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Abstract. These last years an increasing interest appeared in studying the planar
discontinuous piecewise differential systems motivated by the rich applications in mod-
eling real phenomena. The understanding of the dynamics of these systems has many
difficulties. One of them is the study of their limit cycles. In this paper, we study
the maximum number of crossing limit cycles of some classes of planar discontinuous
piecewise differential systems separated by a straight line and formed by combinations
of linear centers (consequently isochronous) and cubic isochronous centers with homo-
geneous nonlinearities. For these classes of planar discontinuous piecewise differential
systems we solved the extension of the 16th Hilbert problem, i.e. we provide an upper
bound for their maximum number of crossing limit cycles.

1. Introduction and statement of the main results

A limit cycle is a periodic orbit of a differential system in R2 that is isolated in the set
of all its periodic orbits. The analysis of the existence of limit cycles became important in
the applications of the real world because many phenomena are related to their existence,
see for instance the Van der Pol oscillator [28, 29]. The study of limit cycles began with
Poincaré [23] at the end of the nineteenth century. On the other hand, the study of the
continuous piecewise linear differential systems separated by a straight line has special
attention from the mathematicians, mainly because these systems appear in a natural way
in the control theory, see for instance the books [10, 16, 20, 21], in mechanics, electrical
circuits, economy, see for instance the books [1, 25] and the surveys [19, 26].

The easiest continuous piecewise linear differential systems are formed by two linear
differential systems separated by a straight line and it is known that such systems have at
most one limit cycle, see [7, 13, 17, 18]. But it is also known that if both linear differential
systems are linear centers, then the continuous piecewise linear differential system has no
limit cycles, see for example [15]. However, if we eliminate the continuity of such systems,
that is, they do not need to coincide on the line of discontinuity, then it is known that
these systems can have three limit cycles as we can see in [2, 4, 8, 11, 12, 14], but it is
unknown if three is the maximum number of limit cycles that they can have.

When we consider planar discontinuous piecewise differential systems we can have two
kinds of limit cycles: sliding limit cycles or crossing limit cycles. The first ones contain
some segment of the line of discontinuity, and the second ones only contain some points
of the line of discontinuity. For more details on the discontinuous piecewise differential
systems see the books [1, 6, 19, 25]. In this work, we are going to study the crossing limit
cycles, and in what follows sometimes when we talk about limit cycles, we are talking
about crossing limit cycles.
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An isochronous center of a planar differential system is a singularity such that there
is a neighborhood of it formed by periodic orbits with the same period. It is well known
that the linear centers are isochronous.

Llibre and Teixeira in [15] were interested in studying if a discontinuous piecewise
differential system formed with only linear centers can create limit cycles. In this work,
we are interested in a similar problem. The first objective is to study the maximum
number of limit cycles that discontinuous piecewise differential systems separated by a
straight line can have when one differential system is a linear center and the other is
a cubic isochronous center with homogeneous nonlinearities. The second objective is
to study the maximum number of limit cycles that discontinuous piecewise differential
systems separated by a straight line can have when both differential systems are cubic
isochronous centers with homogeneous nonlinearities. Without loss of generality, we can
assume that the straight line of discontinuity is x = 0.

Consider the polynomial differential systems of the form

dx

dt
= ẋ = −y + a30x

3 + a21x
2y + a12xy

2 + a03y
3,

dy

dt
= ẏ = x+ b30x

3 + b21x
2y + b12xy

2 + b03y
3.

(1)

Pleshkan in [22] classify which of these differential systems have an isochronous center
at the origin of coordinates. Thus a cubic system (1) has an isochronous center at the
origin if and only if the system can be transformed to one of the following four differential
systems

(S3
1) :

ẋ = −y + x3 − xy2,
ẏ = x+ x2y − y3, (S3

2) :
ẋ = −y + x3 − 3xy2,
ẏ = x+ 3x2y − y3,

(S3
3) :

ẋ = −y + 3x2y,
ẏ = x− 2x3 + 9xy2,

(S3
4) :

ẋ = −y − 3x2y,
ẏ = x+ 2x3 − 9xy2.

(2)

doing a linear change of coordinates and a rescaling of time.

The first integrals of the differential systems (2) can be founded in [3], and they are

(S3
1) : H1(x, y) =

x2 + y2

1 + 2xy
, (S3

2) : H2(x, y) =
(x2 + y2)2

1 + 4xy
,

(S3
3) : H3(x, y) =

x2 + y2 − 4x4 + 4x6

(−1 + 3x2)3
, (S3

4) : H4(x, y) =
x2 + y2 + 4x4 + 4x6

(1 + 3x2)3
,

respectively.

Llibre and Teixeira proved in [15] that after doing an affine transformation and a
rescaling of the independent variable any linear center can be written into the form

(Lc) :
ẋ = −Ax− 4A2 + ω2

4D
y +B,

ẏ = Dx+ Ay + C,

(3)

where A, B, C, D, ω are real numbers with D, ω > 0. This system has the first integral

HL(x, y) = 4(Dx+ Ay)2 + 8D(Cx−By) + y2ω2. (4)

In this paper we only study discontinuous piecewise differential systems separated
by a straight line and formed by two systems that can be transformed, after an affine
transformation, in differential systems belonging to some of the three classes (S3

1), (S3
2)

and (Lc). Here we do not take into account a rescaling of the independent variable
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because such a rescaling does not change the phase portrait of the differential systems,
only change the speed at which their orbits are traveled.

Let A,B ∈ {(Lc), (S
3
1), (S3

2)} be. Then we denote by Nclc[A,B] the maximum number
of crossing limit cycles that the class of the discontinuous piecewise differential systems
separated by a straight line and formed by the differential systems A and B can have.

