b03)y2 + a12xy

2 + a03y
3 = Ψ−(x, y)

x+
3x2

2
+
x3

2
+ a21y

2 − a21xy2 + b03y
3 = x+ Φ−(x, y)


 if y < 0,

and so the singular point (1, 0) of systems (16) is moved to the origin of systems (19). Then
we assume that

f±(y) =

∞∑

k=2

c±k y
k

are the unique solutions of the implicit function equations x+ Φ±(x, y) = 0 in a neighborhood
of the origin, respectively. In order to determine the local phase portraits of the nilpotent
points (±1, 0) we write

(20)

Ψ±(f±(y), y) =
∞∑

k=2

α±k y
k,

[
∂Ψ±

∂x
+
∂Φ±

∂y

]

(f±(y),y)

=

∞∑

k=1

β±k y
k,
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where

(21) β±n ≡ 0, α±2 = ±a02 − 3b03, α±3 = a03 + 2a221.

For polynomial differential systems if α2 = α3 = · · · = αk−1 = 0 and αk 6= 0, then the
multiplicity of the nilpotent singular point is exactly k, for more detail see [30]. It follows from
Theorem 3.5 in [16] that if βn = 0 and αm 6= 0 this nilpotent singular point is a

(22)





a cusp if m = 2k,

a saddle if m = 2k + 1 and αm > 0,

a center or a focus if m = 2k + 1 and αm < 0.

Since the multiplicity of a nilpotent center or focus (i.e. of a monodromic singular point) of
a differential system is an odd positive integer greater than one, it follows that the smallest
multiplicity of (1, 0) must be 3 if the singular point (1, 0) is a nilpotent focus or a center in
the first system of (16). For convenience, we will call this singular point a third-order singular
point. More precisely, we have the following statement: The singular point (1, 0) of the first
system of (16) is a monodromic critical point with multiplicity 3 if and only if

α+
2 = 0, α+

3 < 0,

namely,

a02 = 3b03, a03 + 2a221 < 0.

Setting α+
3 = −2 yields a03 = −2a221 − 2. Then we have that the singular point (1, 0) of the

first system of (16) is monodromic. Therefore we obtain systems (3) and we have

α−2 = −6b03, α−3 = −2.

If b03 = 0, i.e., α−2 = 0, then the piecewise differential systems (3) are smooth. If b03 6= 0,
i.e.,α−2 6= 0, then the singular point (1, 0) of the second differential system of (3) is a cusp.
But the singular points (±1, 0) of the piecewise differential systems (3) cannot be monodromic
when b03 > 0, so we only consider b03 < 0.

In summary we have obtained the continuous piecewise differential system (3).

Furthermore from Proposition 2.1 of [8] we have that the Hamiltonians of the first and second
systems of (3) satisfy with H+(x, 0) ≡ H−(x, 0). Hence systems (3) have nilpotent bi-centers
at (±1, 0). Remark that when α+

2 6= 0, i.e. a03 6= 3b03 systems (3) can also have nilpotent
bi-centers at (±1, 0), but this case becomes more complicated we do not provide its analysis in
this paper.

4. Global phase portraits of systems (3)

Now we consider the finite singular points of systems (3). The singular points p1,2 = (±1, 0)
are two centers, the origin p3 of systems (3) is also a singular point, whose Jacobian matrix is

(23)

(
0 −a21
− 1

2 0

)
.

From (23) we have that the origin is a saddle when a21 ≥ 0 (a nilpotent saddle when a21 = 0),
or a center when a21 < 0. Now we need to study if there are additional singular points.

Since systems (3) are symmetric with respect to the origin of coordinates p3, we just need
to study the phase portrait of the first system in (3).

The Jacobian matrix of the first system of systems (3) at a finite singular point (x, y) is

(24)

(
y(2a21x− 3b03y) N1

1
2 (−1 + 3x2 − 2a21y

2) −y(2a21x− 3b03y)

)
,

where

N1 = −a21 + a21x
2 + 6b03y − 6b03xy − 6y2 − 6a221y

2.
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We claim that there are no finite singular points for the first system of system (3) whose linear
part be identically zero. Indeed, we obtain that −1 + 3x2 − 2a21y

2 and y(2a21x− 3b03y) have
no common solutions, because the Gröbner basis for the polynomials ẋ, ẏ, −1 + 3x2 − 2a21y

2

and y(2a21x − 3b03y) is 1. We again calculate the Gröbner basis for four polynomials ẋ, ẏ,
y(2a21x − 3b03y) and N1, then we obtain seven polynomials a21y, b03y

2, y3, −a21 + a21x
2 +

6b03y−6b03xy−6y2, xy−b03+b03x+y, x(1+x)y2 and (−1+x)x(1+x). It means that there are
no other nilpotent singular points different from pk for k = 1, 2, 3, such these four polynomials
be zero. Hence all the remaining finite singular points are hyperbolic, or semi-hyperbolic, or
centers and by Theorems 2.15 and 2.19 of [16] the remaining finite singular points must be
saddles or centers because the system is Hamiltonian.

