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Abstract

We summarize known criteria for the non-existence, existence and on the number of limit
ycles of autonomous real planar polynomial differential systems, and also provide new results.
e give examples of systems which realize the maximum number of limit cycles provided

y each criterion. In particular we consider the class of differential systems of the form ẋ =

Pn(x, y)+ Pm (x, y), ẏ = Qn(x, y)+ Qm (x, y), where n, m are natural numbers with m > n ≥ 1
and (Pi , Qi ) for i = n, m, are quasi-homogeneous vector fields.
© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and statement of the main results

Poincaré in [34] defined the concept of limit cycle of a planar differential system and
tarted to study it intensively. Later on the limit cycles were studied by van der Pol [39],
iénard [24], Andronov [3], . . ., and they gave account of how difficult is their control. In

act one of the main problems in the qualitative theory of real planar differential systems
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is to control the existence, non-existence or uniqueness of limit cycles for a given class
of differential systems.

In the case of autonomous real planar polynomial differential systems it is known,
rom the Poincaré–Bendixson Theorem, that in the region bounded by a limit cycle there
s at least one equilibrium point of the system. By a translation, if necessary, one can
ssume without loss of generality that this equilibrium point is the origin of coordinates.
e consider an autonomous real planar polynomial differential system of the form

ẋ = P(x, y), ẏ = Q(x, y), (1)

where x , y are real variables, the dot denotes derivative with respect to an independent
real variable and P(x, y) and Q(x, y) are real polynomials such that P(0, 0) = 0 and
Q(0, 0) = 0. A limit cycle of the differential system (1) is a periodic solution which is
isolated in the set of all periodic solutions of system (1). A limit cycle (x(t), y(t)) of
ystem (1) with period T is hyperbolic if

I =

∫ T

0

(
∂ P
∂x

+
∂ Q
∂y

)
(x(t), y(t))dt ̸= 0.

he hyperbolic limit cycles are either stable if I < 0, or unstable if I > 0, see more
details in [13,32]. Given a limit cycle we can consider the return map associated to it,
hat is, we take a transversal section through a point W of the limit cycle and, for each
oint in this transversal section and in a neighborhood of the point W we follow its
rajectory and we make correspond the first cut with this transversal section. This map
s called the first return map and we denote it by h. It is clear that h(W ) = W and, thus,

W is a zero of the displacement map ∆ := h − id, where id denotes the identity map.
he multiplicity of a limit cycle is the multiplicity of W as a zero of the displacement
ap ∆. It can be shown that the definition of multiplicity of a limit cycle is independent

f the choice of the point W and the transversal section, see for instance [32].
A classical tool for studying the limit cycles that surround the origin of coordinates

s to write the differential system in polar coordinates. That is, we consider the change
o polar coordinates x = r cos θ , y = r sin θ , and the system becomes

ṙ = R(r, θ), θ̇ = Θ(r, θ), (2)

here R(r, θ) and Θ(r, θ) are polynomials in r with coefficients trigonometric poly-
omials in θ and are such that R(0, θ) ≡ 0. System (2) is considered in the region
(r, θ) : r ≥ 0}. We assume that the region

R = {(r, θ) : Θ(r, θ) > 0} (3)

s not empty. In most of our results, R contains the origin of coordinates r = 0. The
ifferential systems (1) or (2) in the region R are equivalent to the differential equation

dr
dθ

= S(r, θ) =
R(r, θ)
Θ(r, θ)

, (4)

also defined in R.
In some cases we can apply the Liouville–Cherkas transformation, that we describe

below, and transform the system in polar coordinates to an Abel differential equation.
There are many papers which provide criteria for the non-existence, existence and on
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the number of limit cycles for the system in polar coordinates or for the corresponding
Abel differential equation. However most of these papers do not give examples of planar
polynomial differential systems which realize these criteria, that is, planar polynomial
differential systems for which the corresponding system in polar coordinates or in
the Abel differential equation satisfies the conditions of the criterion and exhibits the
maximum number of limit cycles given by the criterion. In this paper we summarize
almost all these criteria (to the best of our knowledge), and provide examples of
autonomous real planar polynomial differential systems which realize these criteria.

First we will show a qualitative property of the solutions of system (1), equivalently
of system (2), which will be useful for the statement of our results. Let I denote the
positive x-axis: r ≥ 0, θ = 0. For x ∈ I ∩ R, we write r̄ (θ, x) for the solution of the

ifferential equation (4) satisfying r̄ (0, r0) = r0.

emma 1. If the region R defined in (3) contains the origin of coordinates, then the
unction r̄ (2π, r0) is defined for all r0 in a neighborhood of r0 = 0.

Lemma 1 is proved in Section 2.

emark 2. The hypothesis that the region (3) is not empty and contains the origin
annot be easily avoided in order to ensure that the function r̄ (2π, r0) is defined for all
0 in a neighborhood of r0 = 0, as the following example shows. Consider the planar
ifferential system (which is not polynomial)

ẋ = x ex2
+y2

− y(x2
+ y2), ẏ = y ex2

+y2
+ x(x2

+ y2).

n polar coordinates this system writes as

ṙ = rer2
, θ̇ = r2.

ote that this system satisfies that the region R defined in (3) is the whole plane except
he origin of coordinates r = 0. The differential equation (4) writes as

dr
dθ

=
er2

r
,

which can be integrated and has the first integral H (r, θ) = e−r2
+ 2θ . The function

¯(θ, r0) can be computed and it is

r̄ (θ, r0) =

√
r2

0 − ln(1 − 2er2
0 θ ).

Given r0 > 0, this function is only defined for θ in the interval(
1

2er2
0

−
1
2
,

1

2er2
0

)
,

which does not contain the value 2π for any r0 > 0.

All the known criteria, to the best of our knowledge, on non-existence, existence and
on the number of the limit cycles for the differential systems (1), using the associated
differential equation (4) come from the seminal paper of Lloyd [29].
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The next result is a direct consequence of the results appearing in [29]. Let O denote
the origin of coordinates, that is O = (0, 0) in cartesian coordinates and r = 0 in polar
coordinates. As before, I denotes the positive x-axis: r ≥ 0, θ = 0, and for x ∈ I ∩ R,

e write r̄ (θ, x) for the solution of (4) satisfying r̄ (0, r0) = r0.

heorem 3. For the differential system (1) the following statements hold.

(i) Let U be a simply connected region containing the origin. If ∂S/∂r ̸= 0 in U \{O},
then system (1) has no limit cycles in the region R ∩ U.

(ii) Let A be an annular region which encircles the origin. If ∂S/∂r ̸= 0 in A, then
system (1) has at most one limit cycle in the region R ∩ A.

(iii) Let U be a simply connected region containing the origin and suppose that r̄ (2π, r0)
is defined for some r0 ̸= 0. If ∂2S/∂r2

̸= 0 in U \ {O}, then system (1) has at most
one limit cycle in the region R ∩ U.

(iv) Let A be an annular region which encircles the origin. If ∂2S/∂r2
̸= 0 in A, then

system (1) has at most two limit cycles in the region R ∩ A.
(v) Let U be a simply connected region containing the origin and suppose that r̄ (2π, r0)

is defined for some r0 ̸= 0. If ∂3S/∂r3 > 0 in U \ {O}, then system (1) has at most
two limit cycles in the region R ∩ U.

(vi) Let A be an annular region which encircles the origin. If ∂3S/∂r3 > 0 in A, then
system (1) has at most three limit cycles in the region R ∩ A.

We note that all the results of Theorem 3 only provide information on the limit cycles
f the differential systems (1) in the region R. But similar results to those of Theorem 3
an be obtained for the limit cycles of the differential systems (1) with θ̇ < 0 if the
egion {(r, θ) : Θ(r, θ) < 0} is not empty.

Theorem 3 will be proved in Section 3.
In this work we also consider Abel differential equations of the form

dρ

dθ
= A(θ )ρ3

+ B(θ )ρ2
+ C(θ )ρ, (5)

where ρ and θ are real variables and θ is 2π -periodic, and A(θ ), B(θ ) and C(θ ) are
uotients of two trigonometric polynomials in θ such that the denominators have no real
ero. In some cases the systems of the form (2) can be transformed to an Abel differential
quation (5) by means of Liouville–Cherkas transformation. In such cases we can apply
he criteria for the existence, non-existence and number of limit cycles established for
he Abel differential equations (5) for studying the limit cycles of a system (1). Not all
he systems of the form (1) can be transformed to an Abel differential equation (5). We
onsider differential systems defined by the sum of two quasi-homogeneous vector fields
s this is the usual setting in which the Liouville–Cherkas transformation can be applied.
ther systems that can be transformed to an Abel differential equation (5) see [11,16]

nd the references therein.
Given p, q , s ∈ N we say that a function f : R2

→ R is (p, q)-quasi-homogeneous
f degree s if f (λpx, λq y) = λs f (x, y) for λ ∈ (0, ∞), see [4, page 32]. A vector field

X = (P, Q) : R2
→ R2 is called (p, q)-quasi-homogeneous of degree r if P and Q

re (p, q)-quasi-homogeneous functions of degree p + r − 1 and q + r − 1 respectively,

ee [7, Chapter 2]. When p = q = 1 this definition coincides with the usual definition of
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homogeneous vector field of degree r . Moreover the differential equation dy/dx = Q/P
associated to X is invariant by the change of variables x̄ = λpx and ȳ = λq y.

Applying the Liouville–Cherkas transformation we can study the limit cycles of the
autonomous real planar differential systems of the form

ẋ = Pn(x, y) + Pm(x, y),
ẏ = Qn(x, y) + Qm(x, y), (6)

where m > n ≥ 1 are integers and (Pi , Qi ) for i = n, m, is a (p, q)-quasi-homogeneous
vector field of degree i .

