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Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases

(IBD) resulting from the interaction of multiple environmental, genetic and

immunological factors. CD5 and CD6 are paralogs encoding lymphocyte co-

receptors involved in fine-tuning intracellular signals delivered upon antigen-

specific recognition, microbial pattern recognition and cell adhesion. While CD5

and CD6 expression and variation is known to influence some immune-
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mediated inflammatory disorders, their role in IBD remains unclear. To this end,

Cd5- and Cd6-deficient mice were subjected to dextran sulfate sodium (DSS)-

induced colitis, themost widely used experimental animal model of IBD. The two

mouse lines showed opposite results regarding body weight loss and disease

activity index (DAI) changes following DSS-induced colitis, thus supporting Cd5

andCd6 expression involvement in the pathophysiology of this experimental IBD

model. Furthermore, DNA samples from IBD patients of the ENEIDA registry

were used to test association of CD5 (rs2241002 and rs2229177) and CD6

(rs17824933, rs11230563, and rs12360861) single nucleotide polymorphisms

with susceptibility and clinical parameters of CD (n=1352) and UC (n=1013).

Generalized linear regression analyses showed association of CD5 variation with

CD ileal location (rs2241002CC) and requirement of biological therapies

(rs2241002C-rs2229177T haplotype), and with poor UC prognosis (rs2241002T-

rs2229177T haplotype). Regarding CD6, association was observed with CD ileal

location (rs17824933G) and poor prognosis (rs12360861G), and with left-sided or

extensive UC, and absence of ankylosing spondylitis in IBD (rs17824933G). The

present experimental and genetic evidence support a role for CD5 and CD6

expression and variation in IBD’s clinical manifestations and therapeutic

requirements, providing insight into its pathophysiology and broadening the

relevance of both immunomodulatory receptors in immune-mediated disorders.
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Introduction

Inflammatory bowel diseases (IBD) are a group of chronic

inflammatory conditions of the gastrointestinal tract, including

ulcerative colitis (UC) and Crohn’s disease (CD). The precise

etiology of IBDs remains unknown, though their relation

to multiple and diverse genetic, immunological and

environmental factors is accepted. Genome-wide association

studies (GWAS) have identified immune-related genes

associated to susceptibility and/or clinical manifestations that

point to an inappropriate regulation of innate and/or adaptive

immune responses in IBD (1). However, these polymorphisms

alone do not account for IBD heritability, suggesting that other

environmental, epigenetic and genetic factors, including rare

variants, must be in place (1).

CD5 and CD6 are paralogs sharing homology in tissue

expression patterns, structure and function (2–4). They encode

signal-transducing surface co-receptors expressed on all T and

B1a cells and involved in the fine tuning of intracellular

activation signals delivered upon specific antigen recognition

by lymphocyte’s clonotypic receptors (5). Both CD5 and CD6

receptors are composed of an extracellular region encompassing

three tandem scavenger receptor cysteine-rich (SRCR) domain

repeats, a transmembrane region, and a cytoplasmic
02
region devoid of catalytic activity but well adapted for

phosphorylation and association with downstream signaling

effectors. Importantly, CD5 and CD6 are physically associated

with the T cell receptor complex (TCR) with which co-localize at

the center of the immunological synapse (6), providing

inhibitory (CD5) and activating/inhibitory (CD6) signals (7).

This is likely achieved through interaction with endogenous

counter-receptors such as CD166/activated leukocyte cell

adhesion molecule (ALCAM) (8), Galectins 1 and 3 (9), and

CD318/CUB domain-containing protein 1 (CDCP-1) (10) for

CD6, and still ill-defined ligands (CD72, IgVh framework,

gp200, gp40-80, gp150, IL-6 and CD5 itself) for CD5 (11–18).

Both molecules also act as pattern-recognition receptors (PRRs)

for microbial-associated molecular patterns (MAMPs), where

CD5 interacts with fungal (b-glucan) (19), viral (hepatitis C

virus) (20), and parasitic (E. granulosus teguments) structures

(21), while CD6 does it with bacterial (lipopolysaccharide,

lipoteichoic acid and peptidoglycan) (22), viral (gp120 HIV-1)

(23), and parasitic (E. granulosus tegument) structures (21). This

dual role of CD5 and CD6 as both immunomodulatory and

microbial PRR receptors is supported by pre-clinical models of

infection, autoimmunity and cancer involving Cd5- and Cd6-

deficient mouse lines, as well as infusion of wild-type mice with

soluble CD5 and CD6 proteins (24–26).
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To date, no CD5 or CD6 deficiencies have been reported in

humans. However, functionally relevant single nucleotide

polymorphisms (SNPs) of CD5 and CD6 have been identified,

which act as susceptibility or disease modifier markers in

autoimmune and neoplastic processes. Allelic combinations of

the CD5 rs2241002 and rs2229177 SNPs resulting in hyper-

reactivity to TCR stimulation are associated to more severe

systemic lupus erythematosus (SLE) forms, but predict better

prognosis in chronic lymphocytic leukemia (CLL) and

melanoma (27–29). Moreover, GWAS have involved CD5

(rs2229177) in rheumatoid arthritis susceptibility (30).

Regarding CD6, the rs12360861, rs17824933 and rs11230563

SNPs are revealed as disease modifiers in psoriasis, and as

susceptibility markers in multiple sclerosis (MS) and Behç et’s
disease (31–34). Also, GWAS and meta-analyses have associated

the CD6 rs11230563 SNP to IBD susceptibility (35, 36).