The explicit expressions of the finite singular points different from pk for k = 1, 2, 3, and
their eigenvalues in terms of parameters a21 and b03 are complicated, it is hard to study their
existence and their types. Thus we need to present more algebraic tools for solving this problem.

From the first system in (3) we compute the Gröbner basis for ẋ and ẏ and we obtain eight
polynomials, where the following two polynomials

y2
[
3a21b03 − 3a21b03x− 9b203y + (2a21 + 9b203)xy + 2b03(3 + 4a221)y2

]

and

(25)

y3
[
6a21b03 + (−2a21 − 18b203 + 15a221b

2
03)y + (18b03 + 12a221b03 − 54a21b

3
03)y2

+ (−4− 4a221 + 36a21b
2
03 + 32a321b

2
03 + 27b403)y3

]
= y3f(y).

are enough for our analysis. We note that polynomial (25) is not identically zero, because in
order that it be identically zero we need that a21 = b03 = 0, but then the resultant reduces to
−4y6 6= 0. Now in order to study the number of the real roots of the polynomial f(y) we shall
use the method of the discriminant sequence associated to f(y) developed in [42].

We associate to the polynomial

(26) f(y) = a0 + a1y + · · ·+ aky
k

the (2k + 1)× (2k + 1) matrix

M =




a0 a1 a2 · · · ak
0 ka0 (k − 1)a1 · · · ak−1

a0 a1 · · · ak−1 ak
na0 · · · 2ak−2 ak−1

· · · · · ·
· · · · · ·

a0 a1 · · · ak
0 ka0 · · · ak−1

a0 a1 ak−1 ak




.

We define dj as the determinant of the submatrix of M constructed with the first j rows and
columns of the matrix M for j = 1, . . . , 2k + 1. Thus we have the sequence

(27) {d1, d2, . . . , d2k+1}.

Consider the discriminant sequence {d2, d4, · · · , d2k} and the sequence of its signs

[sign(d2), sign(d4), · · · , sign(d2k)],

called sign list, where as usual the sign function is

(28) sign(x) =





−1 if x < 0,

0 if x = 0,

1 if x > 0.

For a sign list [s1, s2, · · · , sn] of f(y) we define its revised sign list [l1, l2, · · · , ln] as follows:
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1. If sk 6= 0 we write lk = sk.
2. If subsection [si, si+1, · · · , si+j ] of this sign list, which satisfies with si+1 = · · · =
si+j−1 = 0 and sisi+j 6= 0, we replace the subsection [si+1, si+2, · · · , si+j−1] with
[−si,−si, si, si,−si,−si, si, si,−si, · · · ] keeping the number of terms.

For convenient we denote by RSL and SL the revised sign list and the sign list of the discriminant
sequence, respectively. Then the RSL [l1, l2, · · · , ln] has no zeros between two nonzero members.

From Theorems 2.1 and 3.3 of [42] we obtain the following two theorems.

Theorem 4.1. Let f(y) be the polynomial (26) with real coefficient. If the number of the sign
changes of the RSL [d2, d4, . . . , d2k] is equal to m, and the number of nonzero elements of this
RSL is equal to `, then the number of the distinct real roots of the polynomial f(y) is `− 2m.

Theorem 4.2. Let f(y) be the polynomial (26) with real coefficient such that f(0) 6= 0. If
the number of the sign changes of the RSL [d1d2, d2d3, · · · , d2kd2k+1] is equal to m, and the
number of nonzero elements of this RSL is equal to l, the number of the negative roots of the
polynomial f(y) is l/2−m.

We separate the study of the roots of the polynomial f(y) of (25) in two cases.

Case 1: The coefficient of the cubic term of f(y) in (25) is zero, i.e.

N2 = −4− 4a221 + 36a21b
2
03 + 32a321b

2
03 + 27b403 = 0.

Then we have

(29) b203 =
2

27

(
− 9a21 − 8a321 +

√
(3 + 4a421)3

)
.

