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Probability of Occurrence of Some Planar
Random Quasi-homogeneous Vector Fields

B. Coll, A. Gasull and R. Prohens

Abstract. The objective of this work is the study of the probability of
occurrence of phase portraits in a family of planar quasi-homogeneous
vector fields of quasi degree q, that is a natural extension of planar linear
vector fields, which correspond to q = 1. We obtain the exact values of
the corresponding probabilities in terms of a simple one-variable definite
integral that only depends on q. This integral is explicitly computable
in the linear case, recovering known results, and it can be expressed in
terms of either complete elliptic integrals or of generalized hypergeomet-
ric functions in the non-linear one. Moreover, it appears a remarkable
phenomenon when q is even: the probability to have a center is positive,
in contrast with what happens in the linear case, or also when q is odd,
where this probability is zero.
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1. Introduction and Main Results

In this work, a random planar vector field will be a polynomial vector field
whose coefficients are normally distributed independent random variables
with zero mean and standard deviation one. This is the natural distribution
when one is worried about the probability of appearance of some phase por-
trait for given family of planar vector fields, see for instance [15,16] or [4,
Thm 2.1] to have more details. Some related papers that use a similar ap-
proach and also study planar random systems are [2,3,17]. In [2] the quadratic
systems are considered, in [3] the authors study the homogeneous systems of
degree 1,2 and 3 and in [17] the linear systems.

Since we will deal with a class of quasi-homogeneous planar polynomial
vector fields, in next section we will recall some usual notations and definitions
and some of their properties. One of the most important to our interests is
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that their local phase portraits at the origin determine their global phase
portraits.

It is also worth to comment that here are many mathematical models
involving differential equations where coefficients and parameters come from
sources with uncertainty. For instance, this is the case of some epidemio-
logical or viral expansion models. This variability may be due to errors in
measurements, virus replication and mutation, and many others. A way to
tackle this uncertainty, i.e. a way to establish with accuracy the parameters,
is by assuming them to be random variables. As we have already said, under
this assumption, it is commonly supposed that parameters follow a Gauss-
ian distribution. In this way, diverse phenomena can be approached by using
different mathematical approaches. See [5–7], for instance.

A similar analysis can be performed in the case of linear systems of
differential and difference equations of arbitrary dimension and not necessary
Gaussian random variables. See [4,8,9], for instance.

In this paper we consider the family of random quasi-homogeneous vec-
tor fields

ẋ = Axq + By, ẏ = Cx2q−1 + Dxq−1y, (1)

where q is an integer positive number, and A,B,C and D independent
and identically distributed (iid) random variables with normal distribution
N(0, 1), and we study the probability of appearance of each of its phase por-
traits. When we consider a realization of system (1), we obtain a deterministic
equation given by

ẋ = axq + by, ẏ = cx2q−1 + dxq−1y, (2)

where a, b, c, d ∈ R. Notice that phase portraits of deterministic systems,
characterized by equalities among the parameters a, b, c and d, will have prob-
ability zero when they are regarded in the probabilistic setting due to the fact
that A,B,C,D are iid random variables with a continuous distribution. For
this reason these situations will be disregarded in our study.

As we will prove, the only phase portraits of system (1) with positive
probability, depend on the parity of q and correspond to the following cases:
saddle, elliptic+hyperbolic, node, center and focus. Moreover, all these phase
portraits will be not only local, but global, due the the quasi homogeneity
property.

Observe that the saddle has index −1 while all the above other type
of critical points have index +1. Recall that a critical point is said to be
monodromic if given a transversal section through it, the flow defines a return
map on this section. In particular, the only monodromic points in the above
list are the center and the focus. By way of notation, the subscripts m and nm
in our main result stand for “monodromic” and “non-monodromic” critical
points of index +1.

Theorem 1.1. Consider the quasi-homogeneous random vector field (1), which
has weight exponents s1 = 1 and s2 = q and weight degree q. Their global
phase portraits with positive probability are:

• Saddle, node or focus, when q is odd.
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• Saddle, elliptic+hyperbolic or center, when q is even.

