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ON THE CROSSING LIMIT CYCLES FOR PIECEWISE LINEAR
DIFFERENTIAL SYSTEMS SEPARATED BY A STRAIGHT LINE AND
HAVING SYMMETRIC EQUILIBRIUM POINTS

JOHANA JIMENEZ', JAUME LLIBRE? AND JOAO C. MEDRADO?

ABSTRACT. In this paper we study the maximum number of crossing limit cycles that
can have the planar piecewise linear differential systems separated by a straight line X
and formed by two linear differential systems X ~, X which singularities are symmetrical
with respect to the straight line of discontinuity ¥. More precisely, the singularities points
of the linear differential systems X, X T considered can be a center (C), a focus (F),
a diagonalizable node (N), an improper node (iN) or a saddle (S), which can be real
or virtual. Then we have fourteen cases depending of the type and the position of the
singularities of X~ and X*. Here we provide lower or upper bounds for the maximum
number of crossing limit cycles for each case.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The qualitative theory of discontinuous piecewise differential systems arose in a natural
way in the study of nonlinear oscillations by Andronov, Vitt and Khaikin in [1]. Moreover
in these last years this qualitative theory is a matter of great interest for many researchers
because these systems are used to investigate nonlinear dynamics, to model several real
phenomena like cell activity and processes appearing in electronics, mechanics, economy,
etc., see for instance [3,5,21,24| and references quoted therein.

We recall that a crossing limit cycle is a periodic orbit isolated in the set of all peri-
odic orbits of the piecewise linear differential system, which only have isolated points of
intersection with the discontinuity curve.

The class of piecewise linear differential systems in R? with two zones separated by a
straight line ¥ is the simplest class of piecewise differential systems. We can consider
without loss of generality that the discontinuity straight line is ¥ = {(z,y) € R? : = 0}.
It separates the plane into two regions, namely

Z*:{(a:,y)eRQ:m<0} and E*z{(x,y)€R2:x>0}.
Therefore we obtain the piecewise linear differential system

0 y_ X =AX+B, if (z,y) € 27,
| Xt =AtX 4+ Bt if (z,y) € BT,

where

+ aﬁ a1i2 + bli T 2
Af=( L ), B =| 1| and X =(z,y)" €R
A1 Qg9 by

In [20] Lum and Chua conjectured that a continuous piecewise linear differential system
(1) has at most one crossing limit cycle. In [9] Freire et al. proved this conjecture. There
are several papers tried to investigate the problem of Lum and Chua for the class of dis-
continuous piecewise linear differential systems in the plane. For instance in [10] Han and
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Zhang conjectured that discontinuous piecewise linear differential systems (1) have at most
two crossing limit cycles. Via a numerical example with three crossing limit cycles in a
discontinuous piecewise linear differential system, Huan and Yang gave a negative answer to
this conjecture, see [11]. Later on in [18,8] were given analytical proofs for the existence of
these three crossing limit cycles. Nevertheless until today it is an open problem to know if
three is the upper bound for the maximum number of crossing limit cycles of discontinuous
piecewise linear differential systems (1).

Due to the difficulty of this problem several researchers study the upper bounds of crossing
limit cycles of system (1) under some special conditions, see [2,6-8,11-13,15-17,19,22,23]. In
[16] the authors proved that when one of linear differential systems of (1) has the equilibrium
point on X, systems (1) have at most two crossing limit cycles and this upper bound is
reached. In [7] the authors studied systems (1) such that have a maximal crossing set, and
with a focus-focus dynamics, they proved that if anaE > 0, then systems (1) have at most
one crossing limit cycle. In [22] it was proved that systems (1) with focus-saddle type with
by = 0 have at most one crossing limit cycle. Recently in [15] it was proved that systems (1)
having a unique non-degenerated equilibrium can have at least three crossing limit cycles
depending on the configurations of the equilibrium points for each linear differential system
in (1).

The objective of this paper is to study the maximum number of crossing limit cycles that
can have the planar piecewise linear differential systems(PWLS) (1) when the equilibrium
points of the differential linear systems X~ and X+ are symmetric with respect to the line
of discontinuity > and these singularities can be real or virtual.

We recall that the singularity P- = (zg,y0) is a real singularity (P") for the linear
differential system X~ if g < 0 and it is a virtual singularity (P") for the linear differential
system X~ if g > 0. Considering the linear differential system X, we have that P, =
(x1,91) is a real singularity (P}) if ;3 > 0 and it is a virtual singularity (PY) if z; <O0.

We analyze the possible configurations that can arise when the equilibrium points of the
linear differential systems X~ and X' are symmetric with respect to the straight line X.
We denote those configurations like (P_, Py) depending of type and the position of the
equilibrium points, P_, Py € {C",C", F", F*, N", NV, iN" iN", S" S"}.

We observed that the equilibrium points P— and P, can not be a saddle SY, a diag-
onalizable node N" or an improper node iN" because the first return map for the linear
differential systems X~ or X is not defined on the discontinuity straight line X.

We assume that the equilibrium points P_ and Py of linear differential systems X~ and
X T, respectively are symmetric with respect to the line of discontinuity 3. Then we obtain
two options, first the case when the singularities of X~ and X are symmetric with respect
Y, and they are on the straight line y = €, € € R, this is, the singularities are (—k, €) or (k,¢€),
with k € RT. Second we have the case when the singularities of linear differential systems
X~ and X are symmetric with respect ¥ and they are on the straight line y = sz, with
s € R, this is, the equilibrium points are (—k, —sk) and (k, sk).

In Theorem 1 we assume that the singularities P_ and P, are on the straight line y = sx,
with s € R and we observe that this condition is sufficient to analyze the above two cases
because when e = 0 the equilibrium points are (—k,0) and (k,0) which are on the straight
line y = sz, with s = 0 and it is possible to verify that the number of crossing limit cycles
when the equilibrium point are on the straight line y = € independent of the epsilon.

If the linear differential system X~ has a center (C') we have the following options of
configurations: (C",C"),(C",F"),(C",S"),(C",C"),(C",F"),(CY,N") and (C",iN"). In
the paper [16] it was proved that if the planar PWLS (1) has the configuration (C",C") or
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(C?,C"), then there are no crossing limit cycles. Therefore in statement (¢) of Theorem 1
we study the remaining five cases.

When the singularity P_ of the linear differential system X~ is a focus (F') we have the
following options: (F",C"),(F",F"),(F",S"),(F°,C"),(F",F"),(F",N"V) and (F",iN"),
here we observed that due to that having symmetric equilibrium points with respect the dis-
continuity straight line X, the configurations (F",C") and (C", F"); (F?,C") and (C", F")
are equivalent. Then we study the remaining five cases in statement (ii) of Theorem 1.

If P_ is a saddle (S) we have the configurations (S”,C"),(S",F") and (S",S"), but
the configurations (S",C") and (C",S") are equivalent, and the configurations (S", F")
and (F",S"™) are equivalent, then in this case we only have one possible new configuration
(S",S") which is analyzed in statement (ii7) of Theorem 1.

When P_ is a diagonalizable node (N), we have the following configurations: (NV,C"),
(N, F?), (NY,N?) and (N",iN"), since the previous two cases have been already studied,
we only need to study the cases (N, NV) and (NV,iN") in statement (iv) of Theorem 1.
The configuration (NV, F'’) is in the statement (i7) of Theorem because it is equivalent to
the configuration (FY, NV) due to that having symmetric equilibrium points with respect
the discontinuity straight line 3.

When the singularity P_ is an improper node (iN), we only study the configuration
(iN?,iN") in statement (v) of Theorem 1, because having symmetric equilibrium points with
respect to discontinuity straight line 3, the configurations (iNV,C"), (iNV, FV), (iN",N")
are considered in the above cases.

We denote the maximum number of crossing limit cycles of planar PWLS (1) by N (P-, Py.).

Theorem 1. Consider that the linear differential systems X~ and X in (1) have sym-
metric equilibrium points with respect the discontinuity straight line ¥ and they are on the
straight line y = sx, s € R. Then the following statements hold.

