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Simple Summary: The rise of Big Data, the widespread use of Machine Learning, and the cheapening
of omics techniques have allowed for the creation of more sophisticated and accurate models in
biomedical research. This article presents the state-of-the-art predictive models of cancer prognosis
that use multimodal data, considering clinical, molecular (omics and non-omics), and image data.
The subject of study, the data modalities used, the data processing and modelling methods applied,
the validation strategies involved, the integration strategies encompassed, and the evolution of
prognostic predictive models are discussed. Finally, we discuss challenges and opportunities in this
field of cancer research, with great potential impact on the clinical management of patients and, by
extension, on the implementation of personalised and precision medicine.

Abstract: Cancer is one of the most detrimental diseases globally. Accordingly, the prognosis
prediction of cancer patients has become a field of interest. In this review, we have gathered 43 state-
of-the-art scientific papers published in the last 6 years that built cancer prognosis predictive models
using multimodal data. We have defined the multimodality of data as four main types: clinical,
anatomopathological, molecular, and medical imaging; and we have expanded on the information
that each modality provides. The 43 studies were divided into three categories based on the modelling
approach taken, and their characteristics were further discussed together with current issues and
future trends. Research in this area has evolved from survival analysis through statistical modelling
using mainly clinical and anatomopathological data to the prediction of cancer prognosis through a
multi-faceted data-driven approach by the integration of complex, multimodal, and high-dimensional
data containing multi-omics and medical imaging information and by applying Machine Learning
and, more recently, Deep Learning techniques. This review concludes that cancer prognosis predictive
multimodal models are capable of better stratifying patients, which can improve clinical management
and contribute to the implementation of personalised medicine as well as provide new and valuable
knowledge on cancer biology and its progression.

Keywords: cancer; survival analysis; prognosis prediction; patient risk stratification; multimodal
data; data integration; Artificial Intelligence; machine learning

1. Introduction

Currently, cancer is one of the biggest public health problems and has a great economic
impact on every health system around the world because of its high incidence, prevalence,
and mortality. According to a recent review of epidemiological data on cancer, the global
cancer burden increased to 19.3 million new cases and 10 million deaths in 2020 [1]. It is
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estimated that 1 in 5 men and women worldwide will be diagnosed with cancer in their
lifetime, and 1 in 8 men and 1 in 11 women will die from this disease.

The GLOBOCAN 2020 database [1], provided by the International Agency for Research
on Cancer (IARC), has reported that female breast, lung, and colorectal cancers are the three
types of cancer with the highest incidence, whereas the highest mortality rate is attributed
to lung, colorectal, liver, stomach, and female breast cancer. The disease is among the top
two causes of death before age 70 in almost two-thirds of all countries and its prevalence
increases steadily. The estimate is that by 2040 the number of cancer cases will be 28 million
and that 16 million people will die from the disease [2].

Due to the high rates of mortality and morbidity, cancer is placing a growing demand
on healthcare systems and leading to significant detrimental economic effects. There is
evidence that links higher cancer morbidity and mortality with a lower gross domestic
product [3]. This challenging context, defined by social, health, and economic factors,
requires a holistic approach that integrates prevention, early diagnosis, and adequate
medical care to tackle this problem.

Regarding cancer prevention, main prevention and early detection multi-level strate-
gies have aided in reducing cancer incidence [4]. It is estimated that 40% of cancers in
Europe could be prevented by educating the population in reducing the exposition to
common risk factors as well as by carrying out tests for early detection of premalignancy in
high-risk individuals and doing a better follow-up of cancer survivors to prevent cancer
recurrence [5].

The cornerstone of cancer diagnosis is the histomorphological study of the tumour
performed by pathologists, in which the cancer type and subtype are defined. In the past
few decades, a series of molecular techniques such as immunohistochemistry (IHC) and
the polymerase chain reaction (PCR) as well as genetic profiling methods such as multiplex
real-time PCR and Next Generation Sequencing (NGS) have been developed and optimised
to identify genetic aberrations and other relevant molecular biomarkers. The combined use
of the conventional histomorphological study and the ancillary tests mentioned above have
enabled the pathologists not only to diagnose with greater finesse but also to predict a more
accurate clinical outcome through the detection of biomarkers with prognostic value [6].

At the beginning of the 20th century, the therapeutic approach in Medical Oncology
was shifted due to the discovery of chemotherapy and its application in the treatment of
various tumours. Much more recently, the new paradigm of targeted therapy has prompted
the research and development of drugs for specific molecular targets, with the consequent
increase in survival and improvement of the quality of life of cancer patients, even leading
to complete remission in some cases [7]. In the last few years, the breakthrough caused by
omics research has brought new therapeutic approaches for cancer treatment including the
identification and validation of genetic alterations with therapeutic value and the design
of therapies for advanced tumours. This progress is leading to the implementation of
precision medicine [8].

At present, research efforts are focused on the use of multi-omics data to achieve a
better understanding of cancer progression and anti-cancer drug sensitivity. Translating
genomics and other omics data into clinically effective targeted therapies requires an inte-
grated and multidisciplinary approach that allows for the identification of novel predictive
factors or even molecular profiles that reflect cancer resistance as well as its vulnerabilities.
Right along this path, new Artificial Intelligence (AI) techniques can contribute to address-
ing the core issues of this formidable task, including the processing of massive multi-omics
data sets and their integration with other types of data, such as clinical or imaging data [9].

