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ABSTRACT: V imido NHC phosphine alkylidenes are the most efficient V catalysts for ring-closing olefin metathesis of various 
terminal dienes. The presence of imido and phosphine ligands is responsible for catalyst decomposition. Therefore, the development 
of phosphine-free V oxo NHC alkylidenes is a logical next step to further improve V-based olefin metathesis. Herein we report V 
oxo NHC chloride and alkoxide alkylidenes and their reactivity in olefin metathesis. V oxo NHC chloride is readily involved in 
cycloaddition/cycloreversion steps with olefins. However, a remarkable preference for the formation of 1,3-metallacyclobutane 
(MCB) leads to exclusive methylene groups exchange (degenerate metathesis) utilized for carbon isotope exchange. DFT studies 
further support the preference for the 1,3-MCB formation.

Olefin metathesis (OM) is a crucial reaction to construct C−C 
double bonds utilized to produce commodity and fine chemi-
cals.1-3 The first reported well-defined complex that can pro-
mote catalytic OM is Tebbe's reagent (Cp2TiCH2ClAlMe2), 
which can slowly catalyze the exchange of methylene groups 
(degenerate metathesis)4 between two terminal olefins, as 
shown by Tebbe in 1979.5 The subsequent research led to the 
development of highly efficient OM catalysts based on second- 
and third-row transition metals.6-8 The recent progress, driven 
by green chemistry and economic factors, shows that the devel-
opment of OM catalysts based on first-row metals, primarily 
vanadium, is achievable.9-13 Thus, Nomura reported a series of 
highly active and selective V-based catalysts for ring-opening 
metathesis polymerization of cyclic olefins.14-16 Some of those 
complexes have been utilized by Farrell in cross-metathesis 
(CM) but showed limited activity.17-18 

Recently, our group has developed V-catalysts for ring-clos-
ing metathesis (RCM) of internal and terminal olefins and re-
ported the highest V-based OM productivity involving terminal 
dienes.19-21 Representative V alkylidene complexes 3-5 and 
their productivities (turnover number, TON) in RCM involving 
the model substrate 1 are shown in Scheme 1. The dissociation 
of one neutral ligand is required to access four-coordinate 14 
electron active catalysts 3a-5a during the reaction. Catalyst 3 
exhibits low RCM productivity with 1 due to limited stability 
toward ethylene. The main decomposition pathway involves the 
𝛽-hydride (𝛽-H) elimination at unsubstituted metallacyclobu-
tane (MCB) formed during the catalysis.19 Substitution of an 
imido group to oxo significantly disfavors 𝛽-H elimination 
leading to a higher RCM productivity with catalyst 4. However, 
the bimolecular decomposition of V oxo phosphine alkylidenes 
becomes the primary reason for catalyst degradation.20 Ex-
change of phosphine in imido complex 3 to N-heterocyclic car-
bene (NHC) ligand increases TON from 6 to 170 in reaction 

with 1 by suppressing both 𝛽-H elimination from MCB and bi-
molecular decomposition. The main degradation pathway for 
catalysts 5 is the exchange of NHC to phosphine that forms dur-
ing the initiation step leading to bis phosphine complex analo-
gous to 3, which is unstable toward ethylene.21 
Scheme 1. Maximum Turnover Numbers (TONs) for Previ-
ously Synthetized V Catalysts in the Model RCM Reaction. 

 
The next logical step for the catalyst optimization is the syn-

thesis of V oxo NHC alkylidenes to preserve remarkable stabil-
ity toward 𝛽-H elimination of V oxo complexes and disfavor 
bimolecular decomposition by introducing a large NHC ligand. 
In addition, we hypothesized that the shift to phosphine-free V 
oxo alkylidenes would improve catalysts' performance since 
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phosphines can participate in side reactions and deactivation 
pathways, such as reduction of high-oxidation state V 
complexes22 and reaction with alkylidenes.23-24 Here, we present 
the synthesis of phosphine-free V oxo NHC complexes and 
their reactivity in OM. We also report the unusual preference of 
the degenerate metathesis employed for carbon isotope 
exchange. 

Complex 6 has been synthesized from 4 and 2 equiv. of IMes 
utilizing ligand exchange reaction in 78% yield (Scheme 2). 
Scheme 2. Synthesis of complex 6. 

 
A 1H NMR spectrum of 6 in C6D6 showed that the alkylidene 

proton resonance is a singlet at 14.45 ppm (1JCH = 114 Hz). The 
X-ray structural study revealed that 6 is a syn-isomer (Figure 1) 
and has a distorted trigonal bipyramidal geometry with NHCs 

in axial positions [V1−C1 2.173(2) Å, V1−C22 2.191(2) Å, 
C11−V1−C22 156.52(10)°], which is similar to imido NHC 
complex 5 [V−C(NHC) is 2.1828(11) Å and P−V1−C(NHC) 
154.52(3)°]. The V1−C43 distance is 1.889(3) Å, and the 
V1−O1 bond is 1.586(2) Å, which are similar to 4.20 Notewor-
thy, the V=C−Si angle [133.01(15)°] is lower than the V=C−Si 
angle in 4 [140.03(9)°]. It can be explained by less extent of α-
hydrogen agostic interaction with the metal center20 due to the 
lower electrophilicity of V in 6 resulting from the high σ-donat-
ing abilities of two NHC ligands.25 

 

Figure 1. Perspective view of the crystal structure of complex 6 
with thermal ellipsoids shown at 30% probability. 