However, its role as a disease modifier in IBD, and the

involvement of other neighboring SNPs from the CD6 and

CD5 genes, and from the functionally related CD166/ALCAM

gene, are still unknown.

The present work explores the consequence of CD5 and CD6

expression and variation in experimental and clinical IBD. To

this end, we first analyzed the impact of Cd5 and Cd6 deficiency

on dextran sulphate sodium (DSS)-induced colitis, an

experimental model of human IBD (37). Subsequent clinical

association studies assessed the impact of CD5 and CD6

variations on different clinically relevant manifestations and

therapeutic requirements of CD and UC.
Materials and methods

Mice

Cd5-deficient (Cd5-/-) mice backcrossed to C57BL/6

background were provided by Chander Raman (University of

Alabama at Birmingham) (38). Cd6-deficient (Cd6-/-) C57BL/6

mice were obtained through a development agreement with the

Knock-Out Mouse Project Repository (KOMP), an international

consortium promoted by the National Institutes of Health (NIH;

https://www.komp.org) (39). Wild-type C57BL/6 mice from

Charles River Laboratories (France) were bred in our animal

facility. All mouse procedures were approved by the Animal

Experimentation Ethical Committee from University of Barcelona.
DSS-induced mouse colitis model

Colitis was induced by administration of 2% (w/v) 36-50 kDa

DSS (MP Biomedicals) in drinking water for 5 days to 11- to 19-

week-old wild-type, Cd5-/- and Cd6-/- female mice of C57BL/6
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background weighing >20 g. Body weight and disease activity

index (DAI) were monitored every day. DAI was scored as

follows: rectal bleeding (absent=0, present=1), animal motility

(normal=0, reluctant=1, hunched=2), fur appearance (normal=0,

ruffled=1, spiky=2) and body weight loss (none=0, 0-5%=1, 5-10%

=2, 10-15%=3, >15%=4). At day 8, mice were euthanized by

cervical dislocation for collection of blood and organ samples.

Colons were measured and weighted, and terminal pieces were

collected for histology and RNA extraction. EDTA-anticoagulated

blood was centrifuged in heparinized capillaries for 30 min at 1000

xg and hematocrit was calculated as the length of packed red

blood cells (RBC) divided by the total blood length (RBC + serum)

multiplied by 100. For RBC count, blood was diluted in PBS and

RBC were counted with a hemocytometer. For microbiological

analyses, mesenteric lymph nodes (mLN) and liver were collected

under sterile conditions and disaggregated through a 40 mm nylon

mesh for overnight (o/n) seeding at 37 °C on Columbia agar plates

with 5% sheep blood (Becton-Dickinson) and colony forming unit

(cfu) counting. Pieces of ~2 mm were cut from the terminal colon

of mice and submerged in RNA later (Sigma) o/n at 4 °C before

being stored dry at -80 °C for further RNA analysis or fixed in PBS

containing 4% paraformaldehyde during 48 h for histological

studies. RNA was extracted using the TRIzol® Reagent (Life

Technologies) and the PureLink™ RNA Mini Kit (Ambion, Life

Technologies) following manufacturer’s instructions, with the aid

of a QIAGEN TissueLyser. RNA was quantified and

retrotranscribed into cDNA by using the High-capacity cDNA

Kit (Life Technologies). Cytokine mRNA levels were assessed by

real-time quantitative PCR (RT-qPCR) with the TaqMan™ Fast

Universal PCR Master Mix No AmpErase™ UNG (Life

Technologies) using a 7900HT fast real-time PCR system

(Applied Biosystems, Foster City, CA, US) and the following

FAM gene expression assays: Mm01179194_m1 (Cd3e),

Mm00435532_m1 (Pdcd1), Mm00432423_m1 (Cd79a), Mm

01337324_g1 (Ncr1), Mm00447885_m1 (Klrc1), Mm00

447885_m1 (Mpo), Mm01324470_m1 (Lcn2), Mm00440502

_m1 (Nos2), Mm00801778_m1 (Ifng), Mm00439619_m1

(Il17a), Mm00445259_m1 (Il4), Mm00439614_m1 (Il10), Mm0

0444241_m1 (Il22), Mm00443260_g1 (Tnf), Mm00434228_m1

( I l 1b ) , Mm00446190_m1 ( I l 6 ) , Mm01178820_m1

(Tgfb1), Mm00441259_g1 (Ccl3), and Mm04207460_m1 (Cxcl1),

Mm00450960_m1 (Tbx21), Mm01261022_m1 (Rorc),

Mm00484683_m1 (Gata3) and Mm00475162_m1 (Foxp3), all

from Thermo Fisher Scientific. Relative cytokine mRNA expression

normalized to Gapdh (Mm99999915_g1) expression was calculated

as 2-DDCt, where DDCt = (CTGene of interest sample − CTGAPDH

sample)− (CTGene of interest basal−CTGAPDHbasal).

For histological analysis, fixed samples were included in

paraffin. Three micrometer tissue sections were obtained and

stained with hematoxylin-eosin. Histology was scored by two

independent evaluators according to the following parameters:
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degree of inflammation (0-3), goblet cell loss (0-2), abnormal or

hyperproliferative crypts (0-3), abscesses (0-1), architectural

damage (0-2), transmural damage (0-3). Images were obtained

with an Eclipse 50i microscope, using a Pan Fluor 10x/0.30

objective and a Digital Sight DS-5M camera, all from Nikon.

