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Multimodal End-to-End Autonomous Driving
Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, Antonio M. López

Abstract—A crucial component of an autonomous vehicle (AV)
is the artificial intelligence (AI) is able to drive towards a desired
destination. Today, there are different paradigms addressing
the development of AI drivers. On the one hand, we find
modular pipelines, which divide the driving task into sub-tasks
such as perception and maneuver planning and control. On
the other hand, we find end-to-end driving approaches that
try to learn a direct mapping from input raw sensor data
to vehicle control signals. The later are relatively less studied,
but are gaining popularity since they are less demanding in
terms of sensor data annotation. This paper focuses on end-to-
end autonomous driving. So far, most proposals relying on this
paradigm assume RGB images as input sensor data. However,
AVs will not be equipped only with cameras, but also with active
sensors providing accurate depth information (e.g., LiDARs).
Accordingly, this paper analyses whether combining RGB and
depth modalities, i.e. using RGBD data, produces better end-to-
end AI drivers than relying on a single modality. We consider
multimodality based on early, mid and late fusion schemes, both
in multisensory and single-sensor (monocular depth estimation)
settings. Using the CARLA simulator and conditional imitation
learning (CIL), we show how, indeed, early fusion multimodality
outperforms single-modality.

Index Terms—Multimodal scene understanding, End-to-end
autonomous driving, Imitation learning.

I. INTRODUCTION

AUTONOMOUS vehicles (AVs) are core for future mobil-
ity. Thus, it is essential to develop artificial intelligence

(AI) for driving AVs. Two main paradigms are under research,
namely, modular pipelines and end-to-end driving.

The modular paradigm attaches to the traditional divide-and-
conquer engineering principle, since AI drivers rely on mod-
ules with identifiable responsibilities; for instance, to provide
environmental perception [1, 2], as well as route planning and
maneuver control [3, 4]. Perception itself is already especially
complex, since it involves sub-tasks such as object detection
[5–10] and tracking [11–15], traffic sign recognition [16],
semantic segmentation [17–22], monocular depth estimation
[23–26], SLAM and place recognition [27–33], etc.

The end-to-end driving paradigm focuses on learning holis-
tic models is able to directly map raw sensor data into control
signals for maneuvering AVs [34–37], i.e. without forcing
explicit sub-tasks related to perception or planning. Thus,
advocating for learning to perceive and act simultaneously, as
humans do. Moreover, such sensorimotor models are obtained
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through a data-driven supervised learning process as is char-
acteristic of modern AI. End-to-end driving models can accept
high-level navigation commands [38–41], or be restricted to
specific navigation sub-tasks such as lane keeping [42–44] and
longitudinal control [45].

Driving paradigms are highly relying on convolutional
neural netwoks (CNNs). In this context, one of the main
advantages of modular pipelines is the ability to explain the
decisions of the AI driver in terms of its modules; which
is more difficult for pure end-to-end driving models [46–
48]. However, developing some of the critical modules of
the modular paradigm requires hundreds of thousands of
supervised data samples [49, 50], e.g. raw sensor data with
ground truth (GT). Since the GT is most of the times provided
manually (e.g. annotation of object bounding boxes [51],
pixel-level delineation of semantic classes [52]), this is an
important bottleneck for this paradigm. Conversely, end-to-end
approaches are able to learn CNN-based models for driving
from raw sensor data (i.e. without annotated GT) and associ-
ated supervision in terms of vehicle’s variables (e.g. steering
angle, speed, geo-localization and orientation [37, 53, 54]);
note that such supervision does not require human intervention
in terms of explicitly annotating the content of the raw sen-
sor data. Moreover, end-to-end models are demonstrating an
unreasonable effectiveness in practice [36, 39, 43, 45], which
makes worth to go deeper in their study.

Although AVs will be multisensory platforms, equipping
and maintaining on-board synchronized heterogeneous sensors
is quite expensive nowadays. As a consequence, most end-to-
end models for driving rely only on vision [35–37, 39, 42, 43,
45, 55–58], i.e. they are visuomotor models. This is not bad in
itself, after all, human drivers mainly rely on vision. However,
multimodality has shown better performance in key perception
sub-tasks such as object detection [7–10, 59–63], tracking [15],
and semantic segmentation [21, 22]. Thus, it is worth exploring
multimodality for end-to-end driving.

Accordingly, in this paper we address the question can an
end-to-end driving model be improved by using multimodal
sensor data over just relying on a single modality? In par-
ticular, we assume color images (RGB) and depth (D) as
single modalities, and RGBD as multimodal data. Due to its
capability of accepting high level commands, this study is
based on the CNN architecture known as conditional imitation
learning (CIL) [39]. We explore RGBD from the perspective
of early, mid and late fusion of the RGB and D modalities.
Moreover, as in many recent works on end-to-end driving
[39–41, 48, 56, 57, 64], our experiments rely on the CARLA
simulator [65].

The presented results show that multimodal RGBD end-
to-end driving models outperform their single-modal counter-
parts. Moreover, early fusion shows better performance than
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mid and late fusion. On the other hand, multisensory RGBD
(i.e. based on camera and LiDAR) still outperforms monocular
RGBD; however, we conclude that it is worth pursuing this
special case of single-sensor multimodal end-to-end models.

