
This is the accepted version of the journal article:

Gurram, Akhil; Tuna, Ahmet Faruk; Shen, Fengyi; [et al.]. «Monocular depth
estimation through virtual-world supervision and real-world SfM self-supervision».
IEEE Transactions on Intelligent Transportation Systems, Vol. 23, issue 8 (Aug.
2022), p. 12738-12751. DOI 10.1109/TITS.2021.3117059

This version is available at https://ddd.uab.cat/record/275235

under the terms of the license

https://ddd.uab.cat/record/275235

1

Monocular Depth Estimation through Virtual-world
Supervision and Real-world SfM Self-Supervision

Akhil Gurram1,2, Ahmet Faruk Tuna2, Fengyi Shen2,3, Onay Urfalioglu2, and Antonio M. López1,4

Abstract—Depth information is essential for on-board percep-
tion in autonomous driving and driver assistance. Monocular
depth estimation (MDE) is very appealing since it allows for
appearance and depth being on direct pixelwise correspondence
without further calibration. Best MDE models are based on
Convolutional Neural Networks (CNNs) trained in a supervised
manner, i.e., assuming pixelwise ground truth (GT). Usually, this
GT is acquired at training time through a calibrated multi-modal
suite of sensors. However, also using only a monocular system
at training time is cheaper and more scalable. This is possible
by relying on structure-from-motion (SfM) principles to generate
self-supervision. Nevertheless, problems of camouflaged objects,
visibility changes, static-camera intervals, textureless areas, and
scale ambiguity, diminish the usefulness of such self-supervision.
In this paper, we perform monocular depth estimation by
virtual-world supervision (MonoDEVS) and real-world SfM self-
supervision. We compensate the SfM self-supervision limitations
by leveraging virtual-world images with accurate semantic and
depth supervision, and addressing the virtual-to-real domain gap.
Our MonoDEVSNet outperforms previous MDE CNNs trained
on monocular and even stereo sequences.

Index Terms—Self-supervised monocular depth estimation, on-
board vision, domain adaptation, ADAS, autonomous driving.

I. INTRODUCTION

Augmenting semantic information with depth is essential
for on-board perception in autonomous driving and driver
assistance. In this context, active sensors such as LiDAR and
RADAR, or passive ones such as stereo rigs, are traditionally
used to obtain depth information. For instance, in [1] RADAR
and V2V communications are used to detect vehicles and
estimate their distance to the ego-vehicle; LiDAR can be used
for the same purpose [2], and it allows to perform road border
detection too [3]; finally, note also that recent advances in
deep stereo computation [4] can bring stereo rigs as a LiDAR
alternative for some driving use cases. However, due to cost
and maintenance considerations, we wish to predict depth from
the same single camera used to predict semantics, so having
a direct pixelwise correspondence without further calibration.

1Akhil and Antonio are with the Dpt. of Computer Science, Universitat
Autònoma de Barcelona (UAB), 08193 Bellaterra (Barcelona), Spain. 2Ahmet
and Fengyi are with the Huawei European Research Center, 80992 München,
Germany. Akhil and Onay were too during the development of this work.
3Fengyi is with the Dpt. of Informatics, Technische Universität München
(TUM), 85748, Garching, Germany. 4Antonio is also with the Computer
Vision Center (CVC) at UAB, 08193 Bellaterra (Barcelona), Spain.

Antonio acknowledges the financial support received for this research from
the Spanish TIN2017-88709-R (MINECO/AEI/FEDER, UE) project. Antonio
acknowledges the financial support to his general research activities given
by ICREA under the ICREA Academia Program. Antonio acknowledges the
support of the Generalitat de Catalunya CERCA Program as well as its ACCIO
agency to CVC’s general activities.

Therefore, in this paper, we focus on monocular depth esti-
mation (MDE) on-board vehicles in outdoor traffic. Recent
advances on MDE rely on Convolutional Neural Networks
(CNNs). Let Ψ be a CNN architecture for MDE with weights
θ, which takes a single image x as input, and estimates its
pixelwise depth map d as output, i.e., Ψ(θ;x) → d. The Ψ’s
can be trained in a supervised manner, i.e., finding the values
of θ by assuming access to a set of images with pixelwise
depth ground truth (GT). Usually, such a GT is acquired at
training time through a multi-modal suite of sensors, at least
consisting of a camera calibrated with a LiDAR or some
type of 3D laser scanner variant [5–14]. Alternatively, we can
use self-supervision based on either a calibrated stereo rig
[15–18], or a monocular system and structure-from-motion
(SfM) principles [19–22], or a combination of both [23].
Combining stereo self-supervision and LiDAR supervision has
been also analyzed [24–26]. The cheaper and simpler the
suite of sensors used at training time, the better in terms of
scalability and general access to the technology; however, the
more challenging training a Ψ. Currently, supervised methods
tend to outperform self-supervised ones [27], thus, improving
the latter is an open challenge worth to pursue.

We are interested in the most challenging setting, namely,
when at training time we only have a single on-board camera
allowing for SfM-based self-supervision. However, using only
such a self-supervision may give rise to depth estimation
inaccuracies due to camouflage (objects moving as the camera
may not be distinguished from background), visibility changes
(occlusion changes, non-Lambertian surfaces), static-camera
cases (i.e., stopped ego-vehicle), and textureless areas, as well
as to scale ambiguity (depth could only be estimated up to an
unknown scale factor). In fact, an interesting approach to com-
pensate for these problems could be leveraging virtual-world
images (RGB) with accurate pixelwise depth (D) supervision.
Using virtual worlds [28–34], we can acquire as many RGBD
virtual-world samples as needed. However, these virtual-world
samples can only be useful provided we address the virtual-
to-real domain gap [35–39], which links MDE with visual
domain adaptation (DA), a realm of research in itself [40–42].

Accordingly, our contributions to MDE are the following:
• We propose a CNN architecture to perform MDE by

training on virtual-world supervision and real-world SfM
self-supervision, i.e., requiring just monocular sequences
even at training time. We show that this architecture can
accommodate different feature extraction backbones.

• We reduce domain discrepancies between supervised (vir-
tual world) and semi-supervised (real world) data at the
space of the extracted features (backbone bottleneck) by

2

using the idea of gradient reversal layer (GRL) [43, 44].
Thus, not adding computational burden at testing time.

• Despite using SfM-based semi-supervision, thanks to the
virtual-world supervised data, we can compute a global
scaling factor at training time, which allows us to output
absolute depth at testing time.

In summary, we propose to perform monocular depth
estimation by virtual-world supervision (MonoDEVS) and
real-world SfM self-supervision, estimating depth in absolute
scale. By relying on standard benchmarks, we show that
our MonoDEVSNet outperforms previous ones trained on
monocular and even stereo sequences. We think our released
code and models1 will help researchers and practitioners to
address applications requiring on-board depth estimation, also
establishing a strong baseline to be challenged in the future.

In the following, Section II summarizes previous works
related to ours. Section III details our proposal. Section IV
describes the experimental setting and discusses the obtained
results. Finally, Section V summarizes the presented work and
conclusions, and draws the work we target for the near future.
In addition, Appendix A introduces MonoDELSNet, where we
replace virtual supervision by LiDAR supervision, showing
also the corresponding MDE results.

II. RELATED WORK

MDE was first based on hand-crafted features and shallow
machine learning [15, 45–47]. Nowadays, best performing
models are based on CNNs [27], thus, we focus on them.

A. Supervised MDE

Relying on depth GT, Eigen et al. [5] developed a Ψ
architecture for coarse-to-fine depth estimation with a scale-
invariant loss function. This pioneering work inspired new
CNN-based architectures to MDE [6–10, 12, 13], which also
assume depth GT supervision. MDE has been also tackle as
a task on a multi-task learning framework, typically together
with semantic segmentation as both tasks aim at producing
pixelwise information and, eventually, may help each other to
improve their predictions at object boundaries. For instance,
this is the case of some Ψ’s for indoor scenarios [48–50].
These proposals assume that pixelwise depth and class GT
are simultaneously available at training time. However, this is
expensive, being scarcely available for outdoor scenarios. In
order to address this problem, Gurram et al. [11] proposed a
training framework which does not require depth and class GT
to be available for the same images. Guizilini et al. [51] used
an out-of-the-box CNN for semantic segmentation to train
semantically-guided depth features while training Ψ.

The drawback of these supervised approaches is that the
depth GT usually comes from expensive LiDARs, which must
be calibrated and synchronized with the cameras; i.e., even if
the objective is to use only cameras for the functionality under
development. Moreover, LiDAR depth is sparse compared
to available image resolutions. Besides, surfaces like vehicle
glasses or dark vehicles may be problematic for LiDAR

1https://github.com/HMRC-AEL/MonoDEVSNet

sensing. Consequently, depth self-supervision and alternative
sources of supervision are receiving increasing interest.

B. Self-supervised MDE

Using a calibrated stereo rig to provide self-supervision for
MDE is a much cheaper alternative to camera-LiDAR suites.
Garg et al. [16] pioneered this approach by training Ψ with a
warping loss involving pairs of stereo images. Godard et al.
[17] introduced epipolar geometry constraints with additional
terms for smoothing and enforcing consistency between left-
right image pairs. Chen et al. [52] improved MDE results
by enforcing semantic consistency between stereo pairs, via a
joint training of Ψ and semantic segmentation. Pillai et al. [18]
implemented sub-pixel convolutional layers for depth super-
resolution, as well as a novel differentiable layer to improve
depth prediction on image boundaries, a known limitation of
stereo self-supervision. Other authors [24, 25] still complement
stereo self-supervision with sparse LiDAR supervision.

SfM principles [53] can be also followed to provide self-
supervision for MDE. In fact, in this setting we can assume
a monocular on-board system at training time. Briefly, the
underlying idea is that obtaining a frame, xt, from consecutive
ones, xt±1, can be decomposed into jointly estimating the
scene depth for xt and the camera pose at time t relative
to its pose at time t ± 1; i.e., the camera ego-motion. Thus,
we can train a CNN to estimate (synthesize) xt from xt±1,
where, basically, the photo-metric error between xt and x̂t
acts as training loss, being x̂t the output of this CNN (i.e., the
synthesized view). After the training process, part of the CNN
can perform MDE up to a scale factor (relative depth).