For immunohistochemical analysis, paraffin-embedded 5 mm
tissue sections were immersed in xylene and dehydrated in ethanol.

After antigen retrieval, tissue sections were blocked with PBS

5% FBS. For myeloperoxidase (MPO) chromogenic

immunohistochemistry assay, primary goat anti-mouse MPO

polyclonal antibody (R&D Systems) was incubated at 4°C

overnight. Then, endogenous peroxidase activity was blocked

using PBS 0.3% H2O2 solution for 10 min at room temperature

and peroxidase-labelled rabbit anti-goat IgG secondary antibody

(SIGMA) was incubated for 1h at room temperature. Tissue

sections were stained using 3,3’-diaminobenzidine (DAB;

SIGMA) and then hematoxylin staining was performed following

standard protocols. Sections were mounted with DPX and

visualized at 20x magnifications using a NIKON e600 microscope.

For CD3ϵ and IgM immunofluorescence assay, endogenous

biotin was blocked with the Avidin/Biotin blocking kit SP-2001

(VectorLabs) following manufacturer’s indications. Then,

primary antibodies rabbit anti-mouse CD3ϵ (Cell signaling,

D4V8L; dilution 1/100) and FITC-labelled goat anti-mouse

IgM (Southern Biotech; dilution 1/200) were incubated at 4 °C

overnight. Biotin-labelled secondary donkey anti-rabbit IgG

antibody (Jackson Immunoresearch, dilution 1/200) was

incubated for 1 h at room temperature. Finally, A555-labelled

streptavidin (Roche, dilution 1/200) was incubated for 20 min at

room temperature and samples were mounted with mounting

medium (PBS 80% glycerol). Samples were visualized at 10 and

20x magnifications using a NIKON e600 microscope.
DNA samples from patients and controls

Genomic DNA samples from CD (n=1352) and UC patients

(n=1013) were retrieved from the ENEIDA biobank upon

approval from the Spanish Working Group on CD and UC

(GETECCU) (40). Control genomic DNA samples from

volunteer donors of the Blood and Tissue Bank (BST) of the

Generalitat de Catalunya (n=604) were purified by using the

MagNA Pure 96 DNA and Viral NA Large Volume Kit (Roche

Diagnostics, Rotkreuz, Switzerland) and the High-throughput

robotic workstation MagNa Pure 96 (Roche Diagnostics). The

study was approved by the Ethical Committee of Clinical

Research of the Hospital Clı́ nic de Barcelona.
SNP genotyping

Genomic DNA samples (20 ng) were subjected to RT-PCR

in a LightCycler® 480 Instrument (Roche) using TaqMan
Frontiers in Immunology 04
Genotyping Master Mix and TaqMan probes for CD5

(rs2229177, rs2241002), CD6 (rs12360861, rs17824933,

rs11230563), and CD166/ALCAM (rs6437585) (all from

Thermo Fisher), following manufacturer’s instructions.

Genotyping failure rate was lower than 0.02 for all SNPs.
Definitions

Location (terminal ileum, colon, ileocolon, and upper

gastro-intestinal) and behavior (nonstricturing and

nonpenetrating, stricturing, and penetrating) of CD were

classified according to the Montreal classification (41). For

statistical analysis of location, a value of 1 was assigned to

patients with colonic disease, 2 to patients with ileocolonic

disease and 3 to patients with ileal disease, independently of

upper gastro-intestinal tract involvement. Upper gastro-

intestinal tract involvement (presence vs. absence) was

assessed independently of distal ileal and colonic involvement.

For statistical analysis of extent in UC patients, a value of 0 was

assigned to patients with ulcerative proctitis (Montreal

classification E1) and a value of 1 was assigned to patients

with left-sided UC or extensive UC (Montreal classification E2

and E3). Prognosis was calculated as previously described:

patients not requiring any immunomodulatory nor surgical

treatment during at least 4 years of follow-up from diagnosis

were classified as “good prognosis” while patients requiring two

or more immunomodulatory treatments and/or two or more

abdominal surgeries were described as “poor prognosis” (42).
Statistical analyses

Statistical analysis in patient/donor cohort studies was

performed with R 3.6.0 (R Foundation for Statistical

Computing, Vienna, Austria), with the packages ‘SNPassoc’,

‘survival’, and ‘haplo.stats’ available at the Comprehensive R

Archive Network (CRAN) repository. The ‘association’ function

included in the ‘SNPassoc’ package was used to assess linkage

between each SNP and desired clinical variables with generalized

linear models. For each analysis, 4 models were generated

(codominant, dominant, recessive, log-additive), and the

model with lowest Akaike information criterion (AIC) was

chosen. Analyzed variables were age of onset (calculated date

of diagnosis − date of birth), peripheral arthritis/arthralgia,

ankylosing spondylitis, sacroiliitis, sclerosing cholangitis,

cutaneous manifestations (pyoderma gangrenosum or

erythema nodosum), ocular manifestations (uveitis or iritis),

requirement of biological treatments and prognosis.

