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A B S T R A C T   

Background: Optic neuritis (ON) is one of the first manifestations of multiple sclerosis, a disabling disease with 
rising prevalence. Detecting optic nerve lesions could be a relevant diagnostic marker in patients with multiple 
sclerosis. 
Objectives: We aim to create an automated, interpretable method for optic nerve lesion detection from MRI scans. 
Materials and Methods: We present a 3D convolutional neural network (CNN) model that learns to detect optic 
nerve lesions based on T2-weighted fat-saturated MRI scans. We validated our system on two different datasets 
(N = 107 and 62) and interpreted the behaviour of the model using saliency maps. 
Results: The model showed good performance (68.11% balanced accuracy) that generalizes to unseen data 
(64.11%). The developed network focuses its attention to the areas that correspond to lesions in the optic nerve. 
Conclusions: The method shows robustness and, when using only a single imaging sequence, its performance is 
not far from diagnosis by trained radiologists with the same constraint. Given its speed and performance, the 
developed methodology could serve as a first step to develop methods that could be translated into a clinical 
setting.   

1. Introduction 

Optic neuritis (ON) is an acute inflammation of the optic nerve (De 
Lott et al., 2022) that results in visual loss. It has a prevalence of between 
1 and 5 per 100,000 (Preziosa et al., 2016) on the general population, 
and can be the first manifestation of inflammatory central nervous 
system diseases such as Multiple Sclerosis (MS) (Rodríguez-Acevedo 
et al., 2022). MS is a disabling autoimmune condition of the central 
nervous system (Thompson et al., 2018) characterized by inflammation, 
demyelinatization and neurodegeneration in the brain and the spinal 
chord that can cause a great variety of neurological manifestations, 
including visual impairment. It has a prevalence of 35.9 per 100,000 in 
the general population, and it has been rising worldwide over the last 

decade (up to 30% from 2013 to 2020 (Walton et al., 2020)). ON is the 
first manifestation of MS in 15 to 20% of the patients, and up to 40% of 
MS patients will present ON during the follow-up (Tintoré et al., 2005). 
In the 2017 update to the McDonald criteria for the diagnosis of MS 
(Thompson et al., 2018), presence of visible lesions in the optic nerve 
was not included as a relevant topography in spite of previous recom-
mendations (Filippi et al., 2016), but the study of optic nerve pathology 
for MS diagnosis was deemed as a high research priority. As discussions 
about this topic continues (Brownlee et al., 2018; Wattjes et al., 2021; 
Rovira and Auger, 2021), interest in optic nerve lesions as a biomarker 
to diagnose and assess MS will continue to rise in the following years. 

Magnetic Resonance Imaging (MRI) of the optic nerve can be used by 
radiologists to observe the optic nerve and diagnose any damage present 
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(Gass and Moseley, 2000). However, conventional imaging sequences 
are not appropriate to capture the optic nerve, due to its small size, the 
composition of its surroundings (mainly fat, bone and cerebrospinal 
fluid), and distortions caused by eye movement during scan. For this 
reason, protocols such as short-tau inversion-recovery, fat-suppressed 
spin-echo (FAT-SAT) (Gass and Moseley, 2000; Faizy et al., 2019) are 
being used, which better capture the structure of the optic nerve and 
pathology-induced changes. Sensitivity of MRI to detect lesions in the 
optic nerve is high, specially on FAT-SAT (McKinney et al., 2013; De Lott 
et al., 2022), but the MRI interpretation by radiologists does not always 
coincide, due to scan quality, observer expertise, or clinical knowledge 
of the patient by the radiologist, among other factors (Bursztyn et al., 
2019). In this context, the implementation of automatic analysis pipe-
lines may help neuroradiologists to have a higher agreement. Schroeder 
et al., 2021 proposed an image processing automated tool to improve 
contrast of the optic nerve in a study with 60 patients, improving the 
specificity of lesion detection significantly, as well as the intra-observer 
agreement, while the sensitivity did not change. However, no other tools 
have been proposed for automated or semi-automated ON diagnosis at 
this time. 

Machine learning is a set of tools and models that can learn from 
existing data to solve a specific problem (Yu et al., 2018). One example 
of such models are deep learning systems, composed of stacks of non- 
linear transformations (commonly named neural networks) that learn 
abstract representations of data and are used to solve specific tasks 
(LeCun et al., 2015). Deep learning models have been successfully used 
for a variety of medical imaging problems (Zhang et al., 2021) such as 
detection of diabetic retinopathy (Gulshan et al., 2016) or brain tumor 
segmentation (Havaei et al., 2017), and can be deployed as tools to assist 
clinicians and radiologists (McBee et al., 2018). 