Moreover, if Ps = P (saddle),

Pnm = Pnm(q) =

{
P (node) when q is odd,

P (elliptic + hyperbolic) when q is even,

Pm = Pm(q) =

{
P (focus) when q is odd,

P (center) when q is even,

it holds that Ps = 1/2, Pnm(q) = 1/2 − Pm(q), and

Pm(q) =
1
π

∫ π/2

0

√
sin(x)

sin(x) + Q
dx, where Q =

1 + q2

2q
. (3)

It is a remarkable and somehow surprising fact that when q is even the
probability to have a center is positive, in contrast with what happens in the
linear case, or also when q is odd, where this probability is zero.

As a corollary of our result we recover a well-known result for the linear
case q = 1 :

P (saddle) =
1
2
, P (node) =

√
2 − 1
2

, P (focus) = 1 −
√

2
2

.

See [3, Thm. 1], for instance. We remark that only for q = 1 the value Pm(q)
can be obtained explicitly, giving that Pm(1) = P (focus) = 1−√

2/2, see the
beginning of Sect. 4 for a proof. For q > 1, in that section we express Pm(q) in
terms of complete elliptic integrals or of generalized hypergeometric functions.
We also develop some tools to approach this value. With this objective in
mind we study properties of the function q → Pm(q). For instance we prove
that it is a decreasing convex function or that Pm(q) ∼ M/

√
q, at q = ∞, for

a given explicit M. For completeness we also approximate Pm(q), for some
values of q, by using Monte Carlo method.

The study of the deterministic system (2) is done in Sect. 2. Section 3
is devoted to study the random system (1) and to prove Theorem 1.1. In this
Theorem one of the relevant results is the computation of the probability
Pm(q). This value is obtained in two different ways, firstly simply by reducing
a 3-dimensional integral to a 1-variable definite integral, and secondly by
relating it with the number of expected real roots of a random polynomial
that controls the number of quasi-homogeneous invariant curves of (1). This
expected value is then computed by using the nice Edelman-Kostlan formula
( [12,13]).

2. Results for the Deterministic Case

In this section we recall some general properties of planar quasi-homogeneous
vector fields and we study the global phase portraits of the deterministic
differential system (2).
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A polynomial vector field X = (P,Q) is (s1, s2) quasi-homogeneous,
where (s1, s2) ∈ N

2, if

P (λs1x, λs2y) = λs1+r−1P (x, y), Q(λs1x, λs2y) = λs2+r−1Q(x, y), (4)

for all λ ∈ R
+ = {a ∈ R : a > 0} and some non negative integer r. We call s1

and s2 the weight exponents of the vector field X and r the weight degree (or
quasi-degree) with respect to the weight exponents s1 and s2. A well-known
nice dynamical feature of such systems is that the local behaviour near the
origin gives also its global behaviour. For completeness we state and this fact
in next proposition.

Proposition 2.1. Consider the differential system

ẋ = P (x, y), ẏ = Q(x, y),

with (P,Q) is a quasi-homogeneous polynomial vector field satisfying (4). If
(x(t), y(t)) is one of its solutions, then for all λ ∈ R

+,

(x̄(t), ȳ(t)) =
(
λs1x(λr−1t), λs2y(λr−1t)

)
is another solution. As a consequence, the behaviour of all its solutions is
controlled by the behaviour of its solutions in any neighbourhood of the origin.
Moreover it has no limit cycles.

Proof. The proof of the stated property can be done by simple computations.
For instance,

˙̄x(t) = λs1+r−1ẋ(λr−1t) = λs1+r−1P
(
x(λr−1t), y(λr−1t)

)
= λs1+r−1P

(
x̄(t)
λs1

,
ȳ(t)
λs2

)
= P (x̄(t), ȳ(t)).

Then the first result follows because, for a suitable λ, the weighted
homothety (x, y) → (λs1x, λs2y) transforms any small neighbourhood of the
origin to any arbitrarily large neighbourhood of the origin.

The non existence of limit cycles is also a consequence of the same
property because if the system has a periodic solution then all solutions must
be periodic as well and it has a global center. �

Next result gives, in the generic cases, the global phase portrait of a real-
ization of system (1). Its proof is based on the classical work of A.F. Andreev
about the study of nilpotent critical points, see [1], and on Proposition 2.1,
that allows to transform local results into global ones.