We recall that when p = q = 1 then system (6) is the sum of two homogeneous vector
fields of degree n and m respectively. The quadratic polynomial differential systems with
an equilibrium point at the origin of coordinates are included in systems (6) taking
p = q = n = 1 and m = 2, and the linear differential systems perturbed by homogeneous
nonlinearities correspond to the case p = q = n = 1 and m arbitrary.

First we introduce some notations and basic results. We take the (p, q)-polar coordi-
nates (r, θ) defined by x = r p cos θ , y = rq sin θ . Note that when p = q = 1 we have
the usual polar coordinates. System (6) writes as

ṙ = α(θ )rn
+ β(θ )rm,

θ̇ = γ (θ )rn−1
+ δ(θ )rm−1,

(7)

where we have also done the scaling of time dt/ds = p cos2 θ + q sin2 θ , and

α(θ ) = cos θ Pn(cos θ, sin θ ) + sin θ Qn(cos θ, sin θ ),
β(θ ) = cos θ Pm(cos θ, sin θ ) + sin θ Qm(cos θ, sin θ ),
γ (θ ) = p cos θ Qn(cos θ, sin θ ) − q sin θ Pn(cos θ, sin θ ),
δ(θ ) = p cos θ Qm(cos θ, sin θ ) − q sin θ Pm(cos θ, sin θ ).

Finally we take the scaling of time ds/dτ = rn−1 and system (7) becomes

ṙ = α(θ )r + β(θ )rm−n+1,

θ̇ = γ (θ ) + δ(θ )rm−n.
(8)

We assume that the region

R = {(r, θ) : γ (θ ) + δ(θ )rm−n > 0}

is not empty. In most of the results we also assume that R contains the origin of
coordinates. Also as before, analogous results can be obtained if the region {(r, θ) :

Θ(r, θ) < 0} is not empty. Then the differential systems (7) or (8) in the region R
are equivalent to the differential equation

dr
dθ

=
α(θ )r + β(θ )rm−n+1

γ (θ ) + δ(θ )rm−n
, (9)

also defined in R.
Clearly the periodic orbits of the differential equation (9) provide periodic orbits of

the differential system (8) in the region R. By the Poincaré–Bendixson Theorem, there is
t least one equilibrium point of the differential system (8) in the interior region bounded
y a periodic orbit. Assume that R contains the origin of coordinates. We remark that
he only equilibrium point of the differential system (8) which lies in the region R is the
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origin of coordinates and, hence any periodic orbit of the differential system (8) must
surround the origin. We shall study these periodic orbits doing the change of variables

ρ =
rm−n

γ (θ ) + δ(θ )rm−n
, (10)

due to Cherkas [9], which in fact goes back to Liouville [26]. In the new variable ρ the
differential equation (9) writes

dρ

dθ
= A(θ )ρ3

+ B(θ )ρ2
+

(
(m − n)α − γ ′

γ

)
ρ, (11)

where

A(θ ) := (m − n)
δ

γ
(αδ − βγ ), B(θ ) :=

1
γ

((m − n)(βγ − 2αδ) + δγ ′
− γ δ′).

he change (10) is called the Liouville–Cherkas transformation.
We summarize in Theorem 4, to the best of our knowledge, all the known criteria

n non-existence, existence and on the number of the limit cycles for the differential
ystems (1), using the associated differential equations (9) and (11). We also provide
ome new results. In the proof of Theorem 4 we give account of the authors who proved
hem together with the original references. See the works of Gasull and Llibre [17],
oll, Gasull and Prohens [10] and Álvarez, Gasull and Giacomini [2]. We remark that

n many of these papers the authors consider directly equations of the form (9) or the
bel differential equation (11). Hence we have shown that this criteria can also be used

or planar polynomial differential systems (6).
Let O denote the origin of coordinates, that is O = (0, 0) in cartesian coordinates and

= 0 in polar coordinates.

heorem 4. Assume that the region R defined in (3) is not empty. For the differential
ystem (6) the following statements hold.

(i) If α ≥ 0 and β ≥ 0, or α ≤ 0 and β ≤ 0, then system (6) has no limit cycles in
the region R.

(ii) If αδ − βγ ≡ 0, then system (6) has no limit cycles in the region R.
(iii) If δ ≡ 0, then system (6) has at most one limit cycle in the region R.
(iv) Assume that O ∈ R. If A(θ ) ̸≡ 0 and either A(θ ) ≥ 0 for all θ ∈ [0, 2π ]

or A(θ ) ≤ 0 for all θ ∈ [0, 2π ], then system (6) has at most two limit cycles
surrounding the origin in the region R.

(v) Assume that O ∈ R. If B(θ ) ̸≡ 0 and either B(θ ) ≥ 0 for all θ ∈ [0, 2π ]
or B(θ ) ≤ 0 for all θ ∈ [0, 2π ], then system (6) has at most two limit cycles
surrounding the origin in the region R.

(vi) Assume that O ∈ R. If A(θ ) = 0 or B(θ ) = 0, then system (6) has at most one
limit cycle surrounding the origin in the region R.

(vii) Let ∆1 := αδ − βγ . If ∆1(θ ) ̸≡ 0 and either ∆1(θ ) ≥ 0 for all θ ∈ [0, 2π ] or
∆1(θ ) ≤ 0 for all θ ∈ [0, 2π ], then system (6) has at most one limit cycle, and
when it exists, it is hyperbolic and it surrounds the origin in the region R.

viii) Let ∆2 := δ(αδ − βγ ). If ∆2(θ ) ̸≡ 0 and either ∆2(θ ) ≥ 0 for all θ ∈ [0, 2π ] or
∆ (θ ) ≤ 0 for all θ ∈ [0, 2π ], then system (6) has at most two limit cycles, and
2
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when they exist, they surround the origin in the region R. Furthermore, if γ does
not vanish, the sum of the multiplicities of the limit cycles is at most two.

(ix) Let ∆3 := γ δ(αδ − βγ ). If ∆3(θ ) ̸≡ 0 and either ∆3(θ ) ≥ 0 for all θ ∈ [0, 2π ]
or ∆3(θ ) ≤ 0 for all θ ∈ [0, 2π ], then for system (6), if there are limit cycles, they
surround the origin and the sum of their multiplicities is at most three.

(x) Assume that O ∈ R. If the Abel differential equation (11) is of the form
dρ

dθ
= A(θ )ρ3

+ B(θ )ρ2,

and there exist two real numbers a and b such that ∆(a,b)(θ ) := a A(θ ) + bB(θ )
satisfies that ∆(a,b) ̸≡ 0 and either ∆(a,b)(θ ) ≥ 0 for all θ ∈ [0, 2π ] or ∆(a,b)(θ ) ≤ 0
for all θ ∈ [0, 2π ]. Then system (6) has at most one limit cycle and, when it exists,
it is hyperbolic.

(xi) Assume that O ∈ R. If the Abel differential equation (11) is such that
∫ 2π

0
α(θ )
γ (θ ) dθ =

0 and there exist two real numbers a and b such that

∆̃(a,b)(θ ) := a
A(θ )
γ (θ )

exp
(

(m − n)
∫ θ

0

α(s)
γ (s)

ds
)

+ bB(θ )

satisfies that ∆̃(a,b) ̸≡ 0 and either ∆̃(a,b)(θ ) ≥ 0 for all θ ∈ [0, 2π ] or ∆̃(a,b)(θ ) ≤ 0
for all θ ∈ [0, 2π ]. Then the differential equation has at most one non-zero periodic
orbit. Furthermore, when this periodic orbit exists, it is hyperbolic.

Theorem 4 will be proved in Section 3.
We list several references which also give criteria on the number of limit cycles of

articular planar polynomial differential systems and use some of the ideas used to prove
he criteria established in Theorems 3 and 4, but whose results are for particular systems
nd/or go beyond our settlement. See Pliss [33], section 9 (and in particular Theorem 9.7);
ins Neto [25]; Carbonell and Llibre [8]; Devlin, Lloyd and Pearson [11]; Panov [30];
asull, Prohens and Torregrosa [20]; Gasull and Guillamon [16]; Álvarez, Bravo and
ernández [1]; Llibre and Zhang [27,28] and the references therein.

In the works [21,23] the authors consider autonomous real planar polynomial differ-
ntial systems of the form

ẋ = ax − y + Pn(x, y), ẏ = x + ay + Qn(x, y),

here Pn(x, y) and Qn(x, y) are real homogeneous polynomials of degree n ≥ 2 and
∈ R, and provide criteria for the non-existence and uniqueness of limit cycles for this

lass of systems. They also use the change to polar coordinates and the Liouville–Cherkas
ransformation and the criteria is described in terms of ad hoc functions for these systems.
hey also give examples of systems with exactly one limit cycle, the maximum obtained
y their criteria. Since the criteria that appears in their papers is not general, we do not
nclude it in our results. The same class of systems was studied by Carbonell and Llibre
n 1988, see [8].

In the recent work [22] of 2021, Huang and Liang provide a new criterion which can
e applied to planar polynomial differential systems of the form (6). They also provide an
xample of a planar polynomial differential which exhibits one limit cycle and realizes
he maximum number described by their criterion. This example also shows that their
riterion is different from the classical ones, the ones that we describe in Theorem 4.
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We summarize here their main results for the sake of completeness. We use our
otation.

heorem 5. Consider the differential system (6) and suppose that

Φ(θ ) :=
(m − n)α(θ )

δ(θ )
−

d
dθ

(
γ (θ )
δ(θ )

)
̸= 0 θ ∈ [0, 2π ].

