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Data mining analyses for precision 
medicine in acromegaly: a proof 
of concept
Joan Gil1,2,3, Montserrat Marques‑Pamies4, Miguel Sampedro3,5, Susan M. Webb2,3, 
Guillermo Serra6, Isabel Salinas4, Alberto Blanco7, Elena Valassi2,3,4, Cristina Carrato8, 
Antonio Picó3,9,10, Araceli García‑Martínez3,9, Luciana Martel‑Duguech2, Teresa Sardon11, 
Andreu Simó‑Servat12, Betina Biagetti13, Carles Villabona14, Rosa Cámara15, 
Carmen Fajardo‑Montañana16, Cristina Álvarez‑Escolá17, Cristina Lamas18, Clara V. Alvarez19, 
Ignacio Bernabéu20, Mónica Marazuela3,5, Mireia Jordà1* & Manel Puig‑Domingo1,3,4,21*

Predicting which acromegaly patients could benefit from somatostatin receptor ligands (SRL) is 
a must for personalized medicine. Although many biomarkers linked to SRL response have been 
identified, there is no consensus criterion on how to assign this pharmacologic treatment according 
to biomarker levels. Our aim is to provide better predictive tools for an accurate acromegaly patient 
stratification regarding the ability to respond to SRL. We took advantage of a multicenter study of 
71 acromegaly patients and we used advanced mathematical modelling to predict SRL response 
combining molecular and clinical information. Different models of patient stratification were 
obtained, with a much higher accuracy when the studied cohort is fragmented according to relevant 
clinical characteristics. Considering all the models, a patient stratification based on the extrasellar 
growth of the tumor, sex, age and the expression of E‑cadherin, GHRL, IN1-GHRL, DRD2, SSTR5 and 
PEBP1 is proposed, with accuracies that stand between 71 to 95%. In conclusion, the use of data 
mining could be very useful for implementation of personalized medicine in acromegaly through 
an interdisciplinary work between computer science, mathematics, biology and medicine. This new 
methodology opens a door to more precise and personalized medicine for acromegaly patients.
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Acromegaly is typically diagnosed late, when the symptomatology is strikingly  present1,2. Neurosurgical cure is 
not achieved in all cases; thus, medical treatment is vitally important for controlling hormone levels and even-
tually, tumor expansion. First-generation somatostatin receptor ligands (SRL) are recommended as a first-line 
medical therapy in all clinical guidelines, but biochemical control is only achieved in approximately 50% of 
patients or even  less3,4. Furthermore, response to first-generation SRL can be partial, without achieving complete 
control of the hormonal  excess5.

The delay in diagnosing acromegaly and finding the effective medical treatment negatively affects life expec-
tancy and quality of  life6,7. For this reason, personalized medicine would be a substantial improvement for acro-
megaly allowing physicians to assign the most appropriate treatment in terms of effectiveness for each  case8–10. In 
a previous study, we confirmed that expression of E-cadherin in somatotropinomas is, so far, the best predictor 
of response to  SRL11,12.

Different factors, such as age and  sex13,14, radiologic information such as T2-weighted MRI signal  intensity15, 
and histopathologic data such as granularity  pattern16,17 are related to therapeutic outcomes. Tumor expression 
of SSTR2 and other molecules have offered additional insights in relation to treatment  response11,18, although 
some studies have shown controversial  results19. Currently, the major drawback to transferring this approach to 
clinical practice is the overlapping of values of these markers between response categories which does not allow 
the definition of clear cut-offs. Moreover, it is difficult to account for many biological, clinical and molecular 
variables with small but added effects in the response to first-generation SRL. Using data mining, a modality of 
mathematical analysis allowing efficient subclassification of heterogeneous populations, such as those of GH-
secreting  tumors20, it is potentially possible to elicit different combinations of molecular markers expressed in 
somatotropinomas with predictive value. Since no single form of classification is appropriate for all data sets, 
a large toolkit of classification algorithms have been developed through the years (linear regression, logistic 
regression and naïve Bayes, among others)21,22. The underlying concept of this study is that applying data min-
ing techniques by combination of the already discovered biomarkers of response to SRL and patient clinical 
phenotype we would achieve a better stratification of the patients than using single markers. Accordingly, here 
we provide the preliminary results of a proof-of-concept study in which combined data are analysed through 
artificial intelligence methods to identify high accuracy classifiers of first-generation SRL response categories.

Methods
Patients. This study is an in-depth statistical analysis of data generated in a previous  study11 which included 
seventy-one acromegaly patients from the REMAH  cohort23 who had undergone pituitary surgery and had tis-
sue availability. Samples of somatotropinomas were obtained consecutively from surgeries at 26 Spanish tertiary 
centers, reflecting the daily practice of acromegaly management. Fifty-one acromegaly cases (51% females, mean 
age 45.3 ± 13y) received SRL treatment before surgery while the remaining 20 patients did not (51% females, 
mean age 44.6 ± 13 y). All patients were treated with SRL (octreotide or lanreotide) because of disease persis-
tence after neurosurgery for at least 6 months under maximal effective therapeutic doses according to IGF1 val-
ues. SRL response was categorized as complete responders (CR), partial (PR), or non-responders (NR) if IGF1 
was normal, between > 2 < 3 SDS, or > 3 SDS IGF1, respectively, as previously  described15.