Cancer prognosis is the prediction of the evolution of the disease. Knowing the prog-
nosis is key to estimating the probability of cancer progression and life expectancy, which
subsequently impacts the clinical management of the patient [10]. Usually, the prognosis
is assessed from clinical variables, as happens with the Tumour-Node-Metastasis (TNM)
staging system [11], the Nottingham Prognostic Index (NPI) for breast cancer, and the
Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stage for gynaecological
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tumours. However, there is an increasing trend toward using molecular testing to this
end—for example, the Prediction Analysis of Microarray 50 (PAM50) and the Oncotype
DX tests provide the risk of recurrence for breast cancer. This additional information has
become essential to clinicians when defining a therapeutic strategy and monitoring the
evolution of a patient’s condition.

Meanwhile, survival analysis is a hotspot in clinical research. Survival analysis is a
subfield of statistics that aims at estimating the time until the occurrence of an event of
interest providing the probability of the event occurrence at each time point [12]. In Oncol-
ogy, this event may be, namely, local recurrence, distant metastasis, or death. Therefore,
several concepts related to the survival likelihood of an oncologic patient are commonly
used when a prognosis is given. Some of them are: (a) the risk of recurrence (e.g., local
recurrence or distant metastasis), which is the likelihood that a treated cancer will reappear;
(b) cancer-specific survival (CSS), defined as the period from the diagnosis until death due
to a specific type of cancer; (c) progression-free survival (PFS), defined as the period after
treatment when the disease, which could not be eliminated, does not progress; (d) disease-
free survival (DFS), which is the period after the disease is eliminated when no disease can
be detected; and (e) overall survival (OS), defined as the period from diagnosis to death or
last follow-up, with no restriction on the cause of death.

Recent studies are focusing on providing better survival estimation based on multi-
modal data such as clinical, molecular, and image data. The combination of multimodal
data may offer a more in-depth description of the underlying characteristics affecting the
survival and their interrelationships in contrast to the individual modalities [13]. Two
main strategies are being used for such purposes. The first approach is based on the most
commonly used traditional techniques for survival analysis, which include the Kaplan–
Meier estimator [14], the log-rank tests [15,16], and the Cox Proportional Hazard (CPH)
regression [17]. The Kaplan–Meier estimator produces survival curves, the log-rank test is
a non-parametric statistical comparison between two groups, whereas the CPH model also
estimates survival but it allows other explanatory variables to be considered [18]. A second
strategy is an AI-based approach that uses algorithms to build predictive models from
prognostic features. Whereas conventional statistical methods are simpler to implement
and understand and require little computational power, they fail when it comes to the
processing and integration of massive, high-dimensional data. Predictive models created
with traditional methods have been proven to perform well with low-dimensional data
sets containing clinical (e.g., age, gender, histological grade, stage, etc.) and molecular data
(e.g., mutation status of relevant genes, expression of proteins determined by IHC, etc.),
but this is not the case when learning from omics data (e.g., genomics, epigenomics, tran-
scriptomics, proteomics, etc.) or image data (e.g., histological images, magnetic resonance
images, computed tomography scans). Fortunately, the newest AI techniques can deal
with the challenges that this complex and high-dimensional data poses. A wide variety
of Machine Learning (ML), especially Deep Learning (DL) algorithms, have been used for
this purpose with overall success [10,19–23]. Indeed, in recent years the application of ML
techniques to personalised medicine in order to enhance the accuracy of cancer progression
and survival prediction has led to an improvement of 20–25% in the prediction of cancer
prognosis [24].

Nevertheless, not even ML techniques can overcome many of the biggest limitations of
the abovementioned goal; namely, the lack of data to build models as well as independent
data sets to externally validate them; the curse of dimensionality; the complex task of inte-
grating massive, multimodal and, many times, sparse data [25], sometimes being necessary
a priori or specialist knowledge, or the application of feature engineering techniques to
eliminate redundancy within the data set whilst keeping the most informative features;
the imbalance in data types, which, if not corrected, will likely result in a biased model;
the need of great computational capacity; and the ever-growing importance of building
models that are understandable for non-expert audiences [26].
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This review aims to present the state-of-the-art on multimodal data integration tech-
niques to improve cancer prognosis. It is intended to give a clear view of the state of
the art, targeting both a medical and an IT audience given the multidisciplinary nature
of the subject. This paper details the data modalities used; the models and processing
methods and the types of integration strategies adopted, culminating with a discussion
of how predictive prognostic models have evolved; their current limitations; glimpsing
future trends; and outlining the great potential impact of this line of research applied to
personalised and precision medicine.

The most recent and relevant scientific publications are presented and analysed,
providing the reader with a comprehensive view of the topic. The structure of the present
work is as follows. Section 2 explains the implemented methodology for the collection
of the selected studies. Section 3 provides some background by describing the data used
for training models of cancer prognosis prediction, as well as some highlights of Machine
Learning and a brief description of methods for integration of multimodal data. Section 4
presents the results of this review in-depth, pointing out the most common types of data
used in the reviewed articles, as well as the approaches for data integration. In addition, the
predictive models’ features are described, and the most common techniques for building
and validating these models are outlined. Lastly, information on common data sources
from which multimodal data sets are obtained is summarised. Section 5 synthesizes the
findings of the review and the issues and challenges as well as future expectations in the
domain. Finally, Section 6 depicts the conclusions drawn from this state-of-the-art review.