Then system (6) has at most one limit cycle. Furthermore, if the limit cycle exists then it
is hyperbolic, it surrounds the origin and it is stable (resp. unstable) when δ(θ )Φ(θ ) > 0
(resp. < 0) for all θ ∈ [0, 2π ].

In [22] the authors provide the next proposition which ensures the existence of the
imit cycle.

roposition 6. System (6) has at least 1 limit cycle surrounding the origin if

γ (θ )δ(θ ) > 0 for all θ ∈ [0, 2π ] and
∫ 2π

0

α(θ )
γ (θ )

dθ ·

∫ 2π

0

β(θ )
δ(θ )

dθ < 0.

Theorem 5 and Proposition 6 correspond to Theorem 1.1 and Proposition 1.2 of [22].
The following planar polynomial differential system

ẋ = x − y − x3
+ 5x2 y − xy2

− y3, ẏ = x + y + 3x3
− x2 y + 9xy2

− y3.

appears as Example 2 in [22] and verifies the assumptions of Theorem 5 and also the
assumptions of Proposition 6, so that it has one hyperbolic limit cycle surrounding the
origin.

There are several generalizations of the criteria described in Theorem 4 but for the
generalized Abel equations. We provide three results in this sense that are, as far as we
know, all the results in this direction with general application.

The first result is due to Gasull and Guillamon in 2006 [16].

Theorem 7. Consider the 2π -periodic generalized Abel equation

dρ

dθ
= an(θ )ρn

+ am(θ )ρm
+ a1(θ )ρ, (12)

ith n > m > 1 and an , am and a1 being C1 functions which are 2π -periodic. Assume
hat an(θ ) or am(θ ) does not change sign. Then,

(a) If n is odd, Eq. (12) has at most five limit cycles. Furthermore, apart from the limit
cycle ρ = ρ(θ ) ≡ 0, in each region R+

:= {ρ > 0} or R−
:= {ρ < 0} the

equation has at most two limit cycles and the sum of their multiplicities is at most
two.

(b) If n is even, Eq. (12) has at most four limit cycles. Furthermore, apart from the
limit cycle ρ = ρ(θ ) ≡ 0, in each region R+

:= {ρ > 0} or R−
:= {ρ < 0} the

equation has at most two limit cycles and the sum of their multiplicities is at most
two, taking into account that never more than four limit cycles can coexist and that
a semi-stable limit cycle counts as two limit cycles.
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The previous result is Theorem 3 in [16] written with the notation of the present paper.
Note that, as a consequence of Theorem 7, Eq. (12) has at most two positive limit cycles.
In [16] another result is provided about generalized Abel equations but it goes beyond the
scope of the present article. As far as we know, in the literature, there are no examples of
planar polynomial differential systems which realize the criteria provided in Theorem 7.
We provide examples in the proof of Theorem 10.

In the work [1] of 2009, Álvarez, Bravo and Fernández provide other criteria for
generalized Abel equations. Here we consider 2π -periodic continuous functions in the
interval [0, 2π ]. Recall that a function f (θ ) is said to have definite sign if it is not null
and either f (θ ) ≥ 0 or f (θ ) ≤ 0 for all θ ∈ [0, 2π ].

Theorem 8. Consider the differential equation

dρ

dθ
= a(θ )ρna + b(θ )ρnb + c(θ )ρnc + d(θ )ρ, (13)

here a(θ ), b(θ ), c(θ ) and d(θ ) are 2π -periodic continuous functions and na > nb >

c > 1 are natural numbers.

(1) Suppose that a(θ ) and b(θ ), or b(θ ) and c(θ ) have the same definite sign, or that
a(θ ) and c(θ ) have opposite definite sign. Then (13) has at most two positive limit
cycles.
Moreover, if d(θ ) has null integral over [0, 2π ], then (13) has at most one positive
limit cycle.

(2) Suppose that a(θ ) and c(θ ) have definite sign, d(θ ) ≡ 0, and b(θ ) has null integral
over [0, 2π ]. Then, (13) has at most one positive limit cycle.

(3) Suppose that d(θ ) ≡ 0, b(θ ) < 0 < c(θ ) for all θ ∈ [0, 2π ], and the function

a(θ )ρ̃na (θ ) + b(θ )ρ̃nb (θ ) + c(θ )ρ̃nc (θ ) − ρ̃ ′(θ )

has definite sign, where

ρ̃(θ ) =

(
(na − nc)c(θ )
(nb − na)b(θ )

) 1
nb−nc

.

Then (13) has at most two positive limit cycles.

The previous result corresponds to Theorem 3.1, Corollary 2 and Theorem 3.2 of [1]
written with the notation of the present paper. As far as we know, in the literature,
there are no examples of planar polynomial differential systems which realize the criteria
provided in Theorem 8. We provide examples in the proof of Theorem 10.

In the same year 2009, Bravo, Fernández and Gasull [6] provide the following result.

Theorem 9. Consider the differential equation

dρ

dθ
= A(θ )ρn

+ B(θ )ρm
+ C(θ )ρ, (14)

ith n ̸= m, n, m ≥ 2 and where A(θ ), B(θ ) and C(θ ) are 2π -periodic continuous
unctions such that
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(1) A(θ ) has definite sign in θ ∈ [0, π] and A(2π − θ ) = −A(θ ).
(2) B(θ ) + B(2π − θ ) is not identically null and changes sign at most once in [0, π].
(3) C(2π − θ ) = −C(θ ).

hen when n is odd (resp. even) it has at most three (resp. two) limit cycles. One of them
s ρ = 0 and in case of having three limit cycles one is in {ρ > 0} and the other one in
ρ < 0}.

The previous result corresponds to part of Theorem 1.1 of [6] written in our notation.
ote that, as a consequence of Theorem 9, Eq. (14) has at most one positive limit

ycle. As far as we know, there are no examples in the literature of planar polynomial
ifferential systems which realize the criteria established in Theorem 9. This is an open
roblem.

The next result shows that the upper bounds for the number of limit cycles provided
n Theorems 3, 4, 7, 8 are reached for planar polynomial differential systems as (1).

heorem 10. We provide differential systems of the form (1) satisfying each of the
tatements of Theorems 3, 4 (except statement (ix)), 7 and 8, such that when the statement
rovides limit cycles, the corresponding example realizes the maximum number of limit
ycles allowed.

Theorem 10 is proved in Section 6.
Statement (ix) of Theorem 4 needs that the function γ (θ ) changes sign in order not

o be under the assumptions of statement (viii). Thus the origin for a system which
ould provide an example of statement (ix) needs to have a node at the origin (or a
on-monodromic degenerate equilibrium point). It is an open problem to give techniques
o study limit cycles which surround such kind of equilibrium points.

The paper is organized as follows. The following section contains several preliminary
esults and Section 3 contains the proof of Theorems 3 and 4. The proof of Theorem 10 is
rovided in Section 6, where the particular family studied in Section 4 and the application
f Hopf bifurcation described in Section 5 are used. For more details on the Hopf
ifurcation see [5,36].

. Preliminary results

In this section we recall some known results that we shall need for proving Theorems 3
nd 4. But first we prove Lemma 1.

roof of Lemma 1. Given r0 ∈ I ∩ R, we define r̃ (t, r0), θ̃ (t, r0) as the solution of
ystem (2) with initial condition r̃ (0, r0) = r0, θ̃ (0, r0) = 0. Note that, given a value of
∗, if t∗ is such that θ̃ (t∗, r0) = θ∗ then r̄ (θ∗, r0) = r̃ (t∗, r0).

Consider the function F(t, r0) = θ̃ (t, r0)−2π . Since r = 0 is a solution of system (2)
e have that there exists a value of time T such that θ̃ (T, 0) = 2π . Thus, in the point
= T , r0 = 0 we have that F(T, 0) = 0. We derive the function F(t, r0) with respect to
and we obtain

d F
(t, r0) =

d θ̃
(t, r0) = Θ

(
r̃ (t, r0), θ̃ (t, r0)

)
.

dt dt
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Therefore this function in the point t = T , r0 = 0 takes the value

d F
dt

(T, 0) = Θ (0, 2π) > 0,

because we are under the assumption that the region R is not empty and contains r = 0.
ence, by the Implicit Function Theorem, there exists a continuously differentiable

unction t̃(r0) defined in a neighborhood of r0 = 0 such that t̃(0) = T and F(t̃(r0), r0) ≡ 0
or all r0 in this neighborhood of r0 = 0. Since t̃(r0) is such that θ̃ (t̃(r0), r0) = 2π , we
ave that r̄ (2π, r0) = r̃ (t̃(r0), r0) and, thus, the function r̄ (2π, r0) is defined for all r0 in
neighborhood of r0 = 0. □

In [29] Lloyd studied the two-dimensional differential systems (1) transformed in an
rdinary differential equation (4) by using polar coordinates. In this setting he provided
everal results on the existence of limit cycles for ordinary differential equations of the
orm (4) that we describe below.

Let O denote the origin of coordinates, that is O = (0, 0) in cartesian coordinates and
= 0 in polar coordinates. Let I denote the positive x-axis: r ≥ 0, θ = 0.
The next result corresponds to Theorems 3, 5, 6 and 9 of Lloyd [29].

heorem 11. We have a differential system in polar coordinates

ṙ = F(r, θ), θ̇ = G(r, θ), (15)

efined in a simply connected region U containing the origin O, where F and G are C1

π -periodic functions such that F(0, θ) = 0 for all θ , and G(r, θ) > 0 in U. Then in U
he differential system (15) is equivalent to the differential equation

dr
dθ

=
F(r, θ)
G(r, θ)

= S(r, θ). (16)

For r0 ∈ I ∩ U, we write r̄ (θ, r0) for the solution of (16) satisfying r̄ (0, r0) = r0.