The tumors were macroadenomas in 79% of cases, 19% causing visual alterations and 28% hypopituitarism 
before surgery; 37.5% showed a hypointense T2 tumor signal. Mean BMI was 28 kg/m2 ± 4.8 SD; 28% presented 
diabetes, 32% dyslipidemia, and 35% hypertension.

The study was conducted in accordance with the principles of the Declaration of Helsinki/ International 
Conference on Harmonised Tripartite Guideline for Good Clinical Practice. The study was approved by the 
Germans Trias i Pujol Hospital Ethical Committee for Clinical Research (EO-11-080). All patients provided 
written informed consent.

Clinical data. The categorical variables evaluated in this study were: GNAS mutation status, sex, presence of 
extrasellar growth and sinus invasion, T1 and T2 categorical MRI intensity signal, presurgical visual alterations, 
presurgical hypopituitarism, history of diabetes, high blood pressure, dyslipidaemia, cancer, cerebrovascular 
disease and cardiovascular disease. T1 and T2 categorical MRI intensity were assessed by each participating 
center as previously described by Potorac et al.24. Quantitative variables were: age, Body Mass Index (BMI), GH 
levels at diagnosis, GH levels after oral glucose overload at diagnosis, IGF1 diagnostic values, time under SRL 
therapy and tumor maximum diameter (mm). IGF1 and GH levels were measured in each center. IGF1 index 
at diagnosis was calculated by dividing each serum IGF-1 value by the upper limit of reference range for IGF1.

Regarding hormonal measurements, blood samples were collected from patients at baseline and at different 
follow-up times after an overnight fast. Serum IGF1 was measured by two different methods (Immunotech IGF1 
kit; Immunotech-Beckman, Marseille, France and Diagnostic Systems Laboratories, Webster, Texas, USA) and 
normalized for comparisons by expressing SD  values11,15.

Molecular data. We used the relative gene expression data (the expression of every gene was assessed by 
RT-qPCR using Taqman assays and calculated relative to the expression of three reference genes) and mutational 
data obtained in our recent  study11. Only one pediatric case harboured a mutation on the AIP gene and was 
excluded from the study.

Biomarker data mining analyses. The molecular and clinical data of the acromegaly patients included 
in our recently published  work11 were used. The novelty is the methodology for establishing algorithms and 
the generation of cut-off values, not previously published for the combined clinical and molecular determi-
nants of acromegaly therapeutic response. First, an independence analysis between categorical variables and SRL 
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response categories was performed by means of a Pearson’s Chi-squared test to identify dependencies. Evalua-
tion of potential bias between centers was also performed.

For the quantitative variables a Kolmogorov–Smirnov test was applied to assess the normality of the samples. 
The differential behaviour of the variables studied according to SRL response groups was analysed applying a 
Student’s t-test, or a Wilcoxon-rank sum (Mann Whitney U) test, depending on the Gaussian or non-Gaussian 
distribution of the variable values, respectively.

Data Mining strategy was applied by Anaxomics S.L. (http:// www. anaxo mics. com) to identify the best clas-
sifiers (Fig. 1)25,26 among quantitative variables. In order to add the information of the categorical data to the 
models, we divided the samples according to a categorical variable in what it is called “fragmented population”, 
for example, biological sex, and applied all the data mining strategies to the obtained subsets. This procedure 
was applied to different categorical variables. The fragmentation of population deconstructs the heterogeneity to 
overcome molecular differences and reduce statistical noise that is not due to SRL response. mRNA expression 
levels are treated as continuous variables in the models. First, a Data Cleaning process was performed to eliminate 
outliers (values > 3 times the standard deviation of the rest of values), uninformative variables (not considered 
because the values for all the samples are the same or variables with 100% coincidence with the outcome of the 
analysis), missing values, and duplicate variables. Next, this new cleaned data set was used to train the model of 
the data mining process. All the variables of the data set were individually evaluated for their capability as clas-
sifiers, in the whole and the categorical variable-fragmented populations. Missing data was not imputed in the 
classifiers. When the classifier contained only one variable, the discriminant function was a constant that was 
determined as the threshold value that separated samples from different groups with the best accuracy (Fig. 2A). 
The threshold value was determined iteratively and a cross-validation (10-K fold) protocol was performed. In 
contrast, when the classifier contained two or more independent variables, the discriminant function was gener-
ated by applying Data Science approaches that identified the best classifiers (Fig. 2B,C), and thus, the threshold 
could be single, double or a polynomial threshold line. This process was subdivided in different mathematical 
sub-processes: Feature Normalization, Feature Selection,