We present the work as follows. Sect. II reviews the related
literature. Sect. III presents the used CIL architecture from
the point of view of early, mid, and late fusion. Sect. IV
summarizes the experimental setting and the obtained results.
Finally, Sect. V draws the main conclusions and future work.

II. RELATED WORK

This section focuses on two main related topics: multimodal
perception and end-to-end driving models learned by imita-
tion.

A. Multimodality
Object detection is one of the perception tasks for which

multimodality has received most attention. Enzweiler et al.
[66] developed a pedestrian detector using hand-crafted fea-
tures and shallow classifiers combined as a mixture-of-experts
(MoE), where multimodality relies on image luminance and
stereo depth. Gonzalez et al. [60] detected vehicles, pedes-
trians and cyclists—vulnerable road users (VRUs)—, using
a multimodal MoE based on space-time calibrated RGB and
LiDAR depth. Chen et al. [61] used calibrated RGB and Li-
DAR depth as input for a CNN-based detector of vehicles and
VRUs, which is a current trend [8, 9, 61–63]. Some of these
works are inspired by Faster R-CNN [5], since they consist of a
first stage for proposing regions potentially containing objects
of interest, and a second stage performing the classification of
those regions to provide final object detections; i.e. following a
mid-level (deep) fusion scheme where CNN layers of features
from the different modalities are fused in both stages [61–63].
Other alternatives are early fusion at raw data level [9], late
fusion of independent detectors [8, 9], or just using different
modalities at separated steps of the detection pipeline [7].
Other approaches focus on multispectral appearance, as in Li
et al. [10], where different fusion schemes for RGB and Far
Infrared (FIR) calibrated images are compared.

All these studies and recent surveys [67, 68] show that
detection accuracy increases with multimodality. Therefore,
more perception tasks have been addressed under the multi-
modal approach. Dimitrievski et al. [15] proposed a pedestrian
tracker that fuses camera and LiDAR detections to solve the
data association step of their tracking-by-detection approach.
Schneider et al. [21] proposed a CNN architecture for semantic
segmentation which performs a mid-level fusion of RGB and
stereo depth, leading to a more accurate segmentation on
small objects. Ha et al. [22] also proposed a mid-level RGB
and FIR fusion approach in a CNN architecture for semantic
segmentation. Piewak et al. [69] used a mid-level fusion of
LiDAR and camera data to produce a Stixel representation
of the driving scene, showing improved accuracy in terms of
geometry and semantics of the resulting representation.

In this paper, rather than focusing on individual perception
tasks such as object detection, tracking or semantic segmenta-
tion, we challenge multimodality in the context of end-to-end
driving, exploring early, mid and late fusion schemes.

B. End-to-end driving

Pomerleau presented ALVINN three decades ago [34],
a sensorimotor fully-connected shallow neural network that
was able to perform end-to-end road following assuming no
obstacles. ALVINN controlled a CMU’s van, NAVLAB, along
a 400m straight path, at ∼ 2 Km/h and under good weather
conditions. Although the addressed scenario is extremely sim-
ple compared to driving in real traffic, it was already necessary
to simulate data for training the sensorimotor model and,
in fact, camera images (30 × 32 pixels, blue channel) were
already combined by early fusion with laser range finder data
(8× 32 depth cells). LeCun et al. [35] trained end-to-end a 6-
layer CNN for off-road obstacle avoidance using image pairs
(from a stereo rig) as input. Such CNN was able to control a
50cm-length four-wheel truck, DAVE, for avoiding obstacles
at a speed of ∼ 7 Km/h. During data collection for training,
the truck was remotely controlled by a human operator, thus,
the CNN was trained according to imitation learning in our
terminology (or teleoperation-based demonstration [70]). More
recently, Bojarski et al. [36] developed a vision-based end-to-
end driving CNN which was able to control the steering wheel
of a real car in different traffic conditions. Still, lane and road
changing are not considered, neither stop-and-go maneuvers
since throttle and brake are not controlled.

These pioneering works inspired new proposals based on
imitation learning for CNNs. Eraqi et al. [44] applied vision-
based end-to-end control of the steering angle (neither throttle
nor break), focusing on including temporal reasoning by
means of long short-term memory recurrent neural networks
(LSTMs). Training and testing were done in the Comma.ai
dataset [53]. George et al. [45] applied similar ideas for
controlling the speed of the car. Xu et al. [37] presented the
BDD dataset and focused on vision-based prediction of the
steering angle using a fully convolutional network (FCN) and
a LSTM, forcing semantic segmentation as auxiliary training
task. Innocenti et al. [42] performed vision-based end-to-end
steering angle prediction for lane keeping on private datasets,
and Chen et al. [43] in the Comma.ai dataset.

Affordances have been proposed as intermediate tasks be-
tween enviromental perception and prediction of the vehicle
control parameters [55, 56]. Affordances do not require to
solve perception sub-tasks such as explicit object detection,
etc; but they form a compact set of factors that influence
driving according to prior human knowledge. Chen et al.
[55] evaluated them on the TORCS simulator [71], so in
car racing conditions (no pedestrians, no intersections, etc.)
under clean and dry weather; while Sauer et al. [56] used the
CARLA simulator, which supports regular traffic conditions
under different lighting and weather [65]. Muller et al. [57]
developed a vision-based CNN with an intermediate road
segmentation task for learning to perform vehicle maneuvers
in a semantic space; the driving policy consists of predicting
waypoints within the segmented road and applying a low-level
PID controller afterwards. Training and testing are done in
CARLA, but neither incorporating other vehicles nor pedes-
trians. Using LiDAR data, Rhinehart et al. [64] combined
imitation learning and model-based reinforcement learning to
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predict expert-like vehicle trajectories, relying on CARLA but
without dynamic traffic participants.

