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Abstract 

Background and purpose: The neurological course after stroke is highly variable and is determined by demo‑
graphic, clinical and genetic factors. However, other heritable factors such as epigenetic DNA methylation could play 
a role in neurological changes after stroke.

Methods: We performed a three‑stage epigenome‑wide association study to evaluate DNA methylation associ‑
ated with the difference between the National Institutes of Health Stroke Scale (NIHSS) at baseline and at discharge 
(ΔNIHSS) in ischaemic stroke patients. DNA methylation data in the Discovery (n = 643) and Replication (n = 62) 
Cohorts were interrogated with the 450 K and EPIC BeadChip. Nominal CpG sites from the Discovery (p value <  10–06) 
were also evaluated in a meta‑analysis of the Discovery and Replication cohorts, using a random‑fixed effect model. 
Metabolic pathway enrichment was calculated with methylGSA. We integrated the methylation data with 1305 
plasma protein expression levels measured by SOMAscan in 46 subjects and measured RNA expression with RT‑PCR in 
a subgroup of 13 subjects. Specific cell‑type methylation was assessed using EpiDISH.

Results: The meta‑analysis revealed an epigenome‑wide significant association in EXOC4 (p value = 8.4 ×  10–08) 
and in MERTK (p value = 1.56 ×  10–07). Only the methylation in EXOC4 was also associated in the Discovery and in the 
Replication Cohorts (p value = 1.14 ×  10–06 and p value = 1.3 ×  10–02, respectively). EXOC4 methylation negatively 
correlated with the long‑term outcome (coefficient = − 4.91) and showed a tendency towards a decrease in EXOC4 
expression (rho = − 0.469, p value = 0.091). Pathway enrichment from the meta‑analysis revealed significant associa‑
tions related to the endocytosis and deubiquitination processes. Seventy‑nine plasma proteins were differentially 
expressed in association with EXOC4 methylation. Pathway analysis of these proteins showed an enrichment in natural 
killer (NK) cell activation. The cell‑type methylation analysis in blood also revealed a differential methylation in NK cells.
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Introduction
Stroke is a high incidence disease that represents the 
first cause of death and disability in adults [1, 2]. More 
than 70% of stroke survivors need help for their daily 
activity 5 years after an ischaemic stroke [3].

During the acute phase of a stroke, there are dynamic 
changes in the clinical symptoms that determine the 
evolution of the lesion and the associated deficits [4]. 
To measure the outcome of a stroke, two different quan-
tifiable measures are usually considered: the neurologi-
cal clinical symptoms and the functional independence 
of patients. There is high variability in the neurological 
and functional outcomes after stroke which is asso-
ciated with several factors, including demographic, 
clinical and genetic factors [5–7]. Different scales are 
widely used to quantify the neurological deficit and the 
functional outcome. The National Institutes of Health 
Stroke Scale (NIHSS) considers 15 different measures 
of neurological worsening: consciousness, eye move-
ment, vision, coordination, language, sensory function, 
upper and lower limb strength, facial muscle function, 
and neglect [8]. The modified Rankin scale (mRS) is 
used to quantify the functional outcome based on the 
capacity of patients to be independent in carrying out 
daily activities [9]. Different variables have been found 
to be predictors of the early (24  h post-stroke) neuro-
logical outcome: baseline NIHSS, tPA treatment, age, 
stroke subtype, glucose levels, and systolic blood pres-
sure [5–7]. The early neurological outcome has been 
found to explain up to 30% of the long-term outcome 
(mRS at 3  months) [5]. The neurological evolution of 
stroke patients during hospitalization has also been 
assessed as a good predictor of 30-day and long-term 
mortality [10]. Reznik et  al. compared the predictive 
value of NIHSS measured at different time-points: 
baseline, 24 h, and discharge. They concluded that dis-
charge-NIHSS was the best predictor of the 3-month 
outcome [11]. Thus, the difference between the NIHSS 
at baseline and the NIHSS at discharge has recently 
gained importance as a valid outcome variable [12] as it 
covers the entire period of hospitalization.

Interestingly, genetics seems to play a role in the neu-
rological course. Ibanez L et al. found that 8.7% of the 
difference between NIHSS at baseline and NIHSS at 
24 h was explained by common single nucleotide poly-
morphisms (SNPs) [13]. However, only three different 
Genome-Wide Association Studies (GWAS) have been 
performed in the stroke outcome field [13–15]. Two 

genes (PATJ and LOC105372028) have been associated 
with long-term functional outcome (at 3  months) [14, 
15] and seven loci with the neurological course using 
the difference between baseline NIHSS and NIHSS 
at 24  h [13]. However, not all the heritability associ-
ated with the neurological course has been completely 
discovered [13] and other heritable factors, such as 
epigenetics, could be associated with the post-stroke 
neurological outcome. It has been demonstrated that 
epigenetics plays an important role in stroke risk and 
stroke vascular recurrence [16–21]. Previous Epige-
nome-Wide Association Studies (EWAS) have iden-
tified 22 CpG sites and 21 loci with altered DNA 
methylation associated with stroke risk [16]. Moreo-
ver, biological age calculated with DNA methylation is 
associated with stroke outcome and mortality [20, 21].

Our aim is to study the epigenetic risk factors and bio-
logical mechanisms associated with post-stroke neuro-
logical course using the difference in baseline NIHSS and 
NIHSS at discharge (ΔNIHSS) as outcome variable.

Materials and methods
Data availability
The DNA methylation data analysed in this study are 
available in GEO. The Discovery data from BASIC-
MAR are available under the GEO accession number 
“GSE69138”. The Discovery from the GRECOS together 
with the replication cohort could be identified in GEO 
under the code “GSE203399”.