2. Methods

A narrative non-systematic review of the literature was carried out to summarise,
through an analysis of the temporal progress, the main techniques for predictive modelling
applied to cancer prognosis. A search of related scientific literature published in the last
6 years was performed in February 2021 using the Web of Science Core Collection (WoS)
and in MEDLINE search engines. Search terms included ‘cancer’; ‘predict’; ‘prognosis’;
‘survival’; ‘machine learning; ‘deep learning’; ‘multi*’ and ‘integrati*’. Studies were first
screened by title and abstract, and the full text of those studies that applied molecular,
imaging, and clinical data analysis for predicting cancer prognosis were reviewed. Only
articles that provided all the information needed to discuss and compare results were
retained. Further, a manual review of the references list for the selected articles was
conducted to screen for supplementary works of interest.

The inclusion criteria were as follows: (1) articles that integrated multimodal infor-
mation of at least two of the following types: clinical, anatomopathological, genomics,
epigenomics, transcriptomics, proteomics, non-omics molecular, or imaging (histologi-
cal/radiological) information; aimed to build predictive models of cancer prognosis; (2) the
study presented information on the algorithms used or frameworks developed for cancer
prognosis; and (3) the article was written in English and published from 2016 to 2021.
Abstracts, posters, and reviews were not considered.

Every author of this manuscript independently reviewed all articles, and a consensus
on all included studies was reached. For each article, data were extracted regarding
(1) authors; (2) year and country of the author group; (3) study design and aims; (4) data
source; (5) sample size; (6) input data type and methods used to gather data; (7) use
of feature engineering before or during the training of the model; (8) ML algorithms
or statistical models used; (9) type of multimodal data integration adopted; (10) internal
validation techniques and performance metrics; (11) external validation; (12) dimensionality
reduction techniques applied; (13) output variables; and (14) model comparison.
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3. Background
3.1. Multimodal Data
3.1.1. Overview of Multimodal Data

One of the greatest current challenges in biomedical research is to deal with the features
derived from large data sets that integrate clinical records, imaging, and high-throughput
omics data. In this article, we use the term ‘multimodal data’ or ‘multi-view data’ to
refer to a set of data of different features and sample sets, generated from heterogeneous
sources that can provide complementary information to support the characterization of a
biological sample, an event, or a system, with special application to cancer prognosis. More
specifically, a study was considered to involve multimodal data processing if data from at
least two of the following categories were used: clinical, anatomopathological, genomics,
epigenomics, transcriptomics, proteomics, non-omics molecular, and medical imaging data.

Multimodal data are integrated and used to perform data-driven analyses aimed at
facing problems such as feature selection, classification, regression, unsupervised learning,
inter-view interactions, and association studies [27]. Through the many articles of this
review, multimodal data has been fed to algorithms able to accept different data types
to build predictive models on cancer prognosis, addressing mostly binary classification
problems. In the following subsections, these types of data are presented.

3.1.2. Clinical Data

This type of data comprises mostly demographic data, general measures of health sta-
tus, laboratory test results, surgery-related data, pathological data, and therapy-related data.

3.1.3. Molecular Data

In this work, we make a distinction between omics data, understood as massive data
obtained with high-throughput techniques, and non-omics molecular data, obtained with
traditional techniques that rather focus on a small number of targets. Concerning Omics,
we focus on genomics, epigenomics, transcriptomics, and proteomics [28–34], given that
these are the types of omics data used in the reviewed papers. Some types of molecular data
found in the reviewed articles do not fit the description of omics data. These non-omics
data are mainly: (a) data derived from IHC techniques [35]; and (b) genetic data obtained
with PCR techniques [36].

3.1.4. Image Data

A variety of biomedical imaging techniques are used routinely in the management
of cancer patients: imaging is an important part of cancer clinical programs since it can
provide structural, morphological, metabolic, and functional information [37].

In cancer, clinical images usually include histologic images, in the form of whole slide
images (WSIs) of histological samples, as well as radiological images, including magnetic
resonance images (MRI), computed tomography (CT) scans, positron emission tomography
(PET), and mammographic images.

In this regard, the term ‘radiomics’ is used to refer to the extraction and analysis of
high-dimensional quantitative imaging features from medical images obtained with CT,
PET, or MRI [38].

3.2. Machine Learning

Machine Learning, in its branches of shallow Learning (SL) and Deep Learning
(DL) [39], has proven to be a promising area in biomedical research, where it has been
applied to a plethora of domains through different techniques and algorithms [40].

DL has attracted much attention for its potential value in different types of real-world
applications including key areas of medicine such as medical imaging and genomics [41].
While the design of an SL system requires domain expertise and human engineering to
develop feature extractors that extract features from the data to allow learning algorithms
to detect patterns, this is not the case for DL methods, whose algorithms contain multiple
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levels of representation and multiple layers of non-linear processing units, directly taking
raw data and building the internal representations needed for recognition.

3.2.1. Model Evaluation and Performance Metrics

Once an SL or DL model is obtained, it is paramount to estimate its performance. The
performance analysis of any ML model is usually quantified in terms of standard metrics
such as sensitivity (Sn), specificity (Sp), accuracy (Acc), area under the curve (AUC), and
mean absolute error (MAE), among others [42].

Internal evaluation processes involve splitting the initially labelled data set into sub-
sets using different approaches such as hold-out, random sampling, cross-validation, or
bootstrap [43].

3.2.2. Dimensionality Reduction

It is well known that SL algorithms perform better when the number of variables in
a data set is lower than the number of observations [42]. The opposite situation results
in the ‘curse of dimensionality’. To overcome this issue and eliminate redundancy, di-
mensionality reduction techniques are often applied [44]. Dimensionality reduction can
be achieved through two different feature engineering techniques: feature selection and
feature extraction.