(i) N(C",F") = N(C",S") = N(C",F*) = N(C?,N?) = N(C",iN") = 1. Moreover
these upper bounds are reached and the crossing limit cycles are stables.
(i) N(F",F") > 2, N(F",S5") > 2, N(F",F") > 2, N(F',N") > 1 and N(F",iN"V) >
2. See Figures 1, 2, 3, 4 and 6, respectively.
(iii) MN(S",S") > 1. See Figure 7.
(iv) N(NV,NY) > 2 and N(N",iNV) > 2. See Figures 8,10.
(v) N(iNV,iNV) > 1. See Figure 11.

Theorem 1 is proved in Section 3.

Proposition 1. The upper bound for the mazimum number of crossing limit cycles provided
in statement (1) of Theorem 1 is reached and the crossing limit cycle in each configuration
of statement (i) it is hyperbolic. See Figures 12 — 16.

2. CANONICAL FORMS AND BASIC RESULTS

We observe that piecewise linear differential system (1) depend on twelve parameters.
In order to reduce the number of parameters on which the PWLS (1) depends we use the
canonical forms in the Propositions 2 and 3.

Proposition 2. There exists a topological equivalence between the phase portrait of the
discontinuous PWLS (1) and the phase portrait of the discontinuous PWLS (2) for all the
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orbits not having points in common with the sliding set.

X<aw—<p?ﬁ'j>Cj+<9,zﬂ%wez,
X+(£U,y) - <7”2 2_r62 _01> <§> + (i) ) ’Lf (xay) € E+7

where o, B € {i,0,1}. If o = i, we have that the equilibrium point of a linear differential
system X has eigenvalues Ay o =l £, so it is a focus if L # 0 or a center if | = 0. When

(l‘,y) =

a = 0, then the equilibrium point of a linear differential systermn X~ has one eigenvalue
of multiplicity 2, namely A= = 1 # 0, so it is a non-diagonalizable node. If o = 1 the
equilibrium point of a linear differential system X~ has eigenvalues A\| = [—1 and A\, = I+1,
then we have that the equilibrium point of X~ is a saddle if |l| <1 or it is a diagonalizable
node if |l| > 1. Analogously for the linear differential system X .

For a proof of Proposition 2 see [8§].

Other normal form which is independent of the change of coordinates it is provide in the
following proposition.

Proposition 3. Consider the linear differential system

. ail  al12 i bl
() g = (00 ) (1) ().
as az/) \y b2
it has a singularity

(a) of type focus(F) (resp. a center(C)) if
‘ A B

o e (b )04 6)

with B < 0 and C # 0 (resp. C =0 and B < 0);
(b) of type diagonalizable node(N) (resp. an improper node(iN)) if
A B . by
b (ke )06
5) o=\ zamoree o) ()G

with C? > d? >0 and B < 0 (resp. d=0 and B <0);
(c) of type saddle(S) if

A B

Q e = | —p-opre () ().
B

with 0 < C? < d? and B < 0.

Where the parameters C, A and B in (4), (5) and (6) are such that 2C = a1 +az, A = ay;
and B = ajo.

Proof. We know that the eigenvalues of linear differential system (3) are

a1 + ase £ /(a1 — a2)? + 4arzan
@ Mz = : .
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(a) If we consider aj; + a = 2C, this is aze = 2C — ay1, with C,a1; € R and (a11 —
a20)? +4a12a21 = —4d?, this is ag = (— (a1 — C~’)2 —d?)/ay2, with d,a;o € R. Then
the eigenvalues (7) are A\; o = C + id, therefore the singularity of linear differential
system (3) is a focus (F) if C' # 0, and a center (C) if C' # 0. Considering a;; = A
and a2 = B, we obtain system (4).

(b) We consider a1 + age = 2C, then analogously to the above case a9 = 2C — A, and
we assume that (a1 — ago)? + 4a12a2; = 4d?, then ag; = (—(A — C’)Q +d?)/B. Then
the eigenvalues (7) are ;o = C + d, therefore the singularity of linear differential
system (3) is a diagonalizable node (N), if C? > d> > 0 and B < 0, because the
two eigenvalues would have the same sign, and it is a improper node (iN), if d = 0,
because the two eigenvalues would be equals. Therefore we obtain system (5).

(¢) Analogously to the previous case we consider agy = 2C — A and ag; = (—(A—C)? +
d?)/B. Then the eigenvalues (7) are A; o = C +d, therefore the singularity of linear
differential system (3) is a saddle(S), if 0 < C? < d? and B < 0, because with this
condition we have that A\j A2 < 0. Therefore we obtain system (6). O

We shall use the following tools for proving our results.

The functions fy, fi1,..., fn, defined on an open set U C R are linearly independent
functions if

n
for every t € U, Z%‘fi(t) = 0 implies that ag=a; =...= a, = 0.
=0
Proposition 4. Let fy, f1,..., fn be analytic functions defined on an open interval U C R.
If the functions fo, f1,..., fn are linearly independent then there ewists t1,....t, € U and
n

&, Q1 oevy Gy, € R such that Y a;fi(t;) =0, for every j € {1,...,n}.
=0

7=
For a proof of Proposition 4 see [14] or [18].

Now we recall the concept of Chebyshev systems. For more details see [14].

Definition 1. Let F = {fo, f1, ..., fn} be an ordered set of smooth real functions defined on
an interval I C R. The set F is an Extended Chebyshev system (ET-system) on I if and only
if the mazimum number of zeros counting multiplicities by any non-trivial linear combination
of functions in F is at most n, and this number is reached. The family F is an Extended
Complete Chebyshev system (ECT-system) on I if and only if for any k € {0,1,...,n} the
set Fi. = {fo, f1,---, fx} is an Extended Chebyshev system.

In the proof of Lemma 1 we will use the following proposition, for a proof see [14].
Proposition 5. The ordered set of functions F is an ECT-system on I if and only if the
Wronskians Wi(fo, fi,..., fx)(t) # 0, on I for each k € {0,1,...,n}.

For a proof see [14].

The following lemma will be used later on in the proof of statement (i) of Theorem 1 to
establish a sharp upper bound for the maximum number of crossing limit cycles that system
(1) can have.

Lemma 1. We consider the functions

fo(te) =sin(t2), fi(t2) = sinh(rt2), fa(t2) = sinh (t2), f3(t2) = to.
The following statements hold.

(a) The set of functions F* = {fo, f1} is an ECT-system on the intervals (0,2n) \ {r}
for every r # 0;
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(b) The set of functions F2 = {fa, f1} is an ECT-system for every to # 0 and r # 1;
(c) The set of functions F> = {f3, f1} is an ECT-system for every to # 0 and r # 0.

Proof.

(a) Considering the functions fy and f; the Wronskian is
W (ta) = r cosh (rte) sin (t2) — cos (t2) sinh (rt2).

Since W(0) = 0 and W'(t2) = (1 + r2)sin (t2)sinh (rt3) does not vanish for any
to € (0,2m) \ {7} and r # 0. Then W (te) # 0 for to € (0,27) \ {w} and r # 0,
therefore by Proposition 5, statement (a) is proved.

(b) The Wronskian of the functions f; and f is

W (t2) = r cosh (rta) sinh (t2) — cosh (t2) sinh (rtz),

and we observed that W (0) = 0 and W'(t2) = (=1 + r?)sinh (t5) sinh (rt2), then
W'(t2) does not vanish for every ty # 0 and r # 1. Therefore W (t3) # 0 for to # 0
and r # 1, then by Proposition 5, statement (b) is proved.

(¢c) The Wronskian of the functions f; and fs is

W(tg) =rtg cosh (T‘tg) — sinh (Ttg),

and we observed that W(0) = 0 and W'(ts) = r’*tysinh (rta), we have that W'(ts)
does not vanish if ta # 0 and r # 0, then W (t2) # 0 for to # 0 and r # 0. Therefore
by Proposition 5, statement (c) is proved. O

In order to analyze the existence of periodic orbits which intersect both zones ©* and ¥
at the two points p = (0,49) and q = (0,y1) we use the closing equations provide in the
following Proposition.

