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Reducing Data Dependencies in the Feedback Loop
of the CCSDS 123.0-B-2 Predictor

Antonio Sánchez, Ian Blanes, Yubal Barrios, Miguel Hernández-Cabronero, Joan Bartrina-Rapesta, Joan
Serra-Sagristà, Senior Member, IEEE, and Roberto Sarmiento

Abstract—On-board multi- and hyperspectral instruments ac-
quire large volumes of data that need to be processed with the
limited computational and storage resources. In this context, the
CCSDS 123.0-B-2 standard emerges as an interesting option to
compress multi- and hyperspectral images on-board satellites,
supporting both lossless and near-lossless compression with low
complexity and reduced power consumption. Nonetheless, the
inclusion of a feedback loop in the CCSDS 123.0-B-2 predictor
to support near-lossless compression introduces significant data
dependencies that hinder real-time processing, particularly due to
the presence of a quantization stage within this loop. This work
provides an analysis of the aforementioned data dependencies
and proposes two strategies aiming at maximizing throughput in
hardware implementations and thus enabling real-time process-
ing. In particular, through an elaborate mathematical derivation,
the quantization stage is removed completely from the feedback
loop. This reduces the critical path, which allows for shorter
initiation intervals in a pipelined hardware implementation and
higher throughput. This is achieved without any impact in the
compression performance, which is identical to the one obtained
by the original data flow of the predictor.

Index Terms—Hyperspectral imaging, compression algorithms,
CCSDS 123.0-B-2, on-board data processing.

I. INTRODUCTION

SPECTROSCOPIC imaging sensors are very common in
Earth Observation (EO) space missions due to the relevant

information acquired in the spectral domain for characteriza-
tion and monitoring purposes, among many others [1], [2].
The handling of the ever-increasing volumes of data produced
by these instruments with the often-limited on-board storage
resources and downlink capacities motivate the necessity of
using compression techniques that efficiently reduce data
volumes before being sent to the ground [3], [4].

Compression solutions for space missions are not straight-
forward to develop [5]. In addition to the usual compres-
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sion requirements, these solutions are required to have low-
enough complexity to fit well on spaceborne hardware, to
have limited power consumption, and to have robustness
against radiation-induced faults. The Consultative Committee
for Space Data Systems (CCSDS), a worldwide organization
formed by world-leading space agencies, has published several
data compression standards specifically conceived for space
applications, focusing on high compression performance at
affordable computational complexities.

Among these standards, the CCSDS 123.0-B-2 [6] specifies
a low-complexity algorithm to compress multi- and hyper-
spectral images in both lossless and near-lossless modes. It is
composed of two main stages: a predictor that exploits spectral
and spatial redundancy, and an entropy coder that encodes
prediction residuals. Image samples are handled sequentially,
and the predictor estimates the value of the current input
sample sz(t) considering previously processed samples in its
spatial and spectral neighborhood.

The CCSDS 123.0-B-2 standard introduces several dif-
ferences with respect to its predecessor CCSDS 123.0-B-1,
mainly to support near-lossless compression. These differences
introduce challenging data dependencies for a high-throughput
hardware implementation. A key novelty is the introduction
of a quantizer within the prediction loop, which controls data
losses through a maximum error limit that can be absolute or
relative to the sample magnitude. This requires the calculation
of the so-called sample representatives s′′z (t), which are a
reconstruction of the input samples after quantization. These
are required so that identical predictions can be performed
by a decoder, where the original values of the input samples
are not necessarily available. The standard also introduces
narrow local sums, which limit the predictor use of the sample
representatives to the left of the value being predicted. This
eases data dependencies and favours hardware optimization
strategies that improve throughput [7].

Regarding the entropy coding stage, the CCSDS 123.0-B-
2 standard defines three different encoders, including a novel
hybrid entropy encoder that provides higher compression ratios
than the other two for low-entropy data [8]. Entropy encoders
are out of the scope of this manuscript.