Zhou et al. [19] followed this idea, adding an explainability
mask to compensate for violations of SfM assumptions (due
to frame-to-frame changes on the visibility of frame’s content,
textureless surfaces, etc.). This mask is estimated by a CNN
jointly trained with Ψ to output a pixelwise belief on the
synthesized views. Later, Yin et al. [20] proposed GeoNet,
which aims at improving MDE by also predicting optical
flow to explicitly consider the motion introduced by dynamic
objects (e.g., vehicles, pedestrians), i.e. a motion that violates
SfM assumptions. However, this was effective on predicting
occlusions, but not in significantly improving MDE accuracy.
Godard et al. [23] followed the idea of having a mask to indi-
cate stationary pixels, which should not be taken into account
by the loss driving the training. Such pixels typically appear
on vehicles moving at the same speed as the camera, or can
even correspond to full frames in case the ego-vehicle stops
and, thus, the camera becomes stationary for a while. Pixels
of similar appearance in consecutive frames are considered
as stationary. A simple definition which can work because,
instead of using a training loss based on absolute photo-
metric errors (i.e. on minimizing pairwise pixel differences),
it is used the structure similarity index measurement (SSIM)
[54]. Moreover, within the so-called MonoDepth2 framework,
Godard et al. [23] combine SfM and stereo self-supervision to
establish state-of-the-art results. Alternatively, Guizilini et al.
[51] addressed the presence of dynamic objects by a two-stage
MDE training process. The first stage ignores the presence of

https://github.com/HMRC-AEL/MonoDEVSNet

3

such objects, returning a Ψ trained with a loss based on SSIM.
Then, before running the second stage, the training sequences
are processed to filter out frames that may contain erroneous
depth estimations due to moving objects. Such frames are
identified by applying Ψ, a RANSAC algorithm to estimate the
ground plane from their estimated depth, and determining if
there is a significant number of pixels that would be projected
far below the ground plane. Finally, in the second stage, Ψ is
retrained form scratch without the filtered frames.

Zhao et al. [21] focused on avoiding scale inconsistencies
among frames as produced by SfM self-supervision, specially
when they are from sequences whose underlying depth range
is too different. Depth and optical flow estimation CNNs are
trained, but not a pose estimation one. Instead, the optical flow
between two frames is used to find robust pixel correspon-
dences between them, which are used to compute their relative
camera pose, computing the fundamental matrix by the 8-
point algorithm, and then performing triangulation between the
corresponding pixels of these frames. Overall, a sparse depth
pseudo-GT is estimated and used as supervision to train Ψ.
However, even robustifying scale consistency among frames,
this method still outputs just relative depth. To avoid this prob-
lem, Guizilini et al. [26] used sparse LiDAR supervision with
SfM self-supervision, relying on depth and pose estimation
networks. More recently, Guizilini et al. [22] relied on ego-
vehicle velocity to solve scale ambiguity in a pure SfM self-
supervision setting. A velocity supervision loss trains the pose
estimation CNN to learn scale-aware camera translation which,
in turn, enables scale-aware depth estimation.

Overall, this literature shows the relevance of achieving
MDE via SfM self-supervision and strategies to account for
violation of SfM assumptions, as well as to obtain absolute
depth values. Among these strategies, complementing SfM
self-supervision with supervision (depth GT) coming from
additional sensors such as a LiDAR and/or a stereo rig seems
to be the most robust approach to address all the problems at
once. However, then, a single camera would not be enough
at training time. In this paper, we also complement SfM self-
supervision with accurate depth supervision. However, instead
of relying on additional sensors, we use virtual-world data.

C. Virtual-world data for MDE
Training Ψ on virtual-world images to later perform on real-

world ones, requires to address the virtual-to-real domain gap.
Many approaches perform a virtual-to-real image-to-image
translation coupled to the training of Ψ. This translation usu-
ally relies on generative adversarial networks (GANs) [55, 56],
since to train them only unpaired and unlabeled sets of real-
and virtual-world images are required.

Zheng et al. [35] proposed T 2Net. In this case, a GAN
and Ψ are jointly trained, where the GAN aims at performing
virtual-to-real translation while acting as an auto-encoder for
real-world images. The translated images are the input for Ψ
since they have depth supervision. Additionally, a GAN oper-
ating on the encoder weights (features) of Ψ was incorporated
during training to force similar depth feature distributions be-
tween translated and real-world images. However, this feature-
level GAN worsen MDE results in outdoor scenarios. Kundu

et al. [36] proposed AdaDepth, which trains a common feature
space for real- and virtual-world images, i.e., a space where it
is not possible to distinguish the domain of the input images.
Then, depth estimation is trained from this feature space. To
achieve this, adversarial losses are used at the feature space
level as well as at the estimated depth level.

Cheng et al. [39] proposed S3Net, which extends T 2Net
with SfM self-supervision. In this case, GAN training involves
semantic and photo-metric consistency. Semantic consistency
between the virtual-world images and their GAN-translated
counterparts is required, which is measured via semantic
segmentation (which involves also to jointly train a CNN for
this task). Photo-metric consistency is required for consecutive
GAN-translated images, which is measured via optical flow.
Note that semantic segmentation and optical flow GT is
available for virtual-world images. Ψ uses the GAN-translated
images as input and is trained end-to-end with the GAN. Then,
a further fine-tuning step of Ψ is performed using only the real-
world sequence and SfM self-supervision, i.e., involving the
training of a pose estimation CNN while fine-tuning. During
this process, a masking mechanism inspired in [23] is also
used to compensate for SfM-adverse scenarios. Contrary to
AdaDepth and T 2Net, S3Net just outputs relative depth.

Zhao et al. [37] proposed GASDA, which leverages real-
world stereo and virtual-world data. In this case, the Cy-
cleGAN idea [57] is used to perform DA, which actually
involves two GANs, one for virtual-to-real image translation
and another for real-to-virtual. Two Ψ’s are trained coupled
to CycleGAN, one intended to process images with real-
world appearance (actual real-wold images or GAN-translated
from the virtual domain), the other to process images with
synthetic appearance (actual virtual-world images or GAN-
translated from the real domain). In fact, at testing time, the
most accurate depth results are obtained by averaging the
output of these two Ψ’s, which also involves to translate the
real-world images to the virtual domain by the corresponding
GAN. Thanks to the stereo data, left-right depth and geometry
consistency losses are also included during training aiming
at obtaining a more accurate Ψ. PNVR et al. [38] proposed
SharinGAN for training a DA GAN coupled to a specific
task. One of the selected tasks is MDE with stereo self-
supervision, as in [37]. In this case, real- and virtual-world
images are transformed to a new image domain where their
appearance discrepancies are minimized to perform MDE from
them, i.e. the GAN and the Ψ are jointly trained end-to-
end. SharinGAN outperformed GASDA. However, at testing
time, before performing the MDE, the real-world images must
be translated by the GAN to the new image domain. Both
GASDA and SharinGAN produce absolute scale depth.

D. Relationship of MonoDEVSNet with previous literature

In term of operational training conditions, the most similar
paper to ours is S3Net [39]. However, contrary to S3Net,
our MonoDEVSNet can estimate depth in absolute scale. On
the other hand, for the SfM self-supervision we leverage
from the state-of-the-art proposal in [23]. Note that methods
based on pure SfM self-supervision such as [23] (only SfM

4

setting), [19], [20], and [51], just report relative depth. In
order to compare MonoDEVSNet with them, we have esti-
mated relative depth too. We will see how we outperform
these methods, proving the usefulness of leveraging depth
supervision from virtual worlds. In fact, regarding relative
depth, we also outperform S3Net. Methods leveraging virtual-
world data such as GASDA [37] and SharinGAN [38], rely
on real-world stereo data at training time, while we only
require monocular sequences. On the other hand, our training
framework can be extended to accommodate stereo data if
available, although it is not our current focus. S3Net, GASDA,
SharinGAN, T 2Net [35], and AdaDepth [36], leverage ideas
from GAN-based DA to reduce the virtual-to-real domain gap,
either in image space (S3Net, GASDA, SharinGAN, T 2Net)
or in feature space (AdaDepth). We have analyzed both, image
and feature based DA, finding that the later outperforms the
former. In particular, by using the Gradient-Reversal-Layer
(GRL) DA strategy [43, 44], up to the best of our knowledge,
not previously applied to MDE. Currently, we outperform the
SfM self-supervision framework in [22] thanks to the virtual-
world supervision and our GRL DA strategy. However, using
vehicle velocity to obtain absolute depth as in [22], is a
complementary strategy that could be also incorporated in our
framework, although it is not the focus on this paper.

III. METHODS

In this section, we introduce MonoDEVSNet, which aims
at leveraging virtual-world supervision to improve real-world
SfM self-supervision. Since we train from both real- and
virtual-world data jointly, we describe our supervision and
self-supervision losses, the loss for addressing the virtual-to-
real domain gap, and the strategy to obtain depth in absolute
scale. Our proposal is visually summarized in Fig. 1.

A. Training data

For training MonoDEVSNet, we assume two sources of
data. On the one hand, we have image sequences acquired by
a monocular system on-board a vehicle while driving in real-
world traffic. We denote as xrt one of such frames acquired at
time t. We denote these data as Xr = {xrt}N

r

t=1, where Nr is
the number of frames from the real-world sequences. These
frames do not have associated GT. On the other hand, we have
analogous sequences but acquired on a virtual world, i.e., on-
board a vehicle immersed in a traffic simulation. We denote
as xst one of such virtual-world frames acquired at time t. We
refer to these data as Xs = {xst}N

s

t=1, where Ns is the number
of frames from the virtual-world sequences. The images in Xs

do have associated GT, since it can be automatically generated.
In particular, as it is commonly available in today’s simulators,
we assume pixelwise depth and semantic class GT. We define
Y s = {< dst , c

s
t >}N

s

t=1 to be this GT; i.e., given xst , d
s
t is its

depth GT, and cst its semantic class GT.

B. MonoDEVSNet architecture: Ψ(θ;x)
MonoDEVSNet, i.e., our Ψ(θ;x), is composed of three

main blocks: a encoding block of weights θenc, a multi-scale

Fig. 1: Training framework for MonoDEVSNet, i.e., Ψ(θ;x).
We show the involved images, GT, weights, and losses.
Red and blue lines are paths of real and virtual-world data,
respectively. The discontinuous line is a common path.

pyramidal block, θpyr, and a decoding block inspired in [23],
θdec. Therefore, the total set of weights is θ = {θenc, θpyr, θdec}.
Here, θenc acts as a backbone of features. Moreover, since we
aim at evaluating several encoders, the role of the multi-scale
pyramid block is to adapt the bottleneck of the chosen encoder
to the decoder. At testing time Ψ(θ;x) will process any real-
world image x acquired on-board the ego-vehicle, while at
training time either x ∈ Xr or x ∈ Xs.