(i) If

either
∂S
∂r

> 0, or
∂S
∂r

< 0 in U \ {O},

then the differential system (15) has no limit cycles in U.
(ii) Suppose that r̄ (2π, r0) is defined for some r0 ̸= 0. If

either
∂2S
∂r2 > 0, or

∂2S
∂r2 < 0 in U \ {O},

then the differential system (15) has at most one limit cycle in U.
(iii) Suppose that r̄ (2π, r0) is defined for some r0 ̸= 0. If

∂3S
∂r3 > 0 in U \ {O},

then the differential system (15) has at most two limit cycles in U.

The next result corresponds to Theorems 2, 4 and 8 of Lloyd [29].
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Theorem 12. Consider the differential system (15) defined in an annular region A
which encircles the origin O and where G(r, θ) > 0. Then, in A the differential system
15) is equivalent to the differential equation (16).

(i) If

∂S
∂r

̸= 0 in A,

then the differential system (15) has at most one limit cycle entirely contained in
A.

(ii) If

∂2S
∂r2 ̸= 0 in A,

then the differential system (15) has at most two limit cycles entirely contained in
A.

(iii) If

∂3S
∂r3 > 0 in A,

then the differential system (15) has at most three limit cycles entirely contained in
A.

The following results have been developed by several authors based on the seminal
paper of Gasull and Llibre [17].

In [17] Gasull and Llibre studied the Abel differential equations (5) where A(θ ), B(θ )
nd C(θ ) are smooth functions of θ and periodic in θ . The authors gave several criteria
or the existence of limit cycles depending on the signs of the functions A(θ ) and B(θ ),
hat we summarize below.

The next result is a consequence of Theorem C of [17]. There this result is proved
or sum of two homogeneous systems, but the proof extends to the sum of two
uasi-homogeneous systems.

heorem 13. Let A(θ ) and B(θ ) be the functions associated to the Abel differential
quation (5).

(a) Suppose that A(θ ) ̸≡ 0, B(θ ) ̸≡ 0 and the function either A(θ ), or B(θ ) does not
change sign. Then this system has at most two limit cycles surrounding the origin
in the region R.

(b) Suppose that either A(θ ) ≡ 0, or B(θ ) ≡ 0, then this system has at most one limit
cycle surrounding the origin in the region R.

emark 14. In statement (b) of the previous Theorem 13 we have that the hypothesis
ither A(θ ) or B(θ ) is zero. We will see that these two hypothesis are equivalent. Consider
n Abel differential equation (5) such that B(θ ) is null, that is, an equation of the form

dρ
= A(θ )ρ3

+ C(θ )ρ.

dθ
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Consider the change of the dependent variable ρ̄ = ρ2. Then, the differential equation
ecomes

dρ̄

dθ
= 2A(θ )ρ̄2

+ 2C(θ )ρ̄,

which is an Abel differential equation (5) with a zero coefficient in ρ̄3. In case of having
n Abel differential equation (5) such that A(θ ) is null, the inverse change ρ̄ =

√
ρ

rovides and Abel differential equation (5) with B(θ ) null.

In [10] Coll, Gasull and Prohens provide several results on the existence of limit cycles
or the systems of the form (6). We summarize some statements of their Theorems A, B
nd C in the following result.

heorem 15.

(a) Assume that the function αδ−βγ ̸≡ 0 associated to the differential system (6) does
not change sign. Then this system has at most one limit cycle and, when it exists,
it is hyperbolic and it surrounds the origin.

(b) Assume that the function δ(αδ − βγ ) ̸≡ 0 associated to the differential system (6)
does not change sign. Then this system has at most two limit cycles and, when they
exist, they surround the origin. Furthermore, if γ does not vanish, the sum of the
multiplicities of the limit cycles is at most two.

(c) Assume that the function γ δ(αδ −βγ ) ̸≡ 0 associated to the differential system (6)
does not change sign. Then, for this system, if there are limit cycles, they surround
the origin and the sum of their multiplicities is at most three.

In the work [10] the authors provide several examples for statements (a) and (b), but
they do not analyze the conditions which appear in [19] to ensure the presence of limit
cycles.

In [2] Álvarez, Gasull and Giacomini establish a uniqueness criterion for the number
of periodic orbits of some Abel equations. We summarize their main results in the
following statement, which corresponds to Theorems A and 15 in [2].

Theorem 16.

(a) Consider an Abel equation (5) of the form

dρ

dθ
= A(θ )ρ3

+ B(θ )ρ2,

and assume that there exist two real numbers a and b such that a A(θ )+bB(θ ) does
not vanish identically and does not change sign in [0, 2π ]. Then the differential
equation has at most one non-zero periodic orbit. Furthermore, when this periodic
orbit exists, it is hyperbolic.

(b) Consider an Abel equation (5) satisfying
∫ 2π

0 C(θ )dθ = 0. Assume that there exist
two real numbers a and b such that

a A(θ ) exp
(∫ θ

C(s)ds
)

+ bB(θ )

0
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does not vanish identically and does not change sign in [0, 2π ]. Then the differ-
ential equation has at most one non-zero periodic orbit. Furthermore, when this
periodic orbit exists, it is hyperbolic.

We note that statement (b) implies statement (a) in Theorem 16.

. Proof of Theorems 3 and 4

roof of Theorem 3. We can apply Theorems 11 and 12 to the differential equation (9),
nd we obtain the proof of the theorem. □

We prove Theorem 4 statement by statement.

roof of statement (i) of Theorem 4. Since α ≥ 0 and β ≥ 0, or α ≤ 0 and β ≤ 0, then
r/dθ does not change sign in R. Therefore a solution r (θ ) of (8) increases, decreases, or

s constant if α = β = 0. So, in the first two cases these solutions cannot be periodic, and
n the third case there is a continuum of periodic solutions. Consequently the differential
ystem (6) has no limit cycles in the region R. □

roof of statement (i i) of Theorem 4. This statement is proved in Proposition 26
f [10], where slight modifications in the hypothesis are considered. We include here a
roof for the sake of completeness.

The region R is not empty and, hence, either γ or δ is a trigonometric polynomial
hich is not null. Assume that γ is not null, since αδ−βγ ≡ 0 we can isolate β = αδ/γ

nd we have that dr/dθ = αr/γ . Now r (θ ) = r0 exp
(∫ θ

0 α/γ ds
)

. In order that this

unction be periodic we need that r (2π ) = r0 which implies that
∫ 2π

0 α/γ ds = 0. In
uch a case all the orbits are periodic, because this condition does not depend on r0.
onsequently the differential system (6) has no limit cycles surrounding the origin in the

egion R.
In the case that γ is null, the assumption αδ−βγ ≡ 0 gives that α is null in the region

. Then we have dr/dθ = βr/δ and the same argument as in the previous paragraph
ives the desired result. □

roof of statement (i i i) of Theorem 4. This statement is proved in Proposition 26
f [10], where slight modifications in the hypothesis are considered. We include here a
roof for the sake of completeness.

If δ ≡ 0 the differential equation (9) becomes
dr
dθ

=
α(θ )
γ (θ )

r +
β(θ )
γ (θ )

rm−n+1, (17)

hich is a Bernoulli differential equation. By the change v = rn−m this differential
quation can be transformed into a linear differential equation that can have at most one
imit cycle, see for instance [15]. This completes the proof of statement (i i i). □

roof of Statements (iv), (v) and (vi) of Theorem 4. We can apply Theorem 13 and
hese proofs follow. □
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Proof of statements (vi i), (vi i i) and (i x) of Theorem 4. We can apply Theorem 15
nd these proofs follow. □

roof of statements (x) and (xi) of Theorem 4. We can apply Theorem 16 and these
proofs follow. □

4. A differential equation in polar coordinates

In this section we are concerned with a particular equation which will allow to give
examples in order to prove Theorem 10. We consider an ordinary differential equation
of the form

dr
dθ

= P(r ), (18)

here (r, θ) are real variables, θ is 2π -periodic, P(0) = 0 and P(r ) is a real rational
unction which is not identically zero. With some additional hypothesis, this is a particular
ase of Eq. (4). The following result is well-known but we prove it for the sake of
ompleteness.

emma 17. Let ξ ∈ R. The value ξ is an isolated zero of the function P(r ) if and only
f r = ξ is a limit cycle of the differential equation (18).

roof. It is clear that if ξ is a zero of P(r ) then r = ξ is an orbit of the differential
quation (18). The zeros of a rational function as P(r ), which is not identically zero by
ssumption, are all isolated. The orbit r = ξ is an isolated orbit because the neighboring
rbits increase or decrease in r with respect to θ depending if P(r ) is positive or negative.
y the same argument any periodic orbit has to be a root of P(r ). □

We are interested in those Eqs. (18) which come from an autonomous real planar
ifferential system (1) by means of a change to polar coordinates. Since P(0) = 0 and
he change to polar coordinates x = r cos θ , y = r sin θ is invariant under the change
r, θ) → (−r, θ + π ), we also have that P(r ) needs to be an odd function, that is,
(r ) = rP̃(r2), where P̃(z) is a real rational function in z. We consider the associated

ystem

ṙ = rP̃(r2), θ̇ = 1, (19)

nd we undo the change to polar coordinates to get the autonomous real planar differential
ystem

ẋ = −y + xP̃
(
x2

+ y2) , ẏ = x + yP̃
(
x2

+ y2) . (20)

n the particular case that P is a polynomial, we have a planar polynomial differential
ystem.