These end-to-end driving models do not accept high-level
navigation instructions such as turn left at the next intersection
(without providing explicit distance information), which can
come from a global planner or just as voice commands from
a passenger of the AV. Hubschneider et al. [38] proposed
to feed a turn indicator in the vision-based CNN driving
model by concatenating it with features of a mid-level fully
connected layer of the CNN. Codevilla et al. [39] proposed a
more effective method, in which a vision-based CNN con-
sisting of an initial block agnostic to particular navigation
instructions, and a second block branched according to a
subset of navigation instructions (at next intersection turn-
left/turn-right/go-straight, or just keep lane). In the first block,
vehicle information is also incorporated as mid-level feature
of the CNN; in particular, current speed is used since the
CNN controls the steering angle, throttle, and break (Yang
et al. [58] also reported the usefulness of speed feedback in
end-to-end driving). Experiments are performed in CARLA
for different traffic situations (including other vehicles and
pedestrians), lighting and weather conditions. The overall
approach is termed as conditional imitation learning (CIL).
In fact, Muller et al. and Sauer et al. leveraged from CIL.
Liang et al. [41] also used CIL as imitation learning stage
before refining the resulting model by applying reinforcement
learning. Wang et al. [40] used CIL too, but incorporating
ego-vehicle heading information at the same CNN-layer level
as speed.

These works focus on vision-based end-to-end driving.
Here, we explore muldimodal end-to-end driving based on
RGB and depth; which can be complementary to most of the
cited papers. Without losing generality, we chose CIL as core
CNN architecture due to its effectiveness and increasing use.

Focusing on multimodality, Sobh et al. [72] used CARLA
to propose a CIL-based driving approach modified to process
camera and LiDAR data. In this case, the information fusion
is done by a mid-level approach; in particular, before fusion,
RGB images are used to generate a semantic segmentation
which corresponds to one of the information streams reaching
the fusion layers, and there are two more independent streams
based on LiDAR, one encoding a bird view and the other a
polar grid mapping. Khan et al. [73] also used CARLA to
propose an end-to-end driving CNN based on RGB and depth
images, which predicts only the steering angle, assuming that
neither other vehicles nor pedestrians are present. In a first
step, the CNN is trained only using depth information (taken
as the Z-buffer produced by UE4, the game engine behind
CARLA). This CNN has an initial block of layers (CNN
encoder) that outputs depth-based features, which are later
used to predict the steering angle with a second block of fully
connected layers. In a second step, this angle-prediction block
is discarded and replaced by a new fully connected one. This
new block relies on the fusion of the depth-based features and
a semantic segmentation produced by a new CNN block that
processes the RGB image paired with the depth image. During
training, semantic segmentation is conditioned to depth-based
features due to the fusion block and back-propagation. This

approach can be considered a type of mid-level fusion.
In contrast to these multimodal end-to-end driving ap-

proaches, we assess early, mid and late level fusion schemes
without forcing intermediate representations which are not
trivial to obtain (e.g. semantic segmentation is an open prob-
lem in itself). Moreover, we run CARLA benchmark [65],
which includes dynamic actors (vehicles and pedestrians) and
generalization conditions (unseen town and weather). We show
that CIL and early fusion produce state-of-the-art results.

III. MULTIMODAL FUSION

We first detail CIL [39], and then show how we adapt it to
leverage from multimodal perception data.

A. Base CIL architecture

Fig. 1 shows the CNN implementing CIL. The observations
(CIL’s input) are twofold, perception data, p, and vehicle’s
state measurements, m. The action (CIL’s output), a, consists
of vehicle controls for maneuvering. CIL includes a CNN
block to extract perception features, P (p); and a block of
fully connected layers to extract measurement features M(m).
A joint layer of features is formed by appending P (p) and
M(m); which is further processed by a new fully connected
layer to obtain the joint features J(<P (p),M(m)>), or just
J(p,m) simplifying the notation. Up to this point of the neural
network, the processing done with the observations is common
to any driving maneuver/action. However, many times, the au-
tonomous vehicle reaches ambiguous situations which require
to incorporate informed decisions. For instance, when reaching
a cross intersection, without incorporating a route navigation
command (e.g. from a global trajectory plan), the vehicle
could only take a random decision about turning or going
straight. Thus, the end-to-end driving CNN must incorporate
high-level commands, c, such as ‘in the next intersection turn
left’, or ‘turn right’, or ‘go straight’. Moreover, a will take
very different values depending on c. Thus, provided c takes
discrete values, having specialized neural network layers for
each maneuver can be more accurate a priori. All this is
achieved in the CIL proposal by incorporating fully connected
maneuver/action branches, Ac, selected by c (both during CNN
training and vehicle self-driving).