Feature selection approaches are used to find a subset of features that efficiently
represents the data by selecting only the relevant and removing the redundant ones.
Methods for feature selection can be classified into three main categories: filter, wrapper,
and embedded methods [45]. While filter-based methods are independent of the ML model,
wrapper approaches are linked to the predictive ML model given that it selects a set of
features that improve the model performance. Nevertheless, wrapper methods are often
limited in the omics field given the low computing efficiency in those large data sets.
Embedded methods also rely on ML models but are less computationally expensive.

On the other hand, feature extraction aims at reducing the number of features by
transforming the original high-dimensional data set into a new low-dimensional data set
with minimum information loss and a higher discriminating power. Among the most
common multi-domain methods used for feature extraction are the Principal Component
Analysis (PCA), Kernel PCA, Bayesian PCA, Principal Coordinates Analysis (PCoA), Cor-
respondence Analysis (CA), Independent Component Analysis (ICA), sparse methods,
autoencoders, Multidimensional Scaling (MDS), Locally Linear Embedding (LLE), Linear
Discriminant Analysis (LDA), and clustering methods [46,47].

Multi-Omics Pre-Processing and Dimensionality Reduction

In general, it is accepted that high-dimensional multi-omics data analysis can pro-
vide more complete biological information than single-omics data [48]. Nevertheless,
multi-omics data analysis poses specific computational challenges such as the curse of
dimensionality, data heterogeneity, the existence of missing data, and scalability issues,
among others [49]. First, multi-omics data from high-throughput sources are generally
heterogeneous and require pre-processing [50]. Among the most common pre-processing
steps are normalization, scaling, imputation [51], and outlier detection techniques [52].
Imputation and outlier detection techniques need to be applied to each omics indepen-
dently before proceeding to data analysis and integration [53]. In addition, the number
of multi-omics features is generally greater than the number of biological samples, which
leads to the curse of dimensionality and affects the algorithm performance. Dimensional-
ity reduction (DR) techniques such as the abovementioned feature selection and feature
extraction methods are broadly used to reduce the dimensional data space.

In particular, the application of DR for effective multi-omics data integration is a field
of great interest, and specific approaches are being proposed. In this regard, clustering
techniques are broadly extended for their potential to unveil systemic information albeit at
the expense of a large computational burden. A recent review of state-of-the-art algorithms
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for multi-omics clustering applied to cancer research, including similarity-based methods,
general dimension reduction, statistical methods, and DL approaches, has highlighted
the key aspects that need to be considered in relation to the choice of the clustering
approach [54]. Very recently, joint dimensionality reduction (jDR) methods have been
presented as an efficient approach for the study of cancer omics, assessing their strengths
in predicting survival and extracting new knowledge from biological processes. Due to the
vast extent of existing DR methods, we invite the reader to consult the works of [22,55,56]
and [54] for more information.

In any case, it is important to emphasize that the chosen DR technique must be
consistent with the multimodal data integration technique selected to tackle the problem.
Integration techniques will be discussed in the next section.

3.3. Data Integration

In recent years, new methods have been introduced to integrate and analyse mul-
timodal data producing new diagnostic and classification biomarkers and enabling the
improvement of clinical outcome prediction [22,57].

Today, a myriad of data integration methods is available including supervised and
unsupervised learning algorithms. There is no rule of thumb for the pre-hoc selection of a
given strategy. The most efficient approach requires empirically testing multiple methods
on the available data set [53].

The major challenge lies in the integration of multi-omics information, by nature of
very high dimensionality and complexity. Therefore, the following subsection addresses
the methodologies applied in multi-omics state-of-the-art studies. These strategies are
currently generalised for the integration of medical imaging, clinical, and non-omics data.

Multi-Omics Integration

In the last few years, specific approaches for the data integration of different high-
dimensional multi-omics data sets have been developed. These strategies can be broadly
divided into three categories, depending on the stage at which the integration becomes
effective. While the terminology used varies, the two most frequent groupings are those
that establish ‘early’, ‘intermediate’, and ‘late’ integration methodologies [56,58,59]; and
those that designate them as ‘concatenation-based’, ‘transformation-based’, and ‘model-
based’ [53,60]. Although the nomenclature differs, the underlying concepts are similar. In
this review, we will describe the approaches according to the first grouping option.

Early integration is based on the concatenation of multi-omics data into a single data
set. Once this joint matrix is created, the conventional analysis techniques in the field of
single omics can be applied (e.g., clustering) [59]. Commonly, this matrix is used as input
to ML-based models—including both SL and DL approaches—capable of finding hidden
patterns among variables.

The concatenation of different omics increases the size of the data space at the expense
of increasing the number of variables, exacerbating the ‘curse of dimensionality’. Conse-
quently, in most cases where early integration is applied, DR needs to be carried out in
order to reduce the number of variables by either applying it to the separate single-omics
data sets prior to concatenation or directly onto the concatenated joint matrix. In this
latter case, it is ensured that all omics are addressed during the process and potential
interactions between omics are considered. Some studies that apply an early integration
strategy use autoencoders [61], artificial neural networks (ANN) [62], Mixed Graphical
Models (MGM) [63], and Graphical Random Forest [64] to combine the different omics
layers in a compressed joint matrix with reduced dimensionality.

Although early integration is easy to implement, it cannot correct imbalance within
multi-omics data sets due to heterogeneous sizes in single-omics data sets, which could
have a detrimental effect on the predictive models. In addition, there is a potential informa-
tion loss because early integration does not consider the individual contribution of each
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individual omics. Despite these potential disadvantages, the use of early integration can
provide excellent results in some scenarios.