C. Problem formulation

Training Ψ(θ;x) consists in finding the optimum weight
values, θ∗, by solving the problem:

θ∗ = min
θ
L(θ;Xr, Xs.Y s) ,

where L is a loss function, and Xs.Y s indicates the use of the
virtual-world frames with their GT. As we are going to detail,
L relies on three different losses, namely, Lsf,Lsp and LDA. The
loss Lsf focuses on training θ based on SfM self-supervision,
thus, only relying on real-world data sequences. The SfM self-
supervision is achieved with the support of a camera pose
estimation task performed by a CNN, T, of weights ϑsf. Thus,
we have Lsf(θ, ϑsf;Xr). The loss Lsp focuses on training
θ with virtual-world supervision, in particular, using depth
and semantic GT from virtual-world sequences. Therefore, we
have Lsp(θ;Xs.Y s). Finally, LDA focuses on creating domain-
invariant features θenc as part of θ. In particular, we rely on
a binary real/virtual domain-classifier CNN, D, of weights
{θenc, ϑDA}. Thus, we have LDA(θenc, ϑDA;Xr, Xs).

D. SfM Self-supervised loss: Lsf(θ, ϑsf;Xr)
Since we focus on improving MDE by the additional use of

virtual-world data, for the SfM self-supervision we leverage

5

from the state-of-the-art proposal in [23], which we briefly
summarize here for the sake of completeness as:

Lsf(θ, ϑsf;Xr) =
Nr−1∑
t=2

P rt (θ, ϑsf) + λSrt (θ) . (1)

As introduced in [17], the term λSrt (θ) is a constant weighted
loss to force local smoothness on Ψ(θ;xrt), taking into account
the edges of xrt . The term P rt (θ, ϑsf) is the actual SfM-inspired
loss. It involves the joint training of the depth estimation
weights, θ, and the relative camera pose estimation weights,
ϑsf. Figure 1 illustrates the CNN, T, associated to these
weights, which takes as input two consecutive frames, e.g.,
(xrt , xrt+1), and outputs the pose transform (rotation and trans-
lation), T̂ rt→t+1 = T(ϑsf;xrt , xrt+1), between them. Then, as
can be seen in Fig. 1, a projection module takes T̂ rt→t+1, x

r
t+1,

and the depth estimation Ψ(θ;xrt), to generate the synthesized
frame x̂rt+1→t(θ, ϑsf) which, ideally, should match xrt . In fact,
both frames adjacent to xrt are considered for robustness. Thus,
the SfM-inspired component of Lsf is defined as:

P rt (θ, ϑsf) = cpe(xrt , x̂rt±1→t(θ, ϑsf), xrt±1) ,

where cpe() is a pixelwise conditioned photo-metric error and
cpe() its average over the pixels. Obtaining cpe() starts by
computing two pixelwise photo-metric error measurements,
pe(xrt−1, x

r
t , x

r
t+1) and pe(x̂rt−1→t(θ, ϑsf), xrt , x̂rt+1→t(θ, ϑsf)),

where pe(xr−1, x
r
0, x

r
+1) = min(pe(xr0, xr−1), pe(xr0, xr+1)),

and pe(xrA, xrB) is the pixelwise photo-metric error between
xrA and xrB defined in [17], i.e., based on local structural simi-
larity (SSIM) and pixelwise photo-metric absolute differences
between xrA and xrB . Thus, min() applies pixelwise. Then, a
pixelwise binary auto-mask [23] is computed as:

$r
t (xrt , x̂rt±1→t(θ, ϑsf), xrt±1) =[
pe(x̂rt−1→t(θ, ϑsf), xrt , x̂rt+1→t(θ, ϑsf)) < pe(xrt−1, x

r
t , x

r
t+1)

]
I,

where []I denotes the Iverson bracket applied pixelwise.
Finally, cpe() is computed as:

cpe(xrt , x̂rt±1→t(θ, ϑsf), xrt±1) =
$r
t (xrt , x̂rt±1→t(θ, ϑsf), xrt±1)�

pe(x̂rt−1→t(θ, ϑsf), xrt , x̂rt+1→t(θ, ϑsf)) ,

where � stands for pixelwise multiplication. The auto-mask
$r
t () conditions which pixels of pe() are considered during

the gradient computation of Lsf. As explained in [23], the aim
of $r

t () is to remove, during training, the influence of pixels
which remain the same between adjacent frames because they
are assumed to often indicate SfM violations such as a static
camera, objects moving as the camera, or low texture regions.
The support of ϑsf is not needed at testing time.

E. Supervised loss: Lsp(θ;Xs.Y s)
In this case, since we address an estimation problem and

we have accurate GT, we base Lsp on the L1 metric. On
the other hand, MDE is specially interesting to determine
how far is the ego-vehicle from vehicles, pedestrians, etc.
Accordingly, since Y s includes semantic class GT, we use

it to increase the relevance of accurately estimating the depth
for such major traffic protagonists. Moreover, since virtual-
world depth maps are based on the Z-buffer involved on image
rendering, the range of depth values available as GT tend to
be over-optimistic even for active sensors such as LiDAR. For
instance, there can be depth values larger than 300 m in the
Z-buffer. Since we do not aim at estimating depth beyond a
reasonable threshold (in m), dmax, to compute Lsp we will
also discard pixels p with dst (p) ≥ dmax. For each xst , both the
semantic class relevance and the out-of-range depth values,
can be codified as real-valued weights running on [0, 1] and
arranged on a mask, $s

t . Thus, $s
t depends on dst , d

max, and
cst . However, contrarily to $r

t (), we can compute $s
t offline,

i.e., before starting the training process. Taking all these details
into account, we define our supervised loss as:

Lsp(θ;Xs.Y s) =
Ns∑
t=1
‖$s

t � (Ψ(θ;xst)− dst)‖1 . (2)

F. Domain adaptation loss: LDA(θenc, ϑDA;Xr, Xs)
As can be seen in Fig. 1, we aim at learning depth features,

θenc, so that it cannot be distinguished whether they were
generated from a real-world input frame (target domain) or
a virtual-world one (source domain); in other words, learning
a domain invariant θenc. Taking into account that we do not
have accurate depth GT in the target domain, while we do have
it for the source domain, we need to apply an unsupervised
DA technique to train θenc. In addition, as part of θ, the
training of θenc must result on an accurate Ψ(θ;x). Achieving
this accuracy and domain invariance are adversarial goals.
Accordingly, we propose to use the Gradient-Reversal-Layer
(GRL) idea introduced in [43], which, up to the best of our
knowledge, has not been applied before for DA in the context
of MDE. In this approach, the domain invariance of θenc is
measured by a binary target/source domain-classifier CNN,
D, of weights {θenc, ϑDA}. In [43], a logistic loss is proposed
to train the domain classifier. In our case, this is set as:

LDA(θenc, ϑDA;Xr, Xs) = (3)
Nr∑
t=1

log(D(θenc, ϑDA;xrt)) +
Ns∑
t=1

log(1−D(θenc, ϑDA;xst)) ,

where we assume that D(θenc, ϑDA;x) outputs 1 if x ∈ Xr

and 0 if x ∈ Xs. The GRL has no parameters and connects
θenc with ϑDA (see Fig. 1). Its behavior is exactly as explained
in [43]. This means that during forward passes of training, it
acts as an identity function, while, during back-propagation, it
reverses the gradient vector passing through it. Both the GRL
and ϑDA are required at training time, but not at testing time.

G. Overall training procedure

Algorithm 1 summarizes the steps to compute the needed
gradient vectors for mini-batch optimization. In particular,
we need the gradients related to MonoDEVSNet weights,
θ = {θenc, θpyr, θdec}, and the weights of the auxiliary tasks,
i.e., ϑsf for SfM self-supervision, and ϑDA for DA. Regarding
gradient computation, we do not need to distinguish θpyr from

6

θdec, so we define θpyde = {θpyr, θdec}. In Alg. 1, we introduce
an equalizing factor between supervised and self-supervised
losses, ωsf ∈ R, which aims at avoiding one loss dominating
over the other. A priori, we could set a constant factor.
However, in practice, we have found that having an adaptive
value is more useful. Therefore, inspired by the GradNorm
idea [58], we use the ratio between the supervised and self-
supervised losses. Algorithm 1 also introduces the scaling
factor ωDA ∈ R which, following [43], controls the trade-off
between optimizing θenc to obtain an accurate Ψ(θ;x) model
versus being domain invariant. Finally, LDA(θenc, ϑDA; ∅, Xs

B)
and LDA(θenc, ϑDA;Xr

B , ∅) indicate whether this loss must be
computed only using virtual- or real-world data, respectively.

Algorithm 1: Computing the gradients ∆θenc , ∆
θpyde ,

∆
ϑsf , ∆ϑDA for a mini-batch Xr

B ⊂ Xr, Xs
B .Y

s
B ⊂ Xs.Y s.

∇ξi
F (ξ1, ξ2) refers to back-propagation on F (ξ1, ξ2) with

respect to weights ξi ⊂ ξ1 ∪ ξ2. ∅ is the empty set.