Feature Transformation, Feature Extraction, Ensemble Classifier, Base Classifier, Backward Feature Removal 
and Validation (Fig. 1). By means of artificial intelligence (AI) procedures, different mathematical algorithm 
approaches previously published were explored for each sub-process, allowing an exhaustive exploitation of the 
data (Table 1). In the present study the Feature Normalization determined that the values of all the variables 
were in the adequate range for the analysis, thus no further method of normalization was required. It was not 
necessary to apply a Feature Extraction to reduce the number of random variables. Different algorithms gener-
ated different classifiers. Since our goal was the prediction of SRL response for an individual case, we wanted to 
estimate how accurately a predictive model would perform in clinical practice. In order to flag selection bias or 
overfitting in our models, we used cross-validation techniques for assessing how the model would generalize 
to an independent data set. We confronted the model obtained with a subset of training data with the test data 
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Figure 1.  Biomarker data mining analyses procedure. First, a Data Cleaning process was performed to 
eliminate outliers, uninformative variables, missing values, and duplicate variables. Next, this new cleaned 
data set was used to train the model of the Data Mining process which is subdivided in different mathematical 
sub-processes: Feature Normalization, Feature Selection, Feature Transformation, Feature Extraction, Ensemble 
Classifier, Base Classifier, Backward Feature Removal and Validation. The Feature Normalization guarantees 
that the values of all variables are in the same range. The Feature Selection is applied to select the input variables 
that show the strongest relationship with the outcome. The Feature Transformation consists in mathematical 
transformations of the input data required for the Base Classifiers. It was not necessary to apply a Feature 
Extraction to reduce the number of random variables. Different algorithms generated different Base Classifiers 
with a good performance. Ensemble Classifiers were able to improve the performance of the Base Classifiers. 
Finally, the Validation process to estimate the accuracy of the predictive model was performed using the original 
database by several methods: 10-K fold and Leave-one-out.

http://www.anaxomics.com
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using a 10-K fold strategy. Therefore, we obtain a more exact estimation of the accuracy of the model taking the 
average of all the accuracy estimations obtained after each iteration. We used the accuracy (ACC) as the simplest 
parameter for evaluating the model, being the proportion of correct predictions (both true positives and true 
negatives) among the total number of samples. Accuracy levels are referred in these terms: accuracy 100–95%, 
excellent; 95%-80%, very good; 80%-70%, good; below 70%, to be improved.

Results
Phenotypical characterization according to first‑generation SRL response. A phenotypical 
characterization was performed according to SRL response which showed that SRL resistance was strongly 
associated with tumor extrasellar extension (Pearson χ2 p‐value: 0.004) as shown in Table 2. Furthermore, NR 
patients presented more sinus invasion and hypopituitarism before surgery in contrast to CR or PR (Pearson 
χ2 p‐value: 0.05 and 0.01, respectively). However, it is debatable whether the association of hypopituitarism is 
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Figure 2.  Representation of different possible models resulting from the data mining analysis in the whole 
cohort. (A) Sampling distribution graph representing the distribution of CR and NR patients for E-cadherin 
expression. When the classifier contains only one variable we used a variable brute force technique. The 
discriminant function is a constant that is determined as the threshold value that separates samples from 
the two groups with the best accuracy (marked by dotted red line). (B) Sampling distribution graph in 2D 
representing the distribution of CR and NR patients for the expression of AIP and E-cadherin. The blue line 
is the mathematical function defined by the values of the classifier, a mathematical function that separates NR 
from CR patients. As this classifier is composed of two variables, each dimension of the graph stands for one 
variable. The variables were selected by the Lasso method and the model performed according to Multilayer 
perceptron (MLP) methodology. (C) Sampling distribution graph in 2D representing the distribution of CR 
and NR patients for the expression of SSTR2, E-cadherin and AIP. As this classifier is composed of more than 
two variables, each dimension of the grafh stands for the the two main components after performing a principal 
component analysis (PCA). The blue line is the mathematical funtion that separates CR from NR patients. The 
variables were selected by the Wilcoxon method and the model performed according to Multilayer perceptron 
(MLP) methodology.
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Sub-process Algorithm References

