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Background: Severe spermatogenic failure (SPGF) represents one of the most

relevant causes of male infertility. This pathological condition can lead to

extreme abnormalities in the seminal sperm count, such as severe

oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of

SPGF have an unknown aetiology, and it is known that this idiopathic form of
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male infertility represents a complex condition. In this study, we aimed to

evaluate whether common genetic variation in TEX15, which encodes a key

player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF.

Materials and Methods:We designed a genetic association study comprising a

total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected

men from the Iberian Peninsula. Following a tagging strategy, three tag single-

nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and

rs323346) were selected for genotyping using TaqMan probes. Case-control

association tests were then performed by logistic regression models. In silico

analyses were also carried out to shed light into the putative functional

implications of the studied variants.

Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF)

was observed in the group of SO patients (MAF = 0.0842) compared to either

the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group

(MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO

population was also different from those of both control (p = 1.14E-02) and

NOA groups (p = 4.33–02). The analysis of functional annotations of the human

genome suggested that the effect of the SO-associated TEX15 variants is likely

exerted by alteration of the binding affinity of crucial transcription factors for

spermatogenesis.

Conclusion: Our results suggest that common variation in TEX15 is involved in

the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF

as a complex trait.
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Introduction

Infertility is a growing health concern involving over

50–70 million childbearing age couples worldwide, with the

male factor contributing in approximately 50% of cases

(Fainberg and Kashanian, 2019). Non-obstructive azoospermia

(NOA) and severe oligozoospermia (SO) due to spermatogenic

failure (SPGF) represent the most severe phenotypes of male

factor infertility. However, the causes of such conditions are

poorly understood and the aetiology of most affected men is

usually defined as being idiopathic (Cannarella et al., 2019;

Agarwal et al., 2021). Recent advances clearly point to

idiopathic male infertility as a complex trait, in which the

combined effect of polymorphic risk variants (causing subtle

changes in gene expression) may increase the susceptibility of an

individual to suffer from this disorder (Singh and Jaiswal, 2011;

Cervan-Martin et al., 2020b; Salas-Huetos and Aston, 2021).

In this regard, common variants in the human genome may

increase the susceptibility to develop male infertility by altering

key events during spermatogenesis, in which DNA integrity is

crucial (Neto et al., 2016). Having such in mind, it is important to

stress that alterations in the DNA structure frequently occur in

meiosis prophase I during the transition from primary to

secondary spermatocytes, due to the generation of

double-strand breaks (DSBs) for homologous chromosome

pairing and crossing over (CO) (Cannarella et al., 2020).

Consequently, DNA repair mechanisms are essential to

produce fit mature sperm cells. In fact, the assessment of

DNA integrity is a relevant marker to determine the sperm

quality in assisted reproductive techniques (ART) (Leduc

et al., 2008; Gonzalez-Marin et al., 2012). Thus, while the

generation of genetic variability through changes in DNA is

the basis for evolution, it is strictly controlled at the individual

level (Capilla et al., 2016; Alves et al., 2017).

Consistent with the above, the spermatogenic process shows

a very complex molecular and cellular control, involving over

2,000 genes, among which 900 are solely expressed in the male

germline (Chalmel et al., 2012; Cervan-Martin et al., 2020b). The

so-called Testis expressed (TEX) gene family plays a crucial role in

spermatogenesis and some of its members have been strongly

associated with male infertility (Cannarella et al., 2019; Bellil

et al., 2021). Specifically, TEX15, which is predominantly

expressed in spermatogonial and primary spermatocytes,

encodes a 2,789 amino acid protein necessary for meiotic

recombination and DSB repair in the germ line (Yang et al.,

2008). Additionally, TEX15 also has a significant epigenetic

function in spermatogenesis by interacting with several PIWI

like RNA-mediated gene silencing proteins (namely PIWIL2,
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PIWIL4), in order to maintain spermatogonial stem cell integrity

through the silencing of transposable elements (Schopp et al.,

2020; Yang et al., 2020). Indeed, inactivation of Tex15 expression

in mutant male mice causes sterility by meiotic arrest and

impaired activity of RAD51 and DMC1 recombinases (Yang

et al., 2008; Chen et al., 2016).