Proposition 6. Assume that the PWLS (1) has a crossing periodic orbit that transversely
intersecting the straight line ¥ in the points p = (0,y0) and g = (0,y1) where y1 = y~ (t1)
and yo > y1, with flight times t1 > 0 and ty > 0 in the zones ¥~ and X7, respectively. Then
(t1,t2,90) are real solutions of the closing equations:

ey : l’f(tl) =0,
(8) €9 ! ZL’+(—If2) = 0,
es: y+(—t2) — y’(tl) = 0.

3. PROOF OF THEOREM 1

Proof of statement (i) of Theorem 1. We have that the equilibrium point of linear
differential system X~ is a center, then using Proposition 3, we consider that the linear
differential system X~ is in the canonical form (4) with C' = 0. Then the equilibrium point
of linear differential system X~ is

Aby + Bb A2%b; + ABby + b1 d?
(9) P:(x()vy()):( ldg 27_ ! Bd22 ! >

We separate the proof of statement (i) of Theorem 1 in two cases.

Case 1: P_ is a real singularity of X~. We assume that P_ = (—k, —sk), for this we
must consider by = Ak+ Bsk and by = —k(A%+d?+ ABs)/B. Therefore, linear differential
system X~ is
A(x + k) + B(y + sk)
(10) X (@y)=| (A%+d*)(k+x)+ AB(y + sk)
B
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When we have an equilibrium point of type C” for the linear differential system X, by
hypothesis, we have two possible configurations for the equilibrium points of the PWLS (1),
namely, we can have the configurations (C", F") and (C",S").

We consider that linear differential system X is in the canonical form (2) which has the
equilibrium point

—2cr + b(r* — 32
(11) P+:(x1,y1)=<_r25/82’ cr:;_(rﬁz B)).

Therefore the equilibrium point P, is a real singularity of X if

(12) b= —k(2r —s), c= —k(r* — B%);

and P, is a virtual singularity of X if

(13) b=k(2r—s), c=k(r* - %).

Configuration (C", F"): For the linear differential system X, we consider the condition
(12) with 5 =17 and r # 0.

The linear differential system X T in this case is

- (TG

With those conditions the solution of system (10) starting at the point (z,y) = (0,y0) € &
is

(Ak + B(yo + sk)) sindt
d )
((A? + d? + ABs)k + AByp) sin (dt)
Bd ’
and the solution of system (14) starting at the point (z,y) = (0,yp) € X is
zt(t) =k—e"(kcos(t)+ ((r —s)k + yo)sin (),
yT(t) =sk+e"((yo— sk)cos(t) — (k+r((r — s)k +yo))sin (¢)).

z7(t) =k(—14cos(dt))+

y~(t) = —sk+ (yo + sk)cos (dt) —

Considering that there exists t1,f2 > 0 the finite times defined in Proposition 6. We have
that system (8) is equivalent to system

e1: kd(—1+ cos(dt1)) + (Ak + B(yo + sk))sin (dt1) = 0,

e2: k+e"2(—kcos(t2) + ((r — s)k + yo) sin (t2)) = 0,

(15) N ((A2 + d? + ABs)k + AByp) sin (dt,)

e3: 2sk — (yo + sk) cos (dtq) Ba
+e "2 ((yp — sk) cos (t2) + (k + 7((r — s)k + yo)) sin (t2)) = 0.
From the first equation we obtain
(A2 4+ d*)K? — 2ABk(yo + ks) — B(yo + sk)?
(A2 + d2)k2 + 2ABE(yo + ks) + B2(yo + ks)2
2kd(Ak + B(yo + ks))
(A2 + d?)k2 + 2ABk(yo + ks) + B2(yo + ks)?’
from equation ey we get yo = —k(r —s — cot (t2) +€"2 csc (t2)). Substituting yo in equation

es we have e3 = 2k(A/B — r + 2s — csc (t2) sinh (rt2)), and to determine the solutions for
this equation is equivalent to determine the solutions for the following equation

2k
Bsin (tg)
and we can conclude that equation (17) has at most one real solution for o € (0,2m) \ {7},

because by statement (a) of Lemma 1 the set of functions F* = {fo, fi} is an extended
complete Chebyshev system for to € (0,27) \ {w} for every r # 0 and even more the

cos (dty)

(16)
sin (dtl) =

(17) ((A—=rB+2Bs)fo(tz) — Bfi(t2)) =0, with t3 € (0,2m) \ {n},
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coefficients A—rB+ 2Bs and B can be chosen arbitrarily. Therefore we have proved that a
PWLS (1) with the configuration (C", F") formed by the linear differential systems (10) and
(14) has at most one crossing limit cycle. O

Configuration (C”,S"): The equilibrium point P, of system X satisfies the condition
(12) with # =1 and |r| < 1. Therefore

(18) X*(z,y) = <—y +2r(z — k) + sk)

(—1+1)(x — k)

The solution of system (18) starting at the point (z,y) = (0,yp) € X is
—t

zt(t) = 67 (2ke! + et (=1 +7 — s)k +yo) — eI KL +7 —5) + Y0)) ,
—t

yt(t) = % (2etsk + e (1 +7)(yo + (r — 1 — s)k — e (r — 1) (yo + (L + 7 — 5)k)) .

Let t; and t9 be the finite times defined in Proposition 6. In this case we have that system
(8) is equivalent to system
(19)
e1: kd(—1+ cos(dty)) + (Ak + B(yo — sk)) sin (dt1) = 0,
ex: 2ke ™ e 2 ((r—1—s8)k41yg) —e Gt (k(14+1r —5)+ 1)) =0,
2 2 3 to
es: sk + (yo + sk)cos(dt;) + (A7 +d” + ABs)k + AByo) sin (dh) + % (2e "2k

Bd
+e 2 (1+7)(yo + (r— 1 —s)k) — e (r — 1) (yo + (L + 7 — s)k)) = 0.

Then the real solutions of system (19) generate crossing limit cycles of PWLS (1) formed
by the linear differential systems (10) and (18). Similar to Case (C", Fr), from equation e;
we obtain equations (16), from ey we get

—1+2ef2tr2 —ppe22(—1 47 —5)+s
=1+ e2t2
then es = 2k(A/B — r + 2s — csch(tz) sinh (rt2)). To determine the solutions for equation
es is equivalent to determine the solutions for the following equation
2k
Bssinh (t2)

Yo = —k

i

(20) ((A —rB+ 25B)f2(t2) — Bfl(tg)) =0, with to #0.

By statement (b) of Lemma 1 the set of functions F2 = {fa, f1} is an extended complete
Chebyshev system for to £ 0 and r # 1 and moreover the coefficients A — rB 4 2sB and
B can be chosen arbitrarily. Then we can conclude that equation (20) has at most one real
solution for t5 # 0 and |r| < 1. Therefore PWLS (1) with the configuration (C", S™) formed
by the linear differential systems (10) and (18) has at most one crossing limit cycle. O
Case 2: P_ is a virtual singularity of X~. We counsider that the equilibrium point P_ in
(9) is a center C", this is P_ = (k, sk), for this we must consider by = —Ak — Bks and by =
k(A2 + d? + ABs)/B. Therefore linear differential system X~ is

A(x — k) + B(y — ks)
(21) X (z,y) = | (A2 + d®)(—z + k) + AB(—y + sk)
B

When the equilibrium point P_ is a C" for the linear differential system X, then we have
three possible configurations for the equilibrium points (P~ , Py ) of the PWLS (1), namely,
we have the configurations (C, F"), (C?,N") and (C",iN"V).

Configuration (C, FV): We consider that the configuration of the equilibrium points of
the linear differential systems X~ and X in (1) is (C, F), then the equilibrium point P



satisfies (13) with 8 =i and r # 0. Therefore

= (25075

The solutions of systems (21) and (22) starting at the point (z,y) = (0,y0) € X are

x~(t) = k(1 — cos (dt)) + (Byo = (4 —;Bs)k) sin dt,

() = Bdks + Bd(yo — ks) cos (dt) + ((A% + d? + ABs)k — AByj) sin (dt)
a Bd )

zT(t) = —k — " (kcos (t) — (k(s — r) + yo) sin (1)),
yT(t) = —ks 4+ " ((yo + ks) cos (t) + (k + 72k — r(yo + ks)) sin (t)).