Backward removal features Backward elimination 27

Base classifier

Elastic net 28

K-nearest neighbors (K-NN) 29

Boosted Generalized Additive Models (B-GAM) 30

Tree 31

Support vector machine (SVM) 32

Multilayer perceptron (MLP) 33

MLP ensemble 33

Linear search 21

Linear regression 21

Quadratic 21

Random linear 21

Generalized linear model binomial 22

Ridge regression 34

Naïve bayes 35

Lasso regression 36

Radial basis function (RBF) 37

Cost function

Accuracy 38

Balanced accuracy 38

Balanced cost matrix 38

Cost matrix 38

F1 score 38

Matthews correlation coefficient (MCC) 39

Area Under Curve (AUC) 40

Dimensionality reduction

Principal component analysis (PCA) 41

T-distributed Stochastic Neighbor Embedding (t-SNE) 42

Multidimensional scaling (MDS) 43

Hessian locally linear embedding (HLLE) 44

Isomap 45

Latent Dirichlet allocation (LDA) 46

Locally linear embedding (LLE) 47

Sammon projection 48

LandMark ISOMAP (L-ISOMAP) 49

Laplacian 50

Gaussian process latent variable model (GPLVM) 51

Kernel PCA 52

Independent component analysis (ICA) 53

Non-negative matrix factorization (NMF) 54

Factor analysis 55

Probabilistic principal component analysis (PPCA) 56

Local tangent space alignment (LTSA) 57

Ensemble classifier

Bootstrap 58

Bootstrap respecting prevalence 58

Balanced bootstrap 58

Ensemble method

Bootstrap 59

Bootstrap respecting prevalence 59

Balanced bootstrap 59

Continued
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of clinical significance since we would have expected a progressive behavior from CR to NR, thus with a poten-
tial association of NR with hypopituitarism which may have been related with a larger and more destructive 
adenoma rather than a marked difference in the PR group.

Additionally, differences in the value of quantitative clinical variables according to SRL response categories 
were evaluated for the studied comparisons and the results are displayed in Table 3. High BMI and IGF1 levels 
at diagnosis were associated with NR patients.

Algorithms classifying SRL response in acromegaly patients. The in-depth statistical exploration 
of the data generated in our previous  paper11 allowed to formulate several algorithms for the discrimination 
of patients regarding SRL response (cross‐validated p‐value < 0.05); those displaying the highest accuracy are 
shown in Table 4. All the significant predictive models are presented in Supplementary Tables. The strongest and 

Sub-process Algorithm References

Feature selection

K-nearest neighbors (K-NN) 29

Receiver operating characteristic (ROC) 60

Bhattacharyya 61

Ridge regression 61

Wilcoxon 62

Wilcoxon + correlation 62

minimum Redundancy Maximum Relevance (mRMR) Mean discretized 63

Boolean balanced three-valued logic rules 64

Sequential floating forward selection (SFFS) 65

Support vector machines recursive feature elimination (SVM-RFE) 66

Random forest 67

Chow-Liu 68

Simple regression 21

Relieff 69

Random generalized linear model 22

One variable brute force 70

Bhattacharyya + Correlation 71

Entropy 71

Entropy + Correlation 71

Mattest 71

T-test 71

T-test + Correlation 71

minimum Redundancy Maximum Relevance (mRMR) 72

Lasso 36

Elastic net 73

Double Cross-Validation regression 74

Feature transformation

Sigmoid 71

Gaussian: the value used is the value obtained after being submitted to a Gaussian function

No value transformation

The value used is the original value multiplied by itself

The value used is the square root of the original value

Multiclass classifier

Generalized coding 71

One versus all (OVA) binary classified applied

One versus one (OVO) binary classifiers applied

Normalization

Sigmoidal mean variance 71

Trimmed mean variance 71

Mean variance

Median dispersion

Min Max: each value is divided by the difference between the maximum and the minimum 
value

Winsorizing mean variance

Validation

Bootstrap 75

K-Fold 76

LeaveOneOut (LOO) 71

Table 1.  Mathematical methods explored during the different processes included in the Data Mining strategy.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8979  | https://doi.org/10.1038/s41598-022-12955-2

www.nature.com/scientificreports/

most accurate single predictive biomarker for SRL response was E-cadherin, as it was the only marker discrimi-
nating between 3 of the 4 comparisons categories evaluated: (1) CR vs PR accuracy 65.8% at cut-off values of 
0.513 and 0.007; (2) CR vs NR accuracy 73.1% at cut-off value 0.535; (3) CR + PR vs NR accuracy 62.6% at cut-off 
values of 0.348 and 0.013. Moreover, E-cadherin was also found in many of the dual and triad panels obtained 
by the analysis. After E-cadherin, the most frequent contributor to enhance classification power was SSTR2. 
The combination of E-cadherin and SSTR2 increased the accuracy by 6–7% more than E-cadherin alone. The 
addition of AIP77 or In1-GHRL78 showed a moderate enhancement of the classification power, reaching 75% of 
accuracy. Finally, adding PEBP79 displayed nearly a 70% accuracy at cut-off 15.56, specifically in the discrimina-
tion between CR and PR.

For those panels including more than one marker, in pairs or triads, cut-off values showed dynamic values 
(the values change with respect the variables of the model as a function because the variables are interdepend-
ent) as shown in Fig. 2B,C.

Fragmented population analysis achieves higher predictive accuracy. For analysis purposes, the 
cohort was subsequently segregated according to different clinical and biological variables, such as sex, extra-

Table 2.  Clinical categorical variables related to SRL response. a SRL response columns indicate the percentage 
of patients with CR, PR, or NR dictated by the presence of absence of the clinical condition. b Pearson χ2 
p-values are shown. Statistically significant values (p-value < 0.05) are reported in bold.