Now we calculate the resultant of the coefficient of y2 of f(y) in (25) with N2 with respect
to the variable a21 and obtain 6912b203(1 + 27b403)3 6= 0. Thus the coefficient of y2 in f(y) is
nonzero when the coefficient of y3 is zero. Multiply this quadratic coefficient and the constant
term of f(y) we obtain

(30)

8

3
a21

(
− 9a21 − 8a321 +

√
27 + 108a221 + 144a421 + 64a621

)
×

[
3 + 2a221 −

2

3
a21

(
− 9a21 − 8a321 +

√
27 + 108a221 + 144a421 + 64a621

)]
≤ 0.

Hence f(y) has at most one positive root. Actually if a21 = 0 we have b03 = −
√

2/(33/4), and
f(y) has no positive roots.

Case 2: The coefficient of the cubic term of f(y) in (25) is nonzero, i.e. N2 6= 0. Then finding
the number of the positive roots of f(y) in (25) is equivalent to find the number of the negative
roots of −f(−y). Now we shall compute the negative roots of the polynomial −f(−y) using
Theorem 4.2. So we consider the sequence

(31) {d1d2, d2d3, d3d4, d4d5, d5d6, d6d7}

associated to −f(−y), and we have

(32)

d1 = N2, d2 = 3N2
2 , d3 = −6b03(3 + 2a221 − 9a21b

2
03)N2

2 ,

d4 = −6N2
2N3, d5 = −4N2

2N4,

d6 = −4(a21 + 9b203 + 6a221b
2
03)2N2

2N5,

d7 = 24a21b03(a21 + 9b203 + 6a221b
2
03)2N2

2N5,
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where

(33)

N3 =8a21 + 8a321 − 36b203 − 204a221b
2
03 − 172a421b

2
03 − 54a21b

4
03 + 396a321b

4
03

+ 480a521b
4
03 − 486b603 − 567a221b

6
03,

N4 =− 16a221 − 16a421 + 198a21b
2
03 + 852a321b

2
03 + 656a521b

2
03 + 162b403

− 567a221b
4
03 − 5724a421b

4
03 − 5088a621b

4
03 + 2673a21b

6
03 − 486a321b

6
03

+ 3456a521b
6
03 + 7200a721b

6
03 + 8748b803 + 5103a221b

8
03 − 4860a421b

8
03,

N5 =32a21 + 32a321 − 36b203 − 240a221b
2
03 − 208a421b

2
03 + 2052a21b

4
03

+ 5040a321b
4
03 + 3000a521b

4
03 − 1944b603 − 2025a221b

6
03.

From Theorem 4.2 we obtain that the polynomial −f(−y) has three distinct negative roots
if and only if the revised sign list of (31) is [1, 1, 1, 1, 1, 1] or [−1,−1,−1,−1,−1,−1], which we
cannot be obtained varying the parameters a21 and b03. Therefore the polynomial −f(−y) has
at most two negative roots.

Now we study the case when the polynomial −f(−y) has distinct negative roots. We denote
by R[f(α), i] the i-th real root of the polynomial f(α) with respect to α, and these roots are
ordered as follows R[f(α), i] < R[f(α), j] if and only if i < j. We describe the possible revised
sign lists of the associated discriminant sequences as we show in Tables 1,2,3, when the poly-
nomial −f(−y) has two negative roots, one negative root and no negative roots, respectively,
where

(34)

N6 =− 36− 21a221 + 20a421,

N7 =− 108− 27a221 + 99a421 + 5a621,

N8 =− 81 + 1026a221 + 3429a421 + 3498a621 + 1175a821,

N9 =− 648 + 837a221 + 3942a421 + 3468a621 + 1000a821,

N10 =− 128490624− 62227804500a221 − 515496116628a421

− 916466231925a621 + 210402679464a821 + 1653908444856a1021

+ 863216641008a1221 − 432308074320a1421 − 139867591104a1621

+ 313035878400a1821 + 137815040000a2021,

N11 =− 243− 4536a221 − 9180a421 − 3168a621 + 4260a821 + 2540a1021.

Table 1. The conditions in order that the revised sign list (RSL) of (31) has
two distinct negative roots.

RSL Conditions
[1, 1, 1,−1,−1,−1] R[N6, 1] ≈ −1.40204 < a21 < R[N7, 1] ≈ −1.07347, b03 ≤ R[N4, 1],

or a21 = R[N7, 1], b03 < R[N4, 1],
or R[N7, 1] < a21 < 0, b03 < R[N2, 1];

[1, 1, 1, 1, 1,−1] a21 ≤ R[N6, 1], b03 < R[N2, 1],
or R[N6, 1] < a21 < R[N7, 1], R[N4, 1] < b03 < R[N2, 1].