Planar systems whose angular speed is constant are usually called rigid or uni-
ormly isochronous, see [20] and the references therein. We consider planar polynomial
ifferential systems of the form
ẋ = −y + x F(x, y), ẏ = x + yF(x, y), (21)
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where F(x, y) is a real polynomial. These systems in polar coordinates write as

ṙ = r F(r cos θ, r sin θ ), θ̇ = 1.

e remark that systems of the form (21) are rigid systems.
The following examples illustrate some of the criteria stated in Theorems 3 and 4.

xample 18. We consider the differential system (20) such that P̃(z) = z − 1. In polar
oordinates the system writes as

dr
dθ

= r (r2
− 1).

e could have chosen any polynomial P̃(z) = z−ξ with a positive value ξ and a rescaling
f the variables enables to choose ξ = 1 without loss of generality. By Lemma 17 we
ave that the system has a unique limit cycle at r = 1. The function S(r, θ) which appears

in Theorem 3 is r (r2
− 1) and its derivative is

∂S
∂r

= 3r2
− 1.

n the simply connected region containing the origin U = {(r, θ) : 0 ≤ r < 1/
√

3} there
s no limit cycle of the system. This provides an example of criterion (i) of Theorem 3.
nd in the annular region encircling the origin A = {(r, θ) : 1/

√
3 < r < 2} there

s exactly one limit cycle of the system. This provides an example of criterion (ii) of
heorem 3. The second derivative of the function S with respect to r is

∂2S
∂r2 = 6r.

In any simply connected region containing the origin and the orbit r = 1 it is verified
that ∂2S/∂r2

̸= 0 (except the origin) and the region contains one limit cycle. This is
an example of criterion (iii) of Theorem 3 where the maximum number of limit cycles
is achieved. It is also an example of criterion (vi) of Theorem 4 because when δ ≡ 0
we have that the function A(θ ) which appears in the Abel differential equation (11) is
equivalently zero. On the other hand we can consider the differential equation

dr
dθ

= r (r2
− 1),

s an Abel differential equation (5) with constant coefficients and B(θ ) ≡ 0.

xample 19. Consider the differential equation

dr
dθ

= r5
− r3, (22)

defined in the region r ≥ 0. This equation has r = 1 as the unique limit cycle in
the considered region by virtue of Lemma 17. The change to cartesian coordinates

=
√

x2 + y2, θ = arctan(y/x) provides the following planar polynomial differential
system

ẋ = −y + x
(
(x2

+ y2)4
− (x2

+ y2)2) , ẏ = x + y
(
(x2

+ y2)4
− (x2

+ y2)2) .
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We take the following change to the differential equation (22), ρ = r2 which leads to
the Abel differential equation

dρ

dθ
= 2ρ3

− 2ρ2.

his is an example of criterion (x) of Theorem 4 where the maximum number of limit
ycles is achieved.

xample 20. We consider the differential system (20) such that P̃(z) = (z − 1)(z − a),
here a is a real value with a > 1. In polar coordinates the system writes as

dr
dθ

= r (r2
− 1)(r2

− a). (23)

e could have chosen any polynomial P̃(z) = (z−ξ1)(z−ξ2) with positive values ξ1 and
2 and a rescaling of the variables enables to choose the lowest root equal to 1 without
oss of generality. By Lemma 17 we have that the system has two limit cycles: one at
= 1 and the other one at r =

√
a. The function S(r, θ) which appears in Theorem 3 is

(r2
− 1)(r2

− a) and its second derivative with respect to r is

∂2S
∂r2 = 2r (10r2

− 3 − 3a).

f a is any value with 1 < a < 7/3, then
√

3(1 + a)/10 < 1. Take values b1 and b2

uch that
√

3(1 + a)/10 < b1 < 1 < a < b2 and in the annular region encircling the
rigin A = {(r, θ) : b1 < r < b2} there are exactly two limit cycles of the system. This
rovides an example of criterion (iv) of Theorem 3 where the maximum number of limit
ycles is achieved.

We consider now the differential equation (23) where a is any real value with a > 1.
e consider only the region r ≥ 0 and we take the change ρ = r2 which leads to the
bel differential equation

dρ

dθ
= 2ρ3

− 2(a + 1)ρ2
+ 2aρ.

his is an example of criteria (iv) and (v) of Theorem 4 where the maximum number of
imit cycles is achieved.

We consider again the differential equation (23) where a is any real value with a > 1.
his equation illustrates an application of Theorem 7 where the maximum number of

imit cycles provided by the criterion is achieved (in the case n odd, for n defined in
Theorem 7). We can generalize Eq. (23) to

dr
dθ

= r (r2k
− 1)(r2k

− a),

with a > 1 and k ∈ N and the corresponding system in cartesian coordinates provides
an example of Theorem 7 where the maximum number of limit cycles provided by the
criterion is achieved.

Example 21. We consider the differential system (20) such that P̃(z) = (z − 1)(z −

)(z −b), where a and b are real values with 1 < a < b. In polar coordinates the system



1066 J. Giné, M. Grau and J. Llibre / Expo. Math. 40 (2022) 1049–1083

W
ξ

w
o

a
r

(
s
(
d

t

b

t

t
p
r

i
r
t

writes as
dr
dθ

= r (r2
− 1)(r2

− a)(r2
− b).

e could have chosen any polynomial P̃(z) = (z−ξ1)(z−ξ2)(z−ξ3) with positive values
1, ξ2 and ξ3 and a rescaling of the variables enables to choose the lowest root equal to 1
ithout loss of generality. By Lemma 17 we have that the system has three limit cycles:
ne at r = 1, another one at r =

√
a and the third one at r =

√
b. The function S(r, θ)

which appears in Theorem 3 is r (r2
− 1)(r2

− a)(r2
− b) and its second derivative with

respect to r is

∂2S
∂r2 = 2r (21r4

− 10(1 + a + b)r2
+ 3(a + b + ab)).

We consider the polynomial P0(z) = 21z2
−10(1+a+b)z+3(a+b+ab) which satisfies

that (∂2S)/(∂r2) = 2r P0(r2). In order to analyze the number of zeros of P0(z) we use
the classical Sturm’s theorem, see [38]. We consider the Sturm sequence associated to
P0(z) with respect to z and we have that

P1(z) =
d P0

dz
= 2(21z − 5(1 + a + b)),

nd P2 is defined as the remainder of the polynomial division of P0 quotient P1 with
espect to z, multiplied by −1. It turns out that

P2(z) =
1
21

(25(1 + a2
+ b2) − 13(a + b + ab)).

This polynomial in (a, b) is positive for any values of a and b because it has a unique
extremum in the point (a, b) = (13/37, 13/37) and in this point it takes the value
36/37 which is positive. The Sturm sequence (P0, P1, P2) in z = 0 takes the values
3(a + b + ab), −10(1 + a + b), P2). Since 1 < a < b we have that its sequence of
igns is (+, −, +) and, therefore, there are two changes of signs. The Sturm sequence
P0, P1, P2) in z = 1 is (11 − 7a − 7b + 3ab, 2(16 − 5a − 5b), P2). There are three
ifferent possibilities:

In the region Ω1 = {(a, b) ∈ R2
: 1 < a < b and 5(a + b) − 16 ≤ 0} we have that

he sequence of signs is (−, +, +), so there is one change of signs.
In the region Ω2 = {(a, b) ∈ R2

: 1 < a < b, 5(a + b) − 16 > 0 and 11 − 7(a +

) + 3ab ≤ 0} we have that the sequence of signs is (−, −, +), so there is one change
of signs.

In the region Ω3 = {(a, b) ∈ R2
: 1 < a < b and 11 − 7(a + b) + 3ab > 0} we have

hat the sequence of signs is (+, −, +), so there is two changes of signs.
It is easy to show that {(a, b) ∈ R2

: 1 < a < b} = Ω1 ∪ Ω2 ∪ Ω3. By the Sturm
heorem, we have that if (a, b) ∈ Ω1 ∪Ω2, then the number of different real roots of the
olynomial P0 in the interval z ∈ (0, 1] is 1, and if (a, b) ∈ Ω3 then the number of real
oots of the polynomial P0 in the interval z ∈ (0, 1] is 0.

Assume that there is one root of the polynomial P0 in z ∈ (0, 1). If the other root is
n z > b, then there is a contradiction with statement (iv) of Theorem 3. Thus, the other
oot of P0 is in the interval z ∈ [1, a) or in the interval z ∈ (a, b] or in z = a. In the first
wo cases, we have an example of application of statement (iv) of Theorem 3 where the
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maximum number of limit cycles is achieved. For instance, if a = 3/2 and b = 2 we are
n such a case.

Assume that there are no roots of the polynomial P0 in z ∈ (0, 1]. If the polynomial
P0 has no real roots or they are in z > a, we are in contradiction with statement (iii) of

heorem 3. Thus, this polynomial has a root in the interval z ∈ (1, a] and we have an
example of statement (iii) of Theorem 3 where the maximum number of limit cycles is
achieved. For instance, if a = 7/2 and b = 4 we are in such a case.