We follow the CIL architecture proposed in [39]. Therefore,
p is a RGB image of 200× 88 pixels and 8 bits at each color
channel, m is a real value with the current speed of the vehicle,
and a consists of three real-valued signals which set the next
maneuver in terms of steering angle, throttle, and brake. Thus,
the idea is to perform vision-based self-driving, as well as tak-
ing into account the vehicle speed to apply higher/lower throt-
tle and brake for the same perceived traffic situation. In [39],
the focus is on handling intersections, then the considered c
values are {turn-left, turn-right, go-straight, continue}, where
the last refers to just keep driving in the current lane and the
others inform about what to do when reaching next intersection
(which is an event detected by the own CNN). Accordingly,
there are four branches Ac. Therefore, if we term by F the
end-to-end driver, we have F (p,m, c) = Ac(J(p,m)). As
shown in [39], this manner of explicitly taking into account
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P (p)

J (p, m)

c

M (m)
Ac

Measurement 
m

Image 
p

Action a

Conv.         FC        Branch    Concatenation      

Steering       Brake   Throttle       

Fig. 1. CIL branched architecture: vehicle maneuvers (actions) in the form of the triplet <steering angle, throttle, brake>, depend on a high-level route
navigation command (branch selector) running on {turn-left, turn-right, go-straight, continue}, as well as on the world observations in the form of perception
data (e.g. a RBG image) and vehicle state measurements (e.g. speed).

high-level navigation commands is more effective than other
alternatives.

B. Fusion schemes

Fig. 2 illustrates how we fuse RGB and depth information
following mid, early and late fusion approaches.

Early fusion: with respect to the original CIL we only
change the number of channels of p from three (RGB) to four
(RGBD). The CIL network only changes the first convolutional
layer of P (p) to accommodate for the extra input channel, the
rest of the network is equal to the original.

Mid fusion:we replicate twice the perception processing
P (p). One of the P (p) blocks processes only RGB images,
the other one only depth images. Then, we build the joint
feature vector <P (RGB), P (D),M(m)> which is further pro-
cessed to obtain J(RGB,D,m). From this point, the branched
part of CIL is the same as in the original architecture.

Late fusion: we replicate twice the full CIL architecture.
Thus, RGB and depth channels are processed separately,
but the measurements are shared as input. Hence, we run
Ac(J(RGB,m)) and Ac(J(D,m)), and their outputs are
concatenated and further processed by a module of fully
connected layers, the output of which conveys the final action
values. Note that this is a kind of mixture-of-experts approach,
where the two experts are jointly trained.

As is common practice in the literature, we assume a pixel-
level correspondence of all channels and normalize all of them
to be in the same magnitude range (we normalize depth values
to match the range of color channels, i.e. [0 . . . 255]).

C. Loss function

Given a predicted action a, its ground truth agt, and a
vector of weights w, we use the L1 loss `act(a,agt,w) =∑n

i |wi(ai−agti )|, with n = 3 (steering angle, throttle, brake).
Note that when computing a, only one Ac branch is active at a
time. In particular, the one selected by the particular command
c associated to the current input data (p,m). We make this
fact explicit by changing the notation to `act(a,agt,w; c).

In addition, as in other computer vision problems addressed
by deep learning [74, 75], we empirically found that using

multi-task learning helps to obtain more accurate CIL net-
works. In particular, we add an additional branch of three
fully connected layers to predict current vehicle speed from
the perception data features P (p). This prediction relies on
a L1 loss `sp(s, sgt) = |s − sgt|, where s is the predicted
speed and sgt is the ground truth speed which, in this case,
is already available since it corresponds to the measurement
used as input. Speed prediction is only used during training.

Thus, all networks, i.e. both single- and multimodal, are
trained according to the same total loss `(a,agt,w; c; s, sgt) =
β`act(a,a

gt,w; c) + (1 − β)`sp(s, s
gt), where β is used to

balance the relevance of `act and `sp losses.

IV. EXPERIMENTS

We start by summarizing the environment we use for our
experiments, i.e. CARLA (Sect. IV-A). Next, we describe
the driving benchmark available in CARLA (Sect. IV-B), the
dataset we use for training our AI drivers (Sect. IV-C), and
the training protocol that we follow (Sect. IV-D). Finally, we
present and discuss the obtained results (Sect. IV-E).

A. Environment

In order to conduct our experiments, we rely on the open
source driving simulator CARLA [65]. There are several
reasons for this. First, many recent previous works on end-to-
end driving rely on CARLA [39–41, 48, 56, 57, 64]; thus, we
can compare our results with the previous literature. Second,
it seems that for some scenarios the end-to-end paradigm may
need exponentially more training samples than the modular
one [76], so there is a trade-off between collecting driving
runs (for the end-to-end paradigm) and manually annotating
on-board acquired data (for the modular paradigm) which,
together with the gigantic effort needed to demonstrate that
an AV outperforms human drivers, really encourages to rely
on simulators during the development of AI drivers [77]. Yet, a
third and core reason is specific for end-to-end driving models.
In particular, in [78] it is demonstrated that current offline
evaluation metrics (i.e. based on static datasets) for assessing
end-to-end driving models do not correlate well-enough with
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Fig. 2. Network Architectures - we explore RGBD from the perspective of early, mid and late fusion of the RGB and Depth (D) modalities. (1) Early Fusion:
the raw RGB and D channels are the input of the CIL architecture; (2) Mid Fusion: intermediate CIL feature layers from RGB and D streams are fused; (3)
Late Fusion: the output (maneuver controls) of the RGB and D CIL streams are fused to output the final values after further neural processing.

Fig. 3. Bird-view road maps of Town 1 (left) and Town 2 (right).

actual driving, an observation also seen in [79]; therefore, it
is really important to evaluate these driving models in an on-
board driving regime, which is possible in a realistic simulator
such as CARLA.