In summary, the first system of the piecewise differential system (3) has at most two singular
points different from pj for j = 1, 2, 3. Next we shall determine the local phase portraits of
these additional finite singular points using the information provided by the infinite singular
points.

In the local chart U2 the first system of (3) becomes

(35)
u′ =

1

2
(−4− 4a221 − 8b03u+ 4a21u

2 − u4 + 6b03v − 2a21v
2 + u2v2),

v′ =− 1

2
v(2b03 − 2a21u+ u3 − uv2).
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Table 2. The conditions in order that the revised sign list (RSL) of (31) has
one distinct negative roots.

RSL Conditions

[1,−1, 1, 1, 1, 1] R[N11, 2] < a21 ≤
√

3
2 , R[N3, 1] < b03 ≤ R[N3, 2],

or a21 >
√

3
2 , R[N3, 1] < b03 < −

√
3+2a2

21
9a21

;

[1, 1,−1, 1, 1, 1]
√

3
2 < a21 ≤ R[N6, 2], −

√
3+2a2

21
9a21

< b03 ≤ R[N4, 1],

or a21 > R[N6, 2], −
√

3+2a2
21

9a21
< b03 ≤ R[N5, 2];

[1, 1, 1,−1, 1, 1] R[N8, 2] < a21 ≤ R[N9, 2], R[N5, 1] < b03 < R[N2, 1],

or R[N9, 2] < a21 < R[N10, 2], −
√

3+2a2
21

9a21
< b03 < R[N2, 1],

or R[N10, 2] ≤ a21 <
√

3
2 , −

√
3+2a2

21
9a21

< b03 < R[N2, 1], b03 6= R[N4, 2],

or
√

3
2 ≤ a21 ≤ R[N6, 2], R[N4, 2] < b03 < R[N2, 1],

or a21 > R[N6, 2], R[N4, 3] < b03 < R[N2, 1];

[1, 1, 1, 1,−1, 1] R[N10, 2] < a21 ≤
√

3
2 , R[N4, 1] < b03 < R[N4, 2],

or
√

3
2 < a21 ≤ R[N6, 2], R[N3, 2] < b03 < R[N4, 2],

or a21 > [N6, 2], R[N3, 2] < b03 < R[N4, 3];

[1,−1,−1, 1, 1, 1] a21 > R[N6, 2], b03 ≤ R[N4, 1], or a21 >
√

3
2 , b03 = −

√
3+2a2

21
9a21

;

[1, 1, 1,−1,−1, 1] 0 < a21 ≤ R[N8, 2], −
√

3+2a2
21

9a21
< b03 < R[N2, 1],

or R[N8, 2] < a21 < R[N9, 2], −
√

3+2a2
21

9a21
< b03 < R[N5, 1],

or R[N10, 2] ≤ a21 <
√

3
2 , b03 = R[N6, 1],

or R[N10, 2] < a21 ≤ R[N6, 2], b03 = R[N6, 2],
or a21 > R[N6, 2], b03 = R[N6, 3];

[1,−1,−1,−1, 1, 1] R[N9, 2] < a21 < R[N11, 2] = 1.20891, R[N5, 1] < b03 ≤ −
√

3+2a2
21

9a21
,

or a21 = R[N11, 2], R[N5, 1] < b03 ≤ −
√

3+2a2
21

9a21
, b03 6= R[N3, 1],

or R[N11, 2] < a21, R[N5, 1] < b03 < R[N3, 1],

or R[N11, 2] < a21 <
√

3
2 , R[N3, 2] < b03 ≤ −

√
3+2a2

21
9a21

;

[1, 1,−1,−1,−1, 1]
√

3
2 < a21 ≤ R[N6, 2], R[N4, 1] < b03 ≤ R[N3, 2],

or a21 > R[N6, 2], R[N4, 2] < b03 ≤ R[N3, 2];

[1,−1,−1,−1,−1, 1] 0 < a21 < R[N9, 2], b03 ≤ −
√

3+2a2
21

9a21
,

or a21 = R[N9, 2], b03 < −
√

3+2a2
21

9a21
,

or R[N9, 2] < a21 < R[N6, 2], b03 < R[N5, 1],
or a21 > R[N6, 2], R[N4, 1] < b03 < R[N5, 1];

[1,−1,−1,−1, 0, 0] a21 = R[N9, 2], b03 = −
√

3+2a2
21

9a21
, or R[N9, 2] < a21, b03 = R[N5, 1];

[−1, 1, 1,−1,−1,−1] R[N7, 1] < a21 < 0, R[N2, 1] < b03 < R[N4, 1];

[−1, 1, 1, 1, 1,−1] a21 ≤ R[N7, 1], R[N2, 1] < b03 < 0 and b03 6=
√

2a21(1+a2
21)

3 ,

or R[N7, 1] < a21 < 0, R[N4, 1] < b03 < 0 and b03 6=
√

2a21(1+a2
21)

3 ;

[−1, 1, 1, 1, 0, 0] a21 < 0, b03 =

√
2a21(1+a2

21)

3 .