Patient selection
We included in the Discovery Cohort 738 Caucasian 
patients with EWAS data who had suffered a stroke 
and had had a blood sample taken during the first 24 h 
following ischaemic stroke. The Discovery consisted 
in patients from the Mar Hospital, who enrolled 662 
patients as part of the BASICMAR register [22–24], 
and 76 from the GRECOS study [25]. BASICMAR is a 
prospective register of patients with ischaemic stroke 
recruited between 2009 and 2012 [22–24]. The GRECOS 
(Genotyping RECurrence Risk of Stroke) study is a pro-
ject that enrolled 1,494 Caucasian patients with a first 
ischaemic stroke and population-based controls between 
July 2005 and May 2009 from 23 Spanish Hospitals [25]. 
The patients included from the BASICMAR and the 
GRECOS study were included in previous EWAS [16, 18, 
19]. From the 738 patients, 725 had registered the main 
variable analysed in this study: the NIHSS at baseline and 

Conclusions: DNA methylation of EXOC4 is associated with a worse neurological course after stroke. The results indi‑
cate a potential modulation of pathways involving endocytosis and NK cells regulation.
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the NIHSS at discharge and were included in the EWAS 
analysis.

In the Replication Cohort, we included 62 Caucasian 
stroke patients from the EPIGENESIS study. The EPI-
GENESIS study selected ischaemic stroke patients [26] 
with a blood sample collected during the first 6 h follow-
ing onset of symptoms to study epigenetics associated 
with stroke outcome.

Differences in demographic and clinical variables 
between the Discovery and Replication cohorts were 
calculated. Differences between groups were tested with 
Kruskal–Wallis rank-sum test for nonparametric quanti-
tative variables, while differences for qualitative variables 
was tested with chi-square test. Statistically significance 
was defined with p value < 0.05.

All the projects included in this study have been 
approved by ethics committees and all the patients have 
signed informed consent forms. The study was conducted 
in accordance with Declaration of Helsinki and European 
guidelines: requirements of the Spanish Law 3/18 on the 
protection of personal data and the new European Union 
legislation on personal data, specifically Regulation (EU) 
2016/679 of the European Parliament and of the Council 
of April 27, 2016 Data Protection (GDPR).

DNA extraction and bisulphite conversion
Whole blood was obtained in EDTA tubes. DNA from 
the GRECOS and EPIGENESIS studies was extracted 
using a Gentra Puregene Blood Kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s instructions. DNA 
from BASICMAR was extracted manually using salt pre-
cipitation in the National Bank of DNA (Carlos III Insti-
tute (ISCIII)).

Bisulphite conversion of DNA was performed before 
EWAS analysis using the EZ DNA Methylation-Gold™ 
Kit (Zymo Research, CA, USA). DNA methylation was 
studied with the 450  K BeadChip (Illumina) in all sam-
ples from the Discovery Cohort and EPIC BeadChip 
(Illumina) in all samples from the Replication Cohort.

Epigenome‑wide association study (EWAS)
Methylation raw data were processed using R (http:// 
www. cran.r- proje ct. org) and Bioconductor packages 
(http:// www. bioco nduct or. org).

We proceed with quality controls (QCs) using ChAMP 
package in R [27]. CpG quality controls consisted of 
the removal of CpG sites with a non-significant detec-
tion p value (p value > 0.05), CpG sites from sex chro-
mosomes, CpG sites with affinity for multiple probes, 
no “CG” probes, probes with bead count < 3 in at least 
5% of samples and SNP probes [28]. When performing 
QCs on samples, we removed samples with more than 
1% missing CpG sites and samples with discordance 

between genotypic and phenotypic sex (Additional file 1: 
Figure SI). After this processing, beta values represent-
ing methylation of each CpG site were normalized using 
the Noob function from the minfi package [29]. We also 
assessed the batch effect by a single value decomposi-
tion (SVD) analysis in ChAMP and by performing a mul-
tidimensional scaling (MDS) plot where it is shown the 
distance matrix of each sample depending on the batch 
(Additional file 1: Figure SII). The proportion of the dif-
ferent blood cell types was estimated for each patient, 
and beta values were corrected based on these data using 
the “champ.refbase” function of the ChAMP package 
[30]. This function has implemented the RefbaseEWAS 
method, which uses a methylation reference database for 
each of the major cell types present in blood.

Statistical analysis
We calculated the difference between baseline NIHSS 
and NIHSS at discharge (ΔNIHSS). First, we evaluated 
which demographic, cardiovascular and other stroke-
related variables were associated with ΔNIHSS. We also 
assessed whether ΔNIHSS and other variables were 
associated with the long-term outcome (measured with 
the Rankin scale at 3 months, mRS) in our cohort using 
bivariate analysis. Then, we included the significant vari-
ables (p value < 0.05) in a backward stepwise regression.

The DNA methylation was considered the depend-
ent variable and the ΔNIHSS the independent variable. 
We calculated the differential methylation positions 
using multiple linear regression (lm). First, in the Dis-
covery analysis we considered as covariates the known 
variables to be associated with the dependent variable 
(DNA methylation): sex, age, self-reported smoking hab-
its, and the first two principal components (PC) (basic 
EWAS adjustment). For the PC calculation, we used the 
function princomp in R from stats package which uses a 
spectral decomposition strategy to study the correlation 
between the methylation beta values. We selected the 
first two columns from the loading matrix (eigenvectors) 
from the output to adjust the results. To ensure that the 
batch effect was corrected when adjusting by the first two 
PC, we performed an additional analysis adjusting in the 
lm by the basic EWAS adjustment + batch. We used the 
MethylToSNP package in R to evaluate whether any of 
the CpG sites with a p value < 0.05 had SNP patterns and 
was not removed during QCs that could cause false posi-
tive results [31].

As a secondary analysis, we considered the ΔNIHSS as 
a dichotomic variable, classifying patients into those with 
improvement in the outcome (ΔNIHSS ≥ 4) or decline 
in the outcome (ΔNIHSS < 4), based on previous studies 
[32, 33]. The purpose was to assess whether nominal CpG 
sites associated with the continuous ΔNIHSS variable 

http://www.cran.r-project.org
http://www.cran.r-project.org
http://www.bioconductor.org
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were also associated with neurological improvement or 
decline.

In the Discovery Analysis, all the significant, with a p 
value < 2.4 ×  10–07 (based on the threshold estimated by 
Saffari A et al. [34, 35]), and nominal (p value <  10–06) dif-
ferentially methylated positions (DMP) were analysed in 
the Replication Cohort (Replication Analysis). The CpG 
methylation sites with p value < 0.05 in the Replication 
Cohort were considered replicated. The methylation 
from the replicated CpG sites were analysed in bivariate 
and backward stepwise regression analyses to identify 
independent clinical and demographic factors condi-
tioning the methylation pattern of that replicated sites. 
Finally, the independent variables were used as covariates 
in a new lm analysis including only the replicated CpG 
sites in the Discovery Cohort (Fig. 1).