Proposition 2.2. Consider the quasi-homogeneous vector field

ẋ = axq + by, ẏ = cx2q−1 + dxq−1y,

where a, b, c, d ∈ R and define

φ = ad − bc and δ = (qa − d)2 + 4qbc = (qa + d)2 − 4qφ. (5)

Assume that bφ �= 0. Then the origin is its unique singularity and it is a
global saddle when φ < 0 (index -1) and a point of index +1 when φ > 0.
Moreover, in this latter case,
(i) If δ ≥ 0, the the origin is a global non-monodromic point and:
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(i.1) if q is even then the phase portrait is globally formed by the union
of a hyperbolic and an elliptic sector,

(i.2) if q is odd then the origin is a global node, stable if qa + d < 0 and
unstable if qa + d > 0.

(ii) If δ < 0 then the origin is a global monodromic point and:
(ii.1) if q is odd then it is a global focus, stable if qa+d < 0 and unstable

if qa + d > 0; and a global center if qa + d = 0,
(ii.2) if q is even then it is a global center.

Proof. The case q = 1 corresponds to the linear case and the stated results
are well-known. From now one, we will concentrate on the case q > 1.

Recall that (2) is a quasi-homogeneous vector field with weight expo-
nents s1 = 1 and s2 = q and weight degree q. By Proposition 2.1 to get its
global phase portrait it suffices to study its local behaviour at the origin.

In [1] there is an explicit result that allows to know the local behaviour of
any planar isolated nilpotent singularity for any analytic vector field, modulus
the so called center-focus problem (that is the distinction in the monodromic
case between center and focus). Andreev’s result is usually stated for systems
in the normal form

ẋ = y + X(x, y), ẏ = Y (x, y),

where X and Y have expansions at the origin that begin at least with second
order terms in x and y. Then the type of critical points (modulus the center-
focus problem) depends on some properties of the two functions

Y (x, h(x)) = uxα(1 + O(x)),

Ψ(x) =
(

∂X

∂x
+

∂Y

∂y

)
(x, h(x)) = vxβ(1 + O(x)),

where y = h(x) is the analytic function satisfying h(0) = 0 and such that
h(x) + X(x, h(x)) = 0 and u �= 0, 2 ≤ α ∈ N and 1 ≤ β ∈ N and v �= 0 are
well defined, unless Ψ = 0.. This behaviour only depends on α, β, u, v when
Ψ �= 0 and on α and u when Ψ = 0. See [1,11] for more details.

For simplicity, before applying the above result, we start writing (2) in
a more suitable form. Straightforward computations give that it is equivalent
to the Liénard equation ẍ + f(x)ẋ + g(x) = 0, where f(x) = −(qa + d)xq−1

and g(x) = φx2q−1. When b �= 0, this equation leads us to the generalized
Liénard system

ẋ = z, ż = −g(x) − f(x)z = −φx2q−1 + (qa + d)xq−1z, (6)

that is already in Andreev’s form. Then, under condition bδ �= 0, the origin
is an isolated singularity for (6). Moreover h = 0 and

Y (x, h(x)) = Y (x, 0) = −g(x) = −φx2q−1,

Ψ(x) = −f(x) = (qa + d)xq−1.

Hence u = −φ, α = 2q − 1 and either Ψ = 0, or v = qa + d and β = q − 1. In
short, either Ψ = 0 or α = 2β +1, and we can apply Andreev’s approach (we
skip the details). We obtain the list of cases given in the statement, where
in item (iii) his result only ensures that the origin is a monodromic critical
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point and we yet have the center-focus disjunctive. To resolve it we study
separately the cases q odd and q even.

In the first case, q odd, the divergence of the vector field X associated
to (6) is div(X) = −f(x) = (qa + d)xq−1. Hence, when qa + d �= 0 it does
not change sign (only vanishes on the straight line x = 0). Hence, by the
divergence theorem, the system has not periodic orbits and as a consequence
the origin is a global focus. Clearly, its stability is given the the sign of
qa + d. When qa + d = 0, then f = 0 and system (6) is easily integrable and
its solutions are contained in the closed curves qz2 + δx2q = k, for 0 < k ∈ R.
Hence a global center arises.

When q is even, system (6) is invariant by the change of variables and
time (x, z, t) −→ (−x, z,−t). Moreover, by Andreev’s approach we know that
it is monodromic. Therefore, the Poincaré reversibility criterion implies that
the origin is a global center. �

Remark 2.3. (i) In the case q = 1, we get back to the linear case and this
classification coincides with the non-degenerate linear one, where φ is the
determinant of the matrix and δ is the discriminant of the characteristic
polynomial.