Clearly the origin of U2 is not a singular point. In U1 the first system of (3) has the form

(36)
u′ =

1

2
(1− 4a21u

2 + 8b03u
3 + 4u4 + 4a221u

4 − 6b03u
3v − v2 + 2a21u

2v2),

v′ =uv(−a21 + 3b03u+ 2u2 + 2a221u
2 − 3b03uv + a21v

2).

The linear part of system (36) on v = 0 is

(37)

(
4uN12 −3b03u

3

0 uN12

)
,

where N12 = −a21 + 3b03u+ 2u2 + 2a221u
2. By computing the resultant of

(38) g(u) = u′|v=0 = 1− 4a21u
2 + 8b03u

3 + (4 + 4a221)u4
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Table 3. The conditions in order that the revised sign list (RSL) of (31) has
no negative roots.

RSL Conditions
[−1, 1,−1, 1, 1, 1] 0 < a21 < R[N10, 2], R[N3, 1] < b03 ≤ R[N4, 1],

or R[N10, 2] ≤ a21 < R[N11, 2], R[N3, 1] < b03 < R[N4, 3],
or R[N11, 2] ≤ a21 < R[N6, 2], R[N3, 3] < b03 ≤ R[N4, 3],
or a21 > R[N6, 2], R[N3, 1] < b03 < R[N4, 4];

[−1, 1, 1,−1, 1, 1] 0 < a21 ≤ R[N8, 2], R[N5, 1] < b03 < R[N3, 1],
or R[N10, 2] ≤ a21 < R[N11, 2], R[N2, 1] < b03 < R[N3, 1],
or a21 ≥ R[N11, 2], R[N2, 1] < b03 < R[N3, 3];

[−1, 1,−1,−1, 1, 1] 0 < a21 < R[N11, 2], b03 = R[N3, 1],
or a21 ≥ R[N11, 2], b03 = R[N3, 3];

[−1, 1, 1,−1,−1, 1] 0 < a21 < R[N8, 2], R[N2, 1] < b03 < R[N5, 1];

[−1, 1,−1,−1,−1, 1] 0 < a21 < R[N10, 2], R[N4, 1] < b03 < 0,
or R[N10, 2] ≤ a21 ≤ R[N6, 2], R[N4, 3] < b03 < 0,
or a21 > R[N6, 2], R[N4, 4] < b03 < 0,

[−1, 1, 1,−1, 0, 0] 0 < a21 < R[N8, 2], b03 = R[N5, 1].

and uN12 with respect to the variable u we obtain the polynomial −(1 + a221)N2. And the
possible singular points in U1 are nilpotent when N2 = 0, or nodes when N2 6= 0.

Now we shall determine the local phase portraits of the infinite singular points in the chart
U1. We need to find the real solutions in g(u) = 0. But we will be able to determine the number
and the type of the remaining infinite singular points using Theorems 4.2 and 2.4. Then we do
not need to calculate explicitly the coordinates of these singular points.

Remark 4.3. When u < 0 the infinite singular points of the first system of (3) in U1 are
virtual points, but there are corresponding infinite singular points in V1 with u > 0 by the
symmetry. And there are no infinite singular points in U2 and V2 in our cases. Hence we can
study all real solutions in g(u) = 0 to study the infinite singular points.

We compute the sequence {d̃2, d̃4, d̃6, d̃8} of g(u) from (38), and have

(39)

d̃2 = 64(1 + a221)2,

d̃4 = 1024(1 + a221)2(2a21 + 2a321 − 3b203),

d̃6 = −16384(1 + a221)2(2a21 + 2a321 + 3b203 + a221b
2
03),

d̃8 = −65536(1 + a221)2N2.

We cannot find the parameter values such that the corresponding RSL be [1, 1, 1, 1], [−1,−1,−1,−1],
[1, 1, 1,−1], [1,−1,−1,−1], [−1,−1,−1, 1], [1,−1,−1,−1], [−1,−1,−1, 0] or [1, 1, 1, 0], but we
know that there are at most two distinct positive roots of (38), i.e., there are at most two
infinite singular points in U1.