Additionally, location of the disease, presence of stenosis,

presence of fistulae and perianal disease were included in the

CD cohort and extent of the disease was included in the UC

cohort. In all analyses, sex and persistent tobacco consumption
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were included as co-variants. To generate stenosis-free survival

and fistulae-free survival curves, time between enrolment and

complication (patients with stenosis or fistulae) or between

enrolment and last follow-up (patients without stenosis or

fistulae) was calculated. Cox proportional hazards regression

was used to assess the linkage between each SNP and stenosis-

free survival or fistulae-free survival. Association of SNPs with

susceptibility to CD, UC or combined (IBD) was assessed with

the ‘association’ function by comparing each cohort with the

control cohort. P values were corrected for false discovery rate

(FDR) with the ‘p.adjust’ function (q values). The ‘haplo.glm’

function included in the ‘haplo.stats’ package was used to assess

linkage between haplotypes and binary clinical variables with

generalized linear models, and odds ratio (OR) and confidence

intervals (CI) for these associations were obtained with the

‘haplo.cc’ function.

In the study of animal models, normality of data was

assessed with the D’Agostino & Pearson normality test. When

data was normally distributed, differences were assessed by t-

tests, otherwise Mann-Whitney tests were performed. In

multiple comparisons, P values were corrected for false

discovery rate.
Results

Cd5 and Cd6 deficiency modulate DSS-
induced colitis

The putative role of CD5 and CD6 lymphocyte co-receptors

in the pathophysiology of IBD was first explored by subjecting

Cd5-/- and Cd6-/- mice to the DSS-induced colitis. Cd5-/- mice

showed a less aggressive disease than Cd5+/+ controls

(Figure 1A), as deduced from lower body weight loss and DAI,

in agreement with a previously published result (43). In contrast,

Cd6-/- mice showed an exacerbated phenotype with regard to

Cd6+/+ controls. Accordingly, Cd6-/- mice presented a higher

body weight loss (Figure 1B, left) and a higher DAI (Figure 1B,

right), which was seasonally influenced, as observed in spring/

summer and autumn/winter variations (Figure 1C).

Contrary to the Cd5-/- case, the lack of published

information of Cd6-/- mice on the DSS-induced colitis model

encouraged a deeper evaluation of different experimental

parameters at the end of disease follow-up (day 8). No

differences were observed in colon length, weight or weight/

length ratio relative to Cd6+/+ controls (Figure 2A). As illustrated

in Figure 2B, Cd6-/- mice presented increased hematocrit

consistent with higher diarrhea-induced fluid loss, and a trend

to lower RBC counts together with increased mean corpuscular

volume (MCV) consistent with moderate rectal bleeding and

erythroblast production, respectively (44). No differences in cfu

count were observed in mLN and liver (Figure 2C), arguing

against differential bacterial translocation to draining organs as
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responsible for the differences observed in disease severity.

Histological analyses showed noticeable crypt architectural

distortion in colon samples from both Cd6+/+ and Cd6-/- mice,

with no significant differences between their histology scores

(Figure 2D). Immunohistochemical analyses of the colonic

mucosa composition revealed no significant differences in

terms of granulocyte (MPO+), T cell (CD3ϵ+) and B cell

(IgM+) infiltrates (Figure 2E). Gene expression analyses of a

wide panel of pro-/anti-inflammatory cytokine and chemokine

and transcription factors revealed decreased expression of Ifng,

Cd3e, Ncr1 and Gata3 together with increased expression of Il6

and Cxcl1 in Cd6-/- mice with regard to controls (Figure 3A). A

trend towards increased expression of Lcn2 was also observed

(Figure 3A). No differences were observed regarding expression

of Tgfb1, Tnf, Il1b, Il17a, Il10, Il22, Tbx21, Rorc, Foxp3, Ccl3,

Klrc1, Pdcd1, Cd79a, Mpo and Nos2 (Supplementary Figure 1).

Expression of Il4, a target of GATA3, was also analyzed but it

was undetectable in a high proportion of samples. Additional

analyses showed significantly increased Il17a/Ifng ratio and a

similar trend for Rorc/Gata3 but no differences in the Tbx21/

Gata3 ratio in Cd6-/- mice (Figure 3B).
CD5 and CD6 variants impact clinical
expression of IBD

CD (n=1352) and UC (n=1013) patients from the ENEIDA

registry and volunteer blood donor controls (n=604) were

genotyped for functionally relevant CD5 (rs2229177,

rs2241002), CD6 (rs12360861, rs11230563, rs17824933), and

CD166/ALCAM (rs6437585) SNPs. All SNPs were in Hardy-

Weinberg equilibrium, except for the rs2241002 in the CD

cohort (p=0.0276). Description of the study SNPs and cohorts

are shown in Tables 1, 2.

No association was found for any of the SNPs analyzed with

disease susceptibility following comparisons of controls with the

CD and UC cohorts, either separately (CD vs. controls, UC vs.

controls) or together (IBD vs. controls). Next, the effect of the

CD5, CD6 and CD166/ALCAM gene variants on different

clinically relevant parameters of CD (age at diagnosis,

behavior, location, perianal disease and prognosis) and UC

(age at diagnosis, extent and prognosis) was assessed. A

significant association was found for the CD5 rs2241002CC

genotype with preferential ileal location in the CD cohort

(Table 3). Because CD location can influence the risk of

developing stenosis and fistulae, association between the SNP

and stenosis-free and fistulae-free survival was tested, but no

significant results were found. Association between CD5 SNPs

and upper-gastrointestinal (GI) tract affectation was also not

significant. Haplotypic analyses showed increased need of

biologic therapies in CD patients carrying the CD5 rs2241002C

rs2229177T haplotype compared with those carrying the most

common rs2241002C rs2229177C haplotype (Table 4). Similarly,
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UC patients carrying the CD5 rs2241002T rs2229177T haplotype

had a worse prognosis than those carrying the rs2241002C

rs2229177C haplotype (Table 4).