Group

SRL  responsea

Pearson χ2 p-valuebCR PR NR

Presurgical hypopituitarism
Yes 42% 15% 55%

0.01
No 68% 85% 45%

Presurgical visual alterations
Yes 13% 27% 19%

0.62
No 87% 73% 81%

T2 signal intensity

Hypointense 31% 22% 36%

0.90Isointense 38% 56% 36%

Hyperintense 31% 22% 28%

T1 signal intensity

Hypointense 61% 40% 53%

0.75Isointense 39% 50% 38%

Hyperintense 0% 10% 8%

Gender
Male 46% 35% 62%

0.07
Female 54% 65% 38%

GNAS mutation
Mutated 29% 38% 36%

0.83
WT 71% 62% 64%

Sinus Invasion
Yes 22% 35% 59%

0.05
No 78% 65% 41%

Extrasellar growth
Yes 48% 60% 95%

0.004
No 52% 40% 5%

Table 3.  Clinical numerical variables showing differences between the evaluated comparisons. The clinical 
numerical variables that were tested: IGF1 levels measured at diagnosis in each center, IGF1 index at diagnosis, 
GH levels measured at diagnosis in each center, GH levels measured after a 75 g oral glucose load (OGTT), 
BMI (Body Mass Index) at diagnosis, maximum tumor diameter in the MRI measured in each center and 
the age of the patient at diagnosis. T-test or Wilcoxon-test p-values are shown. Statistically significant values 
(p-value < 0.05) are reported in bold, and p-value < 0.1 in italic Log2FC: Log2 Fold Change.

Variable

CR + PR vs NR CR vs NR PR vs NR CR vs PR

p-value Log2FC p-value Log2FC p-value Log2FC p-value Log2FC

IGF1 diagnosis 0.035 − 0.33 0.007 − 0.47 0.722 − 0.16 0.081 − 0.31

IGF1 index diagnosis 0.051 − 0.41 0.086 − 0.39 0.063 − 0.43 0.838 0.04

GH diagnosis 0.590 1.04 0.134 0.94 0.429 1.17 0.134 − 0.22

GH after OGTT 0.622 1.27 0.728 1.29 0.633 1.25 0.941 0.03

BMI diagnosis 0.094 − 0.13 0.044 − 0.17 0.452 − 0.07 0.316 − 0.10

Maximum diameter 0.178 − 0.27 0.092 − 0.35 0.532 − 0.16 0.708 − 0.19

Age diagnosis 0.197 0.14 0.272 0.13 0.802 − 0.03 0.276 0.16
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sellar growth of the tumor, radiological sinus invasion, the mutational status of GNAS, T2 hypointense  signal80 
and presurgical SRL treatment. The fragmented population studied is detailed in Supplementary Table 1.

The analysis provided multiple models depending on the core variable used in the fragmentation. The best 
models for every clinical scenario are shown in Table 5. Overall, the algorithms generated achieved a much higher 
cross‐validated accuracy in the fragmented rather than in the whole cohort for prediction of SRL response, as 
detailed in Supplementary Tables.

Decision tree therapeutic algorithms based on mathematical modelling. The present analyses 
allow the development of decision trees that may be used in clinical practice for individual patients. Two trees 
were formulated. The first one is based on the extrasellar tumor growth and different molecular biomarkers 
(Fig. 3A). A patient without extrasellar growth is discarded as NR with an accuracy of 95%, and for distinction 
between CR and PR, the measurement of PEBP1 and SSTR5 allows to achieve an accuracy of 87.5%. When 
tumor extrasellar growth is present, the decision tree segregates NR patients from responders (CR and PR) 
using levels of GHRL expression with an accuracy of 71.3%. To differentiate between CR and PR, measurement 
of SSTR5, In1-GHRL and E-cadherin leads to an accuracy of 79.8%. A second tree based on the patient’s sex 
showed an accuracy of 73.8–80.8% to distinguish between NR, CR and PR patients, being higher for men than 
for women (Fig. 3B).

Both algorithms show a high accuracy to identify NR patients (accuracy ranging from 71.3 to 95%) which is 
particularly important since NR are the patients that suffer the largest delay using the current fixed sequential 
therapeutic decision chart. In all cases, measuring the expression of one or two molecules would be enough to 
define this type of patient response. The accuracy to distinguish between CR and PR patients is lower except for 
patients without extrasellar growth, thus we recommend the use of these algorithms specially to identify NR 
patients. When models are combined, the accuracies of the different steps should be multiplied to obtain the 
total final accuracy. Detailed mathematical features of the models can be found in Supplementary Figures S1-7.