(ii) When for system (2), bφ = 0, the origin is no more an isolated critical
point. The phase portraits for these cases are much easier to be obtained.
We will not describe them because in the probabilistic case they will have
probability zero.

(iii) In this work we are not interested on the behaviour of the orbits
of system (2) on the Poincaré disk. In any case, it is worth to know that
near infinity on the Poincaré-Lyapunov disk, the behaviour of the equivalent
Liénard system (6) can be easily obtained using the classification given in
the work of F. Dumortier and C. Herssens [10].

Trying to understand why in the non-linear case the determinant φ =
ad− bc plays a role similar to its role in the linear situation we have obtained
an alternative way for proving Proposition 2.1. The point is that system (2)
in the new variables

X = xq, Y = y and
ds

dt
= xq−1 (7)

writes as

X ′ = qaX + qbY, Y ′ = cX + dY. (8)

Therefore, when q is odd, (7) is an actual change of variables, the new jacobian
is simply q(ad − bc), with the same sign that ad − bc, and the new trace is
qa + d. Hence the same type of critical points that when q = 1 appear.

On the other hand, when q is even, (7) is no more a change of variables,
but a folding. Then the phase portrait of (8) on the plane X > 0 appears
diffeomorphically in the phase portrait of (2) on x > 0 and as its specular
image through a mirror located in x = 0 when x < 0. In short, focus and nodes
for system (8) go to centers, saddles go to saddles and nodes are transformed
into points with one elliptic and one hyperbolic sector.
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3. The Probabilistic Case: Proof of Theorem 1.1

In this section, we prove Theorem 1.1 that gives the probability of the dif-
ferent phase portraits described in Proposition 2.2. Inspired by the results of
that proposition we define the new random variables Φ and Δ,

Φ = AD − BC and Δ = (qA − D)2 + 4qBC = (qA + D)2 − 4qΦ.

Hence the desired probabilities can be computed as follows

Ps = P{ω |Φ(ω) < 0},

Pnm = P{ω |Φ(ω) > 0, Δ(ω) > 0},

Pm = P{ω |Φ(ω) > 0, Δ(ω) < 0} = P{ω |Δ(ω) < 0},

where notice that last equality holds because if Δ < 0 then Φ > 0 due to the
equality Δ = (qA + D)2 − 4qΦ.

Let us prove first that Ps = P (Φ < 0) = 1/2. From the fact that the vari-
ables A,B,C and D are continuous, independent and identically distributed,
the variables Φ = AD − BC and Ψ = −AD + BC are continuous and iden-
tically distributed. As a consequence, P (Φ > 0) = P (Ψ > 0) = P (Φ < 0).
Since P (Φ = 0) = 0 it follows that P (Φ > 0) = P (Φ < 0) = Ps = 1/2. Note
also that

1
2

= P (Φ > 0) = P (Φ > 0, Δ > 0) + P (Φ > 0, Δ < 0)

= Pnm + Pm.

The final step is to compute Pm = P (Φ > 0, Δ < 0). If we denote
by Z = qA − D, then Z is a normal random variable with zero mean and
standard deviation

√
1 + q2. We consider the random vector (X,Y,Z) =

(B,C, qA − D), where X,Y,Z are independent normal variables with zero
mean, σX = σY = 1 and σZ =

√
1 + q2. Thus the joint density function is

Ψ(x, y, z) =
1

(2π)3/2
√

1 + q2
exp

(
− (x2 + y2)(1 + q2) + z2

2(1 + q2)

)
.

Hence

Pm = P (Δ < 0) = P (Z2 + 4qXY < 0) =
∫

K

Ψ(x, y, z) dxdy dz,

where K = {(x, y, z) ∈ R
3 : z2 + 4qxy < 0}. To compute this integral,

following the same ideas that in [3], we perform the change of variables

x = r sin(t) cos(s), y = r sin(t) sin(s), z =
√

1 + q2 r cos(t),

where t ∈ (−π
2 , π

2 ), s ∈ (0, 2π) and r > 0. Since the determinant of the
Jacobian of the change is

√
1 + q2 sin(t)r2, we have

P (Δ < 0) =
1

(2π)3/2

∫
K̃

∫ +∞

0

| sin(t)|r2e− 1
2 r2

dr dsdt

where K̃ = {(s, t) : (1 + q2) cos2(t) + 2q sin2(t) sin(2s) < 0}. Recall that∫ +∞

0

r2e− 1
2 r2

dr =
√

π

2
.
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Hence

P (Δ < 0) =
1
4π

∫
K̃

| sin(t)|dsdt.