The main contributions of this letter are a data dependency
analysis for the prediction stage of the CCSDS 123.0-B-2 stan-
dard, and two implementation strategies that reduce the critical
path in the predictor’s feedback loop. In one strategy, the
quantization and reconstruction are effectively removed from
the feedback loop, and in another the feedback loop is further
reduced through speculative execution. These optimizations
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Fig. 1: Data dependency diagram for the CCSDS 123.0-B-2 predictor. The critical path for successive samples within the same
band is highlighted in bold orange.

allow to directly process images collected in Band-Interleaved
by Line (BIL) order, without any extra reordering stage and
thus enabling compression on-the-fly. The application of both
strategies on [9] shows an increase in maximum theoretical
throughput without affecting the output of the prediction stage.

This paper employs the same notation and naming conven-
tions as the CCSDS 123.0-B-2 standard. Readers not familiar
with the standard may obtain additional descriptions within
the standard itself [6], [7], while additional implementation
information is available in [10], [9], [11].

The rest of the paper is structured as follows. The data
dependency analysis is detailed in Section II, while the two
implementation strategies are described in Section III. Finally,
Section IV summarizes the main conclusions of this work.

II. ANALYSIS OF DATA DEPENDENCIES

The use of sample representatives in CCSDS 123.0-B-2
imposes significant challenges in the processing data path and
introduces data dependencies between successive samples that
might impact the complexity and performance of hardware
implementations. In this Section, the main bottlenecks found
in the predictor stage of the standard are analyzed.

The data dependencies that occur during the prediction of
one sample in CCSDS 123.0-B-2 are depicted in Fig. 1, where
data flows are represented by arrows between the intermediate
results. For a given sample at index t –in raster-scan order–
within band z, the predictor inputs are the input sample sz(t)
itself, some sample representatives s′′≤z(< t) of previously
scanned locations, and the weight vector Wz(t). For the
same sample, the predictor outputs are an updated weight
vector Wz(t + 1), a mapped quantizer index δz(t), i.e., the
predicted value, and a sample representative s′′z (t) to be used
in future predictions instead of the current sample. Note that
s′′≤z(< t) are used to compute local sums and differences, and
the computation of s′′z (t) is particularly onerous, requiring a
quantization operation and thus involving a divider.

A key aspect in the evaluation of data dependencies is the
order in which input samples are processed. This order may
directly follow the order of the input samples as produced by
a given multi- or hyperspectral sensor, or it may be the result
of a careful rearrangement of the input data into an order
better suited to obtain high throughput [11]. Hence, instead
of focusing our analysis on the three common data processing
orders (i.e., BIP, BIL, and BSQ orders), this letter studies data

Fig. 2: Pipeline disposition when processing data for samples
in the same locations of consecutive spectral bands. An arrow
denotes the principal data dependency. The MAC employed
in the prediction calculation is displayed as a separate stage
preceding the prediction stage.

dependencies according to whether dominant data dependen-
cies are of spectral (i.e., samples processed with consecutive
values of z) or spatial nature (i.e., samples processed with
consecutive values of t). Implementations using careful data
rearrangements may benefit too from our analysis and from
the derived implementation strategies described later.

A. Spectral data dependencies

A careful analysis reveals that predictions at index t of band
z require the sample representative s′′z−1(t) to compute the
central local differences in Uz(t), which in turn is required to
compute s′′z (t). This introduces a strong dependency within
the data path for samples at the same spatial locations of
consecutive spectral bands, in which a sample must be almost
fully processed before the processing of the next one can start,
as shown in Fig. 2. This imposes a strong limitation in terms
of throughput that can be hardly avoided. The only manner in
which to dispose of this strong dependency is by setting the
number of previous bands for prediction P to 0. However, this
solution completely disables inter-band prediction, resulting in
unacceptable compression penalties.