Moreover, we combined the results from the Dis-
covery and Replication Cohorts in a meta-analysis 

using METAL [36] based on a random effect model. 
We selected this model after reviewing the assump-
tions of random and fixed effect models [37]. Based on 
Nikolakopoulou A et al., the random effect model could 
be beneficious on allowing to differ on the true effects 
and accounting for unexplained heterogeneity [37]. The 
association of the nominally CpG sites from the Dis-
covery was evaluated in the meta-analysis.

Finally, we considered all the CpG sites that fol-
lowed the next criteria as validated DMPs: 1) at least 
a nominal association (p value <  10–06) in the Discov-
ery Cohort, 2) significant p value (p value < 0.05) and 
the same effect direction in the Replication Cohort, 
and 3) an epigenome-wide significant p value (p 
value < 2.4 ×  10–07) in the meta-analysis.

Fig. 1 Scheme of the three‑stage EWAS. The three‑stage EWAS consisted in a Discovery stage analysed with multiple linear regression with 
adjustment of variables known to be associated with methylation (age, sex, smoking habit, PC1 and 2), a Replication stage where the 44 nominally 
associated CpG sites were analysed with multiple linear regression with the same basic adjustment than in the Discovery. The replicated CpG site 
(cg00039070) was re‑analysed in the Discovery including the specific adjustment (covariates associated with the methylation of cg00039070): PC1 
and PC2. In the Discovery cohort, differentially methylation region (DMR) and block (DMB) analyses were also performed. Finally, a meta‑analysis 
that merged the Discovery and Replication Cohorts was performed with basic EWAS adjustment. The significant CpG sites in the meta‑analysis were 
evaluated in the pathway/features enrichment analysis, in the differentially methylated cell‑type analysis and in the blood–brain correlation analysis
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Feature enrichment and metabolic pathway enrichment 
analyses
We explored for enrichment of specific features for sig-
nificant (n = 5) or nominal (n = 44) CpG sites from the 
discovery in comparison with all the CpG sites included 
in the analysis (n = 423,156). Features were classified 
into 1st exon, 3’ untranslated region (UTR), 5’UTR, 
gene body, intergenic region (IGR), transcription start 
site (TSS) 1500 and TSS200. In this analysis, we classi-
fied CpG sites into hypermethylated or hypomethylated 
in their association with ∆NIHSS. We applied chi-square 
test to evaluate differences in the features between 
groups (significant/nominal CpG sites vs. all CpG sites).

We looked for enrichment of metabolic pathways 
using as input all the CpG sites and the CpG sites that 
were nominally associated (p value <  10–06) with ΔNIHSS 
in the meta-analysis. The analysis was done with Meth-
ylGSA [38], an R package specifically designed for path-
way analysis from EWAS results. We applied the three 
functions (methylglm, methylRRA and methylgometh) 
from the package (all of them designed to adjust for the 
number of CpGs in each gene to reduce possible bias). In 
the main analysis, all the CpG sites from the EWAS meta-
analysis were included together with their p value. Using 
the first and second function, we also restricted the anal-
ysis to specific types: CpGs from promoters (TSS1500 
or TSS200) or located in gene bodies. Using the second 
and third function, we were able to perform a secondary 
analysis filtering out CpG sites based on their p value, 
selecting the list of nominally associated CpG sites from 
the meta-analysis. More details for the different func-
tions and the options that we selected are specified in 
the Supplementary methods. We included in the analy-
ses the three available pathway databases in MethylGSA: 
Gene Ontology, KEGG and Reactome. We considered 
significant associations when the p value was < 0.05 and 
the Q value (false discovery rate (FDR) adjusted p value) 
was < 0.05.

Differentially methylated regions (DMRs) and blocks 
(DMBs)
We evaluated whether differential methylation regions 
(DMRs) and blocks (DMBs) were associated with 
ΔNIHSS using the Bumpunther algorithm implemented 
in the ChAMP package [27, 30]. A DMR was defined in 
our analysis with the standard parameters: a segment 
with a minimum of seven CpG sites with a maximum 
length of 300 nucleotides. DMRs should be separated by 
a minimum of 1,000 base-pairs to be considered different 
DMRs. For the DMB calculation, a block was considered 
a large cluster generated from open sea regions. Each 
region located in an open sea was collapsed into a unit, 
calculating the mean methylation and mean position. We 

used the standard recommendation of a maximum length 
of 250,000 nucleotides for a block and to only include 
blocks with a minimum of 10 regions [27, 30].

Gene expression analysis
We studied the correlation between relative EXOC4 
mRNA levels and EXOC4 methylation. We analysed 
by Real-Time Quantitative Reverse Transcription PCR 
(qRT-PCR) the cDNA isolated from whole blood from 
13 healthy controls from the GRECOS study which also 
have available EWAS data.

Whole blood in EDTA tubes was obtained, and DNA 
was extracted using a Gentra Puregene Blood Kit (Qia-
gen, Hilden, Germany) following the manufacturer’s 
instructions. We used the 7900 Real-Time PCR system 
(qRT-PCR) (Applied Biosystems, Foster city, CA, USA) 
to quantify EXOC4 expression. We followed a stand-
ard TaqMan® PCR kit protocol as described previously 
[15]. Briefly, the EXOC4 (Hs00253986_m1) probe was 
used and the results were normalized using endogenous 
controls: Cyclophilin A (PPIA, Hs99999904_m1) and 
Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH, 
Hs99999905_m1). We ran triplicates for the 13 sam-
ples, and we included an external sample as calibrator. 
Reactions were analysed with applied Biosystems SDS 
7900 system software (Applied Biosystems, Foster city, 
CA, USA). We calculated the fold change of the average 
expression (using relative quantification (RQ) values) 
from EXOC4 and endogenous controls.

Proteomic and pathway analysis
We used data from SOMAscan® Assay (SomaLogic) to 
find differentially expressed proteins associated with 
cg00039070 methylation. Briefly, the SOMAscan® Assay 
uses plasma samples to bring data for 1305 proteins using 
a short single-stranded DNA sequence (SOMAmer rea-
gents) that binds to target proteins and allows their quan-
tification [39].