Let ¢; and t2 be the finite times defined in Proposition 6. Here we have that system (8)
is equivalent to system

er: kd(1—cos(dt1))+ (—(A+bs)k + Byo)sin (dt;) =0,
es: —k+e "2(kcos (t2) + ((—r + s)k + yo) sin (t2)) = 0,

(23) ((A2% + d? + ABs)k — AByp) sin (dt;)

es: —2ks+ (—yo + ks)cos (dt1) — 5
+e"2((yo + ks) cos (t2) + (—k + r(yo + (—7 + s)k)) sin (t2)) = 0.
Similar to case (C",F"), we obtain that es is equivalent to equation (17) then we can

conclude that PWLS (1) with the configuration (C, F¥) formed by the linear differential
systems (21) and (22) has at most one crossing limit cycle. O

We observe that in the previous cases the constant k£ does not influence the number of
solutions of system (8) and in the following cases the same thing happens, therefore without
loss of generality we can assume that k = 1, this is the singularities of systems X~ and X+
are in (—1,—s) or (1,s) , with s € R.

Configuration (C¥, NV): We consider that the configuration of the equilibrium points of

the linear differential systems X~ and X7 in (1) is (CY, NV), then the equilibrium point
P, satisfies (13) with 8 =1 and |r| > 1. Therefore the linear differential system X is

2 o= (e )

The solution of system (24) starting at the point (z,y) = (0,y0) € ¥ is

—t
zH(t) = % (—2ef + e (1 4+ 7 — s —yo) +e™(1 —r+s+1)),

—t
yt(t) = 67 (—Qets + e(2+7")t(—1 +r)1+r—s—yo)+e(1+r)(1—r+s+ yo)) )

Considering t; and t9 the finite times defined in Proposition 6, we obtain that system (8) is
equivalent to system
er: d(l—cos(dt1)) — (A+ Bs— Byp)sin(dt;) =0,

eg: —2e b2 4 e (14 —s—yg)+e (1 —r+s5+y) =0,
25 t2
(25) es: —s+ (s —yo)cos(dt1) — (A% + d* + AB(s — yo)) sin (dt1) — % (—2e"25
te (14 )1 +r—s—yo) +e 2 (1+7)(1 -7+ s+y)) =0.

From equation e; we obtain that

— A%+ d? +2AB(—s +yo) — B*(s — yo)?

cos (dt1) = A2+ d? +2AB(s —yo) + B2(s — y0)?
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2d(A+ B(s —yo))

in(dty) =
sin (dt) A%+ d? +2AB(s — yo) + B*(s — yo)?’

and from es we get
—1 42272 —p 4 e22(—1 47 —5)+s
—1+ e2t2

then substituting in es we obtain that es is equivalent to equation (20), therefore we can
conclude that PWLS (1) with the configuration (CY, NV) formed by the linear differential
systems (21) and (24) has at most one crossing limit cycle. O

Yo =

)

Configuration (C",iN"): We consider that the configuration of the equilibrium points of
the linear differential systems X~ and X in (1) is (C",iN"?). We consider that equilibrium
point Py satisfies (13) with =0 and r # 0. Then

(26) X*(z,y) = <_y Jﬁﬁl :5) N S)

The solution of system (26) starting at the point (z,y) = (0,yp) € X is
(27)

T (t) = -1+ e™(1—t(yo — r + 5)), yt(t) = —s+ e (yo — rtyo + s+ r(r — s)t),
Considering t; and t9 the finite times defined in Proposition 6, we obtain that system (8) is
equivalent to system

e1: d(1—cos(dty)) + (Byo — (A+ Bs))sin(dt;) =0,
ea: —l+e™(14ty(yo—7+s)) =0,

(28) ez —2s+e 2 (yo + rtayo + (s + (= + 5)t2))
+Bd(—yo + s) cos (dt1) — (—AByo + (A% + d* + ABs))sin (dt;) 0
Bd o

From equation e; we obtain the expression (3) and from ez we get

—1+e" + (r—s)ty
Yo = )
la

then
A sinh (rt
e3:2<—+r—28—|—( 2)> =0,
B 2
and to determine the solutions for equation es is equivalent to determine the solutions for

the equation

2 (A= 1B — 25A) fa(ts) — Bfs(t2)) = 0, with £ % 0.
Bts

By statement (c) of Lemma 1 the set of functions F2 = {f3, f1} is an extended complete
Chebyshev system for t5 # 0 and r # 0 and moreover the coefficients A —rB — 2sA and B
can be chosen arbitrarily. Then we can conclude that equation (29) has at most one real
solution for t3 # 0 and r # 0. Therefore the PWLS (1) with configuration (C?,iN") formed
by the linear differential systems (21) and (26) has at most one crossing limit cycle. O

(29)

Moreover the upper bound provided in the above cases is reached, see the examples in
the proof of Proposition 1.

Proof of statement (ii) of Theorem 1. Here we analyze the number of crossing limit
cycles of PWLS (1) when the equilibrium point of linear differential system X~ is a real or
virtual focus (F") or (FV). We consider that system X~ is in the canonical form (4) with
C # 0. Then the equilibrium point of system X~ is

o [ Aby + Bby —26,C A%b; + ABby — 2Ab1C + b;C? + b d?
- = (@0,%0) = crya BC? + Bd? '
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We separate the proof of statement (i7) of Theorem 1 in two cases, first we study the case
when P_ is a real focus and second we assume that P_ is a virtual focus. We consider that
linear differential system X is in canonical form (2) then the equilibrium point is (11).

Case 1: P_ is a real focus of X~. We assume that P_ = (-1, —s), for this we must
consider that

A2 —2AC + C? +d?+ ABs — 2BC's

(30) by =A+ Bs, by=— 5
Then linear differential system X~ is

A(z+1)+ By +s)
(31) X (z,y) = _(A2+02+d2)(:1:+1)—2Bc(y+s)+A(—2c(x+1)+B(y+s))
B

The solution of linear differential system (31) starting at the point (z,y) = (0,yp) € X is

eCt(d cos (dt) + (Byo + A — C + Bs) sin (dt))
] d ’
6Ct ~ - ~
)= —st ((—(B(A ~ C)yo + (& + (A — C)(A — C + Bs)) sin (dt))
+(Bd(yo + s) cos (dt)))) .

z ()= -1+

When P_ is a real focus then we have two possible configurations for the equilibrium points
of the PWLS (1), namely we obtain the configurations (F", F") and (F",S").

Configuration (F", F"): We assume that the equilibrium point P_ satisfies the conditions
(30) and the equilibrium point P, satisfies the conditions (12) with =14, r # 0, then we
have the configuration (F", F").

In the following example we provide a PWLS having two crossing limit cycles. We consider

Figure 1. The two crossing limit cycles I'y and I's of the discontinuous
PWLS (32) with configuration (F", F").

that A =1/2, B=—1/2, C = —67/500, d = 123/100, r =2/5 and s = 0, then we obtain
the PWLS formed by

(32)
1 1 1 4 4
I T 5 s 5 5
X7(@9) = | 930357 96 Xt 939357 |» X @u) =1 o9 . X+| o9
62500 125 62500 25 25
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For this PWLS we have that system (8) is equivalent to system

1
-1+ ﬁ6—6”1/500(615 cos (123t1/100) + (317 — 250y0) sin (123t;,/100)) = 0,

2
1+ e 22/5(— cos (t) + =t yo) sin (t2)) = 0,

e~ 0Th/590( 76875y cos (123t1/100) + (—239357 + 39625y0) sin (123t;,/100))
+3075e2t2/5(25y, cos (t2) + (29 + 10yg) sin (t2)) = 0.

Which has two real solutions with t1,ts € (0, 27), namely (1,3, y$) = (3.586636.., 4.260216..,
6.196201..) and (t3,43,92) = (3.614645.., 4.344295.., 6.078132..). Therefore the PWLS
(32) has two crossing limit cycles I'y and T’y which intersect X in (0,y$) = (0,6.196201..)
and (0,y1) = (0,y5;(t})) = (0,—1.088003..) with flight times t} = 3.586636.. and t} =
4.260216.. in the regions X~ and X7, respectively; and (0, y2) = (0, 6.078132..) and (0,y?) =
(0,y7;(t?)) = (0, —0.974222..) with flight times ¢? = 3.614645.. and t3 = 4.344295.. in the re-
gions ¥~ and X, respectively. See Figure 1.