We consider the curve (1 + q2) cos2(t) + 2q sin2(t) sin(2s) = 0, that is, t =

± arctan
(√

1+q2

2q
1√

− sin(2s)

)
=: ±g(s). Taking into account the symmetries

we obtain that

1
4π

∫
K̃

| sin(t)|dsdt =
1
π

∫ π

π/2

∫ π/2

g(s)

sin(t) dt ds.

Using that cos(arctan(α)) = 1/
√

α2 + 1, and doing u = 2s, we get

∫ π

π/2

∫ π/2

g(s)

sin(t) dt ds =
1
2

∫ 2π

π

√
sin(u)

sin(u) − Q
du,

where Q = 1+q2

2q . Note that Q ≥ 1. Finally, by doing the change of variable
x = u − π and taking into account the symmetry of sin(x),

∫ 2π

π

√
sin(u)

sin(u) − Q
du =

∫ π

0

√
sin(x)

sin(x) + Q
dx = 2

∫ π/2

0

√
sin(x)

sin(x) + Q
dx

At this point, from all previous calculations we get

Pm = Pm(q) = P (Δ < 0) =
1
π

∫ π/2

0

√
sin(x)

sin(x) + Q
dx,

as we wanted to prove.
There is a alternative way for obtaining Pm(q) which uses a beautiful

result od Edelman and Kostlan for computing the expected number of re-
al zeros of a family of polynomials whose coefficients are Gaussian random
variables, see [12,13]

Proof. (Alternative way for obtaining Pm(q)) This different approach has two
steps: First, we relate Pm with the expected number of invariant curves of
the form αy + βxq = 0 by the flow of the random system (1). Secondly, we
compute this expected number.

For linear vector fields the existence of invariant lines αx + βy = 0
and the flow over them allows to determine the type of phase portrait. For
instance, when a linear planar systems has not invariant straight lines then
the origin is monodromic and it is either a focus or a center. In the same
way, the existence of invariant curves of the form αxq + βy = 0 and the flow
over them plays a similar role to know the global phase portrait of a quasi-
homogeneous system (2). Since the line x = 0 is invariant only when b = 0 we
can skip this case (this is so, because it corresponds to the event B = 0 for
the random vector field (1) and therefore it has probability of appearance 0).
Hence, we restrict our attention to find conditions for (2) to have an invariant
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curve of the form y = λxq, where λ = −α/β. To get these conditions on λ
notice that

0 =
d
dt

(y − λxq)|y=λx =
(
ẏ − λqxq−1ẋ

)∣∣
y=λx

=
(
(cx2q−1 + dxq−1y) − λqxq−1(axq + by)

)∣∣
y=λx

=
(
c + (d − qa)λ − qbλ2

)
x2q−1.

Hence the conditions on λ for the random system (1) to have an invariant
curve y = λxq is that

T (λ) = C2λ
2 + C1λ + C0 = 0,

where T is a random polynomial and C2 = −qB, C1 = D − qA and C0 = C.
Moreover, since A,B,C,D have N(0, 1) distribution and are independent,
that implies C0 is N(0, 1), C1 is N(0, 1+ q2) and C2 is N(0, q2) and they are
also independent. In a while we will compute the number of expected roots
E(q) of this random polynomial. Let as see, firstly how this value is related
with Pm(q).

The point is that the following results hold:
• If a realization of the polynomial T has two real roots then the corre-

sponding of system (1) has either a saddle or a non-monodromic critical
point of index +1.

• If a realization of the polynomial T has not real roots then the corre-
sponding of system (1) has a monodromic critical point.

• That a realization of the polynomial T has exactly one real root happens
with probability zero.

As a consequence, the expectation number of real roots of T is

E(q) =2 · P (T has 2 real roots) + 1 · P (T has 1 real root)

+ 0 · P (T has 0 real roots) = 2 · (Ps + Pnm) + 1 · 0 + 0 · Pm.