Surprisingly, complex 6 does not exhibit RCM activity with 
1. We initially hypothesized that one NHC-ligand does not dis-
sociate readily to form a four-coordinate 14 electron active cat-
alyst. To overcome this challenge, we decided to synthesize V 
oxo NHC complexes bearing bulky alkoxide ligands to facili-
tate the dissociation of one NHC. Screening various alkoxides 
(see the complete list in SI) led to the synthesis and isolation of 
complex 7 in 89% yield (Scheme 3). 
 

 

 

Scheme 3. Synthesis of complex 7. 

 
Proton NMR spectrum of complex 7 in C6D6 revealed a 

singlet resonance for alkylidene proton at 17.66 ppm (1JCH = 
112 Hz). X-ray studies showed that 7 is a four-coordinate com-
plex (syn-isomer) with distorted tetrahedral geometry (Figure 
2). Four-coordinate V alkylidenes are rare.26-29 To our 
knowledge, complex 7 is the first crystallographically charac-
terized four-coordinate V alkylidene that contains oxo or alkox-
ide ligands. The relevant bond distances are V1−C1 = 1.853(10) 
Å, V1−C17 = 2.140(7) Å, V1−O1 = 1.588(5) Å, and V1−O2 = 
1.845(5) Å. The V=C−Si angle is 130.5(5)°, and V1−O2−C is 
145.9(5)°. 

 

Figure 2. Perspective view of the crystal structure of complex 7 
with thermal ellipsoids shown at 30% probability. 

An important feature of an oxo ligand is the ability to coordi-
nate Lewis acids. It has been shown that the coordination of 
B(C5F6)3 to W oxo alkylidene can improve the activity and se-
lectivity of the OM catalysts.30 However, adding B(C6F5)3 to 6 
in C6D6 led to the rapid decomposition of 6. The reaction be-
tween B(C6F5)3 and 7 resulted in the formation of new alkyli-
dene by 1H NMR (singlet, 14.63 ppm, C6D6), presumably due 
to coordination of B(C6F5)3 to oxo ligand followed by slow deg-
radation of 7⦁B(C6F5)3 adduct. 

Complex 7 does not react with 1, 1,7-cyclooctadiene, 1-
hexene, styrene, or ethylene at 22 °C. However, 7 slowly 
catalyze RCM reactions of 1 and 1,7-cyclooctadiene; and CM 
reaction of 1-hexene at 100 °C (1-4 TON after 3-4 days). Heat-
ing of 7 in the presence of ethylene led to slow decomposition 
of 7. Corresponding methylidene and MCBs have not been ob-
served by NMR. We believe bulky Mes(CF3)2CO alkoxide pre-
vents the coordination of olefin to the metal center, suppressing 
the catalytic activity. 

Complex 6 does not catalyze RCM of 1 or 1,7-cyclooctadiene 
and CM of 1-hexene or allylbenzene. However, 6 reacts with 
styrene to form V benzylidene complex 6-Ph (Scheme 4A). The 
previously reported V imido alkylidene reacts with styrene to 
produce metallacyclopropane.31 6-Ph does not catalyze RCM of 
1 and CM of 1-hexene or styrene. Thus, heating of 6-Ph in the 
presence of 20 equiv. of styrene at 80 °C for seven days does 
not lead to thermodynamically favorable E-stilbene (Scheme 
4B). Noteworthy, 6-Ph is relatively thermally stable in the so-
lution. Thus, we observed ~50% decomposition of 6-Ph at 80 
°C after seven days. 
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The addition of 4-MeO-styrene to 6-Ph results in an equilib-
rium between 6-Ph and 6-OMe (Scheme 4C), Keq is 0.8 in C6D6 
at 22 °C. Noteworthy, benzylidene 6-OMe can be formed di-
rectly from 6 and 4-MeO-styrene 8. The addition of styrene to 
6-OMe leads to the same equilibrium between 6-Ph and 6-
OMe. The presence of electron-donating groups in the phenyl 
ring destabilizes the negative charge on the 𝛼-C atom, explain-
ing the preference for 6-Ph. 
Scheme 4. Reactivity of complex 6. 

 
V oxo NHC complexes 6, 6-Ph, and 6-OMe are readily in-

volved in cycloaddition/cycloreversion steps with styrenes. 
However, the absence of CM products indicates that degenerate 
metathesis is remarkably favorable for V oxo NHC species.  