Regarding CD6 SNPs associations, the rs17824933GG

genotype was associated with preferential ileal location in CD

patients (Table 3). This led us to also test association between

this SNP and stenosis-free and fistulae-free survival. As seen in
Frontiers in Immunology 06
Figure 4, the CD6 rs17824933GG genotype was significantly

associated with shorter fistula-free survival (HR = 1.56, 95%

CI 1.01–12.42, p = 0.046). No significant association was found

between CD6 SNPs and upper-GI tract affectation. The CD6

rs17824933GG genotype was also associated with higher extent

(left or extensive colitis) in UC patients (Table 5). The CD6

minor rs12360861A allele showed association with better
A

B

C

FIGURE 1

DSS-induced colitis in Cd5-/- and Cd6-/- mice vs. wild-type controls. (A) Percentage of basal body weight (left) and DAI (right) of Cd5-/- mice vs.
Cd5+/+ controls. Data combined from two independent experiments is shown. (B) Percentage of basal body weight (left) and DAI (right) of
Cd6-/- mice vs. Cd6+/+ controls in spring/summer (between April and September). Basal body weight data are combined from four independent
experiments, while DAI data are combined from two independent experiments. (C) Percentage of basal body weight (left) and DAI (right) of
Cd6-/- mice vs. Cd6+/+ controls in autumn/winter (between October and February). Basal body weight data are combined from four
independent experiments, while DAI data are come from a single experiment. Mean ± SD values are depicted. Statistical differences were
assessed by multiple t-tests (one per day) controlled with the FDR approach. *, q<0.01.
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prognosis in CD patients (Table 5). Regarding the appearance of

extra-intestinal manifestations, logistic regression analyses

showed a significant association of homo- or heterozygous

combinations of the CD6 rs17824933G allele with lower risk of

ankylosing spondylitis in the whole cohort of IBD

patients (Table 5).

No statistical association was observed with any of the

clinical parameters analyzed for CD166/ALCAM rs6437585
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SNP, which has been reported to influence CD166/ALCAM

transcriptional activity and MS risk (45, 46).
Discussion

We provide experimental and clinical evidence for the

involvement of CD5 and CD6 expression and variation in
A

B

D

E

C

FIGURE 2

Monitoring of DSS-induced colitis parameters from Cd6-/- mice vs. Cd6+/+ controls at day 8 post-induction. (A) Dot plot showing colon length,
weight and weight to length ratio of Cd6-/- (n=17) and Cd6+/+ control (n=17) mice. Mean ± SD values are depicted. Statistical differences were
assessed by t-test. (B) Hematocrit, RBC count and mean corpuscular volume (MCV) at day 8 from Cd6-/- (n=8) and Cd6+/+ (n=8). Mean ± SD
values are depicted. Statistical differences were assessed by t-test. **, p<0.01. (C) Analysis of microbial translocation into mesenteric lymph
nodes (mLN; top) and liver (bottom) from the same mice as in (B) Depicted are mean ± SD of cfu/mg. Statistical differences were assessed by
Mann-Whitney tests. (D) Histology score (mean ± SD, left) and representative haematoxylin-eosin stains from DSS-treated Cd6+/+ (center) and
Cd6-/- (right) mice. Scale bar: 200 mm. Statistical differences were assessed by t-test. (E) Immunohistochemical analyses of the terminal colon in
DSS-treated mice. Percentage of MPO, CD3ϵ and IgM-stained tissue (mean ± SD) from colon sections. Statistical differences were assessed by
t-test.
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IBD. Previous GWAS and meta-analysis studies have identified

the CD6 locus (SNP rs11230563) as a susceptibility marker in

CD and UC, thus supporting its contribution to IBD

etiopathogenesis (35, 36). Here, we used genetically modified

mice and candidate gene-driven association analyses to clinical

traits and prognosis with functionally relevant SNPs from the

CD5 and CD6 paralogs, as well as from CD166/ALCAM.

Etiopathogenic factors for IBD include host genetic

susceptibility, dysregulated immune response, intestinal

dysbiosis, and impairment of intestinal epithelial barrier

function. Under normal circumstances, there is continuous

crosstalk between gut microbiota and the immune system,

where gut microbiota modulates the host’s innate and adaptive

immunity and vice versa (47). Gut microbiota is in close contact

with the intestinal barrier, consisting of an epithelial cell layer

and a variety of immune cells of hematopoietic origin. Cells from

the intestinal barrier (both epithelial and hematopoietic) sense
Frontiers in Immunology 08
and signal the presence of microbial components via PRRs,