Our results are summarized in the next theorem.

Theorem 1. Consider the class of discontinuous piecewise differential systems separated
by a straight line and formed by two differential systems which after an affine change of
variables belong to the classes (Lc), (S3

1) or (S3
2). Then

(i) Nclc[(Lc), (S
3
1)] = Nclc[(S

3
1), (S3

1)] = 1;
(ii) Nclc[(Lc), (S

3
2)] = 2;

(iii) 1 ≤ Nclc[(S
3
1), (S3

2)] ≤ 3;
(iv) 1 ≤ Nclc[(S

3
2), (S3

2)] ≤ 9;
(v) Nclc[(Lc), (Lc)] = 0.

In the following table, we summarize the results of Theorem 1, and where we have
added the numbers between parentheses, which mean the maximum number of known
limit cycles for the corresponding class of discontinuous piecewise differential systems.
Inside the proof of Theorem 1 we will provide the corresponding discontinuous piecewise
differential systems realizing the number of limit cycles that appear between parentheses.

Linear (S3
1) (S3

2)
Linear 0 1 (1) 2 (2)
(S3

1) 1 (1) 1 (1) 3 (1)
(S3

2) 2 (2) 3 (1) 9 (1)

We want to stress that our contribution in Theorem 1 restricts to items (i), (ii), (iii),
and (iv). As we have already said item (v) was proved, for example in [15].

Moreover, in this work, we do not work with the families of isochronous centers (S3
3)

and (S3
4). The difficulties of these cases correspond to the fact that the numerator of

their first integrals has a very high degree. So we still haven’t found a way to improve
the upper limit of the maximum number of limit cycles.

2. Definitions and Preliminaries

In this section, we review some definitions and previous results that will be used for
proving our results. Let

ẋ = P (x, y), ẏ = Q(x, y), (5)

be a planar polynomial differential system. Then a nonconstant analytic function H =
H(x, y) is a first integral of system (5) if it is constant on all solution curves (x(t), y(t)),
that is, H(x(t), y(t)) = constant for all values of t for which H(x(t), y(t)) is defined.
Clearly, H is the first integral of system (5) if and only if

XH = P
∂H

∂x
+Q

∂H

∂y
= 0.
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Therefore the solutions of system (5) are contained in the level curves of the function H.
A differential system in the plane with a first integral is said integrable. For more details
on integrable systems see Chapter 8 of [5].

Consider a planar discontinuous piecewise differential system separated by the straight
line x = 0. A periodic orbit of a such system must intersect the line x = 0 exactly in two
points. Since we always will work with integrable systems, let H1 and H2 be the two first
integrals of the two differential systems forming the discontinuous piecewise differential
system. If we have a limit cycle which intersect x = 0 in the two points by (0, y1) and
(0, y2) with y1 < y2, then

H1(0, y1)−H1(0, y2) = 0, and H2(0, y1)−H2(0, y2) = 0. (6)

Therefore our objective will be to control how many solutions the system (6) has, and
to try to find discontinuous piecewise differential systems that satisfy this number of
solutions.

It is important to note that every solution y1 < y2 of system (6) in general does not
provide a limit cycle. For instance when the system has a continuum of solutions; when
the level curves of either H1 or H2 through the points (0, y1) and (0, y2) are disconnected;
or when the two pieces of the level curves of H1 and H2 through the points (0, y1) and
(0, y2) provide a closed curve with a non-compatible orientation. In summary, every
crossing limit cycle provides a unique solution of system (6) with y1 < y2, but a solution
of the system (6) does not necessarily provide a crossing limit cycle.

Since the system (6) for our discontinuous piecewise differential systems always can be
reduced to a polynomial system, a good tool that we will use for estimating its number
of solutions will be the Bezout Theorem. This theorem says that if a polynomial system
has a finite number of solutions, then the number of its solutions is at most the product
of the degrees of the polynomials that appear in the system, for more details see [24, 27].

We also must take into account that if we have a polynomial system

F (y1, y2) = 0, G(y1, y2) = 0,

satisfying that F (y1, y2) = F (y2, y1) and G(y1, y2) = G(y2, y1), then (y1, y2) and (y2, y1)
are solutions. Since we only are interested in the solutions y1 < y2. So the number of
solutions of system (6) must be divided by two, to obtain an upper bound for the number
of limit cycles.

Moreover, whenever we have a symmetric polynomial system (invariant by permuta-
tions of its variables), as our system (6) sometimes it will be convenient to do the change
of variables (y1, y2) → (z, w) given by z = y1 + y2 and w = y1y2, in order to study its
solutions. For more details see Section III.4 of [9].

Doing the general affine change of variables x = aX + bY + c, y = αX + βY + γ, with
aβ − bα 6= 0, the first integral of the system (S3

1) is transformed into

H1c(X, Y ) =
(c+ aX + bY )2 + (Xα + Y β + γ)2

1 + 2(c+ aX + bY ) + (Xα + Y β + γ)
,

and the first integral of the system (S3
2) is transformed into

H2c(X, Y ) =
((c+ aX + bY )2 + (Xα + Y β + γ)2)2

1 + 4(c+ aX + bY )(Xα + Y β + γ)
.

The normal form of a general linear center and its first integral are given in (3) and
(4), respectively.
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3. Proof of Theorem 1

Figure 1. The limit cycle of the discontinuous piecewise differential sys-
tem (7)-(8) of Proposition 1.

The proof that Nclc[(Lc), (S
3
1)] = 1 is given in the next proposition.