Forward Passes with {Xs
B , Y

s
B}

`sp(θ)←Lsp(θ;Xs
B .Y

s
B)

`DA,s(θenc, ϑDA)←ωDALDA(θenc, ϑDA; ∅, Xs
B)

Back-propagation for Supervision & DA

∆s
θpyde ←∇θpyde`

sp(θ)
∆s
θenc ←∇θenc(`sp(θ)− `DA,s(θenc, ϑDA))

∆s
ϑDA ←∇ϑDA`DA,s(θenc, ϑDA)

Forward Passes with Xr
B

`sf(θ, ϑsf)←Lsf(θ, ϑsf;Xr
B)

`DA,r(θenc, ϑDA)←ωDALDA(θenc, ϑDA;Xr
B , ∅)

Back-propagation for Self-supervision & DA

∆r
θpyde ←∇θpyde`

sf(θ, ϑsf)
∆r
θenc ←∇θenc(`sf(θ, ϑsf)− `DA,r(θenc, ϑDA))

∆r
ϑDA ←∇ϑDA`DA,r(θenc, ϑDA)

Setting the final gradient vectors

∆
ϑsf ←∇ϑsf`

sf(θ, ϑsf)
∆ϑDA ←∆s

ϑDA + ∆r
ϑDA

ωsf ←`sp(θ)/`sf(θ, ϑsf)
∆
θpyde ←∆s

θpyde + ωsf∆r
θpyde

∆θenc ←∆s
θenc + ωsf∆r

θenc

H. Absolute depth computation

The virtual-world supervised data trains Ψ(θ;x) on absolute
depth values, while the real-world SfM self-supervised data

trains Ψ(θ;x) on relative depth values. Thanks to the unsu-
pervised DA, the depth features θenc are trained to be domain
invariant. However, according to our experiments, this is not
sufficient for Ψ(θ;x) producing accurate absolute depth values
at testing time. Fortunately, thanks to the use of virtual-world
data, we can still compute a global scaling factor, ψ ∈ R, so
that ψΨ(θ;x) is accurate in absolute depth terms. For that, we
assume that the sequences in Xs are acquired with a camera
analogous to the one used to acquire the sequences in Xr.
Here analogous refers to using the same number of pixels,
field of view, frame rate, and mounted on-board in similar
heading directions. Note that simulators are flexible enough
for setting these camera parameters as needed. Accordingly,
we train a Ψ(θ;x) model using only data from Xs and SfM
self-supervision, i.e. as if we would not have supervision for
Xs. Then, we find the median depth value produced by this
model on the virtual-world data, d̂s,m ∈ R. Finally, we set
ψ = ds,m/d̂s,m, where ds,m ∈ R is the median depth value
of the GT. This pre-processing step is performed once and
the model discarded afterwards. Other works apply a similar
approach [19, 21, 23, 39, 51] but relying on LiDAR data as GT
reference, while we only rely on virtual-world data.

IV. EXPERIMENTAL RESULTS

We start by defining the datasets and evaluation metrics used
in our experiments. After, we provide relevant implementation
and training details of MonoDEVSNet. Finally, we present
and discuss our quantitative and qualitative results, comparing
them with those from previous literature as well as performing
an ablative analysis over MonoDEVSNet components.

A. Datasets and evaluation metrics

We use publicly available datasets and metrics which are
de facto standards in MDE research. In particular, we use
KITTI Raw (KR) [59] and Virtual KITTI (VK) [29] as
real- and virtual-world sequences, respectively. We follow
Zhou et al. [19] training-testing split. From the training split
we select 12K monocular triplets, i.e., samples of the form
{xrt−1, x

r
t , x

r
t+1}. The testing split consists of 697 isolated

images with LiDAR-based GT, actually introduced by Eigen
et al. [5]. In addition, for considering the semantic content of
the images in the analysis of results, we also use KITTI Stereo
2015 (KS) [60] for testing. This dataset consists of 200 isolated
images with enhanced depth maps and semantic labels. VK is
used only for training, we also use 12K monocular triplets
(non-rotated camera subset) with associated depth GT. In this
case, the triplets are used to calibrate the global scaling factor
ψ (see Sect. III-H), while for actual training supervision only
12K isolated frames are used. As the depth GT of VK ranges
up to ∼ 655m, to match the range of KR’s LiDAR-based
GT, we clip it to 80m (dmax). VK includes similar weather
conditions as KR/KS, and adds situations with fog, overcast,
and rain, as well as sunrise and sunset illumination.

As is common practice since [17], we use Make3D dataset
[61] for assessing generalization. It contains photographs of
urban and natural areas. Thus, Make3D shows views and
content pretty much different from those on-board a vehicle as

7

KR, KS, and VK. The images come with depth GT acquired by
a 3D scanner. There are 534 images with depth GT, organized
in a standard split of 400 for training and 134 for testing. We
use the latter, since we rely on Make3D only for testing.

In order to assess quantitative MDE results, we use the
standard metrics introduced by Eigen et al. [5], i.e., the
average absolute relative error (abs-rel), the average squared
relative error (sq-rel), the root mean square error (rms), and
the rms log error (rms-log). For these metrics, the lower
the better. In addition, the accuracy (termed as δ) under a
threshold τ ∈ {1.25, 1.252, 1.253} is also used as metric. In
this case, the higher the better. The abs-rel error and the δ < τ
are percentage measurements, sq-rel and rms are reported in
meters, and rms-log is similar (reported in meters) to rms but
applied to logarithm depth values.

These metrics are applied to absolute depth values for MDE
models trained with depth supervision coming from either
LiDAR [5–14, 26], stereo [15–18, 23], real-world stereo and
virtual-world depth [37, 38], or stereo and LiDAR [24, 25].
However, MDE models trained on pure SfM self-supervision
can only estimate depth in relative terms, i.e., up to scale.
Moreover, the scale factor varies from image to image, a prob-
lem known as scale inconsistency. In this case, before com-
puting the above metrics, it is applied a per-image correction
factor computed at testing time [19–21, 23, 39, 51]. In particu-
lar, given a test image x with GT and estimated depth d(x) and
d̂(x), respectively, the common practice consists of computing
a scale ψ(x) ∈ R as the ratio median(d(x))/median(d̂(x)),
and then compare ψ(x)d̂(x) with d(x). On the other hand,
SfM self-supervision with the help of additional information
can train models able to produce absolute scale in testing
time. For instance, [22] uses the ego-vehicle speed and, in
fact, virtual-world supervision can help too [35, 36]. The latter
approach is the one followed in this paper, especially thanks to
the procedure presented in Sect. III-H. Therefore, Ψ(θ;x) will
be evaluated in relative scale terms, and ψΨ(θ;x) in absolute
terms. Please, note that our ψ ∈ R scaling factor is constant
for all the evaluated images and computed at training time.
In the following, when presenting quantitative results, we will
make clear if they are in relative or absolute terms.

B. Implementation details

We start by selecting the actual CNN layers to implement
Ψ(θ;x). Since we leverage the SfM self-supervision idea
from [23], a straightforward implementation would be to use
its ResNet-based architecture as it is. However, the High-
Resolution Network (HRNet) architecture [62], exhibits better
accuracy in visual tasks such as semantic segmentation and
object detection, suggesting that it can be a better backbone
than ResNet. Thus, we decided to start our experiments by
comparing ResNet and HRNet backbones using the SfM self-
supervision framework provided in [23]. In particular, we
assess different ResNet/HRNet architectures for θenc, while
using the proposal in [23] for θdec. Then, when using ResNet
we have θpyr = ∅, while for HRNet θpyr consists of pyramidal
layers adapting the θenc and θdec CNN architectures under
test. For these experiments, we rely on KR. Table I shows

TABLE I: Comparing ResNet and HRNet as backbone for
Ψ(θ;x), training only on SfM self-supervision (relative scale)
using the framework in [23]. MW column stands for millions
of θenc weights to be learnt. FPS stands for frames per second
as required by Ψ(θ;x) to process x, while GFLOPS refers to
the giga floating-point operations per second required by θenc;
in both cases using an NVIDIA RTX 2080Ti GPU. The 1.25n
columns, n ∈ {1, 2}, refer to the τ in the usual δ < τ accuracy
metrics. In all the tables of Sect. IV, bold stands for best and
underline for second-best. (∗) Currently, HRNet branches do
not run in parallel in PyTorch, thus, compromising speed.

θenc Backb. MW GFLOPS FPS abs-rel sq-rel rms 1.25 1.252

ResNet-18 11.6 4.47 141.2 0.115 0.882 4.701 0.879 0.961
ResNet-50 25.5 10.14 77.06 0.110 0.831 4.642 0.883 0.962
ResNet-101 44.5 19.29 43.26 0.110 0.809 4.712 0.878 0.960
ResNet-152 60.2 28.47 30.71 0.107 0.800 4.629 0.885 0.962
HRNet-W18 9.5 8.29 15.79∗ 0.107 0.846 4.671 0.887 0.962
HRNet-W32 29.3 19.50 15.53∗ 0.107 0.881 4.794 0.886 0.961
HRNet-W48 65.3 40.04 15.48∗ 0.105 0.791 4.590 0.888 0.963

Fig. 2: Pyramidal architecture of θpyr.

the accuracy (in relative scale terms) of the tested variants
and their number of weights. We see how HRNet outperforms
ResNet, being HRNet-W48 the best. Indeed, HRNet is slower
than ResNet, and HRNet-W48 is the one requiring more
GFLOPS by far. However, at this stage of our research we tar-
get the architecture which potentially can provide higher depth
estimation accuracy. Thus, for our following experiments, we
will rely on HRNet-W48 although being the heaviest. We show
the corresponding pyramidal architecture of θpyr in Fig. 2. It is
composed of five blocks (Pi), where each block is a pipeline
of three consecutive layers consisting of convolution, batch
normalization, and ReLU. As a deep learning framework, we
use PyTorch 1.5v [63].

In order to train the camera pose estimation network,
T(ϑsf;xrt , xrt±1), we follow [23] but using ResNet-50 instead
of ResNet-18 since the former is more accurate. Four convolu-
tional layers are used to convert the ResNet-50 bottleneck fea-
tures to the 6-DoF relative pose vector (3D translation and ro-
tation). For training the classification block of D(θenc, ϑDA;x),
i.e., ϑDA, we use a standard classification pipeline based on
convolutions, ReLU and fully connected layers. Finally, we
remark that these networks are not required at testing time.

C. Training details

The input images are processed (at training and testing time)
at a resolution of 640× 192 (W × H), where LANCZOS
interpolation is performed from the ∼ 1242× 375 original

8

TABLE II: Relative depth results up to 80m on the (KR)
Eigen et al. [5] testing split. These methods rely on SfM self-
supervision. In addition, methods in gray use DA supported by
VK. (1) MonoDepth2 is based only on SfM self-supervision.