Example 22. We take the same differential equation as in the previous Example 21 and
we compute the function

∂3S
∂r3 = 6(35r4

− 10(1 + a + b)r2
+ a + b + ab) = 6Q0(r2),

ith Q0(z) = 35z2
− 10(1 + a + b)z + a + b + ab. We can compute the Sturm sequence

f Q0 with respect to z and perform a thorough analysis of the changes of signs as we
ave described in the previous example. We get the following conclusions:

If the values (a, b) belong to the region {(a, b) ∈ R2
: 1 < a < b, 25−9(a+b)+ab >

and a + b − 6 < 0}, then the number of different roots of Q0 in the interval z ∈ (0, 1)
s 2. In such a case, we have an example of statement (vi) of Theorem 3 where the

aximum number of limit cycles is achieved. For instance, if a = 5/4 and b = 3/2, we
re in such a case.

If the values (a, b) are such that 1 < a < b and do not belong to the previous region,
e have no example of statements (v) or (vi) of Theorem 3 where the maximum number
f limit cycles is achieved.

xample 23. It is not possible to find an example of the criteria given by statement (v)
f Theorem 3 using planar polynomial differential systems coming from system (19) by
change from polar coordinates to cartesian coordinates. The reason is that the parity

f the corresponding function S(r, θ) = rP̃(r2) implies that ∂2S/∂r2 vanishes at r = 0.
oreover if rP̃(r2) has two positive real roots at ξ1 and ξ2, that is, the system has two

imit cycles, we can assume that 0 < ξ1 < ξ2 and that there is no other real root, nor a
ole, of S(r, θ) = rP̃(r2) in the interval r ∈ [0, ξ2]. Therefore, by Rolle’s Theorem there
re two roots of ∂S/∂r in the interval r ∈ (0, ξ2) and, thus, one real root of ∂2S/∂r2 in
he interval r ∈ (0, ξ2), say at the value ξ∗. Since the function ∂2S/∂r2 vanishes at r = 0
nd at r = ξ∗, again by Rolle’s Theorem, we can deduce that the function ∂3S/∂r3 has
t least one zero at the interval r ∈ (0, ξ∗), which belongs to the interval r ∈ (0, ξ2).
ence, the assumptions of criterion (v) of Theorem 3 cannot be satisfied.
However, we can consider a variation of an equation of the form (18) such that the

rigin is a pole. Take the differential equation

dr
dθ

=
(1 − r2)(r2

− a)
r3 (24)

where a ∈ (1, 9) is a real value. Note that this equation has two positive limit cycles,
one in r = 1 and the other one in r =

√
a. The third derivative with respect to r of the

unction S(r, θ) = (1 − r2)(r2
− a)/r3 is

∂3S
=

6(10a − (1 + a)r2)
.

∂r3 r6
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Since a ∈ (1, 9) we have that this function is strictly positive in the interval r ∈ (0,
√

a).
Thus, we are under the assumptions of the third statement of Theorem 11. Note that the
region defined in (3) does not contain the origin but the displacement map is well-defined.
The differential equation (24) in polar coordinates becomes

ṙ = r (1 − r2)(r2
− a), θ̇ = r4,

and the change from polar coordinates to cartesian coordinates leads to the differential
system

ẋ = x(1 − x2
− y2)(x2

+ y2
− a) − y(x2

+ y2)2,

ẏ = y(1 − x2
− y2)(x2

+ y2
− a) + x(x2

+ y2)2.
(25)

ote that system (25) has a star node at the origin of coordinates.

xample 24. Consider the planar differential system (20) such that P̃(z) = (1 − z)(a −

z)(1 + a + z), where a ∈ R with a > 1. We take polar coordinates to get the differential
quation

dr
dθ

= r (1 − r2)(a − r2)(1 + a + r2).

y Lemma 17, in the region r > 0 there are exactly two limit cycles. We take the change
= r2 and we get the ordinary differential equation

dρ

dθ
= 2ρ(1 − ρ)(a − ρ)(1 + a + ρ) = 2a(1 + a)ρ − 2(1 + a + a2)ρ2

+ 2ρ4.

his equation provides an example of application of the criterion described in Theorem 7
n the case that the value of n defined in the theorem is even. Moreover, it gives the

aximum number of limit cycles provided by the criterion.

xample 25. Let us consider the differential system (20) such that P̃(z) = (z − 1)(z −

)(z + b), where a and b are real values with 1 < a and b > 0. In polar coordinates the
ystem writes as

dr
dθ

= r (r2
− 1)(r2

− a)(r2
+ b) = r7

− (1 + a − b)r5
+ (a − b − ab)r3

+ abr.

his system has exactly two hyperbolic limit cycles in the region r > 0 by Lemma 17.
It is easy to find values of a and b which satisfy the conditions of statement (1) of
Theorem 8. For instance, if b > 1 + a then the functions a(θ ) and b(θ ) defined in the
heorem have the same definite sign. If a = 3 and b = 1, then the functions b(θ ) and c(θ )
ave the same definite sign or a(θ ) and c(θ ) have opposite definite sign. This example
rovides an illustration of statement (1) of Theorem 8 where the maximum number of
imit cycles is achieved. If we choose a = 0 in the previous expression, we have an
xample of the second part of statement (1) of Theorem 8. If, moreover, we choose
= 1 in the previous expression, we have an example of statement (2) of Theorem 8.

n the case that we consider a > 1 and b = 0 in the previous expression, we have an
xample of statement (3) of Theorem 8.
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5. Application of Hopf bifurcation

We provide in this section some examples where the limit cycles are encountered
using the Hopf bifurcation, see [5,36]. The same references provide the definition of the
Poincaré–Lyapunov quantities and how to use them to prove Hopf bifurcation.

As it was proved by Sibirsky [37], see also [35] and the references therein, by an
ffine change of coordinates, any planar polynomial differential system of the form

ẋ = −y + λx + P3(x, y), ẏ = x + λy + Q3(x, y),

here λ is real and P3(x, y) and Q3(x .y) are real cubic homogeneous polynomials can
e written

ẋ = −y + λx − (ω + ϑ − a)x3
− (η − 3µ)x2 y

−(3ω − 3ϑ + 2a − ξ )xy2
− (µ − ν)y3,

ẏ = x + λy + (µ + ν)x3
+ (3ω + 3ϑ + 2a)x2 y

+(η − 3µ)xy2
+ (ω − ϑ − a)y3,

(26)

here λ, ω, ϑ , a, η, µ, ξ , ν are real parameters. Note that the region R, defined
n (3), corresponding to the previous system is not empty and contains the origin of
oordinates. For convenience of the readers and completeness of the paper, we state below
he expressions of the first three Poincaré–Lyapunov quantities corresponding to system
26) with λ = 0. These expressions were first computed by Sibirsky [37]:

v3 = πξ/4, v5 = −5πaν/4, v7 = 25πaωϑ/8.

xample 26. We take system (26) and we impose that the corresponding function A(θ )
s not null and does not change sign together with the fact that we can provide two limit
ycles which have bifurcated from the origin by a Hopf bifurcation. The following system
ealizes this search. We take the following values of the parameters:

λ =
1

1000
, ω = −

13
32

, ϑ =
1

16
, a = −1, η =

1
2
,

µ =
1
8
, ξ = −

1
2
, ν =

19
16

.

Then we obtain the following planar polynomial differential system:

ẋ = −y +
x

1000
−

21x3

32
−

x2 y
8

+
93xy2

32
+

17y3

16
,

ẏ = x +
y

1000
+

21x3

16
−

97x2 y
32

+
xy2

8
+

17y3

32
.

(27)

This system exhibits the function

A(θ ) =
501

128000
(2 + 19 cos(2θ ) − 19 sin(2θ ))2 ,

nd has two limit cycles inside the region R defined in (3). Note that this region contains
he origin of coordinates. Each limit cycle passes through a point (x0i , 0), i = 1, 2,

with x01 ≈ 0.25633 and x02 ≈ 0.1437. Fig. 1 is a representation of the limit cycles,
numerically found, together with part of the boundary of the region R defined in (3).

This example provides a system which illustrates statement (iv) of Theorem 4.
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Fig. 1. The two limit cycles of system (27) and the boundary of the region R.

Example 27. We take system (26) and we impose that the corresponding function
δ(αδ − βγ ) be nonzero and does not change sign together with the fact that we can
provide two limit cycles which have bifurcated from the origin by a Hopf bifurcation.
The following system realizes this search. We take the following values of the parameters:

λ =
1

1250
, ω = −

11
15

, ϑ =
11

240
, a = −1,

η =
11
16

, µ =
11
64

, ξ = −
11
30

, ν = 1.

We get the following planar polynomial differential system:

ẋ = −y +
x

1250
−

5x3

16
−

11x2 y
64

+
953xy2

240
+

53y3

64
,

ẏ = x +
y

1250
+

75x3

64
−

65x2 y
16

+
11xy2

64
+

53y3

240
.

(28)

This system exhibits the functions

δ(θ ) =
11 + 64 cos(2θ ) − 120 sin(2θ )

64
nd

(δ(αδ − βγ )) (θ ) =
1003(11 + 64 cos(2θ ) − 120 sin(2θ ))2

,

15360000
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and has two limit cycles inside the region R defined in (3). Note that this region contains
the origin of coordinates. Each limit cycle pass through a point (x0i , 0), i = 1, 2, with
x01 ≈ 0.162 and x02 ≈ 0.221. Fig. 2 is a representation of the limit cycles, numerically
found, together with part of the boundary of the region R defined in (3).

This example provides a system which illustrates statement (iv) of Theorem 4.