Discussion
General findings in our cohort included a substantial association between first-generation SRL response and 
invasive tumors. BMI and IGF1 basal levels were also slightly associated with SRL response. Although high BMI 
used to be associated with acromegaly  condition81, it is the first time that this association has been also identified 
regarding SRL response. Also, molecular differences match with the sexual dimorphism of SRL  response82. In 
particular, PEBP1 was associated with the prediction of SRL response in women more than in men, as previously 
 reported79. Moreover, age, which has also been considered as a SRL response  factor83, seems to be more impor-
tant in men. Furthermore, as we  firstly11 reported, the hypointense T2 MRI signal was associated with a better 
SRL response, also confirmed by  others84. In our cohort, non T2-hypointense tumors showed less heterogeneity 
allowing a better classification by AI procedures. Interestingly, SSTR3 contributed to classify the T2-hypointense 
tumors while it was not associated with any other clinical feature.

Nonetheless, single markers are not powerful enough to achieve a highly accurate and discriminative capacity 
of first-generation SRL response categorization in such heterogeneous disease as acromegaly. Our data definitely 
confirm that E-cadherin is one of the most powerful markers of SRL response prediction, as initially described 
by Fougner et al.85. In our analysis SSTR2, although being a cardinal biomarker for developing a predictive algo-
rithm, was insufficient as a single marker tool of SRL response prediction. The variability in the ability of SSTR2 
to predict SRL response has been reported in different studies. Some authors found no statistical differences 
between SSTR2 and SRL  response19 while others  did86,87. Wildemberg et al. assessed the performance of SSTR2 
as a marker of SRL response and found a sensitivity of 100% and specificity of 38%88, which represent a better 
sensitivity but a worse specificity compared to what we previously found (60% and 75%, respectively)11. These 
differences may be due to the use of different methodologies to quantify SSTR2, to the criteria applied to catego-
rize patient’s response or to biological differences between the cohorts, as these tumors are highly heterogeneous.

Table 4.  Best classifiers in the whole cohort. All individual classifiers and those panels with 2 or 3 classifiers 
that display an improvement in accuracy are presented in this table. ACC: Accuracy.

Evaluated comparison Panel of classifiers ACC p-value

CR + PR vs NR

E-cadherin 62.61% 0.027

GHRL 67.26% 0.002

SSTR2 + E-cadherin 69.95% 0.001

CR vs NR

DRD2 long isoform 69.23% 0.006

E-cadherin 73.08% 0.001

SSTR2 + E-cadherin + AIP 75.00%  < 0.001

SSTR2 + E-cadherin + IN1GHRL 75.00%  < 0.001

PR vs NR
SSTR2 + Ki-67 67.87% 0.02

SSTR2 + SSTR5 + ARRB1 69.68% 0.004

CR vs PR
E-cadherin 65.84% 0.028

PEBP1 69.68% 0.004
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Table 5.  Best classifiers in patients with or without SRL presurgical treatment, extrasellar growth, sinus 
invasion, biological sex and GNAS mutational status. For each subgroup, the best panel/s of classifiers 
(with accuracy higher than the maximal one achieved by the classifiers using the whole cohort without 
fragmentation) in each comparison are shown. aThe third column refers to the condition in the first column. 
ACC  Accuracy.