In this analysis, we included 26 stroke patients and 20 
controls for which proteomic (from SOMAscan®) and 
DNA methylation data (from EWAS) were available. 
For the proteomic assay, blood from patients collected 
in EDTA tubes was centrifuged at 3.000 g for 10 min to 
obtain plasma. Plasma samples were frozen at − 80  °C 
until they were analysed with SOMAscan®. The results 
were processed as described in [40]. The analysis was 
adjusted by case/control state.

We investigated differentially expressed proteins 
in association with cg00039070 methylation. Stroke 
patients were included from the EPIGENESIS (N = 7) 
and GRECOS (N = 19) cohorts. Controls were included 
from the ISSYS (Investigating Silent Stroke in hYperten-
sives) cohort. It is an observational prospective study in 
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hypertensive participants to determine the prevalence 
of silent or magnetic resonance imaging (MRI)-defined 
brain infarcts and cognitive impairment. This cohort 
comprises 1000 non-demented individuals, aged 50 to 
70  years, and diagnosed with essential hypertension at 
least one year before inclusion in the ISSYS study [41].

All the proteins associated with cg00039070 methyla-
tion (p value < 0.05) were analysed using over-represen-
tation analysis (ORA) to find enrichment of metabolic 
pathways using the Wilcoxon Rank-Sum Test in the Gene 
Ontology database (Biological Process) in WebGestalt 
[42, 43].

Differentially methylated cell‑type (DMCT) analysis
The cellular component of the blood tissue was estimated 
and analysed to determine whether the differential meth-
ylation was specific to one cell type using EpiDISH [44]. 
The CellDMC function was used to identify differentially 
methylated cell types associated with the ΔNIHSS based 
on the proportion of B cells, CD4 + and CD8 + T cells, 
NK, neutrophils and monocytes. We studied the nomi-
nally associated CpG sites in the meta-analysis to find 
enrichment of cell-type differential methylation.

Tissue‑specific signal detection
We used eFORGE (experimentally derived Functional 
element Overlap analysis of ReGions from EWAS) [45] 
to estimate tissue-specific signals from the significant 
and nominal results from the EWAS meta-analysis. We 
included analyses with all the different functional ele-
ments. A p value < 0.05 was considered a nominal asso-
ciation and a Q value < 0.05 according to FDR adjustment 
was considered statistically significant. A more com-
plete description of this tool is provided in Supplemental 
Methods (Additional file 1).

Blood–brain epigenetic correlation
In order to compare the methylation from the significant 
findings in the meta-analysis between blood and brain, 
we used the Blood Brain DNA Methylation Comparison 
Tool [46]. We analysed the correlation of cg00039070 
methylation and the four brain regions included in the 
tool.

Using Blood–Brain Epigenetic Concordance (BECon) 
[47], we also investigated the concordance in the 
cg00039070 methylation between three brain regions 
(Brodmann area (BA) 10, BA20 and BA7) and blood 
using the three metrics available in this tool.

A more detailed explanation for these two methods 
is included in the Supplemental Methods  (Additional 
file 1).

Results
Discovery stage
A total of 643 patients and 423,156 CpG sites passed 
QCs in the Discovery analysis (Additional file  1: Figure 
SI). The median NIHSS at baseline and discharge was 8 
and 3, respectively, and the median ΔNIHSS at discharge 
was positive, indicating an improvement in the neu-
rological status of these patients (Table  1). We wanted 
to assess which variables were independently associ-
ated with the ΔNIHSS in our cohort. With this purpose, 
we studied the association of different demographic, 
cardiovascular and stroke-related variables, includ-
ing the long-term outcome (measured with the Rankin 
scale at 3 months) with ΔNIHSS. Then, we explored 
which variables were independently associated with the 
mRS, to be sure that the main variable in our analysis 
(ΔNIHSS) was a good predictor of long-term outcome 
in our cohort. We performed bivariate and backward 
stepwise regression analyses. NIHSS at baseline (p 
value < 2.2 ×  10–16), mRS (p value < 2.2 ×  10–16), treatment 
with rTPA (p value = 2.5 ×  10–02) and atrial fibrillation (p 
value = 1.75 ×  10–02) were independently associated with 
ΔNIHSS in a multivariate analysis (Additional file 1: Table 
SI), whereas ΔNIHSS (p value < 2.2 ×  10–16), baseline 
NIHSS (p value < 2.2 ×  10–16), age (p value = 4.72 ×  10–10), 
sex (p value = 1.3 ×  10–02) and smoking habit (p 
value = 4.4 ×  10–02) were found to be associated with 
the 3 months of mRS in the stepwise regression analysis 
(Additional file  1: Table SII). ΔNIHSS at discharge and 
mRS at 3 months were negatively correlated, indicating 
that a worsening in the neurological course measured 
with ΔNIHSS was associated with a worse long-term 
outcome measured with mRS.

ΔNIHSS was used as the independent variable to cal-
culate differential methylation positions using multiple 
linear regression (lm) (Fig. 1).

In the Discovery EWAS with basic adjustment (sex, 
age, smoking habits and the first two PCs), we identified 
a total of five epigenome-wide (p value < 2.4 ×  10–07) CpG 
sites and 44 nominally CpG sites (p value <  10–06) associ-
ated with the ΔNIHSS (Fig. 2, Table 2). When the batch 
variable (defined by the two cohorts included in the dis-
covery) was used as covariate, the results did not change 
remarkably, and all the 44 CpG sites remained significant 
with a p value < 0.05 (Additional file 1: Table SIII). Thus, 
the observed batch effect (Additional file  1: Figure SII) 
was corrected when adjusting by PCs. Using Methyl-
ToSNP, none of the evaluated CpG sites was predicted to 
have SNP patterns.
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We found a differential feature enrichment (p 
value = 9.23 ×  10–03) when comparing nominal CpG sites 
(n = 44) with all the CpG sites included in the analysis 
(n = 423,156) (Additional file  1: Table SIV). Specifically, 
we found that nominal CpG sites that were hypermethyl-
ated in association with ΔNIHSS tend to be located in the 
body of genes rather than in IGR. Hypomethylated nomi-
nally CpG sites were found with higher probability in the 
TSS200 in comparison with all the CpG sites analysed. 
The differential feature enrichment could suppose differ-
ent effects in gene expression.