Method abs-rel sq-rel rms rms-log 1.25 1.252 1.253

[19] (Zhou et al.) 0.183 1.595 6.709 0.270 0.734 0.902 0.959
[20] GeoNet 0.149 1.060 5.567 0.226 0.796 0.935 0.975
[23] MonoDepth21 0.115 0.903 4.863 0.193 0.877 0.959 0.981
[21] (Zhao et al.) 0.113 0.704 4.581 0.184 0.871 0.961 0.984
[51] (Guizilini et al.) 0.102 0.698 4.381 0.178 0.896 0.964 0.984
[39] S3Net (VK v1) 0.124 0.826 4.981 0.200 0.846 0.955 0.982
MonoDEVSNet / VK v1 0.105 0.753 4.389 0.179 0.890 0.965 0.983
MonoDEVSNet / VK v2 0.102 0.685 4.303 0.178 0.894 0.966 0.984

resolution. As optimizer, we use Adam [64] with learning
rate lr = 10−4, and the rest of its hyper-parameters set to
default values. The weights θenc are initialized from available
ImageNet [65] pre-training, θpyr, θdec, and ϑDA are randomly
initialized with Kaiming weights, while the ResNet-50 part of
ϑsf is also initialized with ImageNet and the rest (convolutional
layers to output the pose vector) following Kaiming. The
mini-batch size is of 16 images, 50%/50% from real/virtual
domains. To minimize over-fitting, we apply standard data
augmentation such as horizontal flip, a 50% chance of random
brightness, contrast, saturation, and hue jitter with ranges of
±0.2, ±0.2, ±0.2, and ±0.1, respectively. Remaining hyper-
parameters were set as λ = 0.001 in Eq. (1), ωDA = 10 in
Alg. 1, and in Eq. (4) our mask $s

t is set to have values of
1.0 for traffic participants (vehicles, pedestrians, etc.), 0.5 for
static infrastructure (buildings, road, vegetation, etc.), and 0.0
for the sky and pixels with depth over dmax (here 80m).

D. Results and discussion

1) Relative depth assessment: We start by assessing MDE
in relative terms. Table II presents MonoDEVSNet results
(Ours) and those from previous works based on SfM self-
supervision. From this table we can draw several observations.
Regarding DA, MonoDEVSNet (VK v1) outperforms S3Net
(VK v1) in all metrics. The new version of VK (VK v2)
allows us to obtain even better results. MonoDEVSNet with
virtual-world supervision outperforms the version with only
SfM self-supervision (best result in Table I) in all metrics,
no matter the VK version we use. Overall, MonoDEVSNet
outperforms most previous methods, being on pair with [51].

2) Absolute depth assessment: While assessing depth in
relative terms is a reasonable option to compare methods
purely based on SfM self-supervision, the most relevant eval-
uation is in terms of absolute depth. These are presented in
Table III. The first (top) block of this table shows results
based on depth supervision from LiDAR, thus, a priori they
can be thought of as upper-bounds for methods based on
self-supervision. The second block shows methods that only
use virtual-world supervision. The third and fourth (bottom)
blocks show results based on stereo and SfM self-supervision,
respectively. Methods in gray use DA supported by VK. We
can draw several observations from this table. MonoDEVS-
Net (Ours) is the best performing among those leveraging
supervision from VK v1 and, consistently with the results on

TABLE III: Absolute depth results up to 80m on the (KR)
Eigen et al. [5] testing split. We divide the results into four
blocks. From top to bottom, the blocks refer to: methods based
on LiDAR supervision, only virtual-world supervision, stereo
self-supervision, SfM self-supervision. In these blocks, we
remark best and second-best results per block. Methods in
gray use DA supported by VK. We remark some additional
comments: (1) in addition to LiDAR supervision, it also
uses stereo self-supervision; (2) it uses stereo and SfM self-
supervision; (3) in this case, the MDE network is pre-trained
on Cityscapes dataset [66] and then fine-tuned on KITTI.

Method abs-rel sq-rel rms rms-log 1.25 1.252 1.253

[5] (Eigen et al.) 0.203 1.548 6.307 0.282 0.702 0.890 0.890
[6] (Liu et al.) 0.217 1.841 6.986 0.289 0.647 0.882 0.961
[9] (Cao et al.) 0.115 N/A 4.712 0.198 0.887 0.963 0.982
[24] (Kuzni. et al.)1 0.113 0.741 4.621 0.189 0.862 0.960 0.986
[13] (Xu et al.) 0.122 0.897 4.677 N/A 0.818 0.954 0.985
[11] (Gurram et al.) 0.100 0.601 4.298 0.174 0.874 0.966 0.989
[10] DORN 0.098 0.582 3.666 0.160 0.899 0.967 0.986
[14] VNL 0.072 N/A 3.258 0.117 0.938 0.990 0.998
[36] AdaDepth / VK v1 0.167 1.257 5.578 0.237 0.771 0.922 0.971
[35] T 2Net / VK v1 0.174 1.410 6.046 0.253 0.754 0.916 0.966
[16] (Garg et al.) 0.169 1.512 5.763 0.236 0.836 0.935 0.968
[18] SuperDepth 0.112 0.875 4.958 0.207 0.852 0.947 0.977
[23] MonoDepth2 0.109 0.873 4.960 0.209 0.864 0.948 0.975
[23] MonoDepth22 0.106 0.806 4.630 0.193 0.876 0.958 0.980
[37] GASDA / VK v1 0.120 1.022 5.162 0.215 0.848 0.944 0.974
[38] SharinGAN / VK v1 0.116 0.939 5.068 0.203 0.850 0.948 0.978
[22] PackNet-SfM 0.111 0.829 4.788 0.199 0.864 0.954 0.980
[22] PackNet-SfM3 0.108 0.803 4.642 0.195 0.875 0.958 0.980
MonoDEVSNet / VK v1 0.108 0.775 4.464 0.188 0.875 0.961 0.982
MonoDEVSNet / VK v2 0.104 0.721 4.396 0.185 0.880 0.962 0.983

relative depth, by using VK v2 we improve MonoDEVSNet
results. In fact, MonoDEVSNet based on VK v2 outperforms
all self-supervised methods, including those using stereo rigs
instead of monocular systems. We are not yet able to reach the
performance of the best methods supervised with LiDAR data.
However, it is clear that our proposal is able to successfully
combine real-world SfM self-supervision and virtual-world
supervision. Thus, we think it is worth to keep this line of
research until reaching the LiDAR-based upper-bounds.

3) Ablative analysis of MonoDEVSNet: It is also worth
to analyze the contribution of the main components of our
proposal. In rows 1-6 of Table IV, we add one component
at a time showing performance for absolute depth. The 1st
row corresponds to using the real-world data with SfM self-
supervision and the virtual-world images with only depth
supervision, i.e., without using neither semantic supervision
($s

t), nor gradient equalization (ωsf), nor domain adaptation
(ϑDA), nor mixed mini-batches (50/50), nor the global scaling
factor (ψ). By comparing 1st and 2nd rows (i.e., w/o ψ and w/
ψ, resp.), we can see how relevant is obtaining a good global
scaling factor to output absolute depth. In fact, adding ψ to the
virtual-world depth supervision shows the higher improvement
among all the components of our proposal. Then, using mixed
mini-batches of real- and virtual-world data improves the
performance over alternating mini-batches of only either real-
or virtual-world data. This can be seen by comparing 2nd and
3rd rows (i.e., w/o 50/50 and w/ 50/50, resp.). If we alternate

9

TABLE IV: Absolute depth ablative results of MonoDEVSNet
(VK v2) up to 80m on the (KR) Eigen testing split [5]. Rows
1-6 show the progressive use of the components of our pro-
posal (each row adds a new component). 50/50 refers to mini-
batches of 50% real-world samples and 50% or virtual-world
ones; not using 50/50 (rows 1-2) means that we alternate
mini-batches of pure real- or virtual-world samples. Row 7
corresponds to a simplification of the SfM self-supervised loss.
ϑG (rows 8-9) refers to a GAN-based DA approach. LB (lower
bound, row 10) indicates the use of only virtual-world data.
UB (upper bound, row 12) indicates the use of KITTI LiDAR-
based supervision instead of virtual-world data. Rows 11 and
13 show the difference of our best model (All) with respect to
LB and UB, respectively. ↑ D means that All is D units better,
while ↓ D means that it is D units worse. All/W18 (row 14)
and All/W32 (row 15) refer to using the All configuration by
relying on HRNet-W18 and HRNet-W32, respectively.

Configuration abs-rel sq-rel rms rms-log 1.25 1.252 1.253

1. {Xr, Xs.Y s} 0.368 2.601 8.025 0.514 0.080 0.478 0.883
2. +ψ 0.140 0.876 4.915 0.217 0.828 0.950 0.980
3. +50/50 0.128 0.880 4.618 0.198 0.844 0.957 0.982
4. +ϑDA 0.110 0.724 4.450 0.187 0.873 0.960 0.983
5. +ωsf 0.106 0.716 4.441 0.188 0.876 0.962 0.982
6. +$s

t (All) 0.104 0.721 4.396 0.185 0.880 0.962 0.983
7. Simplified Lsf 0.105 0.736 4.471 0.190 0.875 0.960 0.981
8. All+ϑG ;−ϑDA 0.119 0.809 4.654 0.196 0.857 0.958 0.982
9. All+ϑG 0.106 0.748 4.503 0.191 0.873 0.959 0.981
10. LB 0.165 1.280 5.628 0.248 0.777 0.916 0.965
11. ↑All vs. ↓LB ↑0.061 ↑0.559 ↑1.232 ↑0.063 ↑0.103 ↑0.046 ↑0.018
12. UB 0.088 0.583 3.978 0.164 0.906 0.970 0.986
13. ↑All vs. ↓UB ↓0.016 ↓0.138 ↓0.418 ↓0.021 ↓0.026 ↓0.008 ↓0.003
14. All/W18 0.109 0.773 4.524 0.190 0.871 0.960 0.982
15. All/W32 0.107 0.754 4.510 0.188 0.875 0.960 0.982

the domains, the optimization of a mini-batch is dominated
by self-supervision (real-world data), and the optimization
of the next mini-batch is dominated by supervision (virtual-
world data). Thus, there is not an actual joint optimization of
SfM self-supervised and supervised losses, which turns to be
relevant. Yet, as can be seen in 4th row, when we add the
DA component (ϑDA) we improve further the depth estimation
results. As can bee seen in 5th row, adding the equalization
(ωsf) between gradients coming from supervision and self-
supervision also improves the depth estimation results. Finally,
adding the virtual-world mask ($s

t) leads to the best perfor-
mance in 6th row. Overall, this analysis shows how all the
considered components are relevant in our proposal. We also
remark that these components are needed only to train θ, but
only ψ and θ are required at testing time. Additionally, we have
assessed the effect of simplifying the SfM self-supervised loss
that we leverage from [23], here summarized in Sect. III-D. In
particular, we neither use the auto-mask ($r

t ()), nor the multi-
scale depth loss, and we replaced the minimum re-projection
loss by the usual average re-projection loss (i.e., we re-define
pe(xr−1, x

r
0, x

r
+1) in Sect. III-D). Results are shown in the 7th

row. The metrics show worse values than in 6th row (All), but
still outperforming or being on pair with PackNet-SfM and
the stereo self-supervised methods of Table III.