Fragmenting 
condition

Evaluated 
comparison

Fragmented 
population  Na Best panel of classifiers ACC p-value

A. SRL presurgical 
treatement

CR + PR vs NR
No (9 vs 7) PLAGL1 + PEBP1 + E-cadherin 88.89% 0.003

Yes (33 vs 19) SSTR5 + DRD2 long isoform + E-cadherin 70.65% 0.001

CR vs NR
No (6 vs 7) Age + SSTR2 + E-cadherin 100.00% 5.83E−04

Yes (20 vs 19) PLAGL1 + IN1GHRL + E-cadherin 76.97% 9.43E−04

PR vs NR
No (3 vs 7) Not found – –

Yes (13 vs 19) SSTR5 + PEBP1 74.29% 0.003

CR vs PR
No (6 vs 3) SSTR2 + E-cadherin 100% 0.012

Yes (20 vs 13) PEBP1 + IN1GHRL 76.82% 4.02E−04

B. Extrasellar growth

CR + PR vs NR
No (18 vs 1) Not found – –

Yes (20 vs 19) GHRL 71.32% 0.005

CR vs NR
No (12 vs 1) Not found – –

Yes (11 vs 19) Not found – –

PR vs NR
No (6 vs 1) Not found – –

Yes (9 vs 19) Not found – –

CR vs PR
No (12 vs 6) SSTR5 + PEBP1 87.50% 0.004

Yes (11 vs 9) SSTR5 + IN1GHRL + E-cadherin 79.80% 0.012

C. Sinus Invasion

CR + PR vs NR
No (26 vs 7) Not found – –

Yes (12 vs 10) AIP 77.50% 0.015

CR vs NR
No (18 vs 7) SSTR2 + ARRB1 + KLK10 81.75% 0.007

Yes (5 vs 10) PEBP1 + AIP + IN1GHRL 85.00% 0.017

PR vs NR
No (8 vs 7) Ki-67 + IN1GHRL 85.71% 0.007

Yes (7 vs 10) Not found – –

CR vs PR
No (18 vs 8) SSTR2 + IN1GHRL + KLK10 86.61% 0.009

Yes (5 vs 7) Not found – –

D. Gender

CR + PR vs NR
Female (25 vs 10) PEBP1 + GHRL 73.78% 0.007

Male (18 vs 16) Age + E-cadherin 80.83% 0.001

CR vs NR
Female (14 vs 10) PEBP1 + E-cadherin + AIP 79.76% 0.005

Male (12 vs 16) Age + PLAGL1 + E-cadherin 85.45% 4.91E−04

PR vs NR
Female (11 vs 10) Not found – –

Male (6 vs 16) SSTR2 + PLAGL1 + GHRL/ARRB1 85.35% 0.003

CR vs PR
Female (14 vs 11) SSTR2 + PEBP1 74.68% 0.016

Male (12 vs 6) DRD2 short and long isoform + E-cadherin 80.00% 0.018

E. GNAS mutational 
status

CR + PR vs NR
WT (19 vs 14) SSTR2 + DRD2 long isoform + ARRB1 77.07% 0.003

Mutated (10 vs 5) Not found – –

CR vs NR
WT (10 vs 14) Not found – –

Mutated (5 vs 5) PLAGL1 + E-cadherin + Ki-67 90.00% 0.024

PR vs NR
WT (9 vs 14) SSTR5 + ARRB1 72.22% 0.014

Mutated (5 vs 5) Not found – –

CR vs PR
WT (10 vs 9) PEBP1 + E-cadherin 84.44% 0.004

Mutated (5 vs 5) Not found – –

F. Hypointense T2 
signaling

CR + PR vs NR
NO HYPO (23 vs 15) SSTR3 + ARRB1 + AIP 74.18% 0.008

HYPO (14 vs 8) DRD2 short isoform + Ki-67 75.00% 0.040

CR vs NR
NO HYPO (13 vs 15) SSTR3 + SSTR2 + Ki-67 88.46% 8,75E−05

HYPO (9 vs 8) E-cadherin 87.50% 0.003

PR vs NR
NO HYPO (10 vs 15) Age + DRD2 short isoform + PEBP1 76.79% 0.022

HYPO (5 vs 8) Not found – –

CR vs PR
NO HYPO (10 vs 9) DRD2 short isoform + KLK10 85.04% 0.001

HYPO (5 vs 5) Not found – –
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Most of the molecules that previously emerged from classical candidate gene approach as potential biomarkers 
of response to SRL are fairly represented in the algorithms and decision trees obtained in our analyses using data 
mining. Thus, from the different molecules previously reported as single markers: E-cadherin, SSTR2, PEBP1, 
GHRL and In-1-GHRL, and AIP are those that contribute -with different combinations at individual level- more 
robustly to the generation of decision trees and models in our cohort. Regarding AIP, although mutations in that 
gene are the most frequent germline mutations in  somatotropinomas89 and are associated with poorly response 
to first generation SRL response, our cohort did not include any AIP-mutated case. Instead, we analyzed AIP 
expression since AIP levels have been also related to SRL  resistance90,91.

To date, the best single marker is just able to predict with an accuracy not higher than 70%. In our study we 
were able to obtain accuracies that were above 70% and in some cases were ranging from 80 to 100% depending 
on the algorithm, thus one of the conclusions of our work is that in the future, acromegaly patients with specific 
characteristics will probably require specific decision trees obtained from enriched large cohorts. In this regard 
the present study is a preliminary work with internal validation procedures but awaiting of external validation 
with other similar cohorts.

The other very important issue is the definition of the cut-off values for application to clinical practice; in the 
present study we have been able to define cut-off values for the different clinical scenarios which may be useful 
for clinical implementation. The cut-off values obtained are not precise numbers applicable to all patients but 
instead they are dynamic, interdependable values calculated from the formulated equations (the mathematical 
models) that change for every single patient according to his or her clinical characteristics and/or to the expres-
sion of the markers in the tumor. The mathematical models we present, once established, will be easy to use, 
provided that the necessary biological markers will be determined in the tumor tissue. This kind of model is 
already used in other medical specialties, such as oncology. We strongly believe that acromegaly is a disease that 
will benefit enormously from this type of model decision algorithm. First, because there is an increasing number 
of therapies available; so, the “trial and error” approach would be unethical and impractical in the near future. 
Secondly, although acromegaly is a chronic disease and usually not acutely life-threatening, modern medicine 
is focused on quality of life which is heavily impaired in acromegaly and achieving a fast biochemical control 
could improve it considerably. Moreover, patient-reported outcomes (PRO) are increasingly been considered as 
the gold standard and included in guidelines and decisions by policy makers. In this regard, to have the option 
of choosing the most appropriate treatment for a given patient is the aim of contemporary medicine.