The DMR analysis revealed 50 regions associated (p 
value < 0.05) (Additional file  1: Table SV) with ΔNIHSS, 
and the DMB analysis showed a total of 323 blocks asso-
ciated with ΔNIHSS (Additional file 1: Table SVI).

Replication stage
All the CpG sites with a nominal p value (<  10–06) in the 
Discovery Analysis (n = 44) were evaluated in the Repli-
cation Cohort. The median ΔNIHSS also had a positive 
value in this cohort (Table 1).

Six CpG sites could not be evaluated in the Replica-
tion Cohort because they fell to pass QCs (Table 2). From 

the 38 CpG sites that could be evaluated in the Replica-
tion Cohort, one site was significant (p value < 0.05): 
cg00039070 (p value = 1.14 ×  10–06, coefficient = − 4.91 
in the Discovery and  p value = 1.14 ×  10–02, coeffi-
cient = − 2.58 in the Replication Cohort) (Table 2). This 
CpG site was located in the body of the EXOC4 gene, a 
member of the exocyst complex. The effect was the same 
in both cohorts: higher methylation was associated with 
stroke worsening measured with ΔNIHSS (Fig. 3A).

We analysed the association of the cg00039070 meth-
ylation with demographic and cardiovascular risk vari-
ables in the Discovery Cohort. We found sex, batch, 
PC1, PC2, baseline NIHSS and diabetes mellitus associ-
ated with cg00039070 methylation in bivariate analyses. 
After backward stepwise regression, only PC1 and PC2 
remained significant. We re-analysed by lm the associa-
tion of ΔNIHSS with cg00039070 methylation using only 
PC1 and PC2 as covariates. Methylation of cg00039070 
in EXOC4 maintained its association with ΔNIHSS with 
a p value of 2.27 ×  10–06 and a coefficient of -4.77.

Table 1 Demographic and clinical data from the Discovery and Replication Cohorts

Main clinical characteristics of patients included in the analysis from the Discovery and Replication Cohorts. P value column indicates differences for each variable 
between Discovery (both GRECOS and BASICMAR together) and Replication Cohorts

IQR interquartile range; ΔNIHSS = NIHSS at baseline – NIHSS at discharge; HTN: hypertension; AF atrial fibrillation; DM: diabetes mellitus; CES cardioembolic stroke; LAS 
large artery stroke; SVS small vessel stroke; und undetermined stroke

*Statistically significant p values for differences between cases and controls. NA: not available

Discovery Replication P value

GRECOS BASICMAR

Subjects(n) 59 584 62

Sex 0.429

 Male, n (%) 49 (17%) 322 (55.2%) 32 (51.6%)

 Female, n (%) 10 (83%) 262 (44.8%) 30 (48.4%)

Age in years, median (IQR) 71 (15) 77 (14) 77 (9.5) 0.22

NIHSS at baseline, median (IQR) 3 (6.5) 5 (8) 15 (11.5)  < 2.2 ×  10–16*

NIHSS at discharge, median (IQR) 1 (2) 3 (6) 4 (12) 2.62 ×  10–06*

ΔNIHSS, median (IQR) 1 (4) 1 (4) 5 (11) 6.6 ×  10–04*

mRS 90 days, median (IQR) 1 (3) 2 (3) 1 (3) 5.4 ×  10–04*

Presence of HTN,  n (%) 37 (62.7%) 236 (40.1%) 40 (64.5%) 1.04 ×  10–03*

Smoking,  n (%) 13 (22%) 168 (28.8%) 6 (9.67%) 3 ×  10–07*

Presence of AF,  n (%) 3 (5%) 201 (34.4%) 25 (40.3%) 2.86 ×  10–02*

Presence of DM,  n (%) 17 (28.8%) 421 (72.1%) 8 (12.9%) 9.5 ×  10–11*

Treatment with rtPA,  n (%) 9 (15.3%) 91 (15.6%) 53 (85.5%)  < 2.2 ×  10–16*

TOAST

CES, n (%) 0 (0%) 231 (53.9%) 29 (46.7%)  < 2.2 ×  10–16*

LAS,  n (%)
SVS,  n (%)
Und,  n (%)
Other,  n (%)
NA

26 (44.1%)
11 (18.6%)
21 (35.6%)
1 (1.7%)
0 (0%)

153 (39.6%)
194 (33.2%)
4 (0.7%)
2 (0.34%)
0 (0%)

17 (27.4%)
0 (0%)
13 (2.1%)
0 (0%)
3 (4.8%)



Page 8 of 17Cullell et al. Clinical Epigenetics          (2022) 14:124 

EWAS meta‑analysis
The meta-analysis combining effect sizes from the Dis-
covery and Replication Cohorts revealed two CpG sites 
with epigenome-wide significant association, includ-
ing the CpG site in EXOC4 (p value = 4.44 ×  10–08, 
coefficient = − 5.47), and 12 CpG sites with nominal 
association.

(Table 2). From these, all but one presented consistent 
effect direction in both Discovery and Replication analy-
ses (Table 2).

The meta-analysis considering the ΔNIHSS as a dicho-
tomic variable (ΔNIHSS ≥ 4 vs ΔNIHSS < 4) showed 
all but two CpG sites from the 38 analysed in the meta-
analysis to be significantly associated with ΔNIHSS (p 
value < 0.05). The CpG site in EXOC4 was also associ-
ated with the dichotomic ΔNIHSS with the same effect 

Fig. 2 Manhattan plots for the EWAS analyses. Manhattan plot in the Discovery Analysis (A), Replication Analysis (B) and meta‑analysis (C). The 
green dots represent CpG sites nominally associated with ΔNIHSS in the Discovery Cohort. The red and blue lines represent the epigenome‑wide 
and nominal significance threshold, respectively. CpG sites are annotated in the plot if they are nominally associated with NIHSS in the Discovery 
Cohort and are statistically significant in the corresponding analysis
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direction (p value = 4.56 ×  10–04, coefficient: − 3.63) 
(Additional file 1: Table SVII).