In this work, we present an automated pipeline to extract the optic 
nerve from T2-weighted FAT-SAT scans and train a 3D convolutional 
neural network (CNN) for the classification task. We evaluated our 
model on two different cohorts and compared it to two additional 
classification approaches to assess the robustness of the model. We also 
evaluated the interpretability of the network by computing saliency 
maps and evaluating if the network is able to locate the optic nerve. As 
far as we know, this is the first automated tool for detecting lesions in the 
optic nerve proposed in the literature. We believe that this model can 
serve as a stepping stone to develop tools that can be incorporated in the 
clinical routine of a neuroradiology department. The code is publicly 
available at:https://github.com/GerardMJuan/optic-nerve-3dcnn-ms. 

2. Materials and methods 

To design the experiments for this work, we have followed the 
checklist for Artificial Intelligence in Medical imaging described in 
(Mongan et al., 2020), to make sure that we include all the necessary 
information for the experiments to be robust and understandable. 

2.1. Data 

We have used two different retrospective cohorts of patients in this 
work, which we named D1 (used for training the model and hyper-
parameter search) and D2 (used for testing, unseen during training). The 
first one was acquired with a Trio scanner (Siemens, Erlangen, Ger-
many) and is composed of 169 subjects, whereas the second cohort, 
acquired in a Prisma scanner (Siemens, Erlangen, Germany) has 62 
subjects, with a lower percentage of patients with lesions (see Table 1), 
the latter being used for validation. Both cohorts included, among other 
sequences, a 3T tcoronal 2D T2 turbo spin-echo fat-suppressed (FAT- 
SAT) with identical acquisition parameters (Acquisition time  = 3:46 
min, 20 slices, voxel size 0.5 x 0.5 x 3.0 mm3 field of view  = 180 mm, 
flip angle  = 120◦, TR  = 4000 ms, TE  = 84 ms), the difference between 
the cohorts being the model of the machine used. Data was taken from 
patients in clinical routine. standardized protocol FAT-SAT have been 

recently added to the clinical routine in our center, regardless of clinical 
presentation, and our cohort is formed from those scans. Both cohorts 
were labelled by compiling their medical records and a written report of 
an expert radiologist, to discern if optic nerve lesions were present in the 
scan, and revised by a separate radiologist. Lesion had to be clinically 
apparent to be labelled as one. 

Table 1 contains demographic and clinical information of the two 
datasets, as well as the number of optic nerve scans, divided by label. 

2.2. Processing pipeline 

Prior to training, scans were processed to remove irrelevant parts of 
the image and reduce its dimensionality, leaving only the optic nerve 
and surrounding area. We designed the following semiautomated 
method:  

• Image split: we split each scan along the midline, with each eye and 
optic nerve fully contained in each half.  

• Left eye flip: we mirror the left half so that both eyes have the same 
orientation.  

• Optic nerve cropping: with a visual interface, we manually select the 
area where the optic connects with the eye globe. Then, an automatic 
crop is performed around the selected point. The size of the crop has 
been manually selected so that it has enough margin to contain the 
full optic nerve accounting for any possible inter-subject variation. 
The size of the final crop is 40 x 31 x 13 voxels. We used this final 
crop as input for all subsequent experiments. 

Fig. 1a shows a diagram of the full processing pipeline. 

2.3. Classification model 

We implemented a 3D CNN for the classification task. It receives as 
input the 3D crops of the optic nerve described in the previous section 
and it is composed of two 3D convolutional layers with 64 and 128 fil-
ters, each one having a rectifying linear unit non-linearity layer, a max 
pooling layer to reduce dimensionality, and a dropout layer (Srivastava 
et al., 2014) with probability 0.1 to avoid overfitting to the training data 
and improve generalization. A final dense, fully connected layer with 
256 weights leads to a softmax layer that outputs probabilities for the 
two possible outputs: presence of lesion or not. The network was trained 
using Adam optimizer (Kingma and Ba, 2017), which updates the 

Table 1 
Description of the data used in the project. N refers to the number of patients, 
whereas Lesion and Healthy refer to optic nerve scans (2 scans per subject, cor-
responding to each eye). Sex is described as percentage of females in the dataset, 
and age is described as mean±std. CIS: Clinically isolated syndrome. RR: Re-
lapsing remitting MS. PMS: Progressive MS, including primary and secondary 
progressive. NMOSD: Neuromyelitis optica spectrum disorder. MOGAD:. Unca-
tegorized: Patients with no information regarding clinical status available.   