The present study has some limitations, being the most important the relatively low number of cases, but 
our results provide a proof-of-concept for the use of data mining strategies in the management of acromegaly 
patients. Thus, a constraint for implementation of personalized medicine, whether derived from classic or novel 
methods, is the necessity of validation of the proposed algorithms with other cohorts. However, by using data 
mining, the intrinsic nature of the mathematical analysis performs a continuous internal validation process; 
despite this, an external validation by an international consortium, capable of establishing a large cohort of acro-
megaly patients would be essential, since a substantial bias remains when this methodology is applied to small 
data  sets92. Nonetheless, a study performed in a Brazilian cohort found models with a very similar  performance93. 
The mathematical modelling was very similar in both studies but the data used to construct the models were very 
different. The Brazilian cohort was larger, consisting of 153 patients in total, and the models were generated using 
demographic data (age and sex), biochemical data (GH and IGF1 levels at diagnosis and before SRL treatment) 
and immunohistochemical data (granulation pattern and immunoreactivity score of SSTR2 and SSTR5), but 
they did not include MRI information. On the other hand, while we used RT-qPCR to quantify the molecular 
biomarkers, they used immunohistochemistry, a more widely used technique easily found in most hospitals but 
whose results are particularly operator-dependent. Another difference lies in the categorization of SRL response. 

Figure 3.  Best therapeutic tree decision algorithms based on mathematical modelling. (A) Decision tree 
to determine the first line drug for a given acromegaly patient based on the extrasellar tumor growth and 
molecular information. A patient without extrasellar growth is automatically classified as CR/PR without 
performing any molecular analysis (NR category is discarded with an accuracy of 95%). Then, by measuring the 
gene expression of SSTR5 and PEBP1 a clinician would be able to assign the right treatment with an accuracy 
of 87.5%. If the tumor has extrasellar growth, the gene expression of GHRL should be measured. If levels 
are < 0.008 or > 0.04, the patient is classified as NR with an accuracy of 71.3%, while if levels are between 0.008 
and 0.04, the patient is classified as CR/PR. Then, by measuring the gene expression of SSTR5, IN1GHRL and 
E-cadherin a clinician would be able to assign the right treatment with an accuracy of 79.8%. When classifiers 
are composed of more than one variable (e.g. SSTR5 and PEBP1 or SSTR5, IN1GHRL and E-cadherin), the 
distribution of CR and PR patients is defined by a mathematical function (the blue line in the scatterplots) 
that separates CR from PR patients (blue and pink dots in the scatter plots, respectively). The details of the 
scatter plots and the mathematical models can be found in the Supplementary Figures S1-S3. (B) Decision tree 
exploiting molecular differences according to sex to accurately treat an acromegaly patient. If the patient is a 
male, the expression of E-cadherin should be measured and together with age it would be able to classify the 
patient as NR with an accuracy of 80.8%. If it is classified as CR/PR, the expression of the short and long DRD2 
isoforms should be analyzed and together with E-cadherin it would be able to assign the right treatment with an 
accuracy of 80.0%. If the patient is a female, the expression of PEBP1 and GHRL should be measured and this 
will allow to classify the patient as NR with an accuracy of 73.8%. If it is classified as CR/PR, the expression of 
the short and long DRD2 isoform should be analyzed and together with E-cadherin it would allow to assign the 
right treatment with an accuracy of 74.7%. The details of the scatter plots and the mathematical models can be 
found in the Supplementary Figures S4-S7. ACC  Accuracy, CR complete responder, PR partial responder, NR 
non-responder.
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In the Brazilian study, they divided SRL response in two categories: CR and patients that do not achieve biochemi-
cal control with SRL (corresponding to the PR + NR patients of our classification). So, the aim of Wildemberg 
et al. was to identify CR, whereas our main goal was to discriminate NR from patients for those who SRL could 
be useful. In any case, the models from both studies still have some space of improving their performance in 
order to achieve accuracy at 95% level. Thus, the inclusion of other biomarkers not yet identified may certainly 
improve final obtained accuracy warranting further discovery investigation using omics approaches to complete 
all the molecular actors that may explain SRL response in an individual case at the molecular level. Finally, The 
use of RT-qPCR to measure the biomarkers may be a limitation since it requires specialized instruments not 
available in many centers; however, qPCR instrumentation and the use of qPCR-based tests are rapidly increas-
ing in clinical laboratories, mainly because qPCR is a highly sensitive, specific and quantitative method, and it 
is a must in a specialized pituitary tertiary center as defined by the Pituitary  Society94.

In spite of the limitations, our preliminary results provide a proof-of-concept for the use of data mining 
strategies to generate improved mathematical algorithms that allow to apply personalized medicine and select 
the most suitable medical treatment for each acromegaly patient.

Data availability
The data that support the findings of this study are available on request from the corresponding authors. The 
data are not publicly available due to privacy and ethical restrictions.
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