Pathway enrichment analysis
We identified different significantly enriched pathways 
after FDR adjustment (Q value < 0.05) using the methyl-
RRA function from methylGSA but only one significant 
pathway (p value < 0.05) and any significant pathways 
when using methylglm and methylgometh, respectively 

(Table  3). The analyses were performed including as 
input the list of all the CpG sites (with the information 
of their p values) or the list of only the nominally asso-
ciated CpG sites from the meta-analysis. As the feature 
enrichment analysis indicated an over-representation 
of CpG sites from the gene body and promoter regions, 
we decided also to test the pathway enrichment analysis 
depending on the CpG site location: gene body or gene 
promoter (TSS1500 and TSS200).

Fig. 3 EXOC4 methylation in association with ΔNIHSS and with EXOC4 expression. A Correlation between EXOC4 methylation, calculated as β 
values of methylation (Y‑axis) and ΔNIHSS (X‑axis) for all the patients included in the Discovery Analysis. B Correlation between EXOC4 methylation, 
calculated as β values of methylation (Y‑axis) and ΔEXOC4 expression (X‑axis) assessed in 13 controls with EXOC4 expression and DNA methylation 
data

Table 3 Pathway enrichment analysis from meta‑analysis EWAS results

Description of the significant pathways obtained from MethylGSA analysis using EWAS results from the meta-analysis

Function: Indicates which of the three MethylGSA functions was used; Database: The pathway database used in the analysis; Method: Method used (ORA or GSA) 
when methylRRA was selected; Sign CpG cut-off: “No” indicates that the analysis was performed including the results from all the CpG sites and “Nominal” indicates 
that the analysis was performed using the nominally associated CpG sites; type CpGs: “All” indicates that the analysis was performed for all the CpG types, while 
“promoter” indicates that in the analysis only CpG sites from promotors were analysed; ID: Identifier for the specific pathway from each database; Description: Detail of 
the pathway; Size: number of genes included in the gene set; and p value: enrichment p value for each gene set; Q value: FDR corrected p value

Function Database Method Sign CpG cut‑off Type CpGs ID Description Size P value Q value

mglm GO N/A No Promoter GO:0,030,100 Regulation of endocytosis 242 6.38E‑04 5.36E‑01

methylRRA GO GSA Nominal All GO:0,016,358 Dendrite development 206 3.76E‑04 1.62E‑02

methylRRA GO GSA Nominal All GO:0,048,588 Developmental cell growth 205 1.28E‑03 2.75E‑02

methylRRA GO GSA No All R‑HSA‑5688426 Deubiquitination 206 1.83E‑02 1.83E‑02

methylRRA Reactome GSA No Promoter R‑HSA‑5688426 Deubiquitination 206 4.57E‑03 1.83E‑02

methylRRA Reactome GSA Nominal Promoter R‑HSA‑5688426 Deubiquitination 206 4.72E‑03 1.89E‑02

methylRRA Reactome ORA Nominal All R‑HSA‑211859 Biological oxidations 203 3.08E‑02 3.18E‑02

methylRRA Reactome ORA Nominal All R‑HSA‑72203 Processing of Capped Intron‑
Containing Pre‑mRNA

203 3.08E‑02 3.18E‑02

methylRRA Reactome ORA Nominal All R‑HSA‑162906 HIV infection 205 3.11E‑02 3.18E‑02

methylRRA Reactome ORA Nominal All R‑HSA‑68882 Mitotic anaphase 209 3.17E‑02 3.18E‑02

methylRRA Reactome ORA Nominal All R‑HSA‑2555396 Mitotic metaphase and anaphase 210 3.18E‑02 3.18E‑02

methylRRA KEGG ORA Nominal All 4510 Focal adhesion 200 3.03E‑02 3.05E‑02

methylRRA KEGG ORA Nominal All 4144 Endocytosis 201 3.05E‑02 3.05E‑02
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The endocytosis pathway was found to be enriched 
using the methylglm function (in the Gene Ontology 
database) and the methylRRA function (in the KEGG 
database). This pathway was enriched when all the CpG 
sites were considered but also when only the suggestive 
CpG sites were included. When CpG sites were filtered 
out based on their location, the endocytosis pathway 
was significant in two situations: when all the CpG 
sites were included independently of their location 
and when CpG sites from the promoter regions were 
selected (Table  3). The deubiquitination pathway was 
also found to be enriched in different situations with 
the methylRRA function: 1) using Gene Ontology and 
Reactome databases; 2) including all the CpG sites and 

only the nominal CpG sites; and 3) including only CpG 
sites in promoters but also with all the CpG site types 
(Table  3). Different pathways involving cell cycle and 
development were also overrepresented (Table 3).

Gene expression and proteomic analyses
Only one CpG site (cg00039070 in EXOC4) met the 
pre-established criteria for being considered significant. 
This CpG site was located in the gene body, 10 kb down-
stream a predicted enhancer. Given that the effect of gene 
expression in gene body is variable, we wanted to assess 
whether this CpG site was affecting EXOC4 expression. 
We found a negative correlation between cg00039070 
methylation and EXOC4 mRNA levels (Spearman cor-
relation: -0.469) although it was not significant (p 
value = 0.091) (Fig. 3B).

To study the effect of EXOC4 CpG site methylation at 
the proteomic level, we evaluated the proteins differen-
tially expressed by EXOC4 methylation using SOMAs-
can array data from 46 subjects (Additional file 1: Table 
SVIII). We found 79 differentially expressed proteins 
(p value < 0.05) in association with cg00039070 meth-
ylation. The most significant associations were for 
IFNA7 (p value = 8.52 ×  10–04) and C8A, C8B, C8G (p 
value = 1.67 ×  10–03) (Table  4). The pathway enrichment 
analysis using WebGestalt showed that the most signifi-
cantly associated pathway related to significant proteins 
was NK cell activation (p value = 7.13 ×  10–04) (Table 5).