In this context, high-penetrance pathogenic variants in

TEX15 have been widely linked to human male infertility due

to spermatogenic impairment in different studies. For instance,

non-sense mutations producing truncated TEX15 proteins have

been reported to lead to cryptozoospermia (where spermatozoa

are apparently absent in fresh semen samples but are recovered in

centrifuged pellets) and SPGF in unrelated families (Okutman

et al., 2015; Colombo et al., 2017; Wang et al., 2018; Cannarella

et al., 2021; Tian et al., 2021). Moreover, mutations in this gene

have been associated with NOA due to Sertoli cell-only (SCO)

phenotype (characterised by a complete lack of germ cells in the

seminiferous tubules) (Araujo et al., 2020).

On the other hand, case-control genetic association studies

have attempted to assess the involvement of TEX15 polymorphic

variation, such as single nucleotide polymorphisms (SNPs), in

the development of SPGF resulting in NOA or SO. The first

approach was conducted in a cohort of European ancestry and

identified two TEX15 SNPs putatively associated with SPGF

(Aston et al., 2010). However, such associations were not

replicated in a subsequent study carried out in an

independent South-Eastern European population (Plaseski

et al., 2012). Similarly, two novel TEX15 variants have been

recently proposed to be involved in the genetic predisposition to

SPGF in the Iranian population (Ghadirkhomi et al., 2022).

Finally, although TEX15 common variation was initially

associated with SPGF risk in Han Chinese (Ruan et al., 2012),

another report could not confirm this observation in this

ethnicity (Zhang et al., 2015). Therefore, no conclusive results

are currently available on the possible role of the common TEX15

genetic variation in SPGF development.

In view of the above, we aimed to clarify the involvement of

TEX15 common variation in SPGF predisposition in a European

genetic background, by analysing a large and phenotypically

well-characterised study cohort.

Materials and methods

Patient cohort characterisation

This study was carried out in a large SPGF cohort with

European descent. In total, the infertile men group comprised

727 SPGF cases from Spain and Portugal, diagnosed as NOA

(n = 527), if a total absence of spermatozoa was observed in the

ejaculate, or SO (n = 200), when showing less than 5 million

spermatozoa/mL semen. The control set included 1,058 Iberian

men, of whom 700 were healthy individuals representative of the

general population (most of them with self-reported fatherhood),

and 358 men with normal sperm counts, as previously described

(Cervan-Martin et al., 2020a; Cervan-Martin et al., 2020c). Cases

and controls were matched by age, geographical origin, and

ethnicity, and signed an informed written consent in accordance

with the Declaration of Helsinki. Each participating centre received

ethical approval and complied with the requirements of their local

regulatory authorities prior to the study.

SPGF patients were diagnosed after two high-speed

centrifugations in two different semen samples in different

fertility clinics managed in public and private health Hospitals

and centres from Portugal and Spain, based on the guidelines for

the management of infertile men by the American Urological

Association (AUA)/American Society for ReproductiveMedicine

(ASRM), the Canadian Urological Association (CUA), and the

World Health Organization (WHO) (Cooper et al., 2010; Jarvi

et al., 2010; Bjorndahl and Kirkman Brown, 2022). Moreover, the

NOA diagnosis was further confirmed by histological

examination of testicular biopsies of the NOA patients that

decided to undergo testicular sperm extraction (TESE) for use

in ART (who represented around half of the NOA cohort). We

established stringent selection criteria to include only infertile

men due to idiopathic SPGF, which involved an exhaustive

medical evaluation, screening for possible karyotype

abnormalities and Y-chromosome microdeletions, as well as a

thorough revision of the medical records to discard physical

testicular disorders (e.g., orchitis and obstruction of vas deferens)

and other known causes of male infertility. However, no

screening for high-penetrance point mutations was conducted

because this procedure is not part of the routine diagnostic

workup of infertile men due to SPGF (Krausz et al., 2018).