Briefly, CARLA contains two towns (Fig. 3) based on
two-directional roads with turns and intersections, buildings,
vegetation, urban furniture, traffic signs, traffic lights, and
dynamic objects such as vehicles and pedestrians. Town 1
deploys 2.9Km of road and 11 intersections, while Town 2
contains 1.4Km of road and 8 intersections. The different
towns can be travelled under six different weather conditions
(Fig. 4): ‘clear noon’, ‘clear after rain’, ‘heavy rain noon’, and
‘clear sunset’, ‘wet cloudy noon’ and ‘soft rainy sunset’.

B. Driving benchmark

CARLA was deployed with a benchmarking infrastructure
for assessing the performance of AI drivers [65]. Thus, it has
been used in the related literature since then and we follow it
here too. Four increasingly difficult driving tasks are defined:

• straight: the destination point is straight ahead from the
starting point but no dynamic objects are present;

• one turn: destination is one turn away from the starting
point, no dynamic objects;

• navigation: no restriction on the location of the destina-
tion and starting points, no dynamic objects;

Fig. 4. Top, from Town 1: clear noon (left) and clear after rain (right). Middle,
from Town 1: heavy rain noon (left) and clear sunset (right). Bottom, from
Town 2: wet cloudy noon (left) and soft rainy sunset (right).

• navigation with dynamic obstacles.
For each driving task, an AI driver is assessed over a total

of ET driving episodes. Each episode has its own starting
and destination points with an associated topological route. An
episode is considered as successful if the AI driver completes
the route within a time budget. Collisions do not lead to
the termination of an episode unless the AV runs in time-
out as a consequence. If we term as ES the total number
of successfully completed episodes by the assessed AI driver,
then its success rate is defined as 100 × (ES/ET ). ET is
determined by the selected town and weather conditions.

Table I shows how the benchmark organizes towns and
weather conditions for training, validation, and testing; where,
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Fig. 5. From left to right: original RGB image, semantic segmentation ground truth (for the five considered classes), CARLA depth ground truth, post-processed
to be closer to the capabilities of an active depth Sensor, and monocular depth estimation from a model trained using such a depth.

TABLE I
TRAINING, VALIDATION, AND TESTING SETTINGS. TRAINING IS BASED ON

A PRE-RECORDED DATASET. VALIDATION AND TESTING ARE BASED ON
ACTUAL DRIVING EPISODES. GREY MEANS ‘NOT USED’.

Training Validation Testing
(dataset) (episodes) (episodes)

Wet cloudy noon
Soft rainy sunset
Clear noon

Towns
1 & 2

Clear after rain
Clear sunset
Heavy rain noon

Town 1

Towns
1 & 2

irrespective of the town and weather, validation and testing
is always based on episodes, not in pre-recorded datasets,
while training requires pre-recording a dataset. Validation is
performed to select a driving model among those trained as
different trials from the same training dataset, while testing is
performed for actually benchmarking the selected models.

Regarding town and weather conditions, the benchmark
establishes four main town-weather blocks under which the
four driving tasks must be tested, assuming 25 episodes for
each considered weather. Therefore, for each block, the ET

value is different as we can deduce from Table I. In particular,
these are the town-weather blocks defined in the benchmark
with their respective ET value:

Training conditions: driving (i.e. running the episodes) in
the same conditions as the training set (Town 1, four weather
conditions), thus, ET = 100;

New town: driving under the four weather conditions of the
training set but in Town 2, ET = 100;

New weather: driving in Town 1 but under the two weather
conditions not seen at training time, ET = 50;

New town & weather: driving in conditions not included in
the training set (Town 2, two weather conditions), ET = 50.

C. Training dataset

In order to train our CNNs, we use the same dataset as
in [78] since it corresponds to 25h of driving in Town 1,
balancing weather conditions (Table I). Briefly, this dataset
was collected by a hard-coded auto-pilot with access to all the
privileged information of CARLA required for driving like an
expert. The auto-pilot kept a constant speed of 35 km/h when
driving straight and reduced the speed when making turns.
Images were recorded at 10fps from three cameras: a central
forward-facing one and two lateral cameras facing 30◦ left
and right. The central camera is the only one used for self-
driving, while the images coming from the lateral cameras are
used only at training time to simulate episodes of recovering
from driving errors as can be done with real cars [36] (the
protocol for injecting noise follows [39]). Overall, the dataset
contains ∼ 2.5 millions of RGB images of 800 × 600 pixels

TABLE II
VP FOR FIVE TRAINING RUNS FOR RGB ONLY, DEPTH (D) ONLY, AND
RGBD COMBINED BY EARLY (EF), MID (MF), OR LATE (LF) FUSION.
DEPTH: FROM AN ACTIVE SENSOR OR ESTIMATED FROM RGB IMAGES.