Example 28. We take system (26) with λ = 0, so that the function α(θ ) becomes
ero and the function γ (θ ) ≡ 1. We also impose that the corresponding function
A(θ ) + bB(θ ), where a and b are real parameters to be chosen, is not zero and does

not change sign together with the fact that we can provide one limit cycle which has
bifurcated from the origin by a Hopf bifurcation. The following system realizes this
search. We take the following values of the parameters:

λ = 0, ω = −
13
18

, ϑ =
13

180
, a = −1, η =

26
25

, µ =
13
50

, ξ = −
26
45

, ν = 1,

hich provides the following planar polynomial differential system

ẋ = −y −
7x3

20
−

13x2 y
50

+
137xy2

36
+

37y3

50
,

ẏ = x +
63x3

−
79x2 y

+
13xy2

+
37y3

.

(29)
50 20 50 180
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The corresponding Abel equation (11) for this system is
dρ

dθ
= A(θ )ρ3

+ B(θ )ρ2,

where

A(θ ) =
(13 − 90 sin(2θ ) + 50 cos(2θ ))2

4500
and

B(θ ) = 3 sin(2θ ) +
137
45

cos(2θ ) −
13
90

.

Thus the expression a A(θ ) + bB(θ ) is not zero and does not change sign if a ̸= 0 and
b = 0. System (29) has one limit cycle inside the region R defined in (3). Note that
this region contains the origin of coordinates. The limit cycle passes through the point
(x0, 0) with x0 ≈ 0.343. Fig. 3 is a representation of the limit cycle, numerically found,
together with part of the boundary of the region R defined in (3).

This example provides a system which illustrates statement (x) of Theorem 4.

6. Proof of Theorem 10

We give a set of autonomous real planar polynomial differential systems of the form
(1) which satisfy the criteria established in the statements of Theorems 3 and 4 (except
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statement (ix)), 7 and 8 and realize the maximum number of limit cycles provided in
these statements.

Example 29. Consider the differential system

ẋ = −y + λ
(
µx3

+ 2x2 y + µxy2) , ẏ = x + λ
(
µx2 y + 2xy2

+ µy3) , (30)

here λ and µ are real parameters with µ > 1. If we take polar coordinates system (30)
s transformed to

ṙ = λr3 (µ + sin(2θ )) , θ̇ = 1.

Note that the region R is the whole plane. We have that α(θ ) = 0 and β(θ ) =

(µ + sin(2θ )). Note that this last function is always positive or negative, depending
on the sign of λ, because we are under the assumption that µ > 1. Applying statement
i) of Theorem 4 we obtain that system (30) has no limit cycles in the real plane. This
xample provides a system which illustrates statement (i) of Theorem 4.

xample 30. Assume that we have an autonomous real planar polynomial differential
ystem defined by the sum of two quasi-homogeneous vector fields as in (6) and we do
he transformation to system (7). Assume that the functions α, β, γ and δ are such that
αδ − βγ ≡ 0. From the definition of these functions, this condition is equivalent to

Pn(cos θ, sin θ ) Qm(cos θ, sin θ ) − Pm(cos θ, sin θ ) Qn(cos θ, sin θ ) ≡ 0.

ince Pn and Qm are (p, q)-quasi-homogeneous functions we deduce the identity

Pn(x, y) Qm(x, y) − Pm(x, y)Qn(x, y) ≡ 0, (31)

hich is satisfied for any (x, y) ∈ R2. If one of these four polynomials Pn , Pm , Qn , Qm

s identically zero, we get that there is at least another polynomial which is identically
ero among the other three. Thus we have two possibilities: either a system in which

ẋ ≡ 0 or ẏ ≡ 0, which has no limit cycles because there is a linear first integral, or
e have a system which is (p, q)-quasi-homogeneous and it has no limit cycles as it is
roved, for instance, in [14]. If the polynomial Pn Pm Qn Qm ̸≡ 0, then condition (31)
mplies a divisibility condition between the polynomials and we can deduce that system
6) writes as

ẋ = Pr (x, y) A(x, y), ẏ = Qr (x, y) A(x, y),

here Pr and Qr are (p, q)-quasi-homogeneous polynomials of degrees p + r − 1 and
+r −1 respectively and A(x, y) is a real polynomial defined by the sum of two (p, q)-
uasi-homogeneous polynomials of degrees n−r and m−r . Therefore the system has no
imit cycles as a consequence of the results provided in [14]. This analysis shows all the
ossible examples of systems of the form (6) which satisfy statement (ii) of Theorem 4.

xample 31. Consider the differential system

ẋ = (x − y)(x2
− xy + y2) − x(x4

+ 3x2 y2
+ 2y4),

2 2 4 2 2 4 (32)

ẏ = (x + y)(2x − xy + 2y ) − y(x + 3x y + 2y ),
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Note that this system is the sum of two homogeneous vector fields, one of degree 3 and
the other of degree 5. We take the polar coordinates and system (32) writes as

ṙ = r3(cos2 θ + 2 sin2 θ )(1 − r2), θ̇ = r2(2 cos2 θ + sin2 θ ).

We can reparameterize the independent variable and we obtain the system

ṙ = r (cos2 θ + 2 sin2 θ )(1 − r2), θ̇ = 2 cos2 θ + sin2 θ. (33)

The region R is the whole plane as 2 cos2 θ + sin2 θ > 0 for all θ ∈ R. In this system we
have that δ(θ ) = 0. Hence we can apply statement (iii) of Theorem 4 and system (32)
has at most one limit cycle. In fact system (32) has the circle x2

+ y2
= 1 as limit cycle

as we can observe from its expression in polar coordinates and this is its unique limit
cycle. This example provides a system which illustrates statement (iii) of Theorem 4.

Example 32. Consider system (32) of the previous example. In polar coordinates (after
several reparameterizations) we obtain system (33), which can be written as the ordinary
differential equation

dr
dθ

=
r (cos2 θ + 2 sin2 θ )(1 − r2)

2 cos2 θ + sin2 θ
= S(r, θ).

Then we have that

∂S
∂r

=

(
cos2 θ + 2 sin2 θ

2 cos2 θ + sin2 θ

)
(1 − 3r2).

hus in the simply connected region U =

{
(r, θ) : 0 ≤ r < 1/

√
3
}

we have that there
re no limit cycles. So we have an example which illustrates statement (i) of Theorem 3.

Moreover in the annular region A =

{
(r, θ) : 1/

√
3 < r < 2

}
, by statement (ii) of

heorem 3 we have that there is at most one limit cycle, and this is the case because
ystem (32) has the circle x2

+ y2
= 1 as limit cycle as we have previously stated. This

xample provides a system which also illustrates statement (ii) of Theorem 3. Moreover,
e can compute the function

∂2S
∂r2 = −6r

(
cos2 θ + 2 sin2 θ

2 cos2 θ + sin2 θ

)
.

It is clear that this function is negative in a punctured neighborhood of the origin and,
therefore, as an application of criterion (iii) of Theorem 3 we have that there is at most
one limit cycle.

Example 33. Consider the following system

ẋ = λx − y + x3, ẏ = x + λy + y3, (34)

where λ is a real parameter. In polar coordinates this system writes as

ṙ = λr + r3 (cos4(θ ) + sin4(θ )
)
, θ̇ = 1 − r2 sin(4θ )

.

4
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We consider this system in the region

R =

{
(r, θ) : 1 − r2 sin(4θ )

4
> 0

}
.

ote that the region R contains the simply connected region U =
{
(r, θ) : r2 < 4

}
,

which is a neighborhood of the origin. Note also that in the region R, system (34)
contains no equilibrium point but the origin of coordinates. We constraint to study the
limit cycles entirely contained in the region R.

By the computation of the Poincaré–Liapunov quantities, it is easy to show that when
λ < 0 is small enough there is a limit cycle in R which surrounds the origin and appears

y a Hopf bifurcation. Easy computations show that system (34) defines a rotated family
f vector fields in the region R, see [12,13,31]. Thus the limit cycle born in a Hopf
ifurcation grows as λ decreases until it meets the boundary of the region R. We will
se the criteria given in statements (i) and (ii) of Theorem 3 in order to locate this limit
ycle and to give values of λ for its existence.

In the region R system (34) is equivalent to the ordinary differential equation

dr
dθ

= S(r, θ) =
4λr − r3(3 + cos(4θ ))

4 − r2 sin(4θ )
.

The derivative of this function with respect to r gives

∂S
∂r

=
32λ + 8r2 (9 + 3 cos(4θ ) + λ sin(4θ )) − r4 (6 sin(4θ ) + sin(8θ ))

2(4 − r2 sin(4θ ))2 .

Let

Σ (λ, r, θ) = 32λ + 8r2 (9 + 3 cos(4θ ) + λ sin(4θ )) − r4 (6 sin(4θ ) + sin(8θ )) .

e can solve the equation Σ (λ, r, θ) = 0 with respect to r , and we see that when we
x λ small, there is a solution curve which is close to r = 0 and it belongs to the
egion R. This curve is an oval surrounding the origin in the region R and we denote
t by σλ. By applying statements (i) and (ii) of Theorem 3, we have that σλ defines an
nner boundary for the limit cycle because inside this oval there is no limit cycle as an
pplication of statement (i) of Theorem 3, and in the region outside this oval (inside
he region R) there can be at most one limit cycle as an application of statement (ii) of
heorem 3. For the application of statement (ii) of Theorem 3, we can take as annular

egion the one whose inner boundary is σλ and whose outer boundary is r = 2. If the
imit cycle exists for some value λ∗ < 0, which is the case by the Hopf bifurcation, then
t exists by some value slightly smaller than λ∗ by the properties of a rotated family of
ector fields. Moreover, the oval σλ keeps growing when λ decreases. Thus it provides
n inner boundary for the limit cycle which grows with it. We are going to study until
hich value of λ we can ensure the existence of such limit cycle. We solve the following
ptimization problem with constraints: find the minimum λ such that Σ (λ, r, θ) = 0. We
onstruct the Lagrangian function associated to this problem and we study its equilibrium
oints, assuming λ < 0. We get that there is a minimum when λ = −2

√
2. We have

hecked that when 0 > λ > −2
√

2, the oval σλ is contained in the region R, so we
can ensure the existence of exactly one limit cycle in the region R for any value of λ

uch that 0 > λ > −2
√

2, and it must be located outside the oval σ . We provide a
λ
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Fig. 4. The limit cycle of system (34), the oval σλ and the boundary of the region R when λ = −1/10.

couple of figures of the limit cycle numerically found, see Figs. 4–7. We note that the
oval σλ touches the boundary of the region R exactly when λ decreases from 0 and gets
to λ = −2

√
2.