Configuration (F",S"): If the equilibrium point P_ is a focus F" and the equilibrium
point P, satisfies the conditions (12) with 5 =1, |r| < 1, then we have the configuration
(F",S"). In what follows we provide a PWLS having two crossing limit cycles. Considering

FiGuRE 2. The two crossing limit cycles I'; and I's of the discontinuous
PWLS (33) with configuration (£, S").

A=-2/5, B=-7/2, C =1/20, d = —1, r = 1/100 and s = 0, we obtain the PWLS
formed by

(33)
2 7 2 1 1
_ B 5 2 5 + _ 50 50
X@y) =1 49 3| X+ a9 | X @=1] g999 X+ | 9999
1400 10 1400 ~ 10000 10000

For this PWLS we have that system (8) has two real solutions with ¢1,t2 € (0, 27), namely
(t, 13, yd) = (3.854989.., 2.065073.., 0.759545..) and (t3,13,y3) = ( 5.114523.., 0.403781..,
0.1794388..). Therefore the PWLS (33) has two crossing limit cycle I'; and I'y which intersect
Y in (0,y3) = (0,0.759545..) and (0,y1) = (0,—0.790192..); and(0,y2) = (0,0.1794388..)
and (0,y?) = (0, —0.218905..), respectively. See Figure 2. O

Case 2: P_ is virtual focus of X~. We consider that P_ is a focus (F"), this is,
P_ = (1,s), therefore

A%+ 2AC — C? —d? — ABs +2BC's

blz—A—BS, b2: B
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Then linear differential system X~ is
(34)
A(x — 1)+ B(y — s)
X (z,y) = | —4%22 4+ 24Cz — C%x — d*x — ABy + 2BCy + (A —C)? + d® + B(A —2C)s)
B
The solution of linear differential system (34) starting at the point (z,y) = (0,y0) € X is

()= 1+ ¢t (—d cos (dt) + (Byo ; (A —C + Bs)sin (dt))7
(35) oCt } i ~
y ()= s+ 5 ((B(=A+C)yo + (¢ + (A= C)(A— C + Bs))sin (d))
+(Bd(yo — s) cos (dt)))) .

When P_ is a focus (F") we have three possible configurations for the equilibrium point of
PWLS (1), namely we have the configurations (F*, FV), (FY,N") and (F",iN").

Configuration (FV,F"): The equilibrium point Py is a focus FV and the equilibrium
point Py satisfies the condition (13) with 8 =i and r # 0, then we have the configuration
(FY, F"). We provide a PWLS with two crossing limit cycles. Considering A = —7/10, B =

-1/2, C=-2, d=—1,r =6/10 and s = 0, we obtain the PWLS formed by

1 7 6 6
- _ 10 2 10 + _| 5 5
50 10 50 25 25

For this PWLS we have that system (8) has two real solution with t1,t3 € (0,27), namely
(t1,td,y8) = (0.903052.., 2.593104.., 11.325957..) and (t3,t3,3) = (0.276244.., 1.538684..,
3.086535..). Therefore the PWLS (36) has two crossing limit cycle I'; and I’y which intersect
¥ in (0,y8) = (0,11.325957..) and (0,y1) = (0,—1.441285..); and (0,32) = (0,3.086535..)
and (0,y7) = (0,0.234677..), respectively. See Figure 3. Therefore we have that a PWLS

D

-2

FiGure 3. The two crossing limit cycles I'; and I's of the discontinuous
PWLS (36) with configuration (F", F"’).

(1) with the configuration (F”, F’) it has at least two crossing limit cycles. O

Configuration (FY, NV): The equilibrium point P_ is a focus F'¥ and the equilibrium point
P, satisfies the conditions (13) with § = 1 and |r| > 1, then we have the configuration
(FY,N"). We provide a PWLS with this configuration and with one crossing limit cycle. If
A=-3, B=-1/2, C = —3/10, d =1, r =2 and s = 0, we obtain the PWLS formed by

w

37y X~ — 20 . X+ (N xa
50 5 50
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For this PWLS we have that system (8) has one real solution with t1,t3 € (0,27), namely
(t1,t2,90) = (2.073656.., 1.547693.., 10.752069..). Then the PWLS (37) has one crossing
limit cycle which intersects X in (0,y9) = (0,10.752069..) and (0,y1) = (0,3.074636..). See
Figure 4. Therefore we can conclude that a PWLS (1) with the configuration (FV, NV) it

FIGURE 4. The crossing limit cycle of the discontinuous PWLS (37) with
configuration (F¥, NV).

has at least one crossing limit cycles. O

Configuration (F";iNV): The equilibrium point P_ is a focus F and the equilibrium
point P, satisfies the conditions (13) with 8 = 0 and r # 0, then we have the configuration
(F",iN"). Then considering ¢; and t2 as in Proposition 6 and from equations (27) and (35),
system (8) is equivalent to system

e1: d+e““(—dcos(dt;) + (Byg— A+ C — Bs)sin (dt;)) = 0,
(38) ea: —14+e ™2 (1+ta(yo—r+s)) =0,
es: Bde "2 (yo + rtayo + (s +r(—r + s)te)) — et (Bd(yo — s) cos (dty)
+(B(—A+ C)yo + (d% + (A= C)(A — C + Bs)))sin (dt1)) — 2Bds = 0.

From equation e; we get

A- C + Bs + dcot (dt;) — de=C cse (dtq)

Yo = B )
and from es we get
r
W e Yo—T+S,
Yo—1r—+s
1

39 to = — _
(39) 2 Yo — 1T+ s r ’
then substituting yo and t2 in e3 we obtain that

1 - - - .
(40) es = = ((=A+ €+ Br—2Bs)fo(t) + dfi(k) — rBa(t)) =0,
Here fo(tl) =1, f1 (t1) = cot (dty) — eCt csc (dt1), and
~ 1

t1) = =

f2ltr) Breth ’

Cti+— =
Bre ' eCt1(—A+ C + Br —2Bs — dcot (dt1)) + dcsc (dty)

eCti(—A + C + Br — 2Bs — d cot (dt1)) + d csc (dty)

w
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where W is the Lambert Function, for more details see [4]. When

(41) t; € (0,7/d) and n(t;) = eétl(—A + C 4 Br —2Bs — dcot (dty)) + desc (dty) # 0,

we can conclude that equation (40) has at least two real solutions by Proposition 4. Thus
system (38) has at least two real solutions, that is, a PWLS with the configuration (F,iN")
has at least two crossing limit cycles.

In what follows we provide a PWLS with configuration (F,iN") having two crossing
limit cycles. Considering A = —25/2, B = —13/10, C = —6/5, d = 13/10, r = 5 and
s = 0, we have that condition (41) is not empty.

= — 48 — 1 1 1 1 7).
n(t1) 10 (e 8 — 13 cot 10 + 13 csc 10 , t1€ (0, 13

10
It is possible verify that in the interval <O, 1;) the unique critical value is t] = 1.501574..,
107
13
) . See Figure 5. With these parameters

and it is a minimum value of the function n(t;) for t; € (0, ), moreover n(t}) =

107

2.278475.. > 0, therefore n(t;) > 0 for t; € <O, 13

2f

FIGURE 5. The graphic of the function 7(¢1) in the interval (0,107/13).