In intermediate integration, the multiple omics layers are jointly analysed without sim-
ple concatenation. In general, intermediate integration often requires prior DR to be more
effective. Similarity-based integration (e.g., kernel learning, spectral clustering approaches,
graph fusion algorithms), jDR, Non-negative Matrix Factorization (NMF), manifold align-
ment, autoencoders, and statistical modelling approaches (e.g., Bayesian approaches) are
commonly used in intermediate integration schemes [48]. Intermediate integration per-
forms well to unveil underlying biological mechanisms given the complementarity of the
information encapsulated in each individual omics.

In late integration, a separate analysis of each omics is performed, and subsequently,
the results are integrated to obtain a consensual result or output. This involves the creation
of intermediate models for each different omics, and the development of a final joint
model that takes as input the output of each of those intermediate models. Mixture model
ensemble clustering [65], cluster-of-clusters analysis (CoCA) [66], and Kernel Learning
Integrative Clustering (KLIC) [67] are novel techniques used in late integration. Late
integration benefits from the possibility of using omics-specific techniques without the
challenge of merging heterogeneous data, but at the cost of loss of complementary inter-
omics information.

4. Results

This paper is the result of a qualitative research study of 43 recent articles related to
the prediction of cancer prognosis using multimodal data. Table 1 presents the studies’
characteristics including the reference with the year of publication, the country where the
study was conducted, as well as the study design, sample size, cancer type, and the data
type used in the multimodal approach. Data types are broadly categorised into clinical,
molecular, and image data. Finally, the analytical approach used to develop the predictive
model is also shown in the table. We have classified the studies into those applying
conventional statistics (n = 6), those based on ML techniques (n = 25), and those that utilise
a combination of both (n = 14). Two of the works envisaged two different approaches and
therefore are mentioned in two categories.

4.1. Sample Size and Cancer Type

The sample size of the reviewed papers ranges from 111 to 11,160 observations, but
this does not seem to correlate with the type of cancer, type of study, year when the study
was conducted or taken approach, as seen in Table 1. On the other hand, the types of cancer
for which predictive models were built are diverse. Breast cancer is the most recurrent one,
but the reasons for this are unclear. Several lung carcinoma subtypes appear occasionally,
as well as brain tumours such as gliomas and neuroblastoma. Other cancer types studied
are cervical cancer, liver carcinoma, and renal carcinoma. Interestingly, seven studies
conducted a pan-cancer analysis [76,80,95,97,106,107,109].

4.2. Multimodal Data
4.2.1. Clinical Data

In the articles gathered for this review, clinical data is the second most used type of
data for building predictive models. Table 2 comprises the subtypes of clinical data, the
associated variables, and the reference to the article where they have been used.

Clinical data were used in 28 out of the 43 reviewed articles. Demographic data were
used in 23 studies, with age being more used than gender or ethnicity. General measures of
health status were considered in 11 studies, with the presence or absence of comorbidities
and the body mass index (BMI) being present in 7 and 5 studies, respectively. Laboratory
test results data were used in four studies. In all of them, serum metabolite/enzyme levels
were used as input to the model. Surgery-related data were used only in one study, and
pathological data were considered for 23 predictive models.
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Table 1. Description of the characteristics of the selected studies.

First Author &
Reference Year Country Study Design 1 Sample Size 2 Cancer Type

Clinical Data Molecular Data
Image
Data

Predictive
AnalyticsAP Other

Omics
Non-Omics

G E T P

Zhu [68] 2016 USA RCS 111 patients LUAD 4 4

Conventional
Statistics

Cheng [69] 2017 USA, China RCS 410 patients ccRCC 4 4
Dos Reis [70] 2017 UK MC RCS 5738 patients Breast cancer 4 4
Sperduto [71] 2017 USA MC RCS 2186 patients NSCLC 4 4 4
Elwood [72] 2018 New Zealand MC PCS 9182 patients Breast cancer 4 4 4
Matsuo [73] 2019 USA RCS 768 patients Cervical cancer 4 4

Mohebian [74] 2017 Iran, Spain SI RCS 579 patients Breast cancer 4 4 4

Machine
Learning

Obrzut [75] 2017 Poland SI RCS 102 patients Cervical cancer 4 4 4
Zhu [76] 2017 USA RCS 3382 samples 14 types of cancer 4 4 4 4 4

Chaudhary [61] 2018 USA RCS 360 patients Hepatocellular
carcinoma 4 4

Sun [77] 2018 China RCS 578 patients Breast cancer 4 4 4 4 4 4
Zhang [78] 2018 USA, China RCS 380 samples Neuroblastoma 4 4
Zhao [79] 2018 USA MC PCS 1874 patients Breast cancer 4 4 4 4 4
Cheerla [80] 2019 USA MC RCS 11,160 patients 20 types of cancer 4 4 4 4
Ferroni [81] 2019 Italy SI PCS 454 patients Breast cancer 4 4 4

Jing [82] 2019 China MC RCS 4630 patients Nasopharyngeal
carcinoma 4 4

Matsuo [73] 2019 USA RCS 768 patients Cervical cancer 4 4
Sun [83] 2019 China RCS 1980 patients Breast cancer 4 4 4 4
Tapak [84] 2019 Iran RCS 550 patients Breast cancer 4 4 4

Baek [85] 2020 South Korea RCS 177 patients Pancreatic
adenocarcinoma 4 4 4 4 4

Boeri [86] 2020 Italy RCS 610 patients Breast cancer 4 4 4

Machine
Learning

Choi [87] 2020 South Korea MC CS-RCS 205 patients Glioblastoma
multiforme 4 4 4 4

Zhang [88] 2020 China RCS 251 patients Glioblastoma
multiforme 4 4 4

Arya [89] 2020 India RCS 1980 patients Breast cancer 4 4 4 4 4
Tong [90] 2020 USA RCS ~1000 patients Breast cancer 4 4 4

Owens [91] 2021 UK RCS 352 patients Hepatocellular
carcinoma 4 4

Malik [92] 2021 India RCS 532 patients Breast cancer 4 4 4 4 4 4
Zhao [93] 2021 China RCS 474 patients Low-Grade Glioma 4 4 4
Hassanzadeh [94] 2021 USA RCS 836 patients 3 types of cancer 4 4
Zhang [95] 2021 UK RCS 131 patients 35 types of cancer 4 4
Chharia [96] 2021 India RCS 1980 patients Breast cancer 4 4 4
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Table 1. Cont.