D1 D2 Total 

N 107 62 169 
Lesion (Eye) 72 14 86 

Healthy (Eye) 142 110 252 
Sex 67.29% 69.35% 68.04% 
Age 39.65 ± 11.43a 44.10 ± 15.81a 41.28 ± 13.33 

CIS (%) 72 (67.29%) 40 (64.52%) 112 (66.27%) 
RR (%) 6 (5.61%) 10 (16.13%) 16 (9.47%) 
ON (%) 22 (20.56%) 4 (6.45%) 26 (15.38%) 
PMS (%) 5 (4.67%) 2 (3.22%) 7 (4.14%) 

NMOSD (%) 1 (0.93%) 0 (0.0%) 1 (0.59%) 
MOGAD (%) 0 (0.0%) 2 (3.22%) 2 (1.18%) 

Uncategorized (%) 1 (0.93%) 4 (6.45%) 5 (2.96%) 

a: Unequal variances t-test comparing the age between the two cohorts t = 1.94, 
p = 0.055.  
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weights of each layer of the network by minimizing a loss function, with 
a learning rate of 3e − 4. Our loss function is the binary cross-entropy 
between predicted and real labels, for N scans: 

L = −
1
N

∑N

i=1
(yilog(p(yi))+ (1 − yi)log(1 − p(yi))), (1)  

with yi being the label for scan i, and p(yi) being the predicted lesion 
probability (i.e., if there is a lesion present or not) for that scan. By 
minimizing this expression, the network learns to assign the correct 
label to each scan. All the data were passed through the network 200 
times (epochs), stopping early if the loss did not improve for 10 
consecutive epochs. For a more in-depth explanation of each of the 
components of the network and its optimization, we refer the reader to 
(Deng, 2014). Fig. 1b shows a diagram of the network. 

We also implemented two simpler classification models to compare 
the performance of the CNN model against two other approaches. The 

first model uses a Support Vector Machine (SVM) (Boser et al., 1992), 
whereas the second one uses a Random Forest (RF) (Breiman, 2001). 
Both models have as input all the voxels of the 3D crop of the optic 
nerve. 

2.4. Data augmentation 

Data augmentation is a popular procedure for training neural net-
works. It consists of adding random variations to the training data in 
each training iteration, improving the generalization of the model. It has 
been shown to improve the performance of neural networks, compared 
to not using it (Shorten and Khoshgoftaar, 2019). For this project, we 
used random recropping and random noise augmentation. The first 
procedure consists of performing 8 additional crops around the x and y 
axis of the selected voxel. Then, at training time, each crop can be 
selected randomly for each epoch. Regarding noise augmentation, for 
each epoch, there is 50% probability of adding white noise to each input 

Fig. 1. Outline of the classification pipeline. a) Processing pipeline: image split, left eye flip and optic nerve cropping. (b) Architecture of the 3D convolutional neural 
network, from image to label, and saliency maps for interpretability. Filters drawn as 2D for easier representation. 
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image (with variance  = 0.05). Those methods are use for the CNN. For 
the RF and SVM models, to make the comparison fairer, we included all 
the additional crops of the training sets as input to the models. 

2.5. Experimental setup 

Given the unbalanced state of the dataset (see Table 1), we opted to 
do a permutation procedure to remove any existing biases caused by this 
unbalance. Over 200 iterations, we randomly separated the training 
dataset (D1) into training and validation (75/25 split) ensuring that 
subjects remain consistent across train/validation sets (i.e., both eyes of 
a subject go to either train or validation subsets), and subsampling the 
healthy subjects in the training partition to balance it. The performance 
of the network was then evaluated over the average of the results on the 
validation dataset of each iteration. Fig. 2(a) shows this training 
procedure. 

Hyperparameters of the network (dropout rate, number of layers, 
number of filters and learning rate) and of the SVM and RF models were 
set using an exhaustive search over the average performance of the 
model on the permutation using only the training set. Full set of 
hyperparameter space searched for the three models can be found in the 
Supplementary material. 