We also did additional experiments changing the DA mecha-

nism. Instead of taking direct real- and virtual-world images as
input to train Ψ(θ;x), a GAN-based CNN, G, processes them
to create an image space in which (hopefully) it is not possible
to distinguish the domain. We train a CNN, Ψ(θ;G(ϑG ;x)),
where x can come from either the real or the virtual domain,
and ϑG are the weights of G. These weights are jointly trained
with θ, ϑsf, and ϑDA to optimize depth estimation and minimize
the possibility of discriminating the original domain of a
sample xG = G(ϑG ;x). Table IV shows results using this GAN
when removing ϑDA (8th row) and when keeping it (9th row).
As we can see, this approach does not improve performance.
Moreover, the training is more complex and G(ϑG ;x) would
be required at testing time. Thus, we discarded it.

We also assessed the improvement of our proposal with
respect a lower-bound model (LB) trained on virtual-world
images and their depth GT (Xs.Y s), but neither using real-
world data (Xr), nor DA (ϑsf), nor the mask ($s

t). Results
are shown in 10th row of Table IV, and we explicitly show
the improvement of our proposal over such LB in 11th
row. Likewise, we have trained an upper-bound model (UB)
replacing VK data by KR data with LiDAR-based supervision,
so that DA is not required. Results are shown in 12th row, and
the distance of our model to this UB is explicitly shown in
13th row. Comparing 11th and 13th rows we can see how we
are clearly closer to the UB than to the LB.

Finally, we have done experiments using HRNet-W18 and
HRNet-W32. The results are shown in 14th and 15th rows of
Table IV, respectively. Indeed, as it happens with the results on
relative depth (Table I), HRNet-W48 outperforms these more
lightweight versions of HRNet. However, by using HRNet-
W18 and HRNet-W32 we still outperform or are on pair with
the state-of-the-art self-supervised methods shown in Table III,
i.e., those based on stereo self-supervision and PackNet-SfM.

4) Qualitative results: Figure 3 presents qualitatively re-
sults relying on the depth color map commonly used in
the MDE literature. We show results for representative
methods in Table III, namely, DORN (LiDAR supervision),
SharinGAN (stereo self-supervision and virtual-world super-
vision), PackNet-SfM (SfM self-supervision and ego-vehicle
speed supervision), and MonoDEVSNet (Ours) using VK v1
and VK v2 (SfM self-supervision and virtual-world supervi-
sion). We also show the corresponding LiDAR-based GT. This
GT shows that for LiDAR configurations such as the one used
to acquire KITTI dataset, detecting some close vehicles may
be problematic since only a few LiDAR points capture their
presence. Despite being trained on LiDAR supervision, DORN
provides more accurate depth information in these corner cases
than the raw LiDAR, which is an example of the relevance
of MDE in general. However, DORN shows worse results
in these corner cases than the rest (SharinGAN/PackNet-
SfM/Ours), even being more accurate in terms of MDE
metrics, which focus on global assessment. SharinGAN has
more difficulties than PackNet-SfM and our proposal for
providing sharp borders in vertical objects/infra-structure (e.g.,
vehicles, pedestrians, traffic signs, trees). An interesting point
to highlight is also the qualitative difference that we observe
on our results depending on the use of VK version. In VK v1
data, vehicle windows appear as transparent to depth, like in

10

Fig. 3: Qualitative results on the (KR) Eigen et al. testing slit [5]. From top to bottom: input images, their LiDAR-based depth
GT (interpolated for visualization using [67]), DORN, SharinGAN, PackNet-SfM, MonoDEVSNet VK v1 and VK v2.

Fig. 4: Abs-rel and rms errors as a function of depth, for KR
Eigen testing split [5]. The histogram of depth GT is shown
with bars. We compare PackNet-SfM and MonoDEVSNet.

Fig. 5: Qualitative results on KS data. From left to right: input
images, PackNet-SfM, MonoDEVSNet.

many cases happens with LiDAR data, while in VK v2 they
appear as solid. This is translated to the MDE results as we can
observe comparing the two bottom rows of Fig. 3. Technically,
we think the qualitative results of VK v2 make more sense
since the windows are there at the given depth. However, what
we would like to highlight is that we can select one option or
another thanks to the use of virtual-world data.

Fig. 6: Per-class abs-rel and rms errors for KS, computed by
averaging over the pixels of each class, for PackNet-SfM and
MonoDEVSNet. The % of pixels of each class is shown.

Fig. 7: Point cloud representation on KR Eigen test split [5]
and KS data from left to right. From top to bottom: input
images, MonoDEVSNet textured point cloud.

5) Additional insights: In terms of qualitative results we
think the best performing and most similar approaches are
PackNet-SfM and MonoDEVSNet, both relying on real-world
monocular systems. Thus, we perform a deeper comparison of
them. First, following PackNet-SfM article [22], Fig. 4 plots
the abs-rel error as a function of depth. Since this is a relative
error, we also plot rms. Results are similar within a close range

11

TABLE V: Absolute depth results on Make3D testing set. All
the shown methods use Make3D only for testing (generaliza-
tion), except (1) which fine-tunes on Make3D training set too.

Method abs-rel sq-rel rms

[35] T 2Net / VK v1 0.508 6.589 8.935
[36] AdaDepth-S1 / VK v1 0.452 5.71 9.559
[37] GASDA / VK v1 0.403 6.709 10.424
[38] SharinGAN / VK v1 0.377 4.900 8.388
MonoDEVSNet / VK v1 0.381 3.997 7.949
MonoDEVSNet / VK v2 0.377 3.782 8.011

of up to 20m. Within 20m and 70m, our proposal clearly
outperforms PackNet-SfM and beyond 70m both methods
perform similarly. How these differences translate to abs-rel
and rms global scores depends on the number of pixels falling
in each distance range, which we show as an histogram in the
same plot. We see how for the KR testing set most of the
pixels fall in the 5 − 20m depth range, where both methods
perform more similarly. Second, we provide further compar-
ative insights by using KS data since it has associated per-
class semantic GT. Note that, although KS is a different data
split than the one used in the experiments shown so far (KR),
still is KITTI data; thus, we are not yet facing experiments
about generalization. Figure 5 compares qualitative results of
PackNet-SfM vs. MonoDEVSNet. We can see how PackNet-
SfM misses some vehicles that our proposal does not. We
believe that these vehicles may be moving at a similar speed
w.r.t the ego-vehicle, which may be problematic for pure
SfM-based approaches and we hypothesize that virtual-world
supervision can help to avoid this problem. Figure 6 shows the
corresponding abs-rel metric per-class, focusing on the most
relevant classes for driving. Note how the main differences
between PackNet-SfM and MonoDEVSNet are observed on
vehicles, especially on cars.

Additional qualitative results are added in Fig. 7, where we
can see how original images from KR and KS can be rendered
as a textured point cloud. In particular, the viewpoint of these
renders can change with respect to the original images thanks
to the absolute depth values obtained with MonoDEVSNet.

6) Generalization results: As done in the previous literature
using VK to support MDE [35–38], we assess generalization
on Make3D dataset. As in this literature, we follow the
standard data conditioning (cropping and resizing) for models
trained on KR, as well as the standard protocol introduced
in [17] to compute MDE evaluation metrics (e.g. only depth
below 70m is considered). Table V presents the quantitative
results usually reported for Make3D, and ours. Note how, in
generalization terms, our method also outperforms the rest.
Moreover, Fig. 8 shows how our proposal captures the depth
structure even better than the depth GT, which is build from
55× 305 depth maps acquired by a 3D scanner. In addition,
we show qualitative results on Cityscapes dataset [66] in Fig.
9. This dataset is captured in a real-world driving setup similar
to car mounted videos of KITTI.

7) Failure cases: Fig. 10 shows qualitative results where
some errors in the depth map are highlighted: (1) overexposed
pixel columns lead to hallucinate a vertical structure; (2)
saturated fence segments are not seen; (3) pedestrians are

Fig. 8: Qualitative results of MonoDEVSNet on Make3D.
From left to right: input images, depth GT, MonoDEVSNet.

Fig. 9: Qualitative results of MonoDEVSNet on Cityscapes
dataset. From left to right: input images, MonoDEVSNet
estimated depth maps.

visible but with an approximate silhouette; (4) a bridge is not
seen; (5) saturated skies do not appear as faraway. Thinking
in the information required to drive and assuming that depth
estimation is combined with semantic segmentation, we think
that the cases (3) and (5) are not a problem and the (2) would
be only if the unseen segment is too large (which is not the
case in the shown example). The case (4) could be a problem
for an autonomous bus/truck provided it does not fit below
the bridge, but usually those would have predefined routes
where this should not happen. However, (1) can be a problem
depending where the hallucinated structure appears, e.g., in the
example probably it would not be a problem, but it would be
if the structure appears in the middle of the road. Behind some
errors, we can find the lack of training data (e.g., for the bridge
not seen). Behind others, we find extreme imaging conditions
(like overexposed image areas). In the former case, we need
to re-train by taking these cases into account; while, in the
latter case, we need to prevent such undesired effects (e.g. by
using HDR camera settings). It is worth to mention that we
have seen similar errors in other methods in the literature.

12

Fig. 10: Failure cases in the depth map.