First Author &
Reference Year Country Study Design 1 Sample Size 2 Cancer Type

Clinical Data Molecular Data
Image
Data

Predictive
AnalyticsAP Other

Omics
Non-Omics

G E T P

Yousefi [97] 2017 USA RCS 3323 patients 5 types of cancer 4 4 4 4 4

Mixed
Approach

Katzman [98] 2018 USA RCS 1980 patients Breast cancer 4 4 4
Mobadersany [99] 2018 USA RCS 769 patients Gliomas 4 4 4
Huang [100] 2019 USA, China RCS 583 patients Breast cancer 4 4 4 4
Wang [101] 2019 China MC RCS 245 patients HGSOC 4 4

Shao [102] 2020 China RCS 1324 patients LUSC, breast cancer,
LIHC 4 4

Chen [103] 2020 USA RCS 1186 patients Glioma and ccRCC 4 4 4

Hao [104] 2020 USA RCS 447 patients Glioblastoma
multiforme 4 4 4

Ning [105] 2020 Germany RCS 209 patients ccRCC 4 4 4
Zhang [95] 2021 China RCS 454 patients Bladder cancer 4 4 4
Chai [106] 2021 China RCS 5032 patients 15 types of cancer 4 4 4
Vale-Silva [107] 2021 Germany RCS 11,081 patients 33 types of cancer 4 4 4 4 4 4
Wang [108] 2021 China RCS Not specified 7 types of cancer 4 4 4
Poirion [109] 2021 USA RCS 10,000 samples 32 types of cancer 4 4

Abbreviations: AP, Anatomopathological; G, Genomics; E, Epigenomics; T, Transcriptomics; P, Proteomics; RCS, retrospective cohort study; MC, multi-centric; PCS, prospective cohort
study; SI, single-institution; CS, cross-sectional; LUAD, Lung Adenocarcinoma; ccRCC, Clear Cell Renal Cell Carcinoma; NSCLC, Non-Small-Cell Lung Cancer; HGSOC, High-grade
serous ovarian cancer; LUSC, Lung Squamous Cell Carcinoma; LIHC, Liver Hepatocellular Carcinoma. 1 MC and SI terms were assigned when available. 2 Number of patients used to
build, train, and internally validate the predictive model.
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Table 2. Clinical variables by subtypes and bibliographical reference to the article in which they
appear.

Subtype of Clinical Data Variables Used by

Demographic data
Age at diagnosis [70–77,79–85,87,89,92,97,98,100,104,107]

Gender [76,80,82,85,87,89,92,97,98,104,107]
Ethnicity [72,73,80,89,98,107]

General measures of
health status

BMI [73,75,81,82,98]
Temperature [98]

Respiration rate [98]
Systolic and diastolic blood pressure [73,98]

Heart rate [73,98]
Menopausal status [79,81,89,97]

Lifestyle (e.g., smoking habit) [85]
Prior malignancies [107]

Presence/absence of comorbidities (e.g.,
hypercholesterolemia, hypertension, diabetes mellitus,

synchronous malignancies, etc.)
[73,75,81,85,89,98,107]

Number of comorbidities [98]
Risk factors (e.g., high sensitivity to C reactive

protein, etc.) [76,82,98]

Laboratory test
results data

Blood cells count (e.g., leukocytes, platelets) [73,98]
Haemoglobin level [73,82]

Serum metabolites/enzymes level (e.g., sugar, urea,
creatinine, bicarbonate, albumin, lactate

dehydrogenase, etc.)
[73,81,82,98]

Surgery-related data

Surgery time [75]
Median blood lost [75]

Presence of intraoperative complications [75]
Type of complications [75]
Length of hospital stay [75]

Pathological data

Mode of detection (clinical or screening) [70]
Cancer type (primary site) [80,85,107]

Cellularity of tumour content [79]
Degree of abnormality of cancer cells [79]

Primary tumour laterality [79]
Primary tumour size [70,72,74,75,79,83,86,89]

Presence/absence of multifocal tumours [86]
Surgery status [73,79]

Type of surgery [74,84,89]
Resection extent [87]

Parametrial involvement (in cervical cancer) [75]
Skin or chest wall invasion (in breast cancer) [86]

Lymph node status [75]
Number of positive lymph nodes [70,72,83,86,89,92,97]
Lymph node involvement ratio [74,75]
Lymph-vascular space invasion [72,75]

Deep stromal invasion [75]
Histologic type and subtype [72,73,75,76,84,92,97]

Histological grade [70,75,76,80,81,83–87,89,92,99,105]
T Stage [82]
N Stage [82,92]
M Stage [86,92,105,107]

Stage (e.g., pTNM, NPI, FIGO staging system) [73,75,76,79,81,84,85,92,97,101,105,107]
Number of brain metastases [71]

Presence/absence of distant metastasis at diagnosis [72]
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Table 2. Cont.