We hypothesize that the formation of 1,3-MCB is signifi-
cantly more favorable than 1,2-MCB for studied systems. To 
support our hypothesis, we performed DFT (B3LYP-D3)32-34 
studies on the cross (via 1,2-MCB) and degenerate (via 1,3-
MCB) metathesis of styrene and propene. Dissociation of one 
neutral ligand in 6-Ph is required to form an active four-coordi-
nate complex 6-Ph-1 (Figure 3). Cycloaddition between 6-Ph-
1 and styrene can lead to 8 possible pathways depending on the 
relative position of the substituents. Similarly, the reactivity of 
the four coordinated ethylidene 6-Me-1 with propene follows 
equivalent pathways (see SI). We computationally explored the 
8 different pathways assuming the accepted OM reaction mech-
anism with d0 alkylidenes.35-36 The productive MCB has a trig-
onal bipyramid structure with apical oxo and chlorine ligands. 
We analyzed the accuracy of our computational methodology 
by reproducing the equilibrium constant between 6-Ph and 6-
OMe. Calculations predict the thermodynamically favorable 
formation of 6-Ph and 6-OMe from 6 (see SI). Moreover, the 
reaction of 6-Ph with 8 to form 6-OMe is computed to be en-
dergonic by 0.3 kcal mol-1. The computed equilibrium constant 
is thus 0.6, in excellent agreement with the experimentally de-
termined value. 

Figure 3 reports the Gibbs energies of the 8 pathways in-
volved in the reaction of 6-Ph-1 with styrene (Figure S6 for 6-
Me-1 with propene reaction). Syn-6-Ph-1 + styrene is used as 
origin of energies. For the reaction of 6-Ph-1 with styrene, cal-
culations show that the preferred CM pathway is 1,2-MCB-2 
which implies syn-6-Ph-1 and trans-stilbene as final product 
(Figure 3A). The preferred degenerate pathway implies the 
phenyls pointing toward the oxo ligand (1,3-MCB-1, Figure 
3B).  The transition state for cycloreversion determines in both 

cases the feasibility of the two processes. This transition state is 
lower for the degenerate metathesis by 8.0 kcal mol-1 and this 
corresponds to a 10-6 ratio between the corresponding kinetic 
constants (k1,2/k1,3). The reaction of 6-Me-1 with propene pre-
sents lower energy barriers in general. The most favorable CM 
pathways involve 1,2-MCB-1 and 1,2-MCB-2, but they are still 
4.1 and 4.3 kcal mol-1 higher in energy than the degenerate me-
tathesis (10-3 k1,2/k1,3 ratio). For comparison, reported data on 
Ru NHC alkylidenes shows that 1,3-MCB is ~2 kcal/mol more 
favorable than 1,2-MCB.37 We believe 𝛼-C atoms in V MCBs 
have a higher negative charge than those in Ru MCBs due to 
the lower V electronegativity.38 The higher polarization of the 
V=C bond favors that the substituted moiety of the reacting ole-
fin interacts with the positively charged metal and, thus, overall 
1,3-MCB. 

 

Figure 3. Calculated relative Gibbs free energies under benzene 
solvation (B3LYP-D3) in kcal/mol with respect to syn-6-Ph-1. Red 
values show the most favorable paths via 1,2- and 1,3- MCBs. 
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To further support the high preference for degenerate metath-
esis, we utilized 13C-labeled 4-MeO-styrene 8-13C for carbon 
isotope exchange (CIE)39 with styrene in the presence of 3 
mol% of 6 (Scheme 5). CIE is slow at room temperature. Heat-
ing the reaction mixture at 80 °C for 16 hours led to 50% isotope 
exchange as expected at equilibrium conditions (assuming no 
isotope effect). 
Scheme 5. Carbon isotope exchange (CIE) catalyzed by 6. 

 
CIE involving alkyl olefins is less efficient. Thus, the reac-

tion between 8-13C and 1-hexene led to 12% exchange after 16 
hours at 80 °C. Noteworthy, we observed only the formation of 
benzylidene from 4-MeO-styrene during the reaction by 1H 
NMR. It can be explained by the higher stabilization of a nega-
tive charge at 𝛼-C atom by the aryl group in benzylidene than 
by the alkyl group in butylidene (alkylidene derived from 1-
hexene). To overcome the bias in forming alkylidenes we per-
formed CIE between 13C-labeled 4-phenyl-1-butene 9-13C and 
1-hexene. However, the corresponding alkylidenes are not ther-
mally stable. As a result, the reaction at elevated temperatures 
led to the catalyst’s decomposition. CIE at room temperature 
resulted in 20% exchange after 72 hours. CM products were not 
observed in all cases, confirming the preference for 1,3-MCBs 
for substrates containing alkyl groups. 

We have shown that V oxo NHC chloride complex 6 can be 
prepared from the corresponding phosphine complex by ligand 
exchange reaction. The following salt metathesis leads to the V 
oxo NHC alkoxide 7. However, the bulky alkoxide ligand pre-
cludes the activity in olefin metathesis. Complex 6 is readily 
involved in cycloaddition/cycloreversion steps with terminal 
olefins. Unlike previously studied V oxo phosphine complex 
and V imido NHC and phosphine complexes, the V oxo NHC 
chloride complex strongly prefers the formation of 1,3-MCB 
for a reason not yet understood. This unusual reactivity can be 
applied to carbon isotope exchange reactions via degenerate 
metathesis. 
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