8) Revisiting θenc architectures: We selected HRNet-W48
because it provides the most accurate results, however, we
may need to sacrifice accuracy to reduce the computational
burden. Thus, we have run more experiments with the final
MonoDEVS training approach, just changing θenc. These in-
clude representative architectures of ResNet and HRNet types,
as well as, DenseNet [68]. As ResNet, DenseNet does not
need adding the pyramidal blocks (θpyr). Moreover, as we
mentioned in Sect. IV-A, to keep our experimental work
manageable, we used 12K triplets (samples) from the real-
and virtual-world training sets; however, it is possible to use
∼ 40K samples from KR, which is the common practice in
the literature (as those using KR in Tables I-III). Likewise, we
use ∼ 22K samples from VK v2 as other literature methods in
Table V do with VK v1. Table VI presents the corresponding
results. The block ∼ 40K/22K can be directly compared to
the literature in Table III). We see how, indeed, HRNet-W48
is the best in term of accuracy metrics. However, we see that
DenseNet-121 offers the best trade-off between memory (MW)
and computational (GFLOPS) requirements, offering real-time
(FPS) with accuracy close to the state-of-the-art. If we need
to reduce the computational burden and significantly increase
the FPS, then ResNet-18 is a reasonable alternative.

V. CONCLUSION

For on-board perception, we have addressed monocular
depth estimation by virtual-world supervision (MonoDEVS)
and real-world SfM-inspired self-supervision; the former com-
pensating for the inherent limitations of the latter. This chal-
lenging setting allows to rely on a monocular system not only
at testing time, but also at training time; a cheap and scalable
approach. We have designed a CNN, MonoDEVSNet, which
seamlessly trains on real- and virtual-world data, exploiting

TABLE VI: Absolute depth. We provide final experimental
results for different versions of three different architectures. In
the upper block of the table we have used the same training set
as in previous experiments, i.e., 12K/12K from KR/VK v2. In
the bottom block, as is usual in the literature, we use all the
available training data, i.e., ∼ 40K and ∼ 22K, respectively.

θenc Backb. MW GFLOPS FPS abs-rel sq-rel rms 1.25 1.252

ResNet-18 11.6 4.47 141.2 0.116 0.836 4.735 0.860 0.954
ResNet-152 60.2 19.29 30.71 0.108 0.759 4.559 0.870 0.960
HRNet-W18 9.5 8.29 15.79 0.109 0.773 4.524 0.871 0.960
HRNet-W48 65.3 40.04 15.48 0.104 0.721 4.396 0.880 0.962

DenseNet-121 6.9 7.09 32.60 0.116 0.812 4.646 0.854 0.960
DenseNet-161 26.5 19.21 24.87 0.111 0.763 4.516 0.864 0.960

ResNet-18 11.6 4.47 141.2 0.114 0.838 4.734 0.860 0.954
ResNet-152 60.2 19.29 30.71 0.104 0.784 4.560 0.878 0.0.960
HRNet-W18 9.5 8.29 15.79 0.105 0.745 4.470 0.877 0.961
HRNet-W48 65.3 40.04 15.48 0.101 0.703 4.413 0.882 0.962

DenseNet-121 6.9 7.09 32.60 0.111 0.786 4.536 0.870 0.960
DenseNet-161 26.5 19.21 24.87 0.109 0.760 4.440 0.873 0.962

semantic and depth supervision from the virtual-world data,
and addressing the virtual-to-real domain gap by a relatively
simple approach which does not add computational complexity
in testing time. We have performed a comprehensive set of
experiments assessing quantitative results in terms of relative
and absolute depth, generalization, and we show the relevance
of the components involved on MonoDEVSNet training. Our
proposal yields state-of-the-art results within the SfM-based
setting, even outperforming stereo-based self-supervised ap-
proaches. Qualitative results also confirm that MonoDEVSNet
properly captures the depth structure of the images. As a result,
we show the usefulness of leveraging virtual-world supervision
to ultimately reach the upper-bound performance of methods
based on LiDAR supervision. Therefore, our next steps will
focus on analyzing the detailed differences between LiDAR-
based supervision methods and MonoDEVSNet to find even
better ways to benefit from virtual-world supervision.

APPENDIX

A. MonoDELSNet

We introduce Monocular Depth Estimation through LiDAR
Supervision and SfM Self-Supervision (MonoDELSNet) for
real-world datasets, which is an adaptation of the MonoDE-
VSNet proposal. In MonoDELSNet we replace the virtual-
world supervision of MonoDEVSNet by real-world LiDAR
supervision. In addition, as for these experiments supervision
and SfM self-supervision come from the same domain, we
have removed the domain classifier and gradient-reversal-layer
(GRL) components present in MonoDEVSNet. Furthermore,
as the supervision for semantic classes is not available in this
case, we do not consider the class weighting mask used to
train MonoDEVSNet. The modified proposal is summarized
in Fig. 11.

1) LiDAR Supervised loss: Llsp(θ;Xr.Y r): Since we ad-
dress an estimation problem and we use depth supervision
(ground truth), captured with a LiDAR sensor, we use a cor-
responding loss, Llsp, based on the L1 metric. We denote the
depth supervision as Y r = {drt}N

r

t=1, where drt is its depth map
supervision for the corresponding frame in Xr = {xrt}N

r

t=1,

13

...

.

Fig. 11: Training framework for MonoDELSNet, i.e., Ψ(θ;x)
uses SfM self-supervision and LiDAR supervision. We show
the involved images, GT from LiDAR, weights, and losses.

and Nr is the number of frames with such supervision.
Accordingly, we define the LiDAR-based loss function as:

Llsp(θ;Xr.Y r) =
Nr∑
t=1
‖Ψ(θ;xrt)− drt‖1 , (4)

where Ψ(θ;xrt) is the estimated depth for frame xrt , be-
ing θ = {θenc, θpyr, θdec}. The SfM self-supervised loss is
Lsf(θ, ϑsf;Xr), as defined in MonoDEVSNet.

2) Overall training procedure: Algorithm 2 summarizes
the steps to compute the needed gradient vectors for mini-
batch optimization. In particular, the gradients related to
MonoDELSNet’ weights, θ, and those related to the auxiliary
task (SfM self-supervision), i.e., ϑsf.

Algorithm 2: Computing the gradients ∆θ, ∆
ϑsf for a

mini-batch Xr
B .Y

r
B ⊂ Xr.Y r. ∇ξF (ξ) refers to back-

propagation on F (ξ) with respect to weights ξ. Analogous
for ∇ξi

F (ξ1, ξ2) regarding F (ξ1, ξ2) and ξi ⊂ ξ1 ∪ ξ2.

Forward Passes with {Xr
B , Y

r
B}

`lsp(θ)←Llsp(θ;Xr
B .Y

r
B)

Back-propagation for Supervision

∆lsp
θ ←∇θ`

lsp(θ)

Forward Passes with Xr
B

`sf(θ, ϑsf)←Lsf(θ, ϑsf;Xr
B)

Back-propagation for Self-supervision

∆sf
θ ←∇θ`sf(θ, ϑsf)

Setting the final gradient vectors

∆
ϑsf ←∇ϑsf`

sf(θ, ϑsf)

ωsf ←`lsp(θ)/`sf(θ, ϑsf)

∆θ ←∆lsp
θ + ωsf∆sf

θ

3) Experimental results:
a) Dataset and Training details: For training MonoDEL-

SNet, we use the popular KITTI Raw (KR) dataset. Here,

TABLE VII: Absolute depth results up to 80m (see main text
for details). (1) stands for models trained at the standard reso-
lution 640×192 pix. (2) indicates the use of ResNet-18 instead
of HRNet-w48 as encoder. (3) using LiDAR supervision only.

Method abs-rel sq-rel rms rms-log 1.25 1.252 1.253

[14] VNL 0.072 N/A 3.258 0.117 0.932 0.984 0.994
[10] DORN 0.072 N/A 2.626 0.120 0.932 0.984 0.994
[69] DPT 0.062 0.222 2.573 0.092 0.959 0.995 0.999
[70] AdaBins 0.058 0.190 2.360 0.088 0.964 0.995 0.999
MonoDEVSNet1 0.073 0.298 2.802 0.108 0.939 0.990 0.988
MonoDELSNet1 0.065 0.281 2.951 0.102 0.948 0.992 0.998
MonoDELSNet2 0.062 0.217 2.502 0.097 0.954 0.994 0.998
MonoDELSNet 0.053 0.161 2.101 0.082 0.969 0.996 0.999
MonoDELSNet3 0.057 0.217 2.613 0.092 0.960 0.994 0.998

we follow Zhou et al. [19] training-testing split. From the
training split, we select 40K monocular triplets, i.e., samples
of the form {xrt−1, x

r
t , x

r
t+1}, as well as an isolated sample of

each triplet, {xrt}, with densified LiDAR-based depth ground
truth {drt}. The former for providing SfM self-supervision,
the latter for providing LiDAR supervision. For evaluation
purposes, among the testing split (697 images) introduced by
Eigen et al. [5], we considered the 652 isolated images with
densified LiDAR-based depth supervision, i.e., as is common
practice in the state-of-the-art methods on monocular depth
estimation. HRNet-w48 [62] is used as backbone encoder,
where its weights are initialized with ImageNet [65] weights.
Furthermore, the input images are processed at their original
resolution, i.e., ∼ 1248× 384 pix.

b) Results and discussion: We compare our method with
LiDAR supervision methods such as VNL [14] , DORN [10],
DPT [69], AdaBins [70] and with our combination of virtual-
world supervision and SfM self-supervision, i.e., MonoDEVS-
Net. VNL combines supervision with 3D geometric constraints
to improve the depth estimation accuracy. AdaBins proposes
to learn adaptive bins per image. Similar to DORN, the
idea is to discretize the depth range by dividing it into N
bins and estimating the probability of bins per pixel. DPT
uses a transformer-based backbone architecture to learn high-
resolution representations.

Again, we evaluate monocular depth estimation using the
metrics proposed by Eigen et al. [5]. Table VII shows our
quantitative results compared to others of the state-of-the-
art. Note how MonoDELSNet outperforms them. Fig. 12
presents qualitatively results using a standard depth colormap.
For completeness, we run experiments for MonoDEVSNet
and MonoDELSNet based on the widely used resolution of
640 × 192 pix. Thanks to the LiDAR supervision, Mon-
oDELSNet performs better. In addition, for the resolution of
1248 × 384 pix., we run MonoDELSNet with two different
encoders, namely, ResNet-18 (also initialized from ImageNet
for training) and HRNet-w48. The latter outperforms the for-
mer. We also assessed the results when the LiDAR supervision
is used, but not the SfM-based self-supervision. We see that
adding SfM-based self-supervision improves the results.

4) Conclusion: our MonoDEVNet framework can be
adapted to work with LiDAR supervision and SfM self-
supervision. This approach, here named as MonoDELSNet,
reports state-of-the-art results on monocular depth estimation.