Subtype of Clinical Data Variables Used by

Therapy-related data

Prior treatment [89,107]
Radiotherapy (yes/no) [73,75,85,89,97,98,107]

Chemotherapy (yes/no) [70,73,79,89,98,107]
Targeted therapy (yes/no) (e.g., hormonal therapy,

anti-HER2 therapy, etc.) [70,74,79,86,89,98,107]

Response to chemotherapy (complete/partial/none) [86]
Karnofsky Performance Status (KPS) [71]

Abbreviations: BMI, Body Mass Index; pTNM, pathological Tumour-Node-Metastasis staging system for cancers
of the American Joint Committee on Cancer (AJCC); NPI, Nottingham Prognostic Index; FIGO, Fédération
Internationale de Gynécologie et d’Obstétrique.

Along with demographic information, the pathologic data were the most frequently
used clinical data, especially the size of the primary tumour (n = 8), the histologic grade
(n = 14), and the stage (n = 12). Finally, therapy-related data were used in 12 studies, being
the use of targeted therapy and radiotherapy the most used variables in this category
(n = 7), followed by chemotherapy (n = 6).

4.2.2. Molecular Data

Molecular data were used in 39 out of the 43 selected studies, which makes this modality
the most used for training cancer prognosis predictive models within the corpus of reviewed
articles. Genomics data, including germinal variants, somatic point mutations (e.g., SNVs, indels),
mutational status of genes, CNAs, copy number burden (CNB), and tumour mutation burden
(TMB) were used as model inputs in 20 studies [76–79,83,85,88–90,92,93,96–98,100,103,106–108,110].
CNAs were the most used mutations (n = 17). All studies that considered genomics as input
data built predictive models based on ML or based on a mixed (conventional statistics and
ML) approach.

Epigenomics data, and more specifically DNA methylation data acquired by DNA methy-
lation arrays bisulphite sequencing, was used in 15 studies [61,76,77,85,90–95,106–110]. Again,
epigenomics data were used to train ML models as well as models that mixed ML and
conventional statistical methods.

Transcriptomics data obtained by RNA-Seq [111] or RNA microarrays [112] were con-
sidered in 30 studies [61,68,69,76–80,83,85,88–97,100,102–110], with mRNA levels, miRNA
levels, and gene expression profiles used as variables. Only two articles [68,69] from the
conventional statistics category used mRNA levels for developing predictive models.

Proteomics data were used only in four studies, where protein expression levels were
used as input models of ML or mixed models [77,91,92,97].

Table 3 summarises the type of omics data used as input in the selected studies, the
methods used to obtain this data, the variables containing the information, and the reference
to the papers that use these variables as input for training their models.

Table 4 details molecular data type, the technique used to gather the information in
several variables and studies that have compiled this information and used it to enrich
their models. IHC data were used for developing models in 10 studies, being the pres-
ence/absence of proteins in tumour tissue the most broadly considered (n = 8). Genetic data
obtained with PCR techniques were more rarely consumed (n = 4), but it was used to build
all three types of predictive models (statistical-based, ML-based, and mixed approaches).

4.2.3. Image Data

Image data (image segmentation and hand-crafted features) were used in 13 of the
reviewed articles (Table 5). Eleven studies used histological images and three studies used
CT or MRI as input information for machine learning or mixed models. Quantitative image
features (n = 6) or regions of interests from WSIs and CTs (n = 7) were used. Two out of the
thirteen studies used these data to build predictive models using conventional statistics,
four used them with ML techniques, and seven were used for creating mixed models.
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Table 3. Summary of types of omics data, methods used to obtain them according to the scientific
paper, and variables used to build predictive models along with the bibliographical reference.

Type of Omics Data Methods Variables Used by

Genomics

WGS
WES
Targeted sequencing
DNA microarrays

Germinal variants [76]
Somatic point mutations
(e.g., SNVs, indels) [76,85,89,90,92,93,96,103,106–108,110]

Mutational status of genes [79,90,98,103]
CNAs [76–79,83,88–90,92,93,96,97,103,106–108,110]
CNB [100]
TMB [100]

Epigenomics DNA methylation arrays
Bisulphite sequencing DNA methylation data [61,76,77,85,90–95,106–110]

Transcriptomics RNA-Seq
RNA microarrays

mRNA levels [61,68,69,76–80,85,88–
92,94,96,97,100,102,103,107–109]

miRNA levels [76,80,85,90–92,94,100,107–109]
Gene expression profiles [83,93,95,104–106,110]

Proteomics RPPA Protein expression levels [77,91,92,97]
Abbreviations: WGS, Whole Genome Sequencing; WES, Whole Exome Sequencing; RPPA, Reverse-Phase Protein
Arrays; CNAs, Copy Number Aberrations; SNVs, Single-Nucleotide Variants; CNB, Copy Number Burden; TMB,
Tumour Mutation Burden. The Copy Number Burden is a measure of the copy number alteration level within
a genome in proportion to the genome length. The Tumour Mutation Burden (TMB) represents the number of
somatic mutations per megabase of interrogated genomic sequence. Both are used as predictive biomarkers
in cancer.

Table 4. Summary of non-omics data that appear in the reviewed papers. Methods used to obtain
them and the variables containing the pertinent information to build the models are listed along with
the bibliographical reference.