Proposition 1. Consider the class of discontinuous piecewise differential systems sep-
arated by the straight line x = 0 and formed by a linear center and a cubic isochronous
center (S3

1) after an arbitrary affine change of variables. Then these differential sys-
tems can have at most one limit cycle. Moreover, the discontinuous piecewise differential
system in this class is formed by the differential system

ẋ = 2− y

4
, ẏ = x, (7)

in x ≥ 0; and by the differential system

ẋ =
1

2
(23 + 38x+ 7y + 16x2 + 16xy − 3y2 + 8x2y − 2xy2),

ẏ = 12 + 12x+ 13y + 16xy + 4xy2 − y3,
(8)

in x ≤ 0, has one limit cycle, reaching the maximum upper bound. See Figure 1.

Proof. Under the assumptions of the proposition if such discontinuous piecewise differ-
ential systems have a limit cycle intersecting the discontinuity straight line x = 0 in the
two points (0, y1) and (0, y2), we have that y1 and y2 must satisfy that

H1c(0, y1)−H1c(0, y2) = 0, and HL(0, y1)−HL(0, y2) = 0,

or equivalently

(y1 − y2)(8BD − 4A2y1 − 4A2y2 − y1ω2 − y2ω2) = 0,

(y1 − y2)(−2bc− b2y1 − b2y2 + 2c3β + 2bc2y1β + 2bc2y2β + 2b2cy1y2β − y1β2

− y2β2 − 2cy1y2β
3 − 2bc2γ − 2b2cy1γ − 2b2cy2γ − 2b3y1y2γ − 2βγ − 2cy1β

2γ

− 2cy2β
2γ + 2by1y2β

2γ − 2cβγ2 + 2by1βγ
2 + 2by2βγ

2 + 2bγ3)/((1 + 2cy1β

+ 2by21β + 2cγ + 2by1γ)(1 + 2cy2β + 2by22β + 2cγ + 2by2γ)) = 0.
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Since (1 + 2cy1β + 2by21β + 2cγ + 2by1γ)(1 + 2cy2β + 2by22β + 2cγ + 2by2γ) 6= 0 and we
have y1 6= y2, then we obtain the equivalent system

F 1
1 (y1, y2) = 8BD − 4A2y1 − 4A2y2 − y1ω2 − y2ω2 = 0,

F 1
2 (y1, y2) = −2bc− b2y1 − b2y2 + 2c3β + 2bc2y1β + 2bc2y2β + 2b2cy1y2β − y1β2

− y2β2 − 2cy1y2β
3 − 2bc2γ − 2b2cy1γ − 2b2cy2γ − 2b3y1y2γ − 2βγ

− 2cy1β
2γ − 2cy2β

2γ + 2by1y2β
2γ − 2cβγ2 + 2by1βγ

2 + 2by2βγ
2

+ 2bγ3 = 0.

(9)

So in system (9) we have that F 1
1 (y1, y2) is a polynomial of degree 1 and F 1

2 (y1, y2) is
a polynomial of degree 2. Eventually, system (9) could have a continuum of solutions
(y1, y2), but then the possible periodic solutions would not be limit cycles. Therefore
we assume that this system has finitely many solutions. Then by Bezout Theorem, this
system has at most two solutions. Since if (y∗1, y

∗
2) is a solution, also (y∗2, y

∗
1) is a solution,

but we are interested in the solutions whose first component is smaller than the second
one, so it follows that the discontinuous piecewise differential system has at most one
limit cycle.

Now we shall prove that the discontinuous piecewise differential system is separated by
the straight line x = 0 and defined by the differential systems (7) and (8) has one limit
cycle. For x ≥ 0 the system (7) is a linear center and for x ≤ 0 the system is the cubic
isochronous center (S3

1) after the affine change of variables (x, y)→ (3 + 2x, 1 + 2x− y).
The first integrals of this piecewise differential system are

HL1(x, y) = 4x2 − 16y + y2 and H1c1(x, y) =
(3 + 2x)2 + (1 + 2x− y)2

1 + 2(3 + 2x)(1 + 2x− y)
.

Then the system (9) for this piecewise differential system is

− 16 + y1 + y2 = 0,

−(−46− 7y1 − 7y2 + 6y1y2)

(−7 + 6y1)(−7 + 6y2))
= 0,

with the solution (y1∗1 , y
1∗
2 ) = 1

3

(
24−

√
339, 24 +

√
339
)
, and observe that we have y1∗1 <

y1∗2 .

The solution (x11(t), y
1
1(t)) in x ≥ 0 of system (7) such that (x11(0), y11(0)) = (0, y1∗1 ) is

contained in the level curve = HL1(0, y
1∗
1 ) = −79

3
= HL1(0, y

1∗
2 ), i.e. in the curve

HL1(x, y) = 4x2 − 16y + y2 = −79

3
.

The solution (x12(t), y
1
2(t)) in x ≤ 0 of system (8) such that (x12(0), y12(0)) = (0, y1∗2 ) is

contained in the level curve H1c1(0, y
1∗
1 ) = −7

3
= H1c1(0, y

1∗
2 ), i.e. in the curve

H1c1(x, y) =
(3 + 2x)2 + (1 + 2x− y)2

1 + 2(3 + 2x)(1 + 2x− y)
= −7

3
.

Drawing the orbits (x1k(t), y1k(t)), k = 1, 2, we obtain the limit cycle of Figure 1. �

The proof that Nclc[(Lc), (S
3
2)] = 2 is given in the next proposition.