After defining the final hyperparameters of the model, we used the 
testing set (D2) to evaluate the performance of the model on a cohort 
unseen by the network during training. Performance was evaluated by 
subsampling the negative class on the whole training set, over 200 it-
erations, and doing the final prediction by combining its results via 
averaging the resulting probabilities outputted by the model. This 
approach is shown in Fig. 2(b). The other two models (RF and SVM) 
were trained and evaluated following the same procedure as with the 
CNN model. The models are evaluated using accuracy, sensitivity (true 
positive rate), specificity (true negative rate) and balanced accuracy: 

Accuracy =
TP + TN

TP + TN + FP + FN  

Specificity =
TN

TN + FP  

where TP, FP, TN and FP are true positives, false positives, true negatives 
and false positives, respectively. We also computed the Receiver oper-
ating characteristic (ROC) curve to visualize the behavior of the three 
models, by plotting the False Positive rate and the True Positive rate at 
different binary classification thresholds, as shown in Fig. 3. 

2.6. Network interpretation 

The only output of the network is a probability value that tells us if 
the models detects a lesion in that image or not. However, we would like 
to have further information: for example, knowing which regions of the 
image were used by the network to reach its decision. To obtain this 
information, we generated saliency maps (Zhou et al., 2016) of the 
network for each input image. Saliency maps are probability maps over 
the input image that tells us which areas of the image are more impor-
tant for the model to make a decision. There are different ways to 
implement saliency maps (see (Zhang and Zhu, 2018) for a compre-
hensive survey). We decided to implement gradient-based saliency 
maps: for a given input image I, we compute the derivatives of its true 
class probability PT w.r.t. I (Eq. 2). This is done by backpropagating the 
gradient over the whole network, akin to training the model, obtaining a 
map of weights over the original image that highlights the most 
important regions used by the model to reach PT. Fig. 1(b) shows a di-
agram of the saliency maps computation. 

SM =
dPT

dI
(2)  

Fig. 2. Outline of the training procedure.  
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3. Results 

Table 2 summarizes the average results on training, test and vali-
dation set after our experimental setup. 

Fig. 4 shows four examples of scans correctly classified with and 
without optic nerve lesion for both TRIO and PRISMA datasets, and their 
corresponding saliency maps. 

4. Discussion 

Detecting optic nerve lesions using MRI scans is highly relevant for 
MS diagnosis and other diseases linked with ON. In this paper, we have 
explored an automated method to detect such lesions and help clinicians 
make better informed decisions. As far as we know, this is the first 
automated approach for optic nerve lesion detection using MRI. 

Our results show balanced accuracies of around 68% for validation, 
with similar sensitivity and specificity, so classification results are not 
affected by the uneven proportion of positive and negative labels. Re-
sults of the model are consistently better than the two other classifica-
tion methods we compare to, obtaining results around mid 50%, 
meaning that those simpler models are not able to distinguish the 
presence/absence of optic nerve lesions, and that our approach correctly 
captures the signal from the images that lead to correct decisions. 

When looking at the test set (D2), the performance of the CNN, while 
it slightly decreases compared to the training dataset (D1) (specially on 
the specificity), it has a similar balanced accuracy, albeit slightly lower 
(64%). The sensitivity is much higher, so the model has few FN but a 

sizeable number of FP. Given that those scans were completely unseen 
by the model during training, the results suggest that the model has not 
overfitted to the training data and it is able to generalize well. In 
contrast, the other two models show very poor performance, with 
balanced accuracies around 50% and bad specificities, which indicates 
that it assigns the same label to all the cohort, without learning to 
distinguish between them. Compared to the performance obtained in 
D1, SVM and RF do not work well on unseen data from another scanner. 
The confusion matrices of the three models show that the model over-
estimates the presence of lesion, with large amount of FP in the three 
models, although on a lower percentage in the CNN, while the number of 
FN remains low. 

While the performance shows that the network is able to distinguish 
lesions well enough, we also wanted to explore what the network is 
learning to take such decisions. Saliency maps (Fig. 4) show that the 
network is able to correctly identify the zone of the optic nerve, giving 
more weight to the voxels that represents that area. This is consistent 
across scans and cohorts, with the optic nerve being in slightly different 
positions but the network being able to detect it. When the network fails, 
it normally is because it is confused by areas that are not the optic nerve 
(FP and FN in the figure). When the network correctly predicts the 
lesion, we do not appreciate significant differences between the areas 
observed for scans with and without lesions, or across cohorts. 