FIGURE 6. Two crossing limit cycles of the discontinuous PWLS (42) with
configuration (F",iN").

we obtain the PWLS formed by

25 13 25
= F — 10 -1 10
|72 T 2 (2, y) =
65 10 65

For this PWLS we have that system (38) has two real solutions, namely (t1,t},9})
(1.096629.., 0.143589.., 12.314051..); and (£2,42,12) = (2.043521.., 0.588292.., 35.501071..
Then the PWLS (42) has two crossing limit cycles I'; and T'y which intersect 3 in (0,y})

=1
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(0,12.314051..) and (0,y1) = (0,2.476508..), (0,y2) = (0,35.501071..) and (0, y?) =
(0,6.610102..), respectively. See Figure 6. O

Proof of statement (iii) of Theorem 1. In this case we analyze the maximum number
of crossing limit cycles of PWLS (1) when the equilibrium point of linear differential system
X~ is a real saddle (S”). We consider that system X~ is in the canonical form (6), then

Aby + Bby — 20,C A2by + ABby — 2Ab1C + b,C? — by d?
(43) P—_(l'o,yo)_( 1 _ 2 1 - 1 2 - 1 1 1 ,

C?2—d? BC? — Bd?

with 0 < C?2 < d? and B < 0. This equilibrium point is a S = (=1,—s), if by =
A+ Bs, by = —(A? = 2AC + C? — d> + ABs — 2BCs)/B. When system X~ is a S” we
have that linear differential system X+ must be a saddle S”, then we consider that system
X is in the canonical form (2) and the equilibrium point P, satisfies (12) with 8 = 1,
|r| < 1. Therefore we obtain the configuration (5", S"). In the following example we provide
a PWLS (1) such that the equilibrium points of the linear differential systems X~ and X
have the configuration (S”,S") and it has one crossing limit cycle.

F1GURE 7. The crossing limit cycle of the discontinuous PWLS (44) with
configuration (S”,S").

Considering the parameters A = —1, B = =5, C = 4/5, d = —19/10, r = 6/50 and
s = 0, we obtain the PWLS formed by

1 -5 . 2£ B %
(44) X ()= 37 12|X+| 37 ], Xty = 6516 X+| 2
“E0 B 500 20 016
500 5 500 o7 s

For this PWLS we have that system (8) has one real solution, namely (¢1, t2, yo) = (0.754087..,
0.406189.., —0.039307..). Then the PWLS (44) has one crossing limit cycle which intersects
¥ in (0,y0) = (0,—0.039307..) and (0, y;) = (0, —0.434309..). See Figure 7. O

Proof of statement (iv) of Theorem 1. In this case we analyze the maximum number of
crossing limit cycles of PWLS (1) when the equilibrium point P_ is a virtual diagonalizable
node (NV). We consider that system X~ is in the canonical form (5), then P_ is equal to
(43) with 0 > C? > d? and B < 0. This equilibrium point is a NV if by = —A — Bs, by =
—(=A242AC —C?*+d?>— ABs+2BCs)/B. We consider that system X* is in the canonical
form (2) and the equilibrium point Py can be a diagonalizable node N? or an improper node
iNV. Then we have two possible configurations (NV, NV) and (NV,iN"V).

Configuration (NY, NV): We assume that P_ is a diagonalizable node NV and that P
satisfies (13) with 8 =1 and |r| > 1. Then we obtain the configuration (N, NV).
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F1GURE 8. Two crossing limit cycles of the discontinuous PWLS (45) with
configuration (NV, NV).

Considering the parameters A = —23/10, B = —1/2, C = —41/10, d = 7/2, r = 57/25
and s = 0, we obtain the PWLS formed by

23 1 23 4 114
- 10 2 10 N 25 25

(45) X~ (z,y) 901 59|59 (@9) = | 9604 . 1 2624
50 10 10 625 625

For this PWLS we have that system (8) has two real solutions, namely (t,ti,4}) =
(0.796618.., 1.259611.., 12.011789..); and (¢3,t3,y2) = (0.205065.., 0.425140.., 5.805536..).
Then the PWLS (45) has two crossing limit cycles which intersect ¥ in (0, y§) = (0,
12.011789..) and (0,y1) = (0,3.420218..); and (0,3) = (0,5.805536..) and (0,y?) = (O,
3.906249..), respectively. See Figure 8. Therefore we have that PWLS with the configuration
(NV, N?) have at least two crossing limit cycles.

Configuration (NV,iNV): The equilibrium point P_ is a diagonalizable node NV and P,
satisfies (13) with 8 = 0 and r» # 0. Then we obtain the configuration (NV,iN"). The
solution of system X~ starting in (0,yp) € X is

(46) ~
2= (t) = d + e“!(—d cosh (dt) + (Byo — (A — C) + Bs)) sinh (dt)
. d ;
Ct
y (1) = s+ eB—d(Bd(yo — ) cosh (dt) + (B(=A + C)yo + (—d%2 + (A - C)

(A — C + Bs)))sinh (dt)).

By (27) and (46) we obtain that system (8) is equivalent to system
(47) ~
e1: d+eC“(—dcosh (dt) + (Byo — (A — C + Bs))sinh (dt;)) = 0,
er: —l+e (1 4ty(yo—7+s)) =0, ]
es: —2Bds+ Bd~e_rt2 (yo + rtayo + (s + (=7 + s)t2)) — et (Bd(yo — s) cosh (dty)
+(B(=A+ C)yo + (—d* + (A= C)(A— C + Bs)))sinh (dt1)) = 0.

From equation e; we get yo = (A — C 4 Bs + d coth (dt1) — de‘étlcsch(dtl))/B, and from
ea we get the expression (39) for o, then substituting yo and ¢5 in eg we obtain that

€3 = % ((_A +C+ Br— QBS)fO(tl) + df?’(tl) N rBf4(t1)) =0

where fo(t1) =1, f3(t1) = coth (dt1) — eétlcsch(dtl) and



18 J. JIMENEZ, J. LLIBRE, J.C. MEDRADO

- 1
faltr) = Breéth
Cti+— =
" Bre  €“"(—=A+C+ Br—2Bs—dcoth (dt1)) + desch(dty)
eCti(=A+ C + Br — 2Bs — d coth (dt1)) + desch(dty)
If

(48) t; € (0,00) and 7(t1) = Cta (—A+ C + Br — 2Bs — d coth (dt;)) + desch(dt;) # 0,

by Proposition 4 we can conclude that a system (47) has at least two real solutions therefore
a PWLS with the configuration (NV,iN") has at least two crossing limit cycles. In what
follows we provide a PWLS with configuration (NV,iN") and having two crossing limit
cycles.

Considering A = —23/10, B = —8/5, C = —24/5, d = 37/10, r = 3/5 and s = 0, we

have that
173 37 37t 37 37t
= e 24ta/5 [ 2020 20 Gy (200 2 esch [ 22
n(t) =e < 50 10cot (10 )>+1OCSC 0 )

Substituting

et +e® 2

coth () = —, and csch(z) =

656 — eI — e*ﬁ

in the equation 7(¢1) we obtain that
e37t1/10(_370+ 126—17t1/2 +358€_11t1/10)
50(1 — e37t1/5)

Therefore the condition (48) is satisfied. See the graphic of this function in Figure 9.
Moreover we obtain the PWLS formed by

>0, for t; > 0.

n(t1) =

0.0012
0.0010
0.0008
0.0006
0.0004

0.0002

2 4 6 8 10

FI1GURE 9. The graphic of the function (48) for t; > 0.

23 8 23 6 6
- _[ 10 b 10 + _[>5 5
20 10 20 25 25

For this PWLS we have that system (47) has two real solutions, namely (t],ti,4}) =
(0.564675.., 5.217342.., 4.794330..); and (¢2,42,12) = (0.763740.., 6.119198.., 6.860880..).
Then the PWLS (49) has two crossing limit cycles which intersect ¥ in (0, 33) = (0,4.794330..)
and (0,y1) = (0,0.783292..) and (0,2) = (0,6.860880..) and (0,3?) = (0,0.759263..), re-
spectively. See Figure 10. U

Proof of statement (v) of Theorem 1. In this case we analyze the maximum number of
crossing limit cycles of PWLS (1) when the equilibrium point of linear differential system
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-1 1 2 3

F1aURE 10. Two crossing limit cycles of the discontinuous PWLS (49) with
configuration (NV,iN"V).

X~ is a virtual improper node (¢N?). We consider that system X~ is in the canonical form
(5) with d = 0 and B < 0, then equilibrium point P_ is

Aby + Bby — 20,C  A2by + ABby — 2Ab,C + b, C?
P_ = (w0, 50) = - = -

C? ’ BC?