Study design and single nucleotide
polymorphism selection

A candidate gene study was conducted to shed light on the

possible association of common genetic variation in the

TEX15 locus with idiopathic SPGF risk. During the selection

process, we confirmed that, according to publicly available single-

cell RNA-seq data in the puberty and adult (Guo et al., 2018; Guo

et al., 2020), the highest TEX15 expression was found in

spermatogonia and spermatocytes (Supplementary Figure S1).

TEX15 is located in human chromosome 8, spanning an

81.5 kb region that constitutes a single linkage disequilibrium

(LD) block in the 1,000 Genomes phase III (1KGPh3) European

population (Auton et al., 2015), according to LDlink (Machiela

and Chanock, 2015) (Figure 1A). Therefore, we followed a SNP

tagging strategy using the European data of the 1KGPh3 and the

Haploview V.4.2 software (Barrett, 2009; Auton et al., 2015) to

cover most of the genetic variability of the region, prioritising

those taggers that tagged, at least, more than five variants. Three

taggers representative of three different minor allele frequency
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(MAF) ranges were selected with this method: rs1362912

(MAF <0.1), and rs323346 (0.1 < MAF <0.2), and rs323342

(MAF >0.2) (Supplementary Table S1).

Sample preparation and genotyping

For all the recruited individuals, genomic DNA was extracted

from peripheral blood mononuclear cells with the QIAamp®

DNA Blood Midi/Maxi kit (Qiagen, Hilden, Germany), the

MagNA Pure LC-DNA LV Isolation kit I (Roche, Basel,

Switzerland), or the Wizard® Genomic DNA Purification Kit

Protocol (Promega, Madison, WI, United States), following the

manufacturers’ protocols. The genotyping was performed using

the TaqMan™ SNP genotyping technology (Applied Biosystems,

Foster City, CA, United States). Real-time quantitative

polymerase chain reactions (qPCR) were performed in a

7900HT Fast Real-Time PCR System (Applied Biosystems,

Foster City, California, United States), using specific

predesigned TaqMan™ probes (assay IDs: C___8867446_10;

C____622151_10; C____622153_10) and the SDS 2.3 software

for allele discrimination (both from Applied Biosystems, Foster

City, California, United States).

Case-control statistical association
analysis

An estimation of the statistical power of this study was

calculated with the CaTS Power Calculator for Genetic

Association Studies (Skol et al., 2006) (Supplementary

Table S2). Possible deviances from Hardy-

Weinberg equilibrium (HWE) were evaluated at the 5%

significance level in both case and control groups using a

χ2 test.
The statistical analyses were conducted with the software

Plink v1.9 (Chang et al., 2015). Case-control comparisons of the

allele and genotype frequencies were performed by logistic

regression on the genotypes using geographical origin (Spain

or Portugal) as a covariate and assuming different association

models for genetic risk (including additive, dominant, recessive,

and genotypic). p-values, odds ratios (ORs) and their 95%

confidence intervals (CIs) were then calculated setting the

significance threshold at p-value < 0.05 after correction of

possible multiple testing effects by the Benjamini and

Hochberg False Discovery Rate (FDR-BH) method (Benjamini

et al., 2001).

In silico functional characterisation of risk
variants

In an attempt to provide a plausible functional effect of the

observed associations and identify possible molecular or

cellular mechanisms underlying the pathogenic phenotypes,

we implemented a bioinformatic workflow to extract and

explore the functional annotation data available in different

public databases. In a first step, we extended our functional

characterisation to all proxies (genetic variants showing a LD

r2 ≥ 0.8) of the selected taggers in the reference European

FIGURE 1
Genomic context and predicted functional relevance of the proxy variants tagged by TEX15-rs1362912. Both the CADD scores of each variant
(left x-axis) and the recombination rate of the region (right x axis, blue line) are displayed. Variants with functional annotations in testis are represented
as diamonds.
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population using the tools for that purpose implemented in