RGB Active Estimation
D EF MF LF D EF

1 48 74 91 61 60 51 42
2 36 67 71 71 63 49 44
3 46 73 75 58 67 46 51
4 40 68 71 74 60 59 46
5 36 68 77 52 62 51 49

resolution, with associated ground truth (see Fig. 5) consist-
ing of corresponding images of dense depth and pixel-wise
semantic classes (semantic segmentation), as well as meta-
information consisting of the high-level commands provided
by the navigation system (continue in lane, at next intersection
go straight, turn left or turn right), and car information such
as speed, steering angle, throttle, and braking. In this work,
we use perfect semantic segmentation to develop an upper-
bound driver. Since we focus on end-to-end driving, the
twelve semantic classes of CARLA are mapped to five which
we consider sufficient to develop such an upper-bound. In
particular, we keep the original road-surface, vehicle, and
pedestrian, while lane-marking and sidewalk are mapped as
lane-limits (Town 1 and Town 2 only have roads with one go
and one return lane, separated by double continuous lines),
and the remaining seven classes are mapped as other.

Focusing on depth information, as is common in the litera-
ture, we assume that RGB images have associated dense depth
information; for instance, Premebida et al. [80] obtained it
from LiDAR point clouds. In CARLA, the depth ground truth
is extremely accurate since it comes directly from the Z-buffer
used during simulation rendering. In particular, depth values
run from 0 to 1,000 meters and are codified with 24 bits, which
means that depth precision is of ∼ 1/20 mm. This distance
range coverage and depth precision is far beyond from what
even active sensors can provide. Therefore, we post-process
depth data to make it more realistic. In particular, we take as
a realistic sensor reference the Velodyne information of KITTI
dataset [51]. First we trim depth values to consider only those
within the 1 to 100 meters interval, i.e. pixels of the depth
image with values outside this range are considered as not
having depth information. Second, we re-quantify the depth
values to have an accuracy of ∼ 4 cm. Third, we perform
inpainting to fill-in the pixels with no information. Finally, we
apply a median filter to avoid having perfect depth boundaries
between objects. The new depth images are used both during
training and testing. Fig. 5 shows an example of a depth image
from CARLA and its corresponding post-processed version.

During a training run we use Adam optimizer with 120
training samples per iteration (minibatch), an initial learning
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TABLE III
MEAN AND STANDARD DEVIATION OF SUCCESS RATES ON THE ORIGINAL CARLA BENCHMARK, BY RUNNING IT THREE TIMES. CIL BASED ON PERFECT

SEMANTIC SEGMENTATION (SS) ACTS AS UPPER BOUND. EXCLUDING SS, FOR MODELS TESTED UNDER THE SAME ENVIRONMENT AND TRAFFIC
CONDITIONS, WE SHOW IN BOLD THE HIGHER MEANS AND WE UNDERLINE SIMILAR SUCCESS RATES CONSIDERING STANDARD DEVIATIONS TOO.

Active Estimated Active Estimated
Task SS RGB D EF MF LF D EF SS RGB D EF MF LF D EF

Training Conditions New Town

Straight 98.00± 1.73 96.33± 1.53 98.67± 1.53 98.33± 0.58 92.33± 2.08 99.00± 0.00 92.33± 1.15 97.33± 1.15 100.00± 0.00 84.00± 2.00 94.33± 0.58 96.33± 0.58 87.00± 1.00 77.00± 0.00 78.33± 1.53 71.67± 2.08
One turn 100.00± 0.00 95.00± 0.00 92.00± 0.00 99.00± 0.00 91.67± 2.08 90.33± 0.58 84.67± 1.15 96.33± 1.53 96.67± 0.58 68.00± 1.00 74.33± 2.52 79.00± 1.73 78.00± 2.65 58.67± 2.08 46.33± 1.15 47.00± 1.00
Navigation 96.00± 0.00 89.00± 2.00 89.33± 2.08 92.67± 1.15 90.67± 1.15 93.67± 0.58 75.33± 1.15 94.33± 0.58 96.00± 0.00 59.67± 3.06 85.33± 1.15 90.00± 2.00 80.67± 0.58 52.33± 0.58 45.67± 3.06 46.67± 3.06
Nav.Dynamic 92.00± 1.00 84.00± 2.00 82.67± 0.58 89.33± 0.58 78.33± 2.89 89.00± 2.65 71.00± 1.00 89.67± 1.15 99.33± 0.58 54.33± 3.79 70.33± 1.15 84.33± 2.52 73.67± 2.52 55.67± 2.31 44.33± 2.52 46.67± 4.04

New Weather New Town & Weather

Straight 100.00± 0.00 84.00± 0.00 99.33± 1.15 96.00± 2.00 94.67± 3.06 96.00± 0.00 92.00± 2.00 84.67± 1.15 100.00± 0.00 84.67± 1.15 97.33± 1.15 97.33± 2.31 88.67± 1.15 97.33± 1.15 78.00± 0.00 89.33± 1.15
One turn 100.00± 0.00 76.67± 4.16 94.67± 2.31 94.67± 2.31 94.00± 2.00 92.00± 2.00 93.33± 2.31 80.67± 1.15 96.00± 0.00 66.67± 4.62 72.67± 1.15 82.67± 2.31 69.33± 3.06 67.33± 2.31 62.67± 1.15 64.00± 3.46
Navigation 95.33± 1.15 72.67± 2.31 89.33± 1.15 91.33± 2.31 90.67± 3.06 96.00± 0.00 73.33± 2.31 80.67± 5.03 96.00± 0.00 57.33± 6.11 84.00± 3.46 92.67± 3.06 78.67± 3.06 72.67± 1.15 55.33± 6.11 60.67± 2.31
Nav.Dynamic 92.67± 1.15 68.67± 4.62 90.00± 2.00 86.00± 4.00 80.67± 3.06 92.67± 3.06 76.67± 4.16 77.33± 6.11 98.00± 2.00 46.67± 6.43 69.33± 2.31 94.00± 0.00 73.33± 3.06 73.33± 2.31 54.00± 4.00 49.33± 3.06

TABLE IV
SUCC. RATE COMPARISON WITH PREVIOUS METHODS (SEE MAIN TEXT).