Other sample representatives s′′z−1(t
′) for t′ < t are re-

quired as well to compute local sums, but the use of narrow
local sums and the use of the column-oriented prediction
mode allow for differences between t′ and t of approxi-
mately the width of the image. Hence, when determining data
compression orders, it seems necessary to avoid those that
consecutively process input samples with strong spectral data
dependencies (e.g., the BIP order).
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sgn+[ez(t)] =


−1 if

∣∣sz(t)− ŝz(t)
∣∣ ≤ mz(t) and s̃z(t) is odd,

1 if
∣∣sz(t)− ŝz(t)

∣∣ ≤ mz(t) and s̃z(t) is even,
sgn+

[
sz(t)− ŝz(t)

]
otherwise.

(1)

B. Spatial data dependencies

Here, the main data dependency is caused by the weight vec-
tor Wz(t) being employed to produce weight vector Wz(t+1)
in a convoluted succession of data dependencies (see Fig. 1).
This limits the achievable throughput because weights are
employed to obtain d̂z(t) using an inner product of vectors,
which cannot be computed until weights related to sample t−1
are obtained.

Spatial data dependencies are strongly influenced by the
selected local sum type and prediction mode, which may cause
additional dependencies due to the use of neighboring sample
representatives. The strongest data dependency is found in
local sums in the wide neighbor-oriented mode, where the
sample representative s′′z (t− 1) of the next sample to the left
must be obtained to compute the local sum. Parallelization
possibilities are limited in this configuration, demanding for
almost-serial implementations. This also applies for the first
line of an image in wide column-oriented mode. Conveniently,
narrow local sums do not present this data dependency.

Another dependency related with sample representatives
occurs due to the use of the full prediction mode. In this case,
directional local differences are required, and again the sample
representative s′′z (t− 1) is used.

The most favorable configuration is the combination of nar-
row local sums and reduced prediction mode. In this situation,
the spatial dependency on sample representatives is mostly
removed with the limiting factor being weight dependencies.
Nonetheless, as explained in Section III, the dependency on
weights can be significantly alleviated, reducing the critical
path by removing the quantization result from the dependen-
cies of Wz(t + 1). It is worth noting that this change does
not affect the result of the weight updating nor the prediction
outcome.

III. IMPLEMENTATION STRATEGIES

Two implementation strategies are proposed to shorten the
critical path of a CCSDS 123.0-B-2 predictor implementation,
achieving a higher throughput in hardware implementations
without affecting the predictor outputs.

The first implementation strategy is related to the use of an
equivalent definition of the first part of the weight update step,
i.e., the calculation of sgn+[2s′z(t) − s̃z(t)]. This expression
requires results from the prediction calculation step, but also
from the sample representatives step, which in turn requires
results from the quantization step. The equivalent definition
for t > 0 is shown in (1). Thus, this calculation can be now
obtained from sz(t), ŝz(t) and s̃z(t) instead of s′z(t) and s̃z(t).

This redefinition originates from the main idea that quantiz-
ing a prediction residual ∆z(t) does not alter the sign of the
result (except for when the quantizer yields a zero quantizer
index), and that the sign of ∆z(t) can be employed in the
weight update stage (except when the quantizer yields a zero

(a)

(b)

Fig. 3: Pipeline disposition when processing data for samples
in consecutive locations of the same spectral band (a), and
with eager execution of weight updates (b).

quantizer index) without having to wait for quantization and
sample representative stages. While the redefinition is very
simple, its derivation is extensive and for reader’s convenience
is left out of the main text and available in Annex A. As shown
in Fig. 3a, using this new definition effectively removes the
quantization step from the feedback loop and allows for tight
pipelining strategies.

Additionally, a second cumulative strategy may be applied
to the weight update step. Similar to [12], eager execution may
be employed on the weight update calculation given that the
result of sgn+ is binary. Therefore, the computation of both
possible weight update results can be done in parallel and in
advance, and the selection of the correct one is performed after
the result of the sgn+ is obtained. This allows to reduce the
initiation interval between samples in a pipelined implemen-
tation, improving the performance at the cost of duplicating
the logic used for weight updating. Trough both strategies,
the loop of dependencies is reduced to the computation of the
MAC and prediction modules, as depicted in Fig. 3b.