which belong to different structural families such as lectin C-

type, leucine-rich repeats (LRR), immunoglobulin (Ig), or

scavenger receptor cysteine-rich (SRCR) domains (48). Both

CD5 and CD6 are lymphocytic members of the SRCR

superfamily, expressed by all T cells and the B1a subset

responsible for production of polyreactive natural IgM

antibodies (4, 49). CD5 and CD6 are also represented in

certain immune cells subsets present in mucosal barriers such

as regulatory T (Treg) and B (B1a, Breg) cells, certain

macrophage and dendritic cells and innate lymphoid cells

(NK, iNKT, ILCs) (50–52). CD166/ALCAM, the best

characterized CD6 ligand, is also found in the gastrointestinal

epithelial tract (53). Increased expression of both CD6 and

CD166/ALCAM has been reported in inflamed mucosa from

IBD patients, a fact that is attributed to higher CD6-expressing T

cell infiltration rather than surface CD6 expression levels (54).
A

B

FIGURE 3

mRNA expression in colons from Cd6-/- vs. Cd6+/+ mice at day 8 post DSS-induced colitis. (A) Relative mRNA expression of different transcripts
from colon samples. Depicted are mean ± SD of mRNA fold increase (DSS/basal). (B) Fold increase ratio of indicated mRNA transcripts from
colon samples. Ratios were calculated by dividing the fold increase of the following transcripts: Il17a, Ifng, Rorc, Gata3, Tbx21 and Gata3.
Statistical differences were assessed by Mann-Whitney tests and corrected for FDR. *, q< 0.1.
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This may relate to quantitative trait loci studies in which the

rs11230584 SNP in the intergenic region between CD5 and CD6

modulates expression of both genes in IBD patients but not in

healthy controls (55). Taken together, their tissue and cell

expression pattern, microbial recognition properties and ability

to modulate lymphocyte activation/differentiation and cell

adhesion provide the basis for considering both CD5 and CD6

as contributors to IBD pathogenesis.

The observation that both CD5- and CD6-deficient mice

differ in their response to DSS-induced colitis further supports

their involvement in IBD. In Cd5-/- mice, attenuated DSS-

induced colitis was observed in agreement with a previous

report (43). The mechanism underlying such attenuated colitis

has already been explored and attributed to increased

suppressive function of Treg cells from Cd5-/- mice (43), a fact

that was not confirmed by others (56). An alternative

mechanism could be the increased activation-induced cell

death (AICD) in Cd5-/- effector T cells as a result of inhibitory

role assigned to the CD5 receptor (7, 57). Further evidence for

CD5 expression involvement in IBD comes from recent report

showing that inducible Cd5-deficient mice in the autoimmune-

prone non-obese diabetic (NOD) background undergo

exacerbated DSS-induced colitis by modifying T cell effector

function (58).

Regarding Cd6-/- mice, no analysis of DSS-induced colitis

has been brought forward, in spite of reports of Cd6-/- mice

behavior in several other immune-related inflammatory disease

models (i.e., intestinal ischemia-reperfusion, bovine or avian

type II collagen-induced arthritis, chronic graft-versus-host

disease-induced lupus-like, imiquimod-induced psoriasis-like

skin inflammation, experimental autoimmune encephalitis,

and autoimmune uveitis) (10, 34, 39, 59-62). CD6 deficiency

results in attenuated or exacerbated phenotypes according to

mouse background and experimental models responsive to

different underlying mechanisms (e.g., increased AICD or

defective Treg function). This puzzling situation has been

unveiled by CD6 receptor’s multitask signalosome with

opposite functions in T cell activation (7). CD6 multifaceted

role accounts for past difficulties in classifying it as a co-

inhibitory or -stimulatory receptor.

Here we observed that Cd6-/- mice exhibit an increased body

weight loss and DAI upon DSS-colitis induction, in conjunction
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with differential expression of certain mRNA transcripts. This

included decreased expression of Ifng —the prototypical Th1

cytokine— and Gata3 —the master regulator of Th2

differentiation—, no differences in Il17a and Il10 expression, and

increased expression of Il6 and Cxcl1 —a cytokine and a

chemokine involved in the Th17 function, all this pointing to a

somehow misbalanced Th1/Th2/Th17 response. Additionally,

reduced mRNA expression of Ncr1 —coding for NKp46, one of

the NK triggering receptors— and a trend towards increased Lcn2

—coding for lipocalin-2, also named NGAL, a neutrophil

secondary granule marker— in colons of Cd6-/- mice undergoing

DSS-induced colitis was observed. These findings would fit with

the observation that i) decreased NK cell activity would lead to

increased granulocyte infiltrate in DSS-induced colitis (63), and ii)

increased lipocalin-2 expression would act as marker and a counter

reactor of colonic inflammation (64, 65).

Given the multifaceted nature of CD6, the above-mentioned

mechanistic findings for exacerbated symptoms during DSS

colitis in Cd6-/- mice do not exclude other possibilities such as

decreased Treg functionality in Cd6-/- mice (59), a cell subset

known for its role in mucosal protection during DSS-induced

colitis (66). Another possibility could be the deficient production

of natural antibodies, as found in Cd6-/- mice from DBA-1

background (60), and confirmed by us in the C57BL/6

background Cd6-/- mice used here (67). Natural antibodies are

an innate component of humoral immunity and have a

protective role in IBD (68, 69).

In humans, no CD5 or CD6 deficiencies have been reported.

Functionally relevant CD5 or CD6 SNPs previously described act

as susceptibility or disease modifier markers for immune-related

disorders. Regarding CD5, the rs2241002 and rs2229177 SNPs

cause nonsynonymous substitutions at the extracellular

(Pro224>Leu) and cytoplasmic (Ala471>Val) regions,

respectively, which are relevant to CD5-mediated signal

transduction (70). Thus, homozygous carriers of the ancestral

Pro224-Ala471 (rs2241002C and rs2229177C) CD5 haplotype are

hyper-reactive to TCR/CD3 cross-linking, and present more

severe clinical forms of SLE (27) but better CLL and

melanoma prognosis (28, 29). Regarding the functionality of

CD6 SNPs, the intronic rs17824933G allele identified as a

susceptibility marker for MS causes over-expression of a CD6

isoform devoid of the CD166/ALCAM-binding domain
TABLE 1 Summary of the CD5, CD6 and CD166/ALCAM SNPs analyzed in the present study.