LDLink (Machiela and Chanock, 2015). All proxies were

equally considered candidates for explaining the observed

associations, as described elsewhere (Cervan-Martin et al.,

2020a; Cervan-Martin et al., 2021). Briefly, the prioritisation

processes were performed with the following resources:

GTExPortal (Carithers and Moore, 2015), SNPnexus

(Oscanoa et al., 2020), ENCODE (Luo et al., 2020),

Haploreg v.4.1. (Ward and Kellis, 2016), RegulomeDB

(Dong and Boyle, 2019), SNP2TFBS (Kumar et al., 2017),

amongst others. Several scores of deleteriousness were also

used, such as CADD, DeepSEA, EIGEN, FATHMM, fitCons,

FunSeq2 GWAVA, REMM, and RegulomeDB

(Supplementary Tables S3,S4). In addition, we carried out

an enrichment analysis of both gene ontology (GO) terms and

protein-protein interactions (PPIs), including all

transcription factors whose reported binding site (TFBS)

sequences overlapped with the SNPs included in the

prioritisation analysis, as implemented in STRINGv11.5

(Szklarczyk et al., 2019). Finally, to determine the TEX15

expression at the single cell level, we used the data

available at both the Human Testis Atlas Browser (Guo

et al., 2018) and the Single Cell Expression Atlas

(Papatheodorou et al., 2020).

Results

The genotyping success rate of the three analysed variants

was above 98% and none of them showed a significant deviation

from HWE either in cases or controls. Additionally, the MAFs in

the control group were concordant with those described for both

the Iberian subpopulation and the European super population of

the 1KGPh3 project (Auton et al., 2015), with no statistically

significant differences observed between the population-

representative group and the normozoospermic group in

either the allele or the genotype frequencies. Furthermore, our

study population had an appropriate overall statistical power to

identify genetic associations with moderate to high effects, as

detailed in Supplementary Table S2.

Common TEX15 gene variation confers
susceptibility to severe oligozoospermia

First, we compared the allele and genotype frequencies of

the selected taggers between the overall SPFG group and the

unaffected control population. These analyses revealed no

significant differences under any of the tested models

(Table 1).

TABLE 1 Analysis of the genotype and allele frequencies of the TEX15 tagger variants comparing groups of male infertility against the unaffected control
group.

Allelic model Genotypic model

SNP Change
(1/2)

Group Genotypes (11/
12/22)

MAF p Adjusted p OR [CI 95%] p Adjusted
p

rs1362912 G/A Controls (n =
1,046)

1/96/949 0.0468 NA NA NA NA NA

SPGF (n = 715) 4/74/637 0.0573 0.2571 NS 1.20 [0.88–1.65] 0.2367 NS

SO (n = 196) 2/29/165 0.0842 7.47E-
03

2.24E-02 1.90 [1.19–3.03] 1.14E-
02

3.41E-02

NOA (n = 519) 2/45/472 0.0472 0.9884 NS 1.00 [0.70–1.43] 0.4932 NS

rs323342 A/T Controls (n =
1,049)

67/420/562 0.2641 NA NA NA NA NA

SPGF (n = 714) 60/277/377 0.2780 0.6212 NS 1.04 [0.89–1.22] 0.5412 NS

SO (n = 195) 18/67/110 0.2641 0.6740 NS 0.94 [0.72–1.23] 0.3335 NS

NOA (n = 519) 42/210/267 0.2832 0.4275 NS 1.07 [0.90–1.27] 0.6689 NS

rs323346 C/T Controls (n =
1,049)

32/318/699 0.1821 NA NA NA NA NA

SPGF (n = 718) 29/225/464 0.1971 0.5822 NS 1.05 [0.88–1.26] 0.7808 NS

SO (n = 197) 7/64/126 0.1980 0.7353 NS 1.05 [0.78–1.43] 0.9444 NS

NOA (n = 521) 22/161/338 0.1967 0.5371 NS 1.06 [0.88–1.29] 0.6949 NS

CI, confidence interval; MAF, minor allele frequency; NA, not applicable; NOA, non-obstructive azoospermia; NS: not significant; OR, odds ratio (for the minor allele); SNP, single-

nucleotide polymorphism; SO, severe oligozoospermia; SPGF, spermatogenic failure. Significant p-values are highlighted in bold. 1: reference (minor) allele. 2: alternative (major) allele.
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Subsequently, we compared the groups of cases showing

specific phenotypes of male infertility stablished by semen

analysis (that is, NOA and SO) against the control cohort.