This equilibrium point is a virtual improper node iNV if P_ = (1,s), then by = —A —
Bs, by = —(—A? + 2AC — C? — ABs + 2BCs)/B. With these condition the solution of
system X~ starting in (0,yg) € X is

= (t) =1+ e (Btyy— (1+ (A —C + Bs)t)),

(50) - Bs + (A — 0)2eCt + BeCt(1 — At + Ct)(yo — s)
y () = 5 :

We consider that linear differential system X is an improper node iN?, then we consider
that system X7 is in the canonical form (2) and the equilibrium point Py satisfies (13) with
B =0 and r # 0. Therefore we obtain the configuration (iNV,iN").

Now considering ¢; and ¢ as in Proposition 6 and by equations (50) and (27), system (8)
is equivalent to

e1: 1+e““(Btiyg— (14 (A—C + Bs)ty)) =0,

ex: —1+e "2(1+ty(yo—r +5)) =0,

e3: 2Bs+ (A — é)2€Ct1t1 + BCCtl(l — Atq + étl)(yo — 8)
—Be "2 (yo + rtayo + (s + (=1 + s)t2)) = 0.

(51)

By the equation e, we get yo = (1 — e=Ct 4 (A — C + Bs)t1)/Bty, and from ey we obtain
the expression (39) for 5. Substituting these expressions in ez, we get

e3 = é ((—A +C + Br—2Bs)fo(t1) + f5(t1) — BT’fﬁ(tl)) =0,
where fo(t1) =1, f5(t1) = 1=t and

tq
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f6<t1) = !

Breétl
T e A+C + Br—2B
1(— — —_
Brige +e“t(=1+(-A+C+ Br s)t1)

w _ =
1+eCt(—1+(—A+C+ Br—2Bs)ty)

Therefore by Proposition 4 we can conclude that system (51) has at least two real solutions
for

(52) t;1 € (0,00) and 7(t1) =1+ eétl(—l + (—=A+C + Br —2Bs)t;) # 0.

Due to symmetry we have that if (¢1, t2, yo) is a real solution of system (51) then (—t1, —t2, y1)
also it is a real solution of system (51), where y; =y~ (t1) = y*(—t2), we observed that the
real solutions (1,t2,y0) and (—t1, —t2,y1) of system (51) provide the same crossing limit
cycle of PWLS with the configuration (iNV,iN"). Therefore a PWLS with the configuration
(¢NV,iN"V) has at least one crossing limit cycle.

In what follows we provide a example of a PWLS with the configuration (¢ NV, iN") having
one crossing limit cycle.

26

FIGURE 11. One crossing limit cycle of the discontinuous PWLS (53) with
configuration (iNV,iN").

Considering A = —6, B = —14/5, C = —6/5, r = 11/10 and s = 0, we have that

43
n(t1) =1+ e 6t1/5 (—1 + 25t1> >0, for ¢; > 0.

Therefore the condition (52) is satisfied.
Moreover we obtain the PWLS formed by

14 11
R 0 5 ! 5
- - + _
(53) X™(w,0) = [ 555 196 | XT{ 288 ], X'y =|{ . X+ 49
35 35 35 100 100

For this PWLS we have that system (47) has two real solutions, namely (t1,t2,%0) =
(0.964798.., 0.448780.., 2.522296..) and (—t1, —ta,y1) = (—0.964798..,—0.448780.., 1.968154..),
which provide one crossing limit cycle such that intersects 3 in (0, y9) = (0,2.522296..) and
(0,71) = (0,1.968154..). See Figure 11.



21

The proof of Proposition 1 is provide by the following examples, where we prove that the
upper bound provided in statement (i) of Theorem 1 is reached in each case.

Example 1. We consider PWLS (1) with the configuration (C", F") formed by the linear
differential systems (10) and (14), with A= -2, B = —-8/10, d=7/10, r = -2/10, k =1
and s = 0 then we obtain that

4 2
- — + _
80 80 25 25

For this PWLS we have that closing equations (15) are

7t1 4 . 7t1
-1 D) Z542 oy -
+COS(1O> 7(5—|— y0)81n(10> 0,

1
1+ ef2/5(—cos (t3) + — +yo | sin (t2)) = 0,

Tt 1 Tt
—yo cos (1(;) ~ £5(449 + 160y0) sin (101>

1
+2—5et2/5(25yo cos (t2) + (26 — 5yp) sin (t2)) = 0.

Taking into account that tita > 0 and that ti,ty € (0,27) it is possible verify compu-
tationally that the system (55) has two real solutions, mamely (t,t3,y8) = (4.796799..,
3.418539.., 5.564042..) and (t2,t3,43) = (5.859455.., 5.731792.., —0.819335..). Newverthe-
less the orbit of linear differential system X starting at the point (z,y) = (0,43) =
(0, —0.819335..) and with flight time t3 = 5.731792.. it is such that intersects the region
¥~ which cannot happen to obtain a crossing limit cycle of PWLS (54), therefore we have
the unique real solution that gemerates one crossing limit cycle T'y of the PWLS (54) is
(th, 13, yd) = (4.796799..,3.418539..,5.564042..), and that crossing limit cycle starts at the
point (0,y8) = (0,5.564042..), enters in the half-plane X~ and after a time t1 = 4.796799..
reaches the discontinuity line X at the point (0,yi) = (0, —10.564042..), enters in the half-
plane X7 and after a time t3 = 3.418539.. reaches the point (O,ycl]), See Figure 12.

Now we analyze the stability of the crossing limit cycle T'1. We consider the PWLS (54)
and we analyze the flow of PWLS around of the crossing limit cycle I'y which intersects the
discontinuity straight line 3 at the points yo = 5.564042.. and y; = —10.564042...

We consider a point Wy € ¥ and within the region limited by the crossing limit cycle
Iy, this is, Wy = (0,wp) with —10.564042.. < wg < 5.564042... For example we consider
that wy = 5, then the solution of linear differential system X~ in (54) starting at the point
Wy =(0,5) € ¥ is

x~(t) = =1+ cos i —@sin i ~(t) =5cos m +%sin i
B 10) 7 10) YW= 10 56 10)

and the flight time in the region X~ is

t~ 10 + arct 540 +2
= — | =7 4+ arctan | —— T
7 3551 ’

then the intersection point with ¥ is Wi = (0,wy1) = (0,y~ (t7)), where y~(t7) = —10. Now
the solution of linear differential system X+ in (54) starting at the point Wi = (0, —10) is

o t/5

2
() =1+ (—5cos (t) +51sin(t)), yt(t) = —2—56_t/5(125 cos (t) + 38sin (t)),
the flight time in the region X7 is tT = 3.434483.. and the intersection point of this orbit
with the discontinuity straight line is the point Wo = (0,w2) = (0,57 (t1)) = (0, 5.258689..),
then 5 = wy < wy = 5.258689. Therefore we obtain that the flow of PWLS (54) spirals in
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B

F1aUrRE 12. The crossing limit cycle of the discontinuous PWLS (54) with
configuration (C", F").

the counterclockwise outward for points Wy = (0, wo) with —10.564042.. < wy < 5.564042...
Now we consider a point on ¥ and outside the region limited by I'1, namely Zy = (0, 20)
with zo > yo. We consider Zy = (0,6) and similarly to above case we determine the solution
(x=(t),y~(t)) of linear differential system X~ in (54) starting at the point Zy = (0,6) € &
and we get the flight time in the region ¥, namely T~ = 10/7(—mn+arctan (952/4575)427),
and the intersection point of this orbit with ¥ is Z, = (0,2z1) = (0,5~ (T7)) = (0, —11). We
determine the solution (x+(t),y"(t)) of linear differential system X in (54) starting at the
point Z1 = (0,—11) € ¥ and we get the flight time in the region ¥1, TT = 3.407359.. and
finally we obtain the intersection point of this orbit with X, Zs = (0,22) = (0,y™(TT)) =
(0,5.799713..), then 6 = zg > zo = 5.799713... Therefore obtain that the flow of PWLS (54)
spirals in the counterclockwise inward for points Zy = (0, zg)with zo > yo. Therefore we can
conclude that the crossing limit cycle I'1 is a crossing limit cycle stable. O