Using that Ps = 1/2 and that Pnm = 1/2 − Pm we obtain that

Pm(q) = 1 − E(q)
2

, (9)

which is the desired relation.
To end the proof, let us compute E(q). The coefficients of T (λ), Ci,

i = 1, 2, 3, are independent normal random variables with zero mean and
covariance matrix M where

M1/2 =

⎛
⎝1 0 0

0
√

1 + q2 0
0 0 q

⎞
⎠ .

Following [12, Thm 3.1], if we define w(t) = M1/2 · (1, t, t2)T and w(t) =
w(t)/||ω(t)||, then the expected number of real zeros of T is given by the
Edelman-Kostlan formula:

E(q) =
1
π

∫ ∞

−∞
||w′(t)|| dt.
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By straightforward computations, we obtain

w(t) =
1√

q2t4 + (q2 + 1)t2 + 1

(
1,

√
q2 + 1 t, qt2

)
and as a consequence

E(q) =
1
π

∫ ∞

−∞

√
(q4 + q2)t4 + 4q2t2 + q2 + 1

(t2 + 1)(q2t2 + 1)
dt(10)

=
1
π

∫ ∞

0

√
(q4 + q2)s2 + 4q2s + q2 + 1

(s + 1)(q2s + 1)
√

s
ds.(11)

where this last equality follows by taking s = t2. Finally, by using (9) we
obtain a new expression of Pm(q). �

4. Equivalent Expressions and Properties of Pm

We start giving a different expression of the integral given in (3) that is
suitable for obtaining Pm(1). Similarly, (11) could be used. In this integral
we do the change of variables y = 1/ sin(x). We obtain that

Pm(q) =
1
π

∫ ∞

1

1
y
√

(Qy + 1)(y2 − 1)
dy. (12)

If we substitute when q = 1, then Q = 1, and by introducing w =
√

y − 1 we
obtain that

Pm(1) =
1
π

∫ ∞

1

1
y(y + 1)

√
y − 1

dy =
1
π

∫ ∞

0

2
(1 + w2)(2 + w2)

dw

=
1
π

∫ ∞

0

(
2

1 + w2
− 2

2 + w2

)
dw

=
2
π

arctan(w)
∣∣∣∣
∞

0

−
√

2
π

arctan
(

w√
2

)∣∣∣∣∣
∞

0

= 1 −
√

2
2

.

Another similar expression for Pm(q) follows, again starting from expres-
sion (3), using the related change sin(x) = y. We arrive to

Pm(q) =
1
π

∫ 1

0

√
y

(y + Q)(1 − y2)
dy. (13)

Next we present two expressions of Pm(q) in terms of some classical
transcendental function obtained using Maple and Mathematica.

First expression, starting from (3):

Pm(q) =
1

12π
√

2πQ3/2

(
24QΓ2

(
3
4

)
3 F2

(
1
4
,
3
4
,
3
4
;
1
2
,
5
4
;

1
Q2

)

− Γ2

(
1
4

)
3 F2

(
3
4
,
5
4
,
5
4
;
3
2
,
7
4
;

1
Q2

))
where Γ is the gamma function and 3 F2 is the generalized hypergeometric
function.
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Second expression, starting from (12):

Pm(q) =
√

2
π

√
Q

(
(1 + Q) Π

(
− 1

Q
,

√
Q − 1
2Q

)
− QK

(√
Q − 1
2Q

))

where K( · ), the EllipticK function, is the complete elliptic integral of the first
kind while Π( · , · ), the EllipticPi function, is the complete elliptic integral of
the third kind.

4.1. Some Properties of Pm (q)

Recall that from (3) it holds that

Pm(q) = H

(
1 + q2

2q

)
, where H(Q) =

1
π

∫ π/2

0

√
sin(x)

sin(x) + Q
dx. (14)

Next result collect several properties of H that can be used to approach
Pm(q).

Proposition 4.1. Let H : (0,∞) → R be the function defined in (14). The
following holds:

(i) It is completely monotone, that is, (−1)nH(n)(Q) > 0, for all n ≥ 0.
(ii) For all n ≥ 0, it holds that

H(n)(1) =
(−1)n(2n − 1)!!

2n−1π

∫ ∞

0

(1 + w2)n−1

(2 + w2)n+1
dw

and all these values can be computed explicitly in terms of elementary
functions.