Gene SNP ID Location Major/Minor allele Effect

CD5 rs2241002 Exon 5 C>T Pro224>Leu

rs2229177 Exon 10 C>T Ala471>Val

CD6 rs17824933 Intron 1 C>G CD6Dd3

rs11230563 Exon 4 C>G Arg225>Trp

rs12360861 Exon 5 G>A Ala271>Thr

CD166/ALCAM rs6437585 5’ UTR C>T ↑Transcription
f
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(CD6Dd3) concomitant with diminished proliferation and long-

term activation of CD4+ T cells (71, 72). Also, the MS-protective

haplotype involving the CD6 rs11230563C and rs2074225C SNPs

results in higher surface CD6 expression on several lymphocyte

subsets (CD4+ and CD8+ naïve T, and NKT cells) (31).

In our genetic analysis the CD5 rs2241002 SNP, which

causes a nonsynonymous substitution in the extracellular

SRCR domain 2 of CD5 (Pro224>Leu), showed association

with CD location. Further analyses showed association of CD5

haplotypes containing the cytoplasmic rs2229177T variant with
Frontiers in Immunology 10
severity parameters in CD (requirement of biological

treatments) and UC (poor prognosis) patients. The

rs2229177T variant involves the substitution of ancestral

Ala471 for Val, which results in increased CD5 inhibitory

capacity (27, 70). This can turn activated lymphocytes less

sensitive to AICD and more damaging, thus making more

intensive therapies necessary.

Analysis of CD6 SNPs showed association of the

rs17824933G allele with preferred ileal CD location and

increased UC extent. These results consolidate the damaging
TABLE 2 Clinical characteristics of the study cohorts.

Parameter CD (n=1352) UC (n=1013) IBD (n=2365)

Sex

Male 661 (48.9%) 530 (52.3%) 1191 (50.3%)

Female 691 (51.1%) 483 (47.7%) 1174 (49.6%)

Ethnicity

Caucasian 1173 856 2029

Arab 13 10 23

Asian 6 3 9

African 5 3 8

Jew 4 1 5

Romani 3 3 6

Other 11 6 17

Smoking* 380 (28.1%) 108 (10.7%) 488 (20.6%)

Age at diagnosis (years) 29.7 (22.4, 41.2) 35.2 (26.8, 47.8) 32.0 (23.7, 44.2)

Follow-up (years) 12.0 (7.4, 19.2) 12.4 (7.4, 19.2) 12.2 (7.4, 19.2)

Extra-intestinal manifestations

Peripheral arthritis 287 (12.1%)

Ankylosing spondylitis 73 (3.1%)

Sacroiliitis 68 (2.9%)

Sclerosing cholangitis 22 (0.9%)

Cutaneous 158 (6.7%)

Ocular 56 (2.4%)

Location

Colonic 234 (17.3%)

Ileocolonic 631 (46.7%)

Ileal 355 (26.3%)

Phenotype

Stricturing 342 (25.3%)

Penetrating 251 (18.6%)

Perianal disease 361 (26.7%)

Extent

Proctitis 153 (15.1%)

Left or extensive colitis 828 (81.7%)

Biological treatments 809 (59.8%) 282 (27.8%) 1091 (46.1%)

Prognosis

Good 137 (10.1%) 441 (43.5%) 578 (24.4%)

Poor 577 (42.7%) 232 (22.9%) 809 (34.2%)
(*) persistent habit at the last follow-up.
Number of patients is shown for categorical parameters. Median and interquartile range is shown for numerical parameters.
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effect of the rs17824933G allele in inflammatory diseases, as

suggested from its association with more aggressive forms of

psoriasis and with MS susceptibility (34, 46). Patients with left-

sided or extensive UC also tend to need more aggressive

therapies and are at higher risk of developing colorectal cancer

(73). A relatively short follow-up (median 12.37 years; Q1 7.43

years; Q3 19.21 years) may underlie the lack of significant

differences observed for this SNP regarding prognosis

(Supplementary Table 1).

The CD6 rs17824933G allele was further associated with lower

risk of ankylosing spondylitis in the whole IBD cohort. This result

appears to contradict the above-mentioned deleterious

contribution of this variant in UC, as well as in psoriasis and

MS. However, this variant also showed association with a more

ileal location of CD. Articular extra-intestinal manifestations of

IBD are more common in patients with colonic disease than in

those with small-bowel disease (74). Thus, preferential ileal

location in CD patients may account for the association of

rs17824933G with lower ankylosing spondylitis risk.

The study also showed association of the CD6 rs12360861

SNP with prognosis in CD patients but not susceptibility, in

agreement with a major genetic contribution to prognosis from

loci distinct from those driving disease susceptibility, applicable

in this case (42).