Regarding NOA, no statistically significant differences were

observed for any of the three tested taggers. In fact, the MAFs

for the NOA group were very similar to those observed for the

control group (Table 1).

Conversely, the comparison between the SO group and the

control cohort revealed statistically significant differences in the

allele/genotype frequencies of rs1362912 under the additive

(pADD = 7.47E-03, OR = 1.90, CI 95% = 1.19–3.03) and

genotypic (pGENO = 1.14E-02) models (Table 1). Such

associations remained significant after multiple testing

correction (pADD-FDR = 2.24E-02; pGENO-FDR = 3.41E-02)

(Table 1).

To assess the consistency of the rs1362912 association with

SO, we decided to eliminate the possible confounding effect of

having SPFG in the analysis by using the NOA group as the

reference cohort. The comparison between SO and NOA showed

a similar risk effect on SO for the rs1362912*G minor allele in the

additive model (pADD = 1.23E-02, 1.83, CI 95% = 1.14–2.94). The

observed differences in the genotypic test for this SNP were also

at the same range (pGENO = 4.33E-02) (Table 2). Interestingly,

despite the lower statistical power of this case-case comparison,

the association assuming an additive effect of rs1362912*G

rameined after multiple testing correction (pADD-FDR = 3.69E-

02) (Table 2).

No evidence of additional association with the SO group was

evident for the remaining selected variants (i.e., rs323346 and

rs323342) (Tables 1, 2).

The severe oligozoospermia-associated
variants in TEX15 might affect chromatin
activity in the testis

The statistical analyses suggested an involvement of low

frequency variants, tagged by rs1362912, in the susceptibility to

SO. However, our study design relied on a tagging strategy, and the

studied SNPs were selected based on their representativeness of

different MAFs rather than on their possible functional features.

Therefore, to investigate the biological meaning of the observed

association between rs1362912 and SO further, we first identified all

proxies (r2 ≥ 0.8) of this tagger and, subsequently, we carried out a

functional prioritisation to elucidate the putative causal variant/s.

The tagger rs1362912 represents a synonymous SNP in exon

eight of the TEX15 gene (Figure 1), whereas most of its proxies are

non-coding variants located in both intronic and intergenic

regions (Figure 1; Supplementary Table S5). We decided to

base our prioritisation mostly on the overlaps with possible

regulatory elements in the testis related with changes in gene

expression that could affect the spermatogenic process. Amongst

the 44 SNPs that were evaluated, the variants rs114435820,

rs4733201, and rs1381559038 stood out from the rest using

such criterion (Figure 2; Supplementary Table S5). Specifically,

the SNP rs114435820 was located in a CpG island, which may

indicate a possible effect on nearby gene expression.

Interestingly, this proxy overlaps with a CTCF binding site, as

well as with histone marks to active enhancers (H3K27ac) and

promoters (H3K4me3) in the adult testis, according to ChIP- seq

data from ENCODE (Davis et al., 2018) (Figure 2;

Supplementary Table S5). Additionally, the position weight

matrix (PWM) data extracted from HaploReg (Ward and

Kellis, 2016) showed that the SNP rs114435820 could alter the

binding affinity of the transcription factor YY1, which plays an

important role in DNA repair during spermatogenesis (Wu et al.,

2009), amongst others (Figure 2; Supplementary Tables S5, S6).

The data of the testis from ENCODE also showed an overlap of

the variant rs4733201 with binding sites of CTCF and POLR2A,

with the same previously described histone marks, and with a

DNAse hypersensitive sites (Figure 2; Supplementary Table S5).