Proposition 2. Consider the class of discontinuous piecewise differential systems sep-
arated by the straight line x = 0 and formed by a linear center and a cubic isochronous
center (S3

2) after an arbitrary affine change of variables. Then these differential systems
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Figure 2. The two limit cycles of the discontinuous piecewise differential
system (10)-(11) of Proposition 2. The figure on the right shows that there
is no intersection between the two limit cycles.

can have at most two limit cycles. Moreover, the discontinuous piecewise differential
system in this class is formed by the differential system

ẋ = 1 + x− 5

4
y, ẏ =

4

5
+ x− y. (10)

in x ≥ 0, and the differential system

ẋ =
1

2
(−1 + 30x+ 25y + 24x2 − 15y2 − 48x3 − 120x2y − 90xy2 − 20y3),

ẏ = −20x− 15y + 24xy + 18y2 + 32x3 + 72x2y + 48xy2 + 9y3,
(11)

in x ≤ 0, has two limit cycles, reaching the maximum upper bound. See Figure 2.

Proof. Under the assumptions of the proposition if such discontinuous piecewise differ-
ential systems have a limit cycle intersecting the discontinuity straight line x = 0 in the
two points (0, y1) and (0, y2), then y1 and y2 must satisfy that

H2c(0, y1)−H2c(0, y2) = 0, and HL(0, y1)−HL(0, y2) = 0, (12)

or equivalently

G2
1(y1, y2) = −(y1 − y2)(8BD − 4A2y1 − 4A2y2 − y1ω2 − y2ω2) = 0,

G2
2(y1, y2) = −((y1 − y2)P 2

2 (y1, y2)/((1 + 4cy1β + 4by21β + 4cγ + 4by1γ)

(1 + 4cy2β + 4by22β + 4cγ + 4by2γ))) = 0,

where P 2
2 (y1, y2) is a polynomial of degree 5. Since (1 + 4cy1β+ 4by21β+ 4cγ+ 4by1γ)(1 +

4cy2β + 4by22β + 4cγ + 4by2γ) 6= 0 and y1 < y2, we can remove these terms to solve the
system, and we get the equivalent system

F 2
1 (y1, y2) = 8BD − 4A2y1 − 4A2y2 − y1ω2 − y2ω2 = 0,

F 2
2 (y1, y2) = P 2

2 (y1, y2) = 0.
(13)

Eventually, system (13) could have a continuum of solutions (y1, y2), but then the possible
periodic solutions would not be limit cycles. Therefore we assume that this system has
finitely many solutions. From F 2

1 (y1, y2) = 0 we obtain that

y1 =
8BD − 4A2Y − Y ω2

4A2 + ω2
, (14)
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with 4A2 + ω2 6= 0 because ω > 0. So if we substitute (14) in F 2
2 (y1, y2) = 0, then we

get a polynomial p2(y2) of degree 4 in the variable y2, and p2(y2) has at most four roots.
Therefore the system (13) has at most four solutions, and consequently the discontinuous
piecewise differential system can have at most two limit cycles.

Now we shall prove that the discontinuous piecewise differential system separated by
the straight line x = 0 and formed by the linear center (10) and the cubic isochronous
center (11) obtained from (S3

2) after the affine change of variables (x, y) → (−1 − 2x −
y, 1− 2x− 2y), has two limit cycles.

The first integrals of this piecewise differential system are

HL2(x, y) = 4(x−y)2+8

(
4

5
x− y

)
+y2, H2c1(x, y) =

((−1− 2x− y)2 + (1− 2x− 2y)2)2

1 + 4(−1− 2x− y)(1− 2x− 2y)
.

So system (12) is equivalent to

− 8 + 5y1 + 5y2 = 0,

8− 104y1 + 60y21 − 75y31 − 104y2 + 220y1y2 − 155y21y2 + 100y31y2 + 60y22−
− 155y1y

2
2 − 60y21y

2
2 + 200y31y

2
2 − 75y32 + 100y1y

3
2 + 200y21y

3
2 = 0,

with the solutions

(y2∗11, y
2∗
12) =

(
1

10

(
8−

√
2(227− 5

√
2041)

)
,

1

10

(
8 +

√
2(227− 5

√
2041)

))
,

(y2∗21, y
2∗
22) =

(
1

10

(
8−

√
2(227 + 5

√
2041)

)
,

1

10

(
8 +

√
2(227 + 5

√
2041)

))
.

Observe that we have y2∗11 < y2∗12 and y2∗21 < y2∗22.

The solution (x211(t), y
2
11(t)) in x ≥ 0 of system (10) such that (x211(0), y211(0)) = (0, y2∗11)

is contained in the level curve HL2(0, y
2∗
12) =

1

2

(
39−

√
2041

)
= HL2(0, y

2∗
11), i.e. in the

curve

HL2(x, y) = 4(x− y)2 + 8

(
4

5
x− y

)
+ y2 =

1

2

(
39−

√
2041

)
.

The solution (x221(t), y
2
21(t)) in x ≤ 0 of system (11) such that (x221(0), y221(0)) = (0, y2∗12)

is contained in the the level curve H2c1(0, y
2∗
12) =

1

14

(
263− 5

√
2041

)
= H2c1(0, y

2∗
11), i.e.

in the curve

H2c1(x, y) =
((−1− 2x− y)2 + (1− 2x− 2y)2)2

1 + 4(−1− 2x− y)(1− 2x− 2y)
=

1

14

(
263− 5

√
2041

)
.

The solution (x212(t), y
2
12(t)) in x ≥ 0 of system (10) such that (x211(0), y211(0)) = (0, y2∗21)

is contained in the level HL2(0, Y
2∗
22 ) =

1

2

(
39 +

√
2041

)
= HL2(0, y

2∗
21), i.e. in the curve

HL2(x, y) = 4(x− y)2 + 8

(
4

5
x− y

)
+ y2 =

1

2

(
39 +

√
2041

)
.