DMCT analysis and tissue specificity analysis
We looked for differentially methylated cell types based 
on the 14 CpG sites significantly or nominally associ-
ated with ΔNIHSS in the meta-analysis. We only identi-
fied significant CpG sites in NK (in NBEAL2 and SLC7A6 
genes) and B cells (in NBEAL2 gene). However, the 

Table 4 SOMAscan results

Summary statistics for the top significant p value < 0.01) association of EXOC4 
methylation and protein levels measured by SOMAscan® Assay

Protein t value P value

IFNA7 − 3.59 8.52 ×  10–04

C8A.C8B.C8G − 3.35 1.67 ×  10–03

BMP1 − 3.09 3.52 ×  10–03

IGFBP4 − 2.85 6.73 ×  10–03

IL17A − 2.60 1.28 ×  10–02

CGA.FSHB − 2.57 1.36 ×  10–02

TGFB1 − 2.55 1.43 ×  10–02

IFNL1 − 2.51 1.58 ×  10–02

LCN2 − 2.49 1.66 ×  10–02

SMAD3 − 2.48 1.70 ×  10–02

BMPER − 2.47 1.74 ×  10–02

SERPINE2 − 2.46 1.78 ×  10–02

IL23R − 2.44 1.89 ×  10–02

IL18R1 − 2.44 1.90 ×  10–02

Table 5 Pathway enrichment analysis for significant proteins associated with EXOC4 methylation

Description of the significant pathways from Gene Ontology enriched among proteins significantly associated with ΔNIHSS methylation

Size: number of genes included in the gene set; expect: ratio of enrichment expected by chance in the gene set; Ratio: observed ratio for each specific gene set and p 
value: enrichment p value for each gene set

Gene Set Description Size Expect Ratio P value

GO:0,030,101 NK cell activation 85 0.21814 27.505 7.13 ×  10–04

GO:0,042,110 T cell activation 452 11.600 8.6207 1.40 ×  10–03

GO:0,050,673 Epithelial cell proliferation 372 0.95468 9.4272 3.10 ×  10–03

GO:0,002,521 Leukocyte differentiation 496 12.729 7.8560 3.30 ×  10–03

GO:0,070,661 Leukocyte proliferation 281 0.72115 11.093 4.54 ×  10–03

GO:0,001,819 Positive regulation of cytokine production 418 10.727 8.3898 8.24 ×  10–03

GO:0,002,250 Adaptive immune response 382 0.98035 8.1604 4.53 ×  10–06

GO:0,002,285 Lymphocyte activation involved in immune response 172 0.44141 13.593 4.57 ×  10–06

GO:0,018,212 Peptidyl‑tyrosine modification 389 0.99831 8.0135 5.17 ×  10–06

GO:0,002,449 Lymphocyte mediated immunity 238 0.61079 9.8233 2.9 ×  10–05
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results were more significant in NK cells (NBEAL2: p 
value = 5.99 ×  10–09; SLC7A6: p value = 8.65 ×  10–08) than 
in B cells (NBEAL2: p value = 2.59 ×  10–07) (Additional 
file 1: Figure SIII). There were not any CpG site in EXOC4 
differentially methylated in specific cell types.

We also looked for any tissue-specific regulatory com-
ponent from the 14 CpG sites significantly and nominally 
associated with ΔNIHSS in the meta-analysis. Using as 
functional element the 15 chromatin state marks from 
the Roadmap project, we identified several brain tissue 
signals nominally enriched (p < 0.05), but not significant 
after multiple comparison adjustment in our results 
(Additional file 1: Table SIX).

Blood and brain correlation
We looked for correlation in the cg00039070 methylation 
between blood and brain. Using the “Blood Brain DNA 
Methylation Comparison Tool”, we did not find any cor-
relation in cg00039070 between any of the four brain 
regions included in this tool (prefrontal cortex, entorhi-
nal cortex, superior temporal gyrus and cerebellum) and 
blood (Additional file 1: Figure SIV).

Using BECon, we found a negative correlation (− 0.48) 
between the cg00039070 methylation in blood and BA20 
(in the temporal cortex). This correlation was classified 
in the highest correlation percentile (90%) (consider-
ing all the CpG sites included in the tool) (Additional 
file 1: Figure SV). The BA7 region (in the parietal cortex) 
presented an intermediate correlation (in the 50–75% 
percentile) (Additional file  1: Figure SV). We found a 
lack of correlation in the prefrontal cortex that was also 
observed using the “Blood Brain DNA Methylation Com-
parison Tool”.

Discussion
In this study, our aim was to analyse whether the neuro-
logical course could be associated with epigenetic modifi-
cations. With this objective, we studied the genome-wide 
DNA methylation pattern associated with ΔNIHSS at 
discharge by EWAS. DNA methylation is probably the 
most studied epigenetic variation, consisting of the addi-
tion of a methyl group to a cytosine, mainly in the con-
text of cytosines and guanines (CpG sites). We selected 
ΔNIHSS at discharge as the main variable in the EWAS 
because it was independently associated with Rankin at 
3 months. The results from our EWAS suggest that the 
neurological course of stroke patients measured as the 
difference between NIHSS at baseline and NIHSS at dis-
charge has an impact on DNA methylation in specific 
CpG sites.

From the 44 candidate CpG sites identified in the Dis-
covery Analysis, two CpG sites, located in genes bodies, 

were epigenome-wide significant (p value < 2.4 ×  10–07) 
in the meta-analysis of the Discovery and Replication 
cohorts, but only one CpG site (cg00039070) located in 
the body of the EXOC4 gene accomplished all the pre-
established criteria to be considered significant.

EXOC4, also known as SEC8, encodes for a subunit in 
the exocyst complex, a protein complex involved in the 
tethering of secretory vesicles to the plasma membrane 
[48]. Different functions are attributed to the exocyst 
complex, including but not limited to, exocytosis, cell 
growth cytokinesis and neuronal development [48, 49]. It 
is highly expressed in the brain and is enriched in axon 
growth cones and dendritic branches [48]. We found that 
the methylation pattern identified in association with 
stroke outcome was enriched for brain specific regula-
tory signals. We also investigated specifically the corre-
lation of the methylation in cg00039070 between blood 
and brain using different tools. The results indicated 
that the effect of the EXOC4 methylation in brain could 
be specific for some brain regions and its effect could be 
exacerbated in patients with stroke.

The pathway enrichment analysis showed that the reg-
ulation of DNA methylation in stroke outcome could be 
mediated by regulation of the endocytosis and the deu-
biquitination. The endocytosis is the process by which 
extracellular material is entered to the cell. This process 
has been showed to be interconnected with the exocy-
tosis in the regulation of different processes such as cell 
polarity [50]. Gachet et al. [51] demonstrated the affecta-
tion of endocytosis in mutated SEC8 (EXOC4) yeasts and 
a relationship with the cytokinesis process. Later, Jose 
et al. [52] described the exocyst complex as a key network 
hub which is regulating and coordinating both endocyto-
sis and exocytosis and the balance among both processes.