Furthermore, this variant was predicted to alter the TFBS of

E2F1, which has been previously associated with male infertility

due to SPGF (Jorgez et al., 2015; Rocca et al., 2019). Moreover,

31 additional proteins were observed to be bound to this site

through ChIP-Seq experiments, being some of them (such as

CTCF, YY1, EGR1, TBP, or CCNT2) involved in

spermatogenesis (Tourtellotte et al., 2000; Wu et al., 2009;

Teng et al., 2011; Hernandez-Hernandez et al., 2016;

Ponomarenko et al., 2020) (Figure 2; Supplementary Tables

TABLE 2 Analysis of the genotype and allele frequencies of the TEX15 tagger variants comparing the severe oligozoospermia (SO) group against the non-
obstructive azoospermia (NOA) group.

Allelic model Genotypic model

SNP MAF (SO/NOA) p Adjusted p OR [CI 95%]̂ p Adjusted p

rs1362912 0.0842/0.0472 1.23E-02 3.69E-02 1.83 [1.14–2.94] 4.33E-02 0.13

rs323342 0.2641/0.2832 0.3614 NS 0.88 [0.67–1.15] 0.2672 NS

rs323346 0.1980/0.1967 0.6516 NS 0.93 [0.69–1.26] 0.7451 NS

CI, confidence interval; MAF, minor allele frequency; NS: not significant; OR, odds ratio (for the minor allele); SNP, single nucleotide polymorphism; Significant p-values are highlighted in

bold.
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S5, S6). With regards to the scores indicative of functionality,

although some proxies (such as rs114433201) showed relevant

values, the strongest evidence of deleteriousness was observed for

the TEX15 variant rs4733201, which is located in the 5’

untranslated region of the nearby gene PPP2CB and had a

considerably high CADD score (score = 21.9) (Figures 1, 2;

Supplementary Table S5).

In view of the possible influence on TFBSs of the most likely

causal variants of the TEX15 association with SO, we decided to

perform an enrichment analysis of both PPIs and biological

pathways considering the 112 TFs whose binding affinity to

this genetic region was predicted to be altered by the analysed

SNPs (Supplementary Tables S5, S6). The PPI network showed

significantly more interactions than expected (p = 1.00E-16)

(Figure 3). In relation to the functional enrichment of this

protein set, “regulation of transcription” and “gene

expression” were the GO terms showing the most significant

enrichment p-values (p = 3.94E-61 and p = 2.60E-45,

respectively). Interestingly, other significantly enriched

biological pathways included “reproductive process” (GO:

FIGURE 2
Enrichment in functional annotations of the human genome for TEX15-rs1362912 and its proxies. Functional prediction scores, according to
different algorithms, are marked in pink (CADD), violet (Funseq2), and yellow (RegulomeDB); blue-coloured cells represent overlap with functional
annotations in testis based on the ENCODE and Roadmap Epigenomics projects; variants located within transcription factor binding sites (TFBS)
related to spermatogenesis (based on either position weight matrix data or Chip-seq experiments) are shown in green; and variants in CpG sites
are highlighted in orange. Colour intensity is correlated with the probability or relevance (dark colours indicate higher probability). Bp, base pairs;
GRCh38, Genome Reference Consortium Human Build 38; DHS, DNase I hypersensitive site.
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0022414; p = 2.98E-07), “developmental process involved in

reproduction” (GO:0003006; p = 1.31E-07), “reproductive

structure development” (GO:0048608; p = 3.51E-07),

“urogenital system development” (GO:0001655; p = 2.8E-04),

“formation of primary germ layer” (GO:0001704; p = 1.70E-03),

and “pituitary gland development” (GO:0021983; p = 4.26E-02)

(Figure 3; Supplementary Table S7). Furthermore, “male

infertility” (WP4673; p = 9.00E-03) and “ovarian infertility”

(WP34; p = 4.48E-06) were also highlighted amongst the

enriched pathways (Figure 3; Supplementary Table S8).