Example 2. We consider PWLS (1) with the configuration (C",S") formed by the linear
differential systems (10) and (18), with A = —7/2, B = —8/3, r = 79/100, d = —28/10,
k=1 and s =0, then we obtain the piecewise linear differential system formed by

(56)

_r _8 7 [ 79
_ _ 2 3 2 + _ 50 50
800 2 800 10000 10000

For this PWLS it is possible verify computationally that the closing equations (19) have two
real solutions for t1,t2 € (0,2m), namely (t},t3,y$) = (1.941361.., 3.063722.., —0.838949..)
and (13,13, y2) = (4.185356.., 3.063722.., —0.838949..). Nevertheless we have that the orbit
of linear differential system X~ started at point (0,y3) = (0,—0.838949..) and with flight
time t3 = 4.185356.. it intersects the region X~ which cannot happen to obtain a crossing
limit cycle of PWLS (56), therefore we have that the unique real solution that generates one
crossing limit cycle of the PWLS (56) is (t1,t3,y5)=(1.941361.., 3.063722.., —0.838949..),
and that crossing limit cycle T starts at the point (0,y3) = (0,—0.838949..), enters in the
half-plane ¥~ and after a time t1 = 1.941361.. reaches the discontinuity line ¥ at the point
(0,91) = (0,—1.786050..), enters in the half-plane F and after a time t3 = 3.063722..
reaches the point (0,yg).

Now we analyze the stability of the crossing limit cycle T'. We consider the PWLS (56)
and we analyze the flow of PWLS around of the crossing limit cycle I' which intersects the
discontinuity straight line 3 at the points yo = —0.838949.. and y; = —1.786050...

We consider a point Wy € X and within the region limited by the crossing limit cycle T,
this s, Wy = (0,wp) with —1.786050.. < wy < —0.838949... For example we consider that
wo = —9/10, then the solution of linear differential system X~ in (56) starting at the point
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Wy = (0,-9/10) € ¥ is

_ 14t 11 14¢
a (t): —1+COS ? —%sm ? s

14¢ 14¢
Yy (t) = % (—96 oS <5> + 167 sin <5>> 7

and the flight time in the region X~ is

=0 tan (220 4 o
= — | —arctan [ —
14 \ M 663 )

then the intersection point with ¥ is Wi = (0,w1) = (0,y~(t7)), where y~(t~) = —69/40.
Now the solution of linear differential system X+ in (56) starting at the point Wi =
(0,—69/40) is

—21¢/100 —21¢/100 2t

e~/ (2387 — 1362,y (1) — 3¢ 214/100( 23091 4 9le )7

400 40000

the flight time in the region X1 is t = 1.097023.. and the intersection point of this orbit with
the discontinuity straight line is the point Wy = (0,ws) = (0,y*(t1)) = (0, —1.326846..),
then —9/10 = wp > wy = —1.326846... Therefore we obtain that the flow of PWLS (56)
spirals in the counterclockwise inward for points Wy = (0,wq) with —1.786050.. < wy <
—0.838949... Now we consider a point on ¥ and outside the region limited by I', namely
Zy = (0, z0) with zo > yo. We consider Zy = (0,—209/250) and similarly to above case we
determine the solution (z~(t),y~ (t)) of linear differential system X~ in (56) starting at the
point Zy = (0,—209/250) € ¥ and we get the flight time in the region ¥~ , namely T~ =
—1.939696.., and the intersection point of this orbit with ¥ is Z1 = (0,21) = (0,y~(T7)) =
(0,—1789/1000). We determine the solution (z*(t),y*(t)) of linear differential system X
in (b4) starting at the point Z; = (0,—1789/1000) € ¥ and we get the flight time in the
region X, TT = 3.923945.. and finally we obtain the intersection point of this orbit with
Y, Zy = (0,29) = (0,y7(TT)) = (0,—0.666883), then —209/250 = zy > z2 = —0.666883..
Therefore obtain that the flow of PWLS (54) spirals in the counterclockwise outward for
points Zy = (0, zp)with zo > yo. Therefore we can conclude that the crossing limit cycle T’
15 an unstable crossing limit cycle. See Figure 13. g

() =1+

2

FIGURE 13. The crossing limit cycle of the discontinuous PWLS (56) system
with configuration (C",S").

Example 3. We consider PWLS (1) with the configuration (CV, F) formed by the linear
differential systems (21) and (22), with A= -3, B=—1, r =4/5, d= -4, k=1 and
s =0, then we obtain the PWLS formed by
8 8
3 _ - -1 =
5 x@y=( o ) x+(? Xty =|? X+ |p
(57) (z,y) = o5 5 + o5 (z,y) = a1 + i

25 0 2

ot
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For this PWLS it is possible verify computationally that closing equations (23) have four
real solution for t1,ty € (0,27), namely (t1,t3,48)=(0.299957.., 1.862980.., 5.736049..), (3,
t3, y3) = (1.870753.., 1.862980.., 5.736049..), (¢33 43)=(3.441550.., 1.862980.., 5.736049..),
(t1,t3,98)=(5.012346.., 1.862980.., 5.736049..). Nevertheless the orbit of the linear differen-
tial system X~ started at the point y} and with flight time t\ is such that intersects the
region 1 for i = 2,3,4 which cannot happen to obtain a crossing limit cycle of PWLS
(56), therefore we have that the unique real solution that generates one crossing limit cycle
T of the PWLS (57) is (t1,t3,48) = (0.299957..,1.862980..,5.736049..) which intersects 2
in (0,y3) = (0,5.736049..) and (0,yi) = (0,0.263950..). Analogously to above case (C",S"),
it 45 possible verify numerically that I is an unstable crossing limit cycle. See Figure 14.

-1.0 -0.5 05 1.0

1

FIGURE 14. The crossing limit cycle of the discontinuous PWLS (57) with
configuration (C", F").

Example 4. We consider PWLS (1) with the configuration (C*, NV) formed by the linear
differential systems (21) and (24), with A = =5, B = —18/10, r = 13/10, d = —3/2 and
s =0, we obtain the PWLS formed by

13 13
5 5 5 ! 5
_ B ) -
(58) X7 (z,9) = | 45 i X+ | 545 ), XT(@y =] ; X+ o
36 36 100 100

For this PWLS it is possible verify computationally that closing equations (25) have two
real solutions with t1,ty € (0,2m), namely (t1,t3,y3) = (0.608026..,1.109920.., 3.186528..),
(t2,13,y3) = (4.796816..,1.109920.., 3.186528..). But the orbit of the linear differential sys-
tem X~ intersect the region X1 when started at the point (0,y2) = (0,3.186528..) with
flight time t2 = 4.796816.. therefore this real solution cannot generates a crossing limit
cycle of PWLS (58) and we only have one crossing limit cycle T' which intersects ¥ in
(0,18) = (0,3.186528..) and (0,y]) = (0,2.369026..) with flight times t} = 0.608026.. and
t3 = 1.109920.. in the regions X~ and X, respectively. Analogously to above cases, it is
possible verify numerically that I' is an unstable crossing limit cycle. See Figure 15.

Example 5. We consider PWLS (1) formed by the linear differential systems (21) and
(26), with A= —-1/2, B=-1/10, r =17/10, d = —4/10 and s = 0, we obtain the PWLS
formed by

1 1 o 17

- _ 2 10 2 + _| 5 5

(59) X~ (z,y) = 41 1 X+ _g , X (zy) = 289 0 X+ @
10 2 10 100 100

For this PWLS it is possible verify computationally that closing equations (28) have one real
solution, namely (t1,ta,y0) = (2.877804..,1.249557..,7.595368..), then the PWLS (59) has
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FI1GURE 15. The crossing limit cycle of the discontinuous PWLS (58) with
configuration (CV, N).

FIGURE 16. The crossing limit cycle of the discontinuous PWLS (59) with
configuration (C",iN").

one crossing limit cycle I' which intersects ¥ in (0,7.595368..) and (0,2.404631..). Analo-
gously to above cases, it is possible verify numerically that I is an unstable crossing limit
cycle. See Figure 16.
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