Experimental simulation demonstrates the goodness of the
proposed optimization strategies. Considering as baseline the
work conducted in [9], in which the CCSDS 123.0-B-2 pre-
dictor runs at a maximum clock frequency of 125 MHz, a
speed up x7 is achieved. More detailed results are reflected in
Table I. Furthermore, these strategies do not alter the output of
the prediction stage, and thus do not alter any rate-distortion
results.
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TABLE I: Experimental results.

Baseline Proposal
Critical path (cycles per sample) 7 1
Speed (Msamples/s) @125 MHz 17.86 125

IV. CONCLUSION

This letter examines the data dependencies within the
CCSDS 123.0-B-2 prediction stage, and it shows that existing
spectral data dependencies are to be avoided within an imple-
mentation critical path. On the other hand, existing spatial data
dependencies, while apparently equally burdensome, may be
eased through two proposed implementation strategies. These
strategies effectively remove the predictor quantizer out of
an implementation’s feedback loop and make use of eager
execution to achieve higher implementation throughput (up
to 1 clock cycle per sample), while producing bit-identical
compressed files.

The selection of an appropriate processing order that com-
bines well with the proposed implementation strategies is a
interesting topic of future research. The BIL order is a clear
candidate, since it perfectly fits the optimizations presented in
this work. Its goodness will be demonstrated in a hardware
implementation, which is on-going.

APPENDIX A

This appendix proves (1) for t > 0. We start by stating some
required equations from the CCSDS 123.0-B-2 standard. We
use the symbol ‘§’ to indicate section numbers referring to the
standard document [6].

From § 1.6.1, § 4.10.1, § 4.9.2 § 4.7.4 and § 4.8.1 respec-
tively we have that

sgn+[x] =

{
1 if x ≥ 0,
−1 if x < 0,

(2)

ez(t) = 2s′z(t)− s̃z(t), (3)

s′z(t) = clip
(
ŝz(t) + qz(t)(2mz(t) + 1), {smin, smax}

)
. (4)

ŝz(t) = ⌊s̃z(t)/2⌋ , (5)

qz(t) = sgn
(
∆z(t)

)⌊(
|∆z(t)|+mz(t)

)/(
2mz(t)+ 1

)⌋
, (6)

and
∆z(t) = sz(t)− ŝz(t). (7)

By substituting (4) and (6) into (3) we obtain

ez(t) = clip
(
K2+2 · sgn (∆z(t)) ·K1 ·K3,{

2smin − s̃z(t), 2smax − s̃z(t)
})

,
(8)

with

K1 =
⌊(
|∆z(t)|+mz(t)

)/(
2mz(t) + 1

)⌋
, (9)

K2 = 2 ŝz(t)− s̃z(t), and K3 = (2mz(t) + 1).
At this point we are interested to test whether the expression

in (8) is strictly positive or not, as this is the only information
needed to obtain sgn+[ez(t)]. Before moving to study the value
of sgn+[ez(t)], we calculate some bounds that will be of use
latter.

case (i)s̃z(t) > 2smin

case (h)s̃z(t) = 2smin

∆z(t) < 0

case (g)s̃z(t) < 2smax + 1

case (f)s̃z(t) = 2smax + 1
∆z(t) > 0

case (e)

∆z(t) = 0K1 > 0

case (d)s̃z(t) > 2smin

case (c)s̃z(t) = 2sminK2 = −1

case (b)s̃z(t) < 2smax + 1

case (a)s̃z(t) = 2smax + 1

K2 = 0

K1 = 0

Fig. 4: Cases of study of equation (8).