While sensitivity of the model is not comparable to the one reported 
by trained neuroradiologists (80–94% within 30 days of symptoms (De 
Lott et al., 2022)), the performance of the model in D1 (68% balanced 
accuracy and 68% sensitivity) and D2 (74% sensitivity) makes us believe 
that the model is more comparable to the one reported by a radiologist 
unaware of the clinical symptoms and evaluating a single image, with a 
sensitivity of around 76%, (Bursztyn et al., 2019). Radiologists usually 
have access to a more diverse set of scans, repeated sequences, and in-
formation about the patient, while our model achieves the results with a 
single sequence. Given the speed of the model to process a single scan 
(around 20 s to preprocess the image with minimal human input and 
between 1 and 5 s to classify, depending on the machine), and the 
sequence used (short and easily acquired in clinical routine) the pro-
posed system could serve as a stepping stone for future, more precise 
models that could be easily integrated in a diagnosis procedure with 
minimal costs. Also, a tool that provides another opinion could be useful 
to make better informed decisions when there is disagreement or doubt 
on patient assessment, as well as in conditions without experienced 
specialists in optic nerve or centers with lower resources. 

Fig. 3. (a) Confusion matrices for the three models, evaluated on the D2 (testing) cohort. (b) ROC curve over D2 for the three models. Legend of the figure includes 
Area under the Curve (AUC) for each model. 

Table 2 
Table of results on the two datasets, D1 and D2. D1 results are presented as 
mean±std percentages over 200 iterations, as detailed in Section 2.5. Acc: Ac-
curacy. B. Acc: Balanced Accuracy. Sens: Sensitivity. Spec: Specificity. SVM: 
Support vector machine. RF: random forest. 3D CNN: 3D convolutional neural 
network.    

SVM RF 3D CNN 

D1 Acc 51.39 ± 4.81% 53.89 ± 5.07% 68.15 ± 6.24% 
B. Acc 50.8 ± 4.99% 53.06 ± 5.16% 68.11 ± 5.66% 
Sens. 48.61 ± 9.98% 49.96 ± 10.66% 67.97 ± 10.82% 
Spec. 52.99 ± 7.59% 56.15 ± 8.45% 68.26 ± 11.03% 

D2 Acc 44.35% 46.77% 59.67% 
B. Acc 51.7% 52.52% 64.11% 
Sens. 68.57% 65.71% 74.28% 
Spec. 34.83% 39.32% 53.39%  
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Performance of the model, while better than the other methods we 
compare it to, is still behind diagnosis accuracy of trained radiologists. A 
clear limitation of the presented work is that the proportion of scans 
with a lesion is very small compared to healthy optic nerve. Our dataset, 
in fact, over-represents the actual incidence present in the regular MS 
population to be able to have enough samples to successfully train the 
model. Larger studies on patients affected with ON could help build 
better, more balanced datasets with which to build improved detection 
models. Another limitation of the data is that, while our two cohorts 
were taken using different machines, they are from the same manufac-
turer and with the same parameters. Testing the method on images taken 
with another machine, or with other sequences, would help clarify the 
robustness of the model. We also have no information about the treat-
ments undergone by the patients, which could affect the ON and bias our 
results. All those limitations could be improved by designing a complete 
clinical study instead of a retrospective one. 

The architecture of the neural network could also be improved. 
Approaches such as metric learning (Kaya and Bilge, 2019) could help 
building a better representation of the problem, transforming it from a 
binary classification task to a manifold learning approach, where the 
different subtypes of optic nerve lesions (De Lott et al., 2022) could be 
included. Also, simpler, more traditional 2D CNN using slices of the scan 
could be alternatives to our architecture and ought to be studied. Adding 
clinical symptoms to the input of the network could help the classifi-
cation by adding extra context about the patient. Segmentation of the 
optic nerve could also help improve lesion detection and could be an 
interesting avenue to explore. For example, we could train a network to 
segment the optic nerve and use the saliency maps together with the 
segmentation to evaluate the prediction correctness, by looking at the 
percentage of pixel saliency probabilities outside the boundaries of the 
segmentation: if the network is looking at structures other than the optic 
nerve, it probably is a bad prediction. Finally, automated diagnostic 
models, including the one proposed, should be adapted to other se-
quences with improved optic nerve imaging (e.g. double inversion re-
covery sequences (Riederer et al., 2019)). 

5. Conclusions 

In this paper, we presented a first approach for automated optic 
nerve lesion detection based on MRI. We showed a simple and fast way 
to process the image, train a 3D CNN network and classify it. Perfor-
mance and interpretation of the network indicates that it is able to learn 
to distinguish lesions in the optic nerve, and that it could be an impor-
tant first step to develop systems that could support clinicians to make 
more informed diagnosis. 
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