(iii) Let Tm(Q) denote the Taylor polynomial of degree m at Q = 1, that is,
Tm(Q) =

∑m
n=0

H(n)(1)
n! (Q − 1)n. Then, for all j, k ≥ 1, and all Q > 1,

T2j−1(Q) < H(Q) < T2k(Q). (15)

(iv) For all Q > 0,

L√
Q + 1

≤ H(Q) ≤ L√
Q

, (16)

where

L =
Γ (3/4)

2
√

π Γ (5/4)
≈ 0.38138.

and hence, H(Q) ∼ L/
√

Q at Q = ∞.
(v) For Q > 1 it holds that

H(Q) =
∞∑

n=0

(−1/2
n

)
Γ (3/4 + n/2)

2
√

π Γ (5/4 + n/2)
1

Qn
√

Q
.

Proof. (i) Notice first that for Q > 0 the function
√

sin(x)
sin(x)+Q and all its

derivatives with respect to Q are integrable in [0, π/2]. Therefore, for all
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n ≥ 0,

H(n)(Q) =
1
π

dn

dQn

∫ π/2

0

√
sin(x)

sin(x) + Q
dx =

1
π

∫ π/2

0

∂n

∂Qn

√
sin(x)

sin(x) + Q
dx

=
(−1)n(2n − 1)!!

2nπ

∫ π/2

0

1
(sin(x) + Q)n

√
sin(x)

sin(x) + Q
dx.

Then, clearly (−1)nH(n)(Q) > 0, as we wanted to show. We remark that
complete monotone function are a subject of interest by themselves, see for
instance [18].

(ii) By replacing Q = 1 above and introducing the new variable y =
1/ sin(x), and then w2 = y − 1, as in the beginning of this section to obtain
Pm(1), we get that

H(n)(1) =
(−1)n(2n − 1)!!

2nπ

∫ ∞

1

yn−1

(1 + y)n+1

dy√
y − 1

=
(−1)n(2n − 1)!!

2n−1π

∫ ∞

0

(1 + w2)n−1

(2 + w2)n+1
dw,

as desired. For each given n the above functions have a primitive in terms of
elementary functions and the values H(n)(1) can be explicitly obtained. For
instance,

H ′(1) = −
√

2
16

, H ′′(1) =
15

√
2

256
, H ′′′(1) = −195

√
2

2048
.

(iii) Both inequalities are consequence of Taylor’s formula and the re-
sults of item (i).

(iv) Clearly, for all 0 ≤ x ≤ π/2, Q ≤ sin(x) + Q ≤ 1 + Q. Hence

√
sin(x)

π
√

1 + Q
≤ 1

π

√
sin(x)

sin(x) + Q
≤

√
sin(x)
π
√

Q
.

By integrating the above inequalities between 0 and π/2 we get that L/
√

1 + Q ≤
Pm(q) ≤ L/

√
Q, where

L =
1
π

∫ π/2

0

√
sin(x) dx =

Γ (3/4)
2
√

π Γ (5/4)
.

We have used the equality

∫ π/2

0

sinα(x) dx =
Γ (1/2 + α/2)
Γ (1 + α/2)

√
π

2
, (17)

valid for all α > −1, when α = 1/2.
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(v) If we introduce the new variable U = 1/
√

Q > 0 we have that
H(Q) = G(U), where G is the smooth function at U = 0,

G(U) =
1
π

∫ π/2

0

√
U2 sin(x)

U2 sin(x) + 1
dx =

U

π

∫ π/2

0

√
sin(x)

U2 sin(x) + 1
dx

=
U

π

∫ π/2

0

∞∑
n=0

√
sin(x)

(−1/2
n

)
U2n sinn(x) dx

=
U

π

∞∑
n=0

(−1/2
n

)(∫ π/2

0

sinn+1/2(x) dx

)
U2n,(18)

where we have used the uniform convergence of the series to interchange it
with the integral. Using again (17), with α = n + 1/2, the final expression of
G follows. By replacing U by 1/

√
Q we get the desired result.

�

From results (ii) and (iii) of the above proposition we can obtain good
approximations of Pm(q) for q not big. This is so just by recalling that, for big
values of q, the remainder term of the Taylor’s formula can give a big error.
On the contrary, since the boundedness given by expression (16) is better
the higher the q value is taken, the results of item (iv) are suitable for big q.
Finally, although the results of item (v) apply for all q > 1, its convergence
is faster when 1/Q is not big, hence we can apply it for medium and large
values of q. Let us see some examples where we approach Pm(2), Pm(10) and
Pm(100).
An approximation of Pm(2). If q = 2, then Q = 5/4. By item (iii) we know
for instance that

T3

(
5
4

)
< H

(
5
4

)
= Pm(2) < T2

(
5
4

)
.