(a) When the polynomial g(u) has two distinct roots, we obtain that the possible RSL of
g(u) is [1, 1,−1,−1], whose condition is b03 < R[N2, 1], i.e.,

b03 < −

√
2(−9a21 − 8a321 +

√
(3 + 4a221)3)

(3
√

3)
.

Since N2 6= 0, from (37) we have that the two remaining infinite singular points are two nodes
in U1. Since the piecewise differential systems (3) are symmetric with respect to the origin,
systems (3) have two corresponding infinite singular points in V1. On the other hand, systems
(3) are continuous becasue (f+(x, 0), g+(x, 0)) = (f−(x, 0), g−(x, 0)) in these systems.

(a.1) If a21 < 0, the origin p3 is a center. Hence on the Poincaré sphere the sum of the indices
of the known singular points is 10. By Theorem 2.4, the sum of the indices of the remaining
finite singular points must be −8. From the previous analysis, systems (3) have at most two
finite singular points in y > 0, which are different from pj for j = 1, 2, 3. Due to the symmetry
with respect to the origin of coordinates the remaining finite singular points are four saddles
pj for j = 4, 5, 6, 7, where the two saddles p4 and p6 are in y > 0, and two saddles p5 and p7 are
in y < 0. From (35) and (36) we have u′|u=0 = −2(1 + a221) < 0 in U2 and u′|u=0 = 2 > 0 in
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Figure 2. The local phase portraits at all finite and infinite singular points
of the piecewise differential system (3) when g(u) has two distinct roots.

U1. Then we obtain that the local phase portraits at these singular points in the Poincaré disc
are shown in Figure 2(a). Since the finite singular points of the piecewise differential systems
(3) are saddles or centers there must be one saddle on the boundary of period annulus of the
center.

(a.1.1) Assume that saddle p6 is on the boundary of period annulus of center p3, by the
symmetry the saddle p7 must be on the boundary of period annulus of the center p3. If one
repelling and one attracting separatrices of saddle p4 of systems (3) connect with saddle p5 and
with the infinite singular point A1 and A2 of U1 (see Figure 2(a)), respectively, then the saddles
p6 and p7 are also on the boundary of the period annulus of the center p1. By the symmetry
we have that this phase portrait in the Poincaré disc is topologically equivalent to the phase
portrait 1.1 of Figure 1, which for instance can be realized when a21 = −1 and b03 = −2.

(a.1.2) If the saddle p4 is on the boundary of period annulus of the center p1, creating a
center-loop. By the symmetry the phase portrait of the piecewise differential systems (3) is
topologically equivalent to the phase portrait 1.2 of Figure 1. This phase portrait for instance
can be realized when a21 = −1 and b03 = −5.

(a.1.3) From the phase portraits 1.1 to 1.2 it follows by the continuity of the phase portraits
with respect to the parameters that there must exist one phase portrait that the saddles p4
and p6 are on the boundary of period annulus of the center p1. We have the phase portrait 1.3
of Figure 1.

(a.2) If a21 ≥ 0 then the origin p3 is a saddle. Hence on the Poincaré sphere the sum of
the indices of the known singular points is 6. By Theorem 2.4 the sum of the indices of the
remaining finite singular points must be −2. Hence the finite singular points other than pj
for j = 1, 2, 3, can be either two saddles, or four saddles and two centers. From the previous
analysis we know that when a12 ≥ 0 the piecewise differential systems (3) have at most one
finite singular point in y > 0, see Tables 2 and 3. Hence the remaining finite singular points
are two saddles p4 and p5, where p4 is in y > 0 and p5 is in y < 0. Then we obtain that the
local phase portraits at these singular points in the Poincaré disc are shown in Figure 2(b).

(a.2.1) If only the saddle p3 is on the boundary of the period annulus of the center p1, taking
into account the symmetry p3 is also on the boundary of the period annulus of p2, creating one
eight-figure loop. Then one repelling and one attracting separatrices of the saddle p4 of system
(3) connect with the saddle p5 and with the infinite singular point A1 and A2 of the local chart
U1 (see Figure 2(b)), respectively. Hence we have that this phase portrait in the Poincaré
disc is topologically equivalent to the phase portrait 1.4 of Figure 1, which for instance can be
realized when a21 = 1 and b03 = −0.4.

(a.2.2) The saddle p4 on the boundary of period annulus of the center p1 creates a center-
loop. Then one repelling and one attracting separatrices of the saddle p3 connect with the
infinite singular point A1 and A2 of the local chart U1. By the symmetry the phase portrait
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of the piecewise differential systems (3) is topologically equivalent to the phase portrait 1.5 of
Figure 1. This phase portrait can be realized by taking a21 = 1 and b03 = −1.