Example 34. We consider the following planar polynomial differential system

ẋ = y(1 + 2x2
+ 3xy), ẏ = −x(3 + 3xy − 2y2), (35)

hich in polar coordinates writes as

ṙ = 2 cos θ sin θr (r2
− 1), θ̇ = −3 + 2 sin2 θ − 3 cos θ sin θ r2.

ote that the region

R :=
{
(r, θ) : −3 + 2 sin2 θ − 3 cos θ sin θ r2 < 0

}
,

s not empty and contains the origin of coordinates. We remark that r = 1 (the unit
ircumference in cartesian coordinates) is an orbit of the system which contains no
quilibrium points because over r = 1 we have that θ̇ is −3+sin2 θ −3 cos θ sin θ which
s strictly negative for all θ ∈ [0, 2π ]. Thus r = 1 is a periodic orbit. The divergence
f system (35) is div(x, y) = (3x + y)(−x + 3y). We want to compute the value of the
ntegral of the divergence over the orbit given by the unit circumference in order to prove
hat this periodic orbit is a hyperbolic limit cycle. We denote by x(t), y(t) the periodic
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Fig. 5. The limit cycle of system (34), the oval σλ and the boundary of the region R when λ = −1.

rbit of system (35) contained in the unit circumference and we denote by T its period.
e consider the change of the time t to the variable τ provided by x(t) = cos τ and we

ave that∫ T

0
div(x(t), y(t)) dt =

∫ 2π

0

(3x + y)(−x + 3y)
y(1 + 2x2 + 3xy)

⏐⏐⏐⏐⎧⎨⎩ x = cos τ

y = sin τ

⎫⎬⎭
(− sin τ )dτ

=

∫ 2π

0

(cos τ − 3 sin τ )(sin τ + 3 cos τ )
2 cos2 τ + 3 sin τ cos τ + 1

dτ

=
8
13

(
4
√

3 − 3
)

π ̸= 0.

hus, the unit circumference is a hyperbolic limit cycle of system (35).
We consider the functions α(θ ), β(θ ), γ (θ ) and δ(θ ) defined in (8) and we have that∫ 2π

0

α(θ )
γ (θ )

dθ =

∫ 2π

0

2 cos θ sin θ

3 − 2 sin2 θ
dθ = 0.

On the other hand, we remark that system (35) is the sum of a linear system plus a cubic
homogeneous system. Thus the expression

exp
(

(m − n)
∫ θ α(s)

ds
)

,

0 γ (s)
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which appears in statement (xi) of Theorem 4 is

exp
(

2
∫ θ

0

2 cos s sin s

3 − 2 sin2 s
ds
)

=
3

3 − 2 sin2 θ
.

This expression is strictly positive for all θ ∈ [0, 2π ]. The expression of the function
A(θ ) defined in (11) is

A(θ ) =
12 cos2 θ sin2 θ (3 cos2 θ + 3 cos θ sin θ + 2 sin2 θ )

3 cosθ + sin2 θ
,

which does not vanish identically and does not change sign in [0, 2π ]. Therefore system
(35) illustrates statement (xi) of Theorem 4 (taking a ̸= 0 and b = 0) and it has the
maximum number of limit cycles given by the statement.

Example 35. In the works [18,19] Gasull, Llibre and Sotomayor study planar vector
fields of the form X (v) = Av + f (v)Bv where A and B are 2 × 2 real matrices which
satisfy certain hypothesis about its eigenvalues, det A ̸= 0 and f : R2

→ R is a smooth
real function such that its expression in polar coordinates is f (r cos θ, r sin θ ) = r D f̄ (θ )

ith D ≥ 1. For this class of systems, the authors prove several results on the existence of
imit cycles. In Proposition 6.3 of [19] it is proved that the following planar polynomial
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Fig. 7. The limit cycle of system (34), the oval σλ and the boundary of the region R when λ = −2.8.

ifferential system

ẋ = y +ax − (x + y)(ax2
+ xy +ay2), ẏ = −ay + (x − y)(ax2

+ xy +ay2), (36)

here a ∈ (−1/2, (1 −
√

2)/2) satisfies the hypothesis stated in the work and

(i) if a ∈ (−1/2, −1/4) ∪ (−1/4, (1 −
√

2)/2), then system (36) has exactly two
hyperbolic limit cycles;

(ii) if a = −1/4, then system (36) has exactly one semistable limit cycle.

n polar coordinates system (36) writes as

ṙ = (a + cos θ sin θ )(r − r3), θ̇ = − sin2 θ + r2(a + cos θ sin θ ).

t is easy to show that the functions α, β, γ and δ defined in (8) satisfy δ(αδ −βγ ) does
ot change sign. This is an example of application of criterion (viii) of Theorem 4 with
he maximum number of limit cycles stated by the criterion.

xample 36. We consider the van der Pol system

ẋ = y − ε

(
x3

3
− x

)
, ẏ = −x, (37)

with ε > 0.
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The origin is the only finite equilibrium point of the system and it is an unstable focus.
his system was presented and studied in [39]. It is known that system (37) has a unique
table and hyperbolic limit cycle for all ε > 0 which bifurcates from the circle of radius

2 when ε = 0 and which disappears to a slow-fast periodic limit set when ε → +∞.
ee also the book [32].

In polar coordinates the system becomes

ṙ = ε cos2(θ )r2
−

ε

3
cos4(θ )r3, θ̇ = −1 − ε cos(θ ) sin(θ ) +

ε

3
cos3(θ ) sin(θ )r2.

he functions α(θ ), β(θ ), γ (θ ) and δ(θ ) are defined as in (7) and it is easy to see that

αδ − βγ = −
ε

3
cos4(θ ),

hich does not change sign for θ ∈ [0, 2π ]. When 0 < ε < 2, we are under the analogous
ypothesis to (3) that

R =

{
(r, θ) : −1 − ε cos(θ ) sin(θ ) +

ε

3
cos3(θ ) sin(θ )r2 < 0

}
,

s not empty and contains the origin of coordinates r = 0. For instance, when ε = 1
t can be shown that the limit cycle of (37) is inside the region R. Thus this system
llustrates an application of criterion (vii) of Theorem 4.

xample 37. In the work of 1960 [40] Vorob’ev gives the following planar polynomial
ifferential system

ẋ = −y + ax(x2
+ y2

− 1), ẏ = x + by(x2
+ y2

− 1), (38)

here a and b are real parameters such that ab > −1 and (a − b)2 > 4. This system has
node at the origin and one limit cycle surrounding the origin. In polar coordinates, it
rites as

ṙ = (r3
− r )(a cos2 θ + b sin2 θ ), θ̇ = 1 + (r2

− 1)(b − a) cos θ sin θ.

he functions α, β, γ and δ defined in (8) satisfy (αδ − βγ ) = −(a cos2 t + b sin2 t)
hich does not change sign if ab > 0. This is an example of application of criterion

vii) of Theorem 4.

We summarize below how each statement of Theorems 3, 4, 7 and 8 has been
llustrated by an example which exhibits the maximum number of limit cycles given
y the criterion.

- Criterion (i) of Theorem 3 is illustrated in Examples 18, 32 and 33.
- Criterion (ii) of Theorem 3 is illustrated in Examples 18, 32 and 33.
- Criterion (iii) of Theorem 3 is illustrated in Examples 18, 21 and 32.
- Criterion (iv) of Theorem 3 is illustrated in Examples 20 and 21.
- Criterion (v) of Theorem 3 is illustrated in Example 23.
- Criterion (vi) of Theorem 3 is illustrated in Example 22.
- Criterion (i) of Theorem 4 is illustrated in Example 29.
- Criterion (ii) of Theorem 4 is illustrated in Example 30.
- Criterion (iii) of Theorem 4 is illustrated in Example 31.
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- Criterion (iv) of Theorem 4 is illustrated in Examples 20 and 26.
- Criterion (v) of Theorem 4 is illustrated in Example 20.
- Criterion (vi) of Theorem 4 is illustrated in all the examples where criterion (iii)

of Theorem 3 is applied because δ ≡ 0 implies that A(θ ) ≡ 0, where A(θ ) is the
function that appears in (11). Indeed, by virtue of Remark 14, we have that the case
A(θ ) ≡ 0 and B(θ ) ≡ 0 are equivalent.

- Criterion (vii) of Theorem 4 is illustrated in Examples 36 and 37.
- Criterion (viii) of Theorem 4 is illustrated in Examples 27 and 35.
- Criterion (x) of Theorem 4 is illustrated in Examples 19 and 28.
- Criterion (xi) of Theorem 4 is illustrated in Example 34. All the examples which

illustrate criterion (x) of Theorem 4 also illustrate this criterion since criterion (xi)
implies criterion (x) in Theorem 4.

- Theorem 7 is illustrated in Examples 20 and 24.
- Theorem 8 is illustrated in Example 25.
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