The solution (x222(t), y
2
22(t)) in x ≤ 0 of system (11) such that (x222(0), y222(0)) = (0, Y 2∗

22 )

is contained in the level curve H2c1(0, Y
2∗
22 ) =

1

14

(
263 + 5

√
2041

)
= H2c1(0, y

2∗
21), i.e. in

the curve

H2c1(x, y) =
((−1− 2x− y)2 + (1− 2x− 2y)2)2

1 + 4(−1− 2x− y)(1− 2x− 2y)
=

1

14

(
263 + 5

√
2041

)
.



CROSSING LIMIT CYCLES FOR A FAMILY OF ISOCHRONOUS CENTERS 9

Drawing the orbits (x2kj(t), y
2
kj(t)), k, j = 1, 2, we obtain the two limit cyles of Figure

2. �

The proof that Nclc[(S
3
1), (S3

1)] = 1 is given in the next proposition.

Figure 3. The limit cycle of the discontinuous piecewise differential sys-
tem (15)-(16) of Proposition 3.

Proposition 3. Consider the class of discontinuous piecewise differential systems sepa-
rated by the straight line x = 0 and formed by two distincts cubic isochronous center (S3

1)
after an arbitrary affine change of variables. Then these differential systems can have at
most one limit cycle. Moreover, the discontinuous piecewise differential system in this
class is formed by the differential system

ẋ = −1

2
(−1− 4x+ 3y + 12x2 − 4xy − y2 − 8x3 + 2xy2),

ẏ = 1− 6x+ 2y + 4x2 + 4xy − 3y2 − 4x2y + y3,
(15)

in x ≥ 0 and by the differential system

ẋ =
1

2
(23 + 38x+ 7y + 16x2 + 16xy − 3y2 + 8x2y − 2xy2),

ẏ = 12 + 12x+ 13y + 16xy + 4xy2 − y3,
(16)

in x ≤ 0 has one limit cycle, reaching the maximum upper bound. See Figure 3.

Proof. Under the assumptions of the proposition if such discontinuous piecewise differ-
ential systems have a limit cycle intersecting the discontinuity straight line x = 0 in the
two points (0, y1) and (0, y2), then y1 and y2 must satisfy that

H3c(0, y1)−H3c(0, y2) = 0, and H31c(0, y1)−H31c(0, y2) = 0. (17)

where

H3c(X, Y ) =
(c+ aX + bY )2 + (Xα + Y β + γ)2

1 + 2(c+ aX + bY ) + (Xα + Y β + γ)
,

and

H31c(X, Y ) =
(c1 + a1X + b1Y )2 + (Xα1 + Y β1 + γ1)

2

1 + 2(c1 + a1X + b1Y ) + (Xα1 + Y β1 + γ1)
.
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System (17) is

G3
1(y1, y2) = −(y1 − y2)(−2bc− b2y1 − b2y2 + 2c3β + 2bc2y1β + 2bc2y2β

+ 2b2cy1y2β − y1β2 − y2β2 − 2cy1y2β
3 − 2bc2γ − 2b2cy1γ − 2b2cy2γ

− 2b3y1y2γ − 2βγ − 2cy1β
2γ − 2cy2β

2γ + 2by1y2β
2γ − 2cβγ2

+ 2by1βγ
2 + 2by2βγ

2 + 2bγ3)/((1 + 2cy1β + 2by21β + 2cγ + 2by1γ)

(1 + 2cy2β + 2by22β + 2cγ + 2by2γ)) = 0,

G3
2(y1, y2) = −(y1 − y2)(−2b1c1 − b21y1 − b21y2 + 2c31β1 + 2b1c

2
1y1β1 + 2b1c

2
1y2β1

+ 2b21c1y1y2β1 − y1β2
1 − y2β2

1 − 2c1y1y2β
3
1 − 2b1c

2
1γ1 − 2b21c1y1γ1

− 2b21c1y2γ1 − 2b31y1y2γ1 − 2β1γ1 − 2c1y1β
2
1γ1 − 2c1y2β

2
1γ1

+ 2b1y1y2β
2
1γ1 − 2c1β1γ

2
1 + 2b1y1β1γ

2
1 + 2b1y2β1γ

2
1 + 2b1γ

3
1))/

((1 + 2c1y1β1 + 2b1y
2
1β1 + 2c1γ1 + 2b1y1γ1)

(1 + 2c1y2β1 + 2b1y
2
2β1 + 2c1γ1 + 2b1y2γ1)) = 0,

Since the denominators in the previous system cannot be zero and y1 < y2, we obtain the
equivalent system

F 3
1 (y1, y2) = −2bc− b2y1 − b2y2 + 2c3β + 2bc2y1β + 2bc2y2β + 2b2cy1y2β

− y1β2 − y2β2 − 2cy1y2β
3 − 2bc2γ − 2b2cy1γ − 2b2cy2γ

− 2b3y1y2γ − 2βγ − 2cy1β
2γ − 2cy2β

2γ + 2by1y2β
2γ − 2cβγ2

+ 2by1βγ
2 + 2by2βγ

2 + 2bγ3 = 0,

F 3
2 (y1, y2) = −2b1c1 − b21y1 − b21y2 + 2c31β1 + 2b1c

2
1y1β1 + 2b1c

2
1y2β1

+ 2b21c1y1y2β1 − y1β2
1 − y2β2

1 − 2c1y1y2β
3
1 − 2b1c

2
1γ1 − 2b21c1y1γ1

− 2b21c1y2γ1 − 2b31y1y2γ1 − 2β1γ1 − 2c1y1β
2
1γ1 − 2c1y2β

2
1γ1

+ 2b1y1y2β
2
1γ1 − 2c1β1γ

2
1 + 2b1y1β1γ

2
1 + 2b1y2β1γ

2
1 + 2b1γ

3
1 = 0.