Discussion

Understanding the genetic basis of SPGF is a necessary step

to improve the clinical management and genetic counselling of

FIGURE 3
Protein-protein interaction network of the 122 transcription factors with predicted binding sites overlapping with TEX15-rs1362912 and its
proxies based on ChIP-seq experiments or protein weight matrix data. Blue lines indicate that the interaction is established from curated databases;
pink lines indicate experimentally determined connections; green lines link neighbour genes; black lines represent co-expression; and grey lines
correspond to proteins with homology. Bubble colour meaning: light blue, formation of primary germ layer; orange, developmental process
involved in reproduction; yellow, reproductive process; pink, reproductive structure development; dark green, pituitary gland development; light
green, urogenital system development; purple, ovarian infertility and red, male infertility.
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infertile patients (Fainberg and Kashanian, 2019; Sharma et al.,

2021). In the present study, we conducted a comprehensive

evaluation of the possible involvement of TEX15 genetic

variation in the predisposition to SPGF, using a large

European cohort that ensured a high statistical power.

Our results clearly suggest that TEX15-rs1362912, or any of

its tagged SNPs, is directly involved in the pathological

mechanisms underlying mild forms of SPGF, i.e., SO, with

little or no contribution to extreme patterns, such as NOA.

Taking into account the high relevance of TEX15 in the

reproductive function and the insight provided by

previously published genetic studies on this gene (Aston

et al., 2010; Plaseski et al., 2012; Ruan et al., 2012; Okutman

et al., 2015; Zhang et al., 2015; Colombo et al., 2017; Wang

et al., 2018; Araujo et al., 2020; Cannarella et al., 2021;

Ghadirkhomi et al., 2022), we hypothesise that NOA could

be mostly influenced by high-penetrance damaging mutations

in this locus rather than by common SNPs, which would be

responsible for increasing SO predisposition instead.

Consistent with this idea, only 27 SO-associated point

mutations are currently annotated in both the “Male

Infertility Genomic Consortium (IMIGC) database” and the

“Infertility Disease Database (IDDB)”, whereas NOA has

138 entries, amongst which TEX15 is included (Houston

et al., 2021; Wu et al., 2021). Moreover, a higher proportion

of NOA cases present Mendelian causes of their infertility

when compared to SO (e.g., AZF microdeletions and

chromosomal abnormalities are three times more prevalent

in NOA than in SO) (Krausz and Riera-Escamilla, 2018).

Although our data are consistent with this hypothesis, the

causality of the TEX15 common variation in SO predisposition

remains controversial. Previous genetic association reports in this

locus have not been fully replicated likely due to differences in the

genetic architecture of the different study groups or, more

probably, to type I or II errors caused by the limitations in

the statistical power of the studied cohorts to detect low or

modest effects. In this regard, the TEX15 SNP rs323346 was not

associated with SO neither in our study nor in an independent

population of European ancestry previously assessed by Aston

et al. (2010). Inconsistent results were obtained in two additional

studies performed in Chinese, as Ruan et al. (2012) described a

genetic association between this SNP and SO that was not

replicated by Zhang et al. (2015) in the same ethnicity.

Moreover, there are striking differences between the reported

rs323346*C allele frequencies for the human populations

included in the 1KGPh3 project (e.g., EUR = 0.17; EAS =

0.11; SAS = 0.33; AFR = 0.80, Supplementary Figure S2)

(Auton et al., 2015), which might indicate population-specific

causal variants within this region (Aston et al., 2010; Ruan et al.,

2012; Ghadirkhomi et al., 2022). Therefore, subsequent studies in

independent study cohorts should be performed to clarify further

the possible existence of different SO functionally relevant SNPs

in this gene.

Remarkably, animal models clearly support the role of the

TEX15 locus in SO development (Yang et al., 2008; Schopp et al.,

2020; Yang et al., 2020). In fact, TEX15-defficient murine models

show reproductive system abnormalities, including male

infertility, altered spermatogenesis, arrest of male meiosis,

decreased male germ cell number, DSB repair anomalies, and

reduced testis weight (Yang et al., 2008; Carvalho-Silva et al.,

2019). This gene is mostly expressed in spermatogonia and

spermatocytes, in which it has a relevant regulatory role in

the control of gene expression by interacting with a vast

number of transcription factors related to the reproductive

function, as reported in the Open Targets Platform (Carvalho-

Silva et al., 2019).