As stated above, genetic susceptibility is only one of the known

factors in IBD etiopathogenesis. The importance played by other
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environmental factors is illustrated by seasonal onset and

exacerbation patterns in IBD patients (75). We have observed

seasonal variations also for Cd6-/- mice regarding susceptibility to

DSS-induced colitis. More precisely, the exacerbated DSS-induced

colitis phenotype of Cd6-/- mice manifested during the spring/

summer but not the autumn/winter season (Figure 1C),

reminiscent of other mouse models of human diseases (i.e., EAE)

(76). Though incompletely understood, it has been proposed that

seasonal variations might be regulated by endogenous circannual

rhythms, since they are found even when the animals are subjected

to a constant, controlled environment, and genetically regulated

(77). Seasonality in Cd5-/- mice could be neither confirmed nor

denied, since the two experiments performed were carried out in

the summer season (July and September). However, recent

unpublished results from a collaborative study show seasonality

phenomena in Cd5-/- mice upon mannan-induced psoriatic

arthritis induction (Merino R and Merino J, University of

Cantabria, Spain).

The main strengths of our study are the use of a large patient

cohort, which together with the experimental mouse model

highlights a role for CD5 and CD6 in IBD. We also

acknowledge some caveats in our study. Separate breeding of

Cd5-/- or Cd6-/- mice and their wild-type counterparts can be a

source of confusion, which we minimized by periodic colony

refresh, the use of high sample sizes, and a large number of

repetitions. We measured mRNA expression as a proxy for
TABLE 3 Linear regression analysis of CD5 rs2241002 and CD6 rs17824933 SNPs association with CD location. Corrected for sex and smoking.

SNP Model Genotype Colonic =1 Ileo-colonic =2 Ileal =3 mean s. e. Difference of means (95% CI) q value

CD5
rs2241002

Dominant C/C
C/T-T/T

119
103

391
206

228
105

2.148
2.005

0.025
0.035 -0.142 (-0.224,-0.059)

0.005

CD6
rs17824933

Recessive C/C-C/G
G/G

215
8

557
38

302
31

2.081
2.299

0.021
0.074 0.218 (0.060, 0.377)

0.022
fronti
Variable “location” is codified as: colonic=1, ileocolonic=2, ileal=3. p value corrected for FDR. s. e.: standard error.
TABLE 4 Logistic regression analysis of CD5 haplotype association with biological therapy requirement in CD (top half) and to prognosis in UC
(bottom half).

Haplotype % in CD patients Biological p value OR (95% CI)

rs2241002 rs2229177 % no % yes

C C 43.4 45.3 42.2

C T 35.9 33.4 37.5 0.048 1.20 (1.00, 1.44)

T T 17.0 17.4 16.7 0.811 1.02 (0.83, 1.27)

T C 3.7 3.8 3.7 0.861 1.05 (0.64, 1.72)

Haplotype % in UC patients Prognosis p value OR (95% CI)

rs2241002 rs2229177 % good % poor

C C 43.3 45.2 39.5

C T 37.1 37.1 37.2 0.345 1.14 (0.87, 1.49)

T T 14.9 13.7 17.0 0.048 1.42 (1.00, 2.02)

T C 4.7 3.9 6.3 0.097 1.78 (0.90, 3.51)
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protein expression, but correlation between mRNA and protein

levels is limited. Therefore, further protein expression assays

(e.g.: flow cytometry) will be needed to ascertain the molecular

mechanisms underlying differences between Cd6-/- and their

wild-type counterparts. Similarly, further molecular

mechanisms driving clinical SNP associations in IBD patients

are to be identified.

In conclusion, our findings support a role for the CD5 and

CD6 lymphocyte receptors in the pathophysiology of IBD and

hint at their potential in patient stratification and as therapeutic

targets. The latter is particularly valid for CD6, where the

humanized anti-CD6 mAb Itolizumab currently represents a

therapeutic option in several immune-mediated disorders (78),

since could modulate the activity of the T cell subsets (i.e., Th1

and Th17) involved in their pathogeny (79).
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TABLE 5 Logistic regression analysis of CD6 SNP association with CD prognosis (top), UC extent (middle), and ankylosing spondylitis in IBD
patients (bottom), corrected for sex and smoking.

SNP Model Genotype Good prognosis (%) Poor prognosis (%) OR (95% CI) q value

rs12360861 Log-additive A alleles (0, 1, 2) 127 (18.9) 544 (81.1) 0.62 (0.45, 0.86) 0.027

SNP Model Genotype Proctitis (%) Left/extensive colitis (%) OR (95% CI) q value

rs17824933 Recessive C/C-C/G
G/G

151 (98.7)
2 (1.3)

758 (93.0)
57 (7.0) 5.68 (1.37, 23.48)

0.010

SNP Model Genotype No ankylosing spondylitis (%) Ankylosing spondylitis (%) OR (95% CI) q value

rs17824933 Dominant C/C
C/G-G/G

456 (54.1)
387 (45.9)

51 (71.8)
20 (28.2) 0.45 (0.27, 0.78)

0.016
fronti
A B

FIGURE 4

Stenosis and fistulae in CD patients according to rs17824933. Stenosis-free survival (A) and fistulae-free survival (B) of CD patients carrying
different CD6 rs17824933 genotypes. Statistical differences were assessed by the Cox proportional hazards model. (A) In the stenosis-free
survival analysis hazard ratio (HR) comparing GG and CC genotypes was 1.28, (95% CI 0.85–1.92), p = 0.230, and HR comparing CG and CC
genotypes was 1.05, (95% CI 0.84–1.31), p = 0.671. (B) In the fistulae-free survival analysis HR comparing GG and CC genotypes was 1.56, (95%
CI 1.01–12.42), p = 0.046, and HR comparing CG and CC genotypes was 1.19, (95% CI 0.92–1.55), p = 0.195.
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