(a.2.3) From the phase portraits 1.4 to 1.5 it follows by the continuity of the phase portraits
with respect to the parameters that there must exist one phase portrait that the saddles p3
and p4 are on the boundary of the period annulus of the center p1. Then this phase portrait is
topologically equivalent to the phase portrait 1.6 of Figure 1.

(b) When the polynomial g(u) has one distinct negative root, it shows that the possible RSL
of g(u) is [1, 1,−1, 0], whose condition is b03 = R[N2, 1]. Since N2 = 0, from (37) we have that
the remaining infinite singular point in U1 is nilpotent.

From the previous analysis we know that the infinite singular point are nilpotent. The linear
part of the two systems of (3) at an infinite singular point (u, 0) of the local chart U1 is

(
4u
(
2
(
a221 + 1

)
u2 + 3b03u− a21

)
∓3b03u

3

0 u
(
2
(
a221 + 1

)
u2 + 3b03u− a21

)
)
,

where in ∓3b03u
3 we have the minus sign for the first system of (3) and the positive sign for

the second system.

In order that the point (u, 0) ∈ U1 be a nilpotent infinite singular point the two following
equations must be satisfied:

(40) 4u
(
2
(
a221 + 1

)
u2 + 3b03u− a21

)
= 0, 1− 4a21u

2 + 8b03u3 + 4u4 + 4a221u
4 = 0.

The second equation comes from imposing that (u, 0) be an infinite singular point in the local
chart U1 for both systems forming the piecewise differential system (3). This system has only
one real solution

(u, b03) =

(√
3

2
√

4a221 + 3 + 2a21
,

1

3

√
2

3
√

4a221 + 3 + 3a21

(
−2a221 +

√
4a221 + 3a21 − 3

))
.

Then the nilpotent infinite singular point is

(u, 0) =

(√
3

2
√

4a221 + 3 + 2a21
, 0

)
,

since its u-coordinate is positive it belongs to the first system of (3) defined in y > 0. Applying
Theorem 3.5 of [16] such a nilpotent infinite singular point is formed by an elliptic sector and
a hyperbolic sector, the hyperbolic sector has its two separatrices contained in the straight line
of the infinity and its elliptic sector is outside the Poincaré disc, so it does not appear in the
phase portrait of our piecewise differential system.

(b.1): a21 < 0. Then the origin is a center. From the previous analysis the piecewise differential
systems (3) have at most two finite singular points, which are different from the three centers
pj for j = 1, 2, 3.

(b.1.1): We can assume that the remaining finite singular points are two saddles p4 and p5,
where the saddle p4 is in y > 0 and the saddle p5 is in y < 0. These piecewise differential
systems have the phase portrait 1.7 of Figure 1. For instance the piecewise differential system

(3) with a21 = −1 and b03 = − 1
9

√
1 +
√

7
(
5 +
√

7
)

realizes such a phase portrait.

(b.1.2): Assume the remaining finite singular points are two centers p4 and p5, where p4 is in
y > 0 and p5 is in y < 0. Then on the Poincaré sphere the sum of the indices of the known
singular points is 10. By Theorem 2.4 the sum of the indices of the remaining two nilpotent
infinite singular points must be −8. But the nilpotent singular point formed by one elliptic and
one hyperbolic sector has index zero. In summary, it follows that the remaining finite singular
points p4 and p5 cannot be two centers.

(b.2): a21 ≥ 0. Then the origin p3 is a saddle. Recall that p1 and p2 are centers, and the two
nilpotent infinite singular points inside the Poincaré disc have a hyperbolic sector with their
two separatrices contained in the straight line of the infinity. Then these piecewise differential
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systems have the phase portrait 1.8 of Figure 1. For instance the piecewise differential system

(3) with a21 = 1 and b03 =
(√

7− 5
)√

2/(3
(
1 +
√

7
)
)/3 realizes such a phase portrait.

(c) When the polynomial −g(−u) has no distinct negative roots, its possible RSL of g(u)
are described in Table 4, i.e. b03 > R[N2, 1]. In this case we have that there are no infinite
singular points in U1 with u > 0.

Table 4. The conditions of the revised sign lists of g(u) in (38) without real roots.

RSL Conditions

[1,−1, 1, 1] a21 < 0, −
√

−2a21(1+a2
21)

3+a2
21

< b03 < 0;

[1, 1,−1, 1] a21 ≤ 0, R[N2, 1] < b03 < −
√

2a21(1+a2
21)

3 ,

or a21 > 0, R[N2, 1] < b03 < 0;

[1,−1,−1, 1] a21 < 0, −
√

2a21(1+a2
21)

3 < b03 < −
√

−2a21(1+a2
21)

3+a2
21

.