Task MP RL CAL CIRL MT Active EF MP RL CAL CIRL MT Active EF

Training Conditions New Town

Straight 98 89 100 98 98 98.33± 0.58 92 74 93 100 100 96.33± 0.58
One turn 82 34 97 97 87 99.00± 0.00 61 12 82 71 81 79.00± 1.73
Navigation 80 14 92 93 81 92.67± 1.15 24 3 70 53 72 90.00± 2.00
Nav.dynamic 77 7 83 82 81 89.33± 0.58 24 2 64 41 53 84.33± 2.52

New Weather New Town & Weather

Straight 100 86 100 100 100 96.00± 2.00 50 68 94 98 96 97.33± 2.31
One turn 95 16 96 94 88 94.67± 2.31 50 20 72 82 82 82.67± 2.31
Navigation 94 2 90 86 88 91.33± 2.31 47 6 68 68 78 92.67± 3.06
Nav.dynamic 89 2 82 80 80 86.00± 4.00 44 4 64 62 62 94.00± 0.00

TABLE V
INFRACTIONS ON DYNAMIC NAVIGATION IN NEW TOWN & WEATHER.

Km per Event RGB Active D Active EF

Infraction Sidewalk 0.86± 0.10 35.80± 1.30 16.76± 5.54
Opposite lane 0.73± 0.04 1.65± 0.24 3.29± 1.96

Driven Km (Perfect driving: 17.30 Km) 13.62± 0.67 35.80± 1.30 20.22± 0.54

rate of 0.0002, decreased to the half each 50K iterations. Mini-
batches are balanced in terms of per Ac branch samples. We
set w = (0.5, 0.45, 0.05) to weight the control signals (action)
in the loss function. Action and speed losses are balanced
by β = 0.95. For selecting the best intermediate model of a
training run, we do 500K iterations monitoring a validation
performance measurement, VP , each 100K iterations (thus,
five times). The intermediate model with highest VP is selected
as the resulting model of the training run. Since CIL models
are trained from the scratch, variability is expected in their
performance. Thus, for each type of model we perform five
training runs, finally selecting the model with the highest VP
among those resulting from the five training runs.

Using Table I as reference, we define VP to balance training-
validation differences in terms of town and weather conditions.
In particular, we use VP = 0.25Vw+0.25Vt+0.50Vwt; where
Vw is the success rate when validating in Town 1 and ‘soft
rainy sunset’ weather (not included in training data), Vt is
a success rate when validating in Town 2 (not included in
training data) and ‘clear noon’ weather (included in training
data), and Vwt stands for success rate when validating in
Town 2 and ‘soft rainy sunset’ (neither town, nor weather are
part of the training data). Therefore, note that VP is a weighted
success rate based on 75 episodes.

D. Training protocol

All CIL models in this paper rely on the same training
protocol, partially following [39]. In all our CIL models
original sensor channels (R/G/B/D) are trimmed to remove

sky and very close areas (top and bottom part of the channels),
and down-scaled to finally obtain channels of 200× 88 pixel
resolution. In our initial experiments, we found that traditional
photometric and geometric recipes for data augmentation were
not providing better driving models, thus, we do not use them.

E. Experimental results

We start the analysis of the experimental results by looking
at Table II, which is produced during training and selection
of the best CIL networks. We focus first on RGB data as
well as depth based on the post-processed CARLA depth
ground truth, termed here as active depth (Sect. IV-C) since
its accuracy and covered depth range is characteristic of active
sensors (e.g. LiDAR). We see that the best (among five training
runs) validation performance VP is 48% when using RGB data
only. So we will use the corresponding CIL model as RGB-
based driver in the following experiments. Analogously, for
the case of using only active depth (D), the best CIL reports a
performance of 74%. The best performances for early fusion
(EF), mid fusion (MF), and late fusion (LF) are 91%, 74%
and 67%, respectively. Again, we take the corresponding CIL
models as drivers for the following experiments.

Table III reports the performance of the selected models
according to the original CARLA benchmark. We have in-
cluded a model trained on perfect semantic segmentation (SS)
according to the five classes considered here for self-driving
(see Fig. 5). Thus, we consider this model as an upper bound.
Indeed, its performance is most of the times ≥ 96, reaching
100 several times. This also confirms that the CIL model is
able to drive properly in CARLA conditions provided there
is a proper input. We can see that, indeed, active depth is a
powerful information for end-to-end driving by itself, clearly
outperforming RGB in non-training conditions. However, in
most of the cases RGBD outperforms the use of only RGB
or only D. The most clear case is for new town and weather
with dynamic objects, i.e. for the most challenging conditions,
where RGB alone reaches a success rate of 46.67 ± 6.43, D
alone 69.33±2.31, but together the success rate is 94.00±0.00
for early fusion. For a new town (irrespective of the weather
conditions) early fusion clearly outperforms mid and late
fusion. In any case, it is clear that multimodality improves
CIL performance with respect to a single modality, which is
the main question we wanted to answer in this paper.