It is straightforward to see that K1 ≥ 0, and from (5) we
can also see that

K2 = 2

⌊
s̃z(t)

2

⌋
− s̃z(t) =

{
−1 if s̃z(t) is odd,
0 if s̃z(t) is even,

(10)

and as mz(t) ≥ 0 from § 4.8.2, we can also see that

K3 ≥ 1. (11)

From § 4.7.3 we have that s̃z(t) =
⌊
s̆z(t)/2

Ω+1
⌋
, and from

the clipping boundaries defined for s̆z(t) in § 4.7.2 we have
2Ω+2smin ≤ s̆z(t) ≤ 2Ω+1(2smax+1), which allows us to infer
that

⌊
2Ω+2smin/2

Ω+1
⌋
≤ s̃z(t) ≤

⌊
2Ω+1(2smax + 1)/2Ω+1

⌋
,

and that
2smin ≤ s̃z(t) ≤ 2smax + 1. (12)

Corollary 1. For the minimum clipping boundary 2smin−s̃z(t)
in (8), from (12) we can see that either 2smin = s̃z(t) implying
2smin−s̃z(t) = 0, or 2smin < s̃z(t) implying 2smin−s̃z(t) < 0.
I.e., strictly negative values are only turned to zero in the
clip function in (8) when 2smin = s̃z(t), and remain strictly
negative otherwise.

Corollary 2. Similarly, for the maximum clipping boundary
2smax − s̃z(t) in (8), from (12) we can see that either s̃z(t) =
2smax + 1 implying 2smax − s̃z(t) = −1, or s̃z(t) < 2smax + 1
implying 2smax − s̃z(t) ≥ 0. I.e., non-negative values are only
turned to strictly negative in the clip function in (8) when
s̃z(t) = 2smax + 1, and remain non-negative otherwise.

At this point we are ready to analyze (8) case by case.
Fig. 4 presents a flowchart which separates the study of (8)
into mutually exclusive cases. Note that at each decision point,
all possible options are taken into account. We now analyze
each case individually:

(a) This case is impossible. From § 3.3.2, the value of smax
is either 2D − 1 or 2D−1 − 1, with D an integer not
smaller than 2. Hence smax is odd and s̃z(t) = 2smax+1
is odd too, which is incompatible with K2 = 0.

(b) As K1 = 0 and K2 = 0, we can see that ez(t) =
clip

(
0,
{
2smin − s̃z(t), 2smax − s̃z(t)

})
, which by Corol-

lary 2 we see is equivalent to ez(t) = 0, as s̃z(t) <
2smax + 1.
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case (δ): ez(t) < 0∆z(t) < 0

case (γ): ez(t) ≥ 0∆z(t) > 0K1 > 0

case (β): ez(t) = −1K2 = −1

case (α): ez(t) = 0K2 = 0

K1 = 0

Fig. 5: Summary of the results of the case by case study of (8).

(c) This case is impossible. From § 3.3.2, the value of smin
is either 0 or −2D−1, with D an integer not smaller
than 2. Hence smin is even and s̃z(t) = 2smin is even
too, which is incompatible with K2 = −1.

(d) As K1 = 0 and K2 = −1, we can see that ez(t) =
clip

(
− 1,

{
2smin − s̃z(t), 2smax − s̃z(t)

})
, which by

Corollary 1 we see is equivalent to ez(t) = −1, as
s̃z(t) > 2smin.

(e) This case is impossible. In this case K1 > 0,
hence K1 =

⌊(
|∆z(t)|+mz(t)

)
/
(
2mz(t) + 1

)⌋
>

0, but if ∆z(t) = 0, we can see that K1 =
⌊mz(t)/(2mz(t) + 1)⌋ = 0, as mz(t) ≥ 0 from § 4.8.2.

(f) This case is impossible. Having ∆z(t) > 0 implies
sz(t) > ŝz(t), and sz(t) >

⌊
s̃z(t)/2

⌋
. From § 3.3.2

we have that sz(t) ≤ smax, thus
⌊
s̃z(t)/2

⌋
< smax.