14

Fig. 12: Qualitative results on the KR Eigen et al. testing
split. From top to bottom, twice: input RGB image, and
MonoDELSNet estimated depth maps.

5) Publicly available code: The MonoDELSNet is part of
the MonoDEVSNet framework, thus, it can be found also here:
https://github.com/HMRC-AEL/MonoDEVSNet

REFERENCES

[1] S. Dokhanchi, B. Mysore, K. Mishra, and B. Ottersten, “Enhanced
automotive target detection through RADAR and communications sensor
fusion,” in Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), 2021.

[2] Y. Zhou and O. Tuzel, “VoxelNet: End-to-end learning for point cloud
based 3D object detection,” in Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[3] S. Deac, I. Giosan, and S. Nedevschi, “Curb detection in urban traffic
scenarios using lidars point cloud and semantically segmented color
images,” in Intelligent Transportation Systems Conference (ITSC), 2019.

[4] X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, T. Drummond,
H. Li, and Z. Ge, “Hierarchical neural architecture search for deep stereo
matching,” in Neural Information Processing Systems (NeurIPS), 2020.

[5] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Neural Information
Processing Systems (NeurIPS), 2014.

[6] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning depth from single
monocular images using deep convolutional neural fields,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 38, no. 10, pp. 2024–
2039, 2016.

[7] A. Roy and S. Todorovic, “Monocular depth estimation using neural
regression forest,” in Int. Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[8] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in Int. Conf. on 3D Vision (3DV), 2016.

[9] Y. Cao, Z. Wu, and C. Shen, “Estimating depth from monocular images
as classification using deep fully convolutional residual networks,” IEEE
Trans. on Circuits and Systems for Video Technology, 2017.

[10] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal
regression network for monocular depth estimation,” in Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[11] A. Gurram, O. Urfalioglu, I. Halfaoui, F. Bouzaraa, and A. López,
“Monocular depth estimation by learning from heterogeneous datasets,”
in Intelligent Vehicles Symposium (IV), 2018.

[12] L. He, G. Wang, and Z. Hu, “Learning depth from single images with
deep neural network embedding focal length,” IEEE Trans. on Image
Processing, vol. 27, no. 9, pp. 4676–4689, 2018.

[13] D. Xu, W. Wang, H. Tang, H. Liu, N. Sebe, and E. Ricci, “Structured
attention guided convolutional neural fields for monocular depth estima-
tion,” in Int. Conf. on Computer Vision and Pattern Recognition (CVPR),
2018.

[14] W. Yin, Y. Liu, C. Shen, and Y. Yan, “Enforcing geometric constraints
of virtual normal for depth prediction,” in International Conference on
Computer Vision (ICCV), 2019.

[15] A. Saxena, J. Schulte, and A. Ng, “Depth estimation using monocular
and stereo cues,” in Int. Joint Conf. on Artificial Intelligence, 2007.

[16] R. Garg, V. Kumar, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in European
Conference on Computer Vision (ECCV), 2016.

[17] C. Godard, O. Aodha, and G. Brostow, “Unsupervised monocular depth
estimation with left-right consistency,” in Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017.

[18] S. Pillai, R. Ambruş, and A. Gaidon, “SuperDepth: Self-supervised,
super-resolved monocular depth estimation,” in Int. Conf. on Robotics
and Automation (ICRA), 2019.

[19] T. Zhou, M. Brown, N. Snavely, and D. Lowe, “Unsupervised learning
of depth and ego-motion from video,” in Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017.

[20] Z. Yin and J. Shi, “GeoNet: Unsupervised learning of dense depth,
optical flow and camera pose,” in Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[21] W. Zhao, S. Liu, Y. Shu, and Y.-J. Liu, “Towards better generalization:
Joint depth-pose learning without PoseNet,” in Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020.

[22] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3D
packing for self-supervised monocular depth estimation,” in Int. Conf.
on Computer Vision and Pattern Recognition (CVPR), 2020.

[23] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth estimation,” in International Con-
ference on Computer Vision (ICCV), 2019.

[24] Y. Kuznietsov, J. Stückler, and B. Leibe, “Semi-supervised deep learning
for monocular depth map prediction,” in Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017.

[25] L. He, C. Chen, T. Zhang, H. Zhu, and S. Wan, “Wearable depth
camera: Monocular depth estimation via sparse optimization under weak
supervision,” IEEE Accesss, vol. 6, pp. 41 337–41 345, 2018.

[26] V. Guizilini, J. Li, R. Ambrus, S. Pillai, and A. Gaidon, “Robust semi-
supervised monocular depth estimation with reprojected distances,” in
Conference on Robot Learning (CoRL), 2020.

[27] R. de Queiroz Mendes, E. G. Ribeiro, N. dos Santos Rosa, and
V. Grassi Jr, “On deep learning techniques to boost monocular depth
estimation for autonomous navigation,” Robotics and Autonomous Sys-
tems, vol. 136, p. 103701, February 2021.

[28] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy
for multi-object tracking analysis,” in Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2016.

[29] Y. Cabon, N. Murray, and M. Humenberger, “Virtual KITTI 2,”
arXiv:2001.10773, 2020.

[30] G. Ros, L. Sellart, J. Materzyska, D. Vázquez, and A. López, “The
SYNTHIA dataset: a large collection of synthetic images for semantic
segmentation of urban scenes,” in Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2016.

[31] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

[32] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for benchmarks,” in
International Conference on Computer Vision (ICCV), 2017.

[33] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Int. Conf. on Field
and Service Robotics (FSR), 2017.

[34] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conference on Robot
Learning (CoRL), 2017.

[35] C. Zheng, T.-J. Cham, and J. Cai, “T2Net: Synthetic-to-realistic trans-
lation for solving single-image depth estimation tasks,” in European
Conference on Computer Vision (ECCV), 2018.

[36] J. Nath Kundu, P. Krishna Uppala, A. Pahuja, and R. Venkatesh Babu,
“AdaDepth: Unsupervised content congruent adaptation for depth es-
timation,” in Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[37] S. Zhao, H. Fu, M. Gong, and D. Tao, “Geometry-aware symmetric
domain adaptation for monocular depth estimation,” in Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[38] K. PNVR, H. Zhou, and D. Jacobs, “SharinGAN: Combining synthetic
and real data for unsupervised geometry estimation,” in Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[39] B. Cheng, I. S. Saggu, R. Shah, G. Bansal, and D. Bharadia, “S3Net:
Semantic-aware self-supervised depth estimation with monocular videos
and synthetic data,” in European Conference on Computer Vision
(ECCV), 2020.

https://github.com/HMRC-AEL/MonoDEVSNet

15

[40] G. Csurka, A Comprehensive Survey on Domain Adaptation for Visual
Applications, ser. Advances in Computer Vision and Pattern Recogni-
tion. Springer, 2017, ch. 1.

[41] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135–153, October 2018.

[42] G. Wilson and D. Cook, “A survey of unsupervised deep domain
adaptation,” ACM Transactions on Intelligent Systems and Technology,
vol. 11, no. 5, 2020.

[43] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in Int. Conf. on Machine Learning (ICML), 2015.

[44] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[45] B. Liu, S. Gould, and D. Koller, “Single image depth estimation from
predicted semantic labels,” in Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2010.

[46] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of perspective,”
in Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

[47] V. Srikakulapu, H. Kumar, S. Gupta, and K. S. Venkatesh, “Depth
estimation from single image using defocus and texture cues,” in
National Conference on Computer Vision, Pattern Recognition, Image
Processing and Graphics (NCVPRIPG), 2015.

[48] A. Mousavian, H. Pirsiavash, and J. Košecká, “Joint semantic segmen-
tation and depth estimation with deep convolutional networks,” in Int.
Conf. on 3D Vision (3DV), 2016.

[49] O. Jafari, O. Groth, A. Kirillov, M. Yang, and C. Rother, “Analyzing
modular CNN architectures for joint depth prediction and semantic
segmentation,” in Int. Conf. on Robotics and Automation (ICRA), 2017.

[50] J. Jiao, Y. Cao, Y. Song, and R. Lau, “Look deeper into depth: Monocular
depth estimation with semantic booster and attention-driven loss,” in
European Conference on Computer Vision (ECCV), 2018.

[51] V. Guizilini, R. Hou, J. Li, R. Ambrus, and A. Gaidon, “Semantically-
guided representation learning for self-supervised monocular depth,” in
Int. Conf. on Learning Representation (ICLR), 2020.

[52] P.-Y. Chen, A. H. Liu, Y.-C. Liu, and Y.-C. F. Wang, “Towards scene
understanding: Unsupervised monocular depth estimation with semantic-
aware representation,” in Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019.

[53] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer, “A survey of structure
from motion,” Acta Numerica, vol. 26, pp. 305–364, 1st May 2017.

[54] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[55] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Neural Information Processing Systems (NeurIPS), 2014.

[56] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “StarGAN v2: Diverse image
synthesis for multiple domains,” in Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[57] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in International
Conference on Computer Vision (ICCV), 2017.

[58] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “GradNorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks,” in Int. Conf. on Machine Learning (ICML), 2018.

[59] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” International Journal of Robotics Research, vol. 32,
no. 11, pp. 1231–1237, 2013.

[60] M. Menze and A. Geiger, “Object scene flow for autonomous vehicle,”
in Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.

[61] A. Saxena, M. Sun, and A. Ng., “Make3D: Learning 3D scene structure
from a single still image,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 31, no. 5, pp. 824–840, 2009.

[62] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
Y. Mu, M. Tan, X. Wang, W. Liu, and B. Xiao, “Deep high-resolution
representation learning for visual recognition,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, April 2020.

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in Neural Information Processing
Systems (NeurIPS), 2019.

[64] D. Kingma and J. Ba, “Adam : A method for stochastic optimization,”
in Int. Conf. on Learning Representation (ICLR), 2015.

[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2009.

[66] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The Cityscapes dataset for
semantic urban scene understanding,” in Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

[67] C. Premebida, J. Carreira, J. Batista, and U. Nunes, “Pedestrian detection
combining RGB and dense LiDAR data,” in Int. Conf. on Intelligent
Robots and Systems (IROS), 2014.

[68] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger,
“Convolutional networks with dense connectivity,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, May 2019.

[69] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense
prediction,” in Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[70] S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation using
adaptive bins,” in Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