The ubiquitin proteasome pathway is involved in the 
degradation of proteins and is key in the maintenance of 
the correct neuronal and synaptic function. After stroke, 
different pathological pathways are activated in response 
to the neuronal injury such as mitochondrial autophagy, 
oxidative stress and inflammatory response [53]. All 
these processes are related to the ubiquitin proteasome 
system. The specific role of the ubiquitin proteasome 
system in physiological and pathological processes after 
stroke is still in investigation but it has been suggested as 
a potential target for new drugs [53].

Higher methylation in cg00039070 from the EXOC4 
gene seems to be associated with a decrease in the 
expression of EXOC4 gene, based on our gene expres-
sion results. The higher methylation in cg00039070 iden-
tified in patients with a worse stroke outcome could be 
mediated by the decrease in the EXOC4 expression. Our 
proteomic analysis also indicated a decrease in different 
protein levels linked to higher cg00039070 methylation. 
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The results from the pathway analysis from proteins dif-
ferentially expressed linked with EXOC4 methylation, 
suggested that the inflammatory pathway, regulated by 
NK cells, could be involved in the regulation of stroke 
outcome by methylation. The results from the differen-
tial methylation studied by cell type also supported the 
involvement of this pathway. It showed some associations 
for the CpG sites identified in our study, especially in 
NK cells. NK cells are innate immune cells that infiltrate 
ischaemic stroke lesions in human brains [54]. The func-
tion of NK cells is regulated by activation and inhibitory 
receptors located in the cell surface. Thus, the endocyto-
sis is also important for the NK cell receptors trafficking 
which is key to modulate the dynamic function of NK 
cells [55].

The Sec8 protein, encoded by EXOC4, has been seen to 
control the synaptic targeting and the insertion of gluta-
mate receptors in the synapsis, controlling the directional 
movement of glutamate receptors to the post-synaptic 
membrane [49]. Another possible hypothesis for the 
association of EXOC4 methylation and stroke outcome 
is the affectation of the glutamate receptors dynamism. 
In stroke, the release of the glutamate neurotransmit-
ter is associated with ischaemic cell death in a process 
known as excitotoxicity. Briefly, the glutamate neuro-
transmitter is increased because of the ischaemic insult 
[56] and over-activates two kind of glutamate receptors: 
the N-methyl-D-aspartate receptor (NMDAR) and the 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
receptor (AMPAR) [56, 57]. Activation of the synaptic 
NMDAR leads to pro-survival signalling [58], while acti-
vation of extra-synaptic NMDAR induces a downstream 
neurotoxic cascade [59] that finally causes delayed neu-
ronal death. Both NMDAR and AMPAR have been 
reported to be associated with the Sec8 subunit of the 
exocyst complex [49, 60], involved in the targeting of 
these receptors to the post-synaptic membrane [49, 60]. 
Considering that our results indicated that EXOC4 meth-
ylation is associated with a decrease in the expression of 
EXOC4 and with worse neurological course, we hypoth-
esize that Sec8 could be regulating the trafficking of syn-
aptic glutamate receptors related to cell survival in stroke 
[58].

Moreover, apart from the differential methylation 
identified in EXOC4, we found another gene, GRM3, 
nominally associated with ΔNIHSS in the discovery, 
that encodes glutamate metabotropic receptor 3, also 
involved in excitotoxicity processes. This gene was asso-
ciated with memory impairment in a genetic study in 
Alzheimer disease patients [61].

A recently published GWAS has identified seven loci 
associated with stroke outcome measured through the 
NIHSS scale (calculating the difference between NIHSS 

at baseline and at 24 h) [13]. Their functional annotation 
strongly suggested GRIA1 and ADAM23 associated with 
ΔNIHSS. Both genes are also involved in excitotoxicity 
processes. Both results support a role of excitotoxicity in 
processes related to stroke neurological outcomes modu-
lated by genetic and epigenetic variations. Despite clini-
cal trials using drugs to modulate excitotoxicity processes 
having failed, progress has been made in clarifying the 
mechanisms that explain this failure [62].

One in  vivo study in EXOC4 mutant’s drosophila 
showed that apart from this gene being involved in glu-
tamate receptor trafficking, it is also required for regulat-
ing synaptic microtubule formation and synaptic growth, 
thus suggesting that EXOC4 methylation could be alter-
ing different processes in the synapsis [63].

The excitotoxicity, neuroinflammatory and the synaptic 
regulation are pathways that have been suggested to be 
pathological mediators of ischaemic brain damage [64] 
and could be potentially regulating the link between the 
methylation in EXOC4 and the stroke outcome.

Limitations
The first limitation is the difference in sample size and 
clinical features between the Discovery and Replication 
Cohorts. However, we looked for which clinical variables 
were associated with the methylation of EXOC4 and we 
did not find any. Therefore, there is no reason to believe 
that they would affect EXOC4 methylation in the Rep-
lication Cohort. Despite the differences between both 
cohorts, we have been able to replicate the results, which 
reinforces the plausible implication of EXOC4 methyla-
tion in stroke outcome.

Another limitation is the use of whole blood to study 
DNA methylation in association with stroke outcome. 
However, other epigenomic, transcriptomic and prot-
eomic studies on stroke [16, 65] have also used blood 
samples as it is also a relevant tissue in stroke outcome. 
Additionally, the blood and brain tissues have been found 
to have a 0.86 correlation in global methylation [66]. For 
that reason, we performed the analysis and then we cor-
related the methylation results in brain and blood tissues. 
Finally, we were not able to find a significant correlation 
between EXOC4 mRNA levels and EXOC4 methylation, 
despite a trend being observed. Probably, the sample size 
of for the transcriptomic analysis was not large enough to 
obtain significant results.

Conclusions
We have expanded the knowledge about biological 
mechanisms regulating post-stroke outcome and high-
lighted the relevance of DNA methylation in explaining 
variability in functional outcome. Despite a small sample 
size, we had enough statistical power to obtain results 
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that support the hypothesis of the excitotoxicity, neu-
roinflammatory and synapsis regulation pathways play-
ing a significant role in stroke and indicate that further 
research is needed in this field to confirm this pathway as 
a future therapeutic target.
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