In this case we have that s̃z(t) = 2smax + 1, but
substituting our previous finding into this equation yields
s̃z(t) = 2smax +1 > 2

⌊
s̃z(t)
2

⌋
+1, which is impossible.

(g) As K3 ≥ 1 from (11), as K1 is an integer strictly larger
than 0 (i.e., K1 ≥ 1), and as ∆z(t) > 0 we have that
K2+2 ≤ K2+2 sgn (∆z(t))·K1 ·K3. As K2 ∈ {−1, 0},
we have that 1 ≤ K2 +2 sgn (∆z(t)) ·K1 ·K3. I.e., the
clipping operation on (8) is applied to a value not smaller
than 1. From Corollary 2, as s̃z(t) < 2smax + 1, we see
that ez(t) ≥ 0.

(h) This case is impossible. ∆z(t) < 0 implies sz(t) <
ŝz(t), and sz(t) <

⌊
s̃z(t)/2

⌋
. From § 3.3.2 we have that

smin ≤ sz(t), thus smin <
⌊
s̃z(t)/2

⌋
. In this case we have

that s̃z(t) = 2smin, but substituting our previous finding
into this equation yields s̃z(t) = 2smin < 2

⌊
s̃z(t)/2

⌋
,

which is impossible for s̃z(t) even and s̃z(t) = 2smin
makes s̃z(t) even.

(i) As K3 ≥ 1 from (11), as K1 is an integer strictly larger
than 0 (i.e., K1 ≥ 1), and as ∆z(t) < 0 we have that
K2+2 sgn (∆z(t))·K1 ·K3 ≤ K2−2. As K2 ∈ {−1, 0},
we have that K2 + 2 sgn (∆z(t)) · K1 · K3 ≤ −2. I.e.,
the clipping operation on (8) is applied to a value non-
larger than −2. From Corollary 1, as s̃z(t) > 2smin, we
see that ez(t) < 0.

The results of this case by case analysis of equation (8) is
detailed in Fig. 5. There are only four cases remaining, and
for each one the value of sgn+[ez(t)] is known.

For the last part of the proof, we show that (1) yields the
correct result for each of the cases in Fig. 5. From (9) we can
see that K1 = 0 is equivalent to

K1 =
⌊(
|∆z(t)|+mz(t)

)/(
2mz(t) + 1

)⌋
= 0. (13)

As the dividend in (13) is non-negative and the divisor is

strictly positive, |∆z(t)| + mz(t) < 2mz(t) + 1 implies that
K1 = 0. Hence, for the first two cases of (1), we see that
K1 = 0.

For the first case of (1) we also know that s̃z(t) is odd,
and thus, per (10), that K2 = −1. This means that for the
first case of (1) we are in case (β) of Fig. 5. For this case,
sgn+

[
− 1

]
= −1.

For the second case of (1) we know that K1 = 0 and that
s̃z(t) is even, and thus, per (10), that K2 = 0. This means
that for the second case of (1) we are in case (α) of Fig. 5.
For this case, sgn+

[
0
]
= 1.

For the third case of (1) we know that |sz(t) − ŝz(t)| ≥
mz(t) + 1 and hence that K1 > 0. For this third case, there
are two subcases:

– If ∆z(t) = sz(t)− ŝz(t) > 0 we are in case (γ). In this
case we know that ez(t) ≥ 0 thus sgn+[ez(t)] = 1, thus
(1) yielding sgn+[sz(t)− ŝz(t)] = 1 is the correct result.

– If ∆z(t) = sz(t)− ŝz(t) < 0 we are in case (δ). In this
case we know that ez(t) < 0 thus sgn+[ez(t)] = −1,
thus (1) yielding sgn+[sz(t)− ŝz(t)] = −1 is the correct
result.

At this point we have proven that all cases in (1) yield the
correct result. ■
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