According to the results of our in silico functional analyses,

amongst the linked polymorphisms of the tagger rs1362912, the

non-coding TEX15 variant rs4733201 may be responsible for an

important contribution to the final phenotype. This SNP showed

strong evidence of functionality, including high scoring by

different functional impact prediction methods as well as an

overlap with testis-specific active chromatin epigenetic marks.

Interestingly, the sequence surrounding this SNP corresponds to

a TFBS for different key transcription factors related with

spermatogenesis, including EGR1 (Tourtellotte et al., 2000;

Man et al., 2014), CTCF (Hernandez-Hernandez et al., 2016;

Rivero-Hinojosa et al., 2021), SMC3 (Eijpe et al., 2000; James

et al., 2002), YY1 (Wu et al., 2009; Kim et al., 2016), CCNT2

(Teng et al., 2011), E2F6 (Pohlers et al., 2005; Dahlet et al., 2021),

and MAX (Maeda et al., 2013), and it is annotated to be

transcriptionally active in the testis (Davis et al., 2018).

Moreover, this SNP was predicted to modify the activity of

E2F1, which has been associated with human SPGF (Jorgez

et al., 2015; Rocca et al., 2019).

Similarly, the results of the biological pathway enrichment

analysis of the transcription factors with TFBSs influenced by the

analysed variants also support their involvement in SPGF, as

some of the enriched pathways included “reproductive process”,

“pituitary gland development”, “ovarian infertility”, and “male

infertility”. To our knowledge, there are no reported studies in

which the possible effects of TEX15 on female infertility were

evaluated (Yang et al., 2008; Bellil et al., 2021). However, TEX15

is expressed in the female reproductive tract (Supplementary

Figure S1), “ovarian infertility” was amongst the most enriched

pathways, and there is evidence of the implications in female

fertility of some of the transcription factors with binding sites in

the genomic positions of some of the SNPs considered in our

functional analysis. Specifically, VDR is associated with female

infertility (Djurovic et al., 2020), whereas CEBPB has been

described as relevant factor for female reproduction for its

role in ovarian follicle development (Fan et al., 2009), together

with SMAD3 (Tomic et al., 2004; Li et al., 2008) and ESR2

(Khristi et al., 2018; Chakravarthi et al., 2020). Such is consistent

with the assumption that the effect of the common variation in

the genome on pathological conditions is not limited to altering
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the expression or function of a single gene or protein, but rather

to unbalance complex molecular networks (Cui et al., 2015).

Regarding the possible limitations of this work, it is

important note that our exclusion criteria based on genetic

abnormalities considered only karyotype alterations and Y

chromosome microdeletions. Although both type of

alterations account for the majority of known genetic causes

of SPGF (Cioppi et al., 2021), screening of high-penetrance point

mutations in reported SPGF genes was not performed. As a

consequence, some cases of our study cohort could harbour

single-gene mutations that may explain their infertility. However,

considering the low frequency of the reported monogenic

mutations in SPGF (Cioppi et al., 2021), this limitation is not

expected to have a relevant impact in the allele frequencies of our

study cohort. The possible statistical noise added by such cases

would likely cause a subtle increase in the probability of obtaining

type II errors (false negative results), but it would hardly affect

the consistency of the observed associations.

Overall, the insight gained in this study supports the notion

of idiopathic SPGF as a complex trait, where common genetic

variation has a determinant role in disease susceptibility and

development. In the case of TEX15, it is likely that the selective

pressures have prevented the dissemination of high-penetrance

deleterious variants leading to NOA in the human populations,

considering the crucial role that this gene has in the reproductive

success of an individual (Yang et al., 2008; Chen et al., 2016).

Under this assumption, it is reasonable to assume that the

common TEX15 polymorphisms affecting male infertility were

associated with less extreme manifestations of SPGF, such as SO.
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