(18)

The system (18) could have a continuum of solutions (y1, y2), but then the possible
periodic solutions would not be limit cycles. Therefore we assume that this system has
finitely many solutions.

Assume that q31(y1) 6= 0. From the equation F 4
1 (y1, y2) = 0 we obtain

y2 =
p31(y1)

q31(y1)
, (19)

where
p31(y1) = −2bc+ 2c3β − 2bc2γ − 2βγ − 2cβγ2 + 2bγ3+

+ y1(−b2 + 2bc2β − β2 − 2b2cγ − 2cβ2γ + 2bβγ2),

q31(y1) = b2 − 2bc2β + β2 + 2b2cγ + 2cβ2γ − 2bβγ2+

+ y1(−2b2cβ + 2cβ3 + 2b3γ − 2bβ2γ).

We substitute (19) in F 3
2 (y1, y2) = 0, and we get a rational function. The polynomial

p3(y1) in the numerator has degree 2. Therefore p3(y1) has at most two real roots, and
consequently system (18) has at most two solutions. Hence the discontinuous piecewise
differential system has at most one limit cycle.

Now assume that q31(y1) = 0. Then also p31(y1) = 0, and then at most one solution
for system (18).
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In summary, the discontinuous piecewise differential systems of this proposition have
at most one limit cycle. Now we shall prove that the discontinuous piecewise differential
system formed by the differential systems (15) and (16) has one limit cycle.

In x ≥ 0 the differential system (15) comes from the cubic isochronous center (S3
1)

after doing the affine change of variables (x, y) → (1 − y, 1 − 2x), and in x ≤ 0 the
differential system (16) also comes from the cubic isochronous center (S3

1) after doing the
affine change of variables (x, y) → (3 + 2x, 1 + 2x − y). The first integrals of these two
differential systems are

H3c1(x, y) =
(1− y)2 + (1− 2x)2

1 + 2(1− y)(1− 2x)
, and H31c1(x, y) =

(3 + 2x)2 + (1 + 2x− y)2

1 + 2(3 + 2x)(1 + 2x− y)
,

respectively. Then system (18) for this piecewise differential system becomes

2− 3y1 − 3y2 + 2y1y2 = 0,

− 46− 7y1 − 7y2 + 6y1y2 = 0.

Its solution is (y3∗1 , y
3∗
2 ) =

(
13−

√
131, 13 +

√
131
)
, observe that we have y3∗1 < y3∗2 .

The solution (x31(t), y
3
1(t)) in x ≥ 0 of system (15) such that (x31(0), y31(0)) = (0, y3∗1 ) is

contained in the level curve H3c1(0, y
3∗
2 ) = −12 = H3c1(0, y

3∗
1 ), i.e. in the curve

H3c1(x, y) =
(1− y)2 + (1− 2x)2

1 + 2(1− y)(1− 2x)
= −12.

The solution (x32(t), y
3
2(t)) in x ≤ 0 of system (16) such that (x32(0), y32(0)) = (0, y3∗2 ) is

contained in the level curve H31c1(0, y
3∗
2 ) = −4 = H31c1(0, y

3∗
1 ), i.e. in the curve

H31c1(x, y) =
(3 + 2x)2 + (1 + 2x− y)2

1 + 2(3 + 2x)(1 + 2x− y)
= −4.

Drawing the orbits (x3k(t), y3k(t)), k = 1, 2, we obtain the limit cycle of Figure 3. �

Figure 4. The limit cycle of the discontinuous piecewise differential sys-
tem (20)-(21) of Proposition 4.

The proof that Nclc[(S
3
1), (S3

2)] ≤ 3 is given in the next proposition.

Proposition 4. Consider the class of discontinuous piecewise differential systems sepa-
rated by the straight line x = 0 and formed by two cubic isochronous centers of type (S3

1)
and (S3

2) after an arbitrary affine change of variables. Then these differential systems can
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have at most three limit cycles. Moreover, the discontinuous piecewise differential system
in this class is formed by the differential system

ẋ = −1− x+ 3y + 3x2 + 4xy − y2 + x3 − xy2,
ẏ = 7− 3x− 11y − 2x2 + 2xy + 6y2 + x2y − y3, , (20)

in x ≥ 0, and by the differential system

ẋ = y − x3 + 3xy2, ẏ = −x− 3x2y + y3, (21)

in x ≤ 0, has one limit cycle.

Proof. Under the assumptions of the proposition if such discontinuous piecewise differ-
ential systems have a limit cycle intersecting the discontinuity straight line x = 0 in the
two points (0, y1) and (0, y2), then y1 and y2 must satisfy that

H1c(0, y1)−H1c(0, y2) = 0, and H21c(0, y1)−H42c(0, y2) = 0 (22)

where

H1c(x, y) =
(c+ ax+ by)2 + (xα + yβ + γ)2

1 + 2(c+ ax+ by)(xα + yβ + γ)
,

and

H21c(x, y) =
((c1 + a1X + b1Y )2 + (Xα1 + Y β1 + γ1)

2)2

1 + 4(c1 + a1X + b1Y )(Xα1 + Y β1 + γ1)
.