(c.1) If a21 < 0 then the origin p3 is a center. Hence on the Poincaré sphere the sum of
the indices of the known singular points is 6. By Theorem 2.4 the sum of the indices of the
remaining finite singular points must be −4. From the previous analysis, when a21 < 0 the
piecewise differential systems (3) have at most two finite singular points in y > 0, which are
different from the p1, p2 and the origin. By the symmetry the remaining finite singular points
are two saddles, where one saddle is in y > 0 and the other is in y < 0. Similarly to case (b.1.1)
we obtain the phase portrait 1.9 of Figure 1, which is achieved when a21 = −1 and b03 = −1.

(c.2) If a21 ≥ 0 then the origin p3 is a saddle. And we know that when a21 ≥ 0 the piecewise
differential systems (3) have at most one finite singular point in y > 0, which is a center or
a saddle. In fact, by the symmetry and the sum of the indices we obtain that the piecewise
differential systems (3) have no other finite singular points different from the pj , j = 1, 2, 3.
Similarly to case (b.1.2) we obtain the phase portrait 1.10 of Figure 1, which can be realized
when a21 = 1 and b03 = −0.2.

Thus we have obtained all the phase portraits of the Z2-equivariant cubic Hamiltonian sys-
tems (3) with a nilpotent bi-center, which are provided in Theorem 1.1. On the other hand we
note that we can use these series of symbolic way to obtain the phase portraits of piecewise
smooth systems having more complicated singular points.
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[19] A. Gasull, A. Guillamon and V. Mañosa, Phase portrait of Hamiltonian systems with homogeneous non-

linearities, Nonlinear Anal. 42 (2000), 679–707.
[20] A. Gasull, J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Int. J.

Bifurcation and Chaos 13 (2003), 1755–1765.

[21] L. Guo, P. Yu, Y. Chen, Bifurcation analysis on a class of Z2-equivariant cubic switching systems showing
eighteen limit cycles, J. Differential Equations 266 (2019), 1221–1244.

[22] D. Hilbert, Mathematische Probleme, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges.

Wiss. G”ottingen Math. Phys. KL. (1900), 253–297; English transl., Bull. Amer. Math. Soc. 8 (1902),
437–479; Bull. (New Series) Amer. Math. Soc. 37 (2000), 407–436.

[23] W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad.

Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland (1911), 1446–1457 (Dutch).
[24] W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree,

Nederl. Akad. Wetensch. Verslag Afd. Natuurk. 20 (1912), 1354–1365; 21, 27–33 (Dutch).
[25] F. Li, Y. Liu, Y. Liu, P. Yu, Bi-center problem and bifurcation of limit cycles from nilpotent singular points

in Z2-equivariant cubic vector fields, J. Differential Equations 265 (2018), 4965–4992.

[26] F. Li, Y. Liu, Y. Liu, P. Yu, Complex isochronous centers and linearization transformations for cubic
Z2-equivariant planar systems, J. Differential Equations 268 (2020), 3819–3847.

[27] J. Li, Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurcation Chaos

3 (2013) 47–106.
[28] J. Li and Y. Liu, New results on the study of Zq-equivariant planar polynomial vector fields, Qual. Theo.

Dyna. Syst. 9 (2010), 167–219.

[29] Y. Liu, F. Li, Double bifurcation of nilpotent focus, Internat. J. Bifur. Chaos 25 (2015), 1550036 (10
pages).

[30] Y. Liu, J. Li, Bifurcations of limit cycles created by a multiple nilpotent critical point of planar dynamical

systems, Internat. J. Bifur. Chaos 21 (2011), 497–504.
[31] Y. Lv, R. Yuan, P. Yu, Dynamics in two nonsmooth predator-prey models with threshold harvesting,

Nonlinear Dyn. 74 (2013), 107–132.
[32] K.E. Malkin, Criteria for the center for a certain differential equation, Volz. Mat. Sb. Vyp. 2 (1964), 87–91

(in Russian).

[33] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76
(1954), 127–148.

[34] D.A. Neumann, Classification of continuous flows on 2–manifolds, Proc. Amer. Math. Soc. 48 (1975),

73–81.
[35] M. Peixoto, Dynamical Systems, Proceedingsof a Symposium held at the University of Bahia, Acad. Press,

New York, 1973, pp.389–420.
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Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3–84.



18 TING CHEN, SHIMIN LI AND JAUME LLIBRE

[37] D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center, Trans. Amer.

Math. Soc. 338 (1993), 799–841.
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