In order to further analyse the goodness of multimodal-
ity, we compare it to previous single-modality methods (see
Sect. II). Not all the corresponding papers provide details
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about the training methodology or training datasets; thus, this
comparison is solely based on the reported performances on
the original CARLA benchmark and must be taken only as
an additional reference about the goodness of multimodality.
Early fusion, is the smaller CNN architecture in terms of
weights, thus, we are going to focus on it for this comparison.
Table IV shows the results. MP and RL stand for modular per-
ception and reinforcement learning, respectively. The reported
results are reproduced from [65]. CAL stands for conditional
affordance learning and the results are reproduced from [56].
CIRL stands for controllable imitative reinforcement learning
and the results are reproduced from [41]. Finally, MT stands
for multi-task learning, and the results are reproduced from
[48]. We see how, in presence of dynamic traffic participants,
the RGBD early fusion (with active depth) is the model with
higher success rate on the original CARLA benchmark. On the
other hand, such an early fusion approach can be combined
with CAL or CIRL methods, they are totally compatible. We
think that this comparison with previous works reinforces the
idea that multimodality can help end-to-end driving.

Once it is clear that multimodality is beneficial for end-to-
end driving, we can raise the question of whether monocular
depth estimation [23, 24, 81, 82] can be as effective as depth
coming from active sensors in this context. In the former
case, it would consists on a multisensory multimodal approach,
while the later case would correspond to a single-sensor mul-
timodal approach since both RGB and depth come from the
same camera sensor (depth is estimated from RGB). In order to
carry out a proof-of-concept, we use our own monocular depth
estimation model [24] (it was state-of-the-art at the moment
of its publication) fine-tuned on CARLA training dataset.
More specifically, the dataset used for training the multimodal
CIL models is also used to fine-tune our monocular depth
estimation model, i.e. using the post-processed depth channels
and corresponding RGB images. During training, we monitor
the regression loss until it is stable, we do not stop training
based on the performance on validation episodes. Figure 5
shows and example of monocular depth estimation.

Analogously to the experiments shown so far, we train a
CIL model based on the estimated depth as well as on the
corresponding multimodal (RGBD) fusion. In order to reduce
the burden of experiments, we use early fusion since it is
the best performing for the active depth case. The training
performances for model selection can be seen in Table II. We
use the CIL models of VP 59% and 51%, respectively. In
validation terms, such performances are already clearly worse
than the analogous based on active depth. Table III shows the
results on the original CARLA benchmark. Indeed, these are
worse than using active depth, however, still when remaining
in the training conditions monocular-based EF outperforms
depth and RGB alone, and in fact shows similar performance
as active depth. This is not the case when we change from
training conditions since monocular depth estimation itself
does not perform equally well in this case, and so happens
to EF. However, we think that this single-sensor multimodal
setting is really worth to pursuit. Moreover, although it is out
of the scope of this paper, we think that performing end-to-end
driving may be a good protocol for evaluating depth estimation

models beyond the static metrics currently used, which are
agnostic to the task in which depth estimation is going to be
used. Note that even for evaluating the driving performance
of end-to-end driving models in itself, it has been shown that
relying only on static evaluations may be misleading [78, 79].

Finally, for the RGB, Active D and EF models, we assess
additional infractions for new town and weather conditions
with dynamic objects. Table V shows the driven Km per
infraction of each model. Note that not all such infractions
imply an accident stopping the AV. For instance, the AV can
run into an opposite lane a bit without crashing with other
vehicles. As a reference, we also show the amount of driven
Km in which these measurements are based. All models are
supposed to complete the same testing routes (i.e., same total
Km), termed as perfect driving in Table V. However, if a
model fails to follow the right path at an intersection the route
would be recomputed, thus, it will need more Km to reach the
destination. On the contrary, if it fails to complete the routes,
the driven Km will be lower. We see that RGB and Active
EF models are not far, but Active D failed too much at taking
the right path at intersections. RGB performs the worst in all
metrics. The Active D model does not run over the sidewalk
and uses the curbside as a cue that also helps on lane keeping
except at intersections. Active D shows a good equilibrium
between RGB and Active depth single-modality models.

V. CONCLUSION

In this paper, we compare single- and multimodal perception
data for end-to-end driving. As multimodal perception data
we focus on RGB and depth, since they are usually available
in autonomous vehicles through the presence of cameras and
active sensors such as LiDAR. As end-to-end driving model
we use branched conditional imitation learning (CIL). Relying
on a well-established simulation environment, CARLA, we
assess the driving performance of single-modal (RGB, depth)
CIL models, as well as multimodal CIL models according
to early, mid, and late fusion paradigms. In all cases, the
depth information available in CARLA is post-processed to
obtain a more realistic range of distances and depth accuracy.
This depth is also used to train a depth estimation model
so that the experiments cover multimodality not only based
on a multisensory setting (RGB and active depth) but also
based on a single-sensor setting (RGB and estimated depth).
Overall, the experiments clearly allow us to conclude that
multimodality (RGBD) is indeed a beneficial approach for
end-to-end driving. In fact, we plan to follow this line of work
in the near future, focusing on the single-sensor setting since
better estimation models are required in order to compete with
the multisensory setting. In addition, we also plan to consider
other sources of multi-modality usually available in modern
vehicles, such as GNSS information which, even usually being
noisy, eventually can complement direct scene sensing.
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