Then system (22) becomes

G4
1(y1, y2) = −(y1 − y2)(−2bc− b2y1 − b2y2 + 2c3β + 2bc2y1β + 2bc2y2β

+ 2b2cy1y2β − y1β2 − y2β2 − 2cy1y2β
3 − 2bc2γ − 2b2cy1γ − 2b2cy2γ

− 2b3y1y2γ − 2βγ − 2cy1β
2γ − 2cy2β

2γ + 2by1y2β
2γ − 2cβγ2

+ 2by1βγ
2 + 2by2βγ

2 + 2bγ3)/((1 + 2cy1β + 2by21β + 2cγ + 2by1γ)

(1 + 2cy2β + 2by22β + 2cγ + 2by2γ))) = 0,

G4
2(y1, y2) = −(((y1 − y2)(G4

22(y1, y2))))/

((1 + 4c1y1β1 + 4b1y
2
1β1 + 4c1γ1 + 4b1y1γ1)

(1 + 4c1y2β1 + 4b1y
2
2β1 + 4c1γ1 + 4b1y2γ1)) = 0,

where G4
22(y1, y2) ı́s a polynomial of degree 5. Since the denominators in the previous

system cannot be zero and y1 < y2, the previous system reduces to the system

F 4
1 (y1, y2) = −2bc− b2y1 − b2y2 + 2c3β + 2bc2y1β + 2bc2y2β + 2b2cy1y2β

− y1β2 − y2β2 − 2cy1y2β
3 − 2bc2γ − 2b2cy1γ − 2b2cy2γ

− 2b3y1y2γ − 2βγ − 2cy1β
2γ − 2cy2β

2γ + 2by1y2β
2γ − 2cβγ2

+ 2by1βγ
2 + 2by2βγ

2 + 2bγ3,

F 4
2 (y1, y2) = G4

2(y1, y2) = 0.

(23)

Eventually, the system (23) could have a continuum of solutions (y1, y2), but then the
possible periodic solutions would not be limit cycles. Therefore we assume that this
system has finitely many solutions.

Assume that q41(y1) 6= 0. From equation F 4
1 (y1, y2) = 0 we get

y2 =
p41(y1)

q41(y1)
, (24)
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where
p41(y1) = −2bc+ 2c3β − 2bc2γ − 2βγ − 2cβγ2 + 2bγ3+

+ y1(−b2 + 2bc2β − β2 − 2b2cγ − 2cβ2γ + 2bβγ2),

q41(y1) = b2 − 2bc2β + β2 + 2b2cγ + 2cβ2γ − 2bβγ2+

+ y(−2b2cβ + 2cβ3 + 2b3γ − 2bβ2γ).

We substitute (24) in F 4
2 (y1, y2) = 0, and we get a rational function. The polynomial

p4(y1) of the numerator has degree 6. Therefore p4(y1) has at most six roots, and con-
sequently system (23) has at most six solutions. Therefore the discontinuous piecewise
differential system has at most three limit cycles.

Assume that q41(y1) = 0. Then p41(y1) = 0, and there is at most one solution for y1,
and consequently the discontinuous piecewise differential system has at most one limit
cycle in this case.

In summary, we have proved these discontinuous piecewise differential systems have at
most three limit cycles. Now we shall prove that the differential system formed by the
differential systems (20) and (21) has one limit cycle.

In x ≥ 0 the differential system (20) comes from the cubic isochronous center (S3
1) after

doing the affine change of variables (x, y)→ (1 + x,−2 + y), and in x ≤ 0 the differential
system (21) comes from the cubic isochronous center (S3

2) after reversing the independent
variable of sign. The first integrals of these two differential systems are

H1c(x, y) =
(1 + x)2 + (−2 + y)2

1 + 2(1 + x)(−2 + y)
, and H2c(x, y) =

(x2 + y2)2

1 + 4xy
,

respectively. Therefore system (22) becomes

2− 3y1 − 3y2 + 2y1y2 = 0,

(y1 + y2)(y
2
1 + y22) = 0.

Its solution is (y4∗1 , y
4∗
2 ) = (−1, 1), note that y4∗1 < y4∗2 .

The solution (x41(t), y
4
1(t)) in x ≥ 0 of system (20) such that (x41(0), y41(0)) = (0, y4∗1 ) is

contained in the level curve H2c(0, y
4∗
2 ) = 1 = H2c(0, y

4∗
1 ), i.e. in the curve

H2c(x, y) =
(x2 + y2)2

1 + 4xy
= 1.

The solution (x42(t), y
4
2(t)) in x ≤ 0 of system (21) with (x42(0), y42(0)) = (0, y4∗2 ) is con-

tained in level curve H1c(0, y
4∗
2 ) = −2 = H1c(0, y

4∗
1 ), i.e. in the curve

H1c(x, y) =
(1 + x)2 + (−2 + y)2

1 + 2(1 + x)(−2 + y)
= −2.

that is,

Drawing the orbits (x4k(t), y4k(t)), k = 1, 2, we obtain the limit cycle of Figure 4. �

The problem if the upper bound of Proposition 4 for the maximum number of limit
cycles of that class of discontinuous piecewise differential systems is reached or not remains
open.

The proof that Nclc[(S
3
2), (S3

2)] ≤ 9 is given in the next proposition.

Proposition 5. Consider the class of discontinuous piecewise differential systems sepa-
rated by the straight line x = 0 and formed by two distinct cubics isochronous center (S3

2)
after an arbitrary affine change of variables. Then these differential systems can have at
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Figure 5. The limit cycle of the discontinuous piecewise differential sys-
tem (25)-(26) of Proposition 5.

most nine limit cycles. Moreover, the discontinuous piecewise differential system in this
class is formed by the differential system

ẋ = −y + x3 − 3xy2, ẏ = x+ 3x2y − y3, (25)

in x ≥ 0, and the differential system

ẋ = −1− 2x3 − 5y − 3y2 + x2(6 + 6y) + x(5− 3y2),
ẏ = −4x3 − 5y + 6x2y − 6y2 − y3 + x(10 + 12y),

(26)

in x ≤ 0 has one limit cycle.