Some computations give that

0.273035 ≈ 1 − 134753
√

2
262144

< Pm(2) < 1 − 4209
√

2
8192

≈ 0.273386.

Similarly, using T8 and T9 we get that

0.273079881 < Pm(2) < 0.273079890

The integral (3) computed numerically gives the value Pm(2) ≈ 0.2730798826.

An approximation of Pm(100). As a consequence of (16) it easily follows that

Pm(q) ∼ M√
q

at q = ∞, where M =
√

2 L (19)

For instance, it holds that M/
√

100 ≈ 0.053935 is a good approximation of
Pm(100). This is so because using the inequalities (16) we know that 0.0534 <
Pm(100) < 0.0539. By evaluating numerically the definite integral given in
(3) we get that Pm(100) ≈ 0.053544, see Table 1.
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Table 1. Some approximated values of Pm(q) obtained com-
puting numerically the expression (3) and with Monte Carlo
method taking 106 random systems

q 1 2 5 10 100

Pm(q) 0.292893 0.273080 0.209525 0.158766 0.053544
Monte Carlo 0.2920 0.2732 0.2091 0.1589 0.0535

An approximation of Pm(10). When q = 10, Q = 101/20. By item (v) we
know that for Q > 1, H(Q) = limk→∞ Hk(Q), where

Hk(Q) =
k∑

n=0

(−1/2
n

)
Γ (3/4 + n/2)

2
√

π Γ (5/4 + n/2)
1

Qn
√

Q
.

Hence Pm(10) = limk→∞ Hk(101/20). If we compute Hk(101/20) for k =
2, 3, 4, 5, 6 we get

0.15895 . . . , 0.158736 . . . , 0.1587702 . . . , 0.1587648 . . . , 0.1587657 . . .

providing good approximations of Pm(10) ≈ 0.158766, see again Table 1. For
bigger values of Q the convergence is faster. For instance, taking q = 100,
Q = 10001/200 and

Pm(100) ≈ H3(10001/200) = 0.053543958 . . .

4.2. Some Numerical Simulations

Although we have a closed form in terms of a defined integral for Pm(q) that
allows to compute it simply by computing numerically this integral, in this
section we show how to approximate Pm(q) for some values of q, using the
celebrated Monte Carlo method.

In our setting we simply will take N = 106 samples of the random vector
(A,B,C,D) where the four variables are iid, with distribution N(0, 1), and
check how many of them, say J, satisfy Δ = (qA − D)2 + 4qBC < 0. Then
simply Pm(q) ≈ J/N. Due to the law of large numbers and the law of iterated
logarithm it is known that this approach gives an absolute error of order
O(((log log N)/N)1/2), which in practice behaves as O(N−1/2), see [14,16].
Hence, since N = 106 this absolute error is expected to be of order O(10−3)
and in Table 1 we only show 4 digits of the Monte Carlo results. Notice
that comparing these values with the ones obtained by approximating the
1-variable definite integral, given in the second row of that table, the actual
differences are the expected ones. To see more details about the probability
that |Pm(q) − J/N | is big see the discussion in [4, Sec. 3.2].

Acknowledgements

Our manuscript has no associate data. Data sharing not applicable to this ar-
ticle as no datasets were generated or analysed during the current study. The
authors are supported by Ministry of Economy, Industry and Competitiveness-
State Research Agency of the Spanish Government through grants



MJOM Planar Random Quasi-homogeneous Vector Fields Page 15 of 16 278

(MINECO/AEI/FEDER, UE) PID2020-118726GB-I00, first and third au-
thors; and by PID2019-104658GB-I00, second author. The second author is
partially supported by the grants 2017-SGR-1617 from AGAUR, Generalitat
de Catalunya and Severo Ochoa and Maŕıa de Maeztu Program for Centers
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solution of random autonomous first-order linear systems of ordinary differen-
tial equations. Romanian Rep. Phys. 68, 1397–1406 (2016)

[9] Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D.: Full solution
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[18] Schilling, R., Song, R., Vondraček, Z.: Bernstein functions. Theory and appli-
cations. De Gruyter, Berlin (2002)

B. Coll and R. Prohens
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