Proof. Under the assumptions of the proposition if such discontinuous piecewise differ-
ential systems have a limit cycle intersecting the discontinuity straight line x = 0 in the
two points (0, y1) and (0, y2), then y1 and y2 must satisfy that

H2c(0, y1)−H2c(0, y2) = 0, and H21c(0, y1)−H21c(0, y2) = 0, (27)

where

H2c(x, y) =
((c+ ax+ by)2 + (xα + yβ + γ)2)2

1 + 4(c+ axX + by)(xα + yβ + γ)
,

and

H21c(x, y) =
((c1 + a1x+ b1y)2 + (xα1 + yβ1 + γ1)

2)2

1 + 4(c1 + a1x+ b1y)(xα1 + yβ1 + γ1)
.

Then system (27) becomes

G5
1(y1, y2) = −(((y1 − y2)A5

1(y1, y2)))/

((1 + 4cy1β + 4by21β + 4cγ + 4by1γ)

(1 + 4cy2β + 4by22β + 4cγ + 4by2γ))) = 0,

G5
2(y1, y2) = −(((y1 − y2)A5

2(y1, y2)))/

((1 + 4c1y1β1 + 4b1y
2
1β1 + 4c1γ1 + 4b1y1γ1)

(1 + 4c1y2β1 + 4b1y
2
2β1 + 4c1γ1 + 4b1y2γ1))) = 0,

where A5
i (y1, y2) for i = 1, 2 are polynomials of degree 5. Since the denominators of the

previous system cannot be zero and y1 < y2, this system is equivalent to the system

A5
1(y1, y2) = 0, A5

2(y1, y2) = 0.
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where

A5
1(y1, y2) = A0 + A1(y1 + y2) + A2(y

2
1 + y22) + A3y1y2 + A4(y

3
1 + y32)

+ A5(y
2
1y2 + y1y

2
2) + A6(y

3
1y2 + y1y

3
2) + A7y

2
1y

2
2 + A8(y

3
1y

2
2 + y21y

3
2),

A5
2(y1, y2) = B0 +B1(y1 + y2) +B2(y

2
1 + y22) +B3y1y2 +B4(y

3
1 + y32)

+B5(y
2
1y2 + y1y

2
2) +B6(y

3
1y2 + y1y

3
2) +B7y

2
1y

2
2 +B8(y

3
1y

2
2 + y21y

3
2).

(28)

The above polynomials can be rewritten in the variables z and w, where z = y1 + y2 and
w = y1y2. For example, y21 + y22 = (y1 + y2)

2 − 2y1y2 = z2 − 2w. In these new variables
system (28) becomes

P 5
1 (z, w) = A0 + A1z + (−2A2 + A3)w + A4z

3 + (A5 − 3A4)zw + A2z
2 + A6z

2w+

+ (−2A6 + A7)w
2 + A8zw

2 = 0,

P 5
1 (z, w) = B0 +B1z + (−2B2 +B3)w +B4z

3 + (B5 − 3B4)zw +B2z
2 +B6z

2w+

+ (−2B6 +B7)w
2 +B8zw

2 = 0.

(29)

Eventually, system (29) could have a continuum of solutions (z, w), but then the pos-
sible periodic solutions would not be limit cycles. So we assume that this system has a
finite number of solutions. The two equations in system (29) are polynomials of degree 3,
then by Bezout Theorem, the discontinuous piecewise differential system has a maximum
of 9 limit cycles.

Now we will prove that the discontinuous piecewise differential system formed by the
differential systems (25) and (26) has one limit cycle.

In x ≥ 0 the differential system (25) is the cubic isochronous center (S3
2), and in x ≤ 0

the differential system (26) comes from the cubic isochronous center (S3
2) after the affine

change of variables (x, y)→ (1+x,−1+x−y). The first integrals of these two differential
systems are

H2c(x, y) =
(x2 + y2)2

1 + 4xy
, and H21c(x, y) =

((1 + x)2 + (−1 + x− y)2)2

1 + 4(1 + x)(−1 + x− y)
,

respectively. So system (27) becomes

(y1 + y2)(y
2
1 + y22) = 0,

− 8− 24y1 − 12y21 − 3y31 − 24y2 − 44y1y2 − 19y21y2 − 4y31y2 − 12y22 − 19y1y
2
2−

− 4y21y
2
2 − 3y32 − 4y1y

3
2 = 0.

Its solution is (y5∗1 , y
5∗
2 ) =

(
−
√

(−5 +
√

33)/2,
√

(−5 +
√

33)/2

)
, note that y5∗1 < y5∗2 .

The solution (x51(t), y
5
1(t)) in x ≥ 0 of the system (25) such that (x51(0), y51(0)) = (0, y5∗1 )

is contained in the level curve H2c(0, y
5∗
2 ) = (−5+

√
33)2/4 = H2c(0, y

5∗
1 ), i.e. in the curve

H2c(x, y) =
(x2 + y2)2

1 + 4xy
=

(−5 +
√

33)2

4
.

The solution (x52(t), y
5
2(t)) in x ≤ 0 of the system (26) with (x52(0), y52(0)) = (0, y5∗2 ) is

contained in the level curve H21c(0, y
5∗
2 ) = (1−

√
33)/2 = H21c(0, y

5∗
1 ), i. e. in the curve

H21c(x, y) =
((1 + x)2 + (−1 + x− y)2)2

1 + 4(1 + x)(−1 + x− y)
=

(1−
√

33)

2
.

Drawing the orbits (x5k(t), y5k(t)), k = 1, 2, we obtain the limit cycle of Figure 5. �
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The problem in which the upper bound of Proposition 5 for the maximum number of
limit cycles of that class of discontinuous piecewise differential systems is reached or not
remains open.
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