Type of Molecular Data Methods Variables Used by

IHC data
Immuno-
histochemical staining

Presence/absence of proteins in tumour
tissue (e.g., ER, PR, Ki-67) [72,74,75,81,84,89,98,100]

Percentage of protein expression in tumour
tissue (e.g., ER, Ki-67, etc.) [86]

Over-expression of proteins in tumour tissue
(e.g., HER-2) [79]

Genetic data PCR-based
methods

The molecular subtype of cancer (luminal A,
luminal B, HER-2 positive luminal B,
non-luminal HER-2 positive, triple-negative)

[74]

Somatic point mutations
(e.g., IDH R132H mutation) [87]

Mutational status of genes [71,99]
Abbreviations: IHC, Immunohistochemistry; PCR, Polymerase Chain Reaction; ER, estrogen receptors; PR,
progesterone receptors; HER-2, Human Epidermal Growth Factor receptor 2; IDH, Isocitrate Dehydrogenase gene.

Table 5. Summary of image techniques, methods, and features extracted in the reviewed studies to
build predictive models on cancer prognosis.

Methods Type of Data Features Used by

Image segmentation and
hand-crafted features

WSIs
Quantitative image features [27,28,37,48,54]
ROIs from WSIs [80,99,103–105,107]

MRI images Quantitative image features [87]
CT images ROIs [101,105]

Abbreviations: WSIs, Whole-Slide Images; MRI, Magnetic Resonance Imaging; CT, Computed Tomography; ROIs,
Regions of Interest.

4.3. Data Integration

Of the manuscripts analysed in this review, the studies of [61,68,70–75,78,81,82,84,86,
91,97–99,106,110] employ an early integration strategy (n = 19). Among the manuscripts
discussed in this review, the articles by [69,76,79,80,87–90,92,93,95,96,100,102–105,107,108]
use an intermediate integration strategy (n = 19). The study of [85] applies both early and
intermediate integration of multimodal data.
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The studies by [77,83,94,101,109] addressed a late integration strategy (n = 5).

4.4. Predictive Models for Cancer Prognosis Prediction

For the sake of simplicity, we have sorted the reviewed articles according to the type
of model used. In the selected articles, we may find studies that used a conventional
survival analysis, ML, or a mixed approach. In each case, we have identified the type of
multimodal data, the statistical or ML methods employed, the validation strategy and the
clinical outcome associated with cancer prognosis predicted by the described system.

Out of the 43 studies, 6 studies addressed the model using a conventional statis-
tics approach [68–73] and 25 developed ML-based models [61,73–96]. In the remaining
14 studies, a combination of both approaches was used [97–110]. One study was counted
on both conventional and ML categories since it included ML and statistical models
built independently [73]. Similarly, the study [95] was counted in the ML and mixed
approaches category.

4.4.1. Conventional Survival Analysis

A total of six articles fall under this category, where we have brought together all
the predictive models built using traditional statistical methods. Table 6 describes several
characteristics related to how cancer prognosis predictive models are built, such as the
sample size of the data set, the application of dimensionality reduction techniques, the
statistical methods and validation techniques used, the metrics of performance, the output
of the model, and whether the model is externally validated and/or compared to others.

Table 6. Information related to the techniques used in the articles that applied a conventional
statistical approach when building cancer prognosis predictive models.

First Author &
Reference Predictive Modelling Validation

Technique(s) Performance Metrics Model Output Dimensionality
Reduction

External
Validation

Model
Comparison

Zhu [68] SuperPC regression 10-fold CV HR and Log-rank tests
p-value

HR. Dichotomization of patients
into high/low-risk and low-risk 4

Cheng [69] Lasso–Cox model 10-fold CV Log-rank test
p-value Risk index of death 4

Dos Reis [70] Multivariate CPH regression within a
multivariable fractional polynomial model No AUC Risk index of death at 10-years 4 4 4

Sperduto [71] Multivariate multiple CPH regression No None Lung-molGPA score 4

Elwood [72] Multivariate CPH regression
Bootstrapping for

internal and external
validation

C-index Predicted OS (months) at 10 years 4 4

Matsuo [73] Multivariate CPH regression 10-fold CV MAE, C-index Survival risk index, PFS, and OS 4

Abbreviations: superPC, supervised Principal Components; CPH, Cox Proportional Hazards; CV, cross-validation;
HR, Hazard Ratio; AUC, Area Under Curve; MAE, Median Absolute Error; OS, Overall Survival; PFS, Progression-
Free Survival.

Four studies used the CPH regression model [70–73], a semi-parametric model able to
handle right-censored data whose output is the Hazard Ratio (HR) and that is arguably
the most used technique for survival analysis in the medical field [12]. A Lasso–Cox
approach [69] and supervised Principal Components regression (superPC) [68] were used
in one article.

Dimensionality reduction techniques were used in 4 of the studies [68–71]. Sequential
backwards elimination and feature selection using the HR value was used in [70,71],
respectively. Univariate survival analysis and gene co-expression network analysis (GCNA)
were carried out from raw transcriptomics data to cluster genes into co-expressed modules
that are later summarised as an eigengene using the lmQCM method used in [69]. Finally,
sparse partial correlation estimation (SPACE) was applied both to image features and gene
expression data for feature selection in [68].

Regarding validation techniques, 10-fold CV was applied in three studies [68,69,73],
all of them with less than 1000 patients. Bootstrapping was used in [72], which counted
9182 patients. Finally, two studies involving 5738 and 2186 patients did not apply any
validation method [70,71]. Moreover, only two studies provided external validation of their
models on independent data sets. The Waikato data sets and the NTBCS, BCOS, and POSH
data sets were used in [70,72], respectively.
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The performance metrics used to test the robustness and efficacy of the developed
methods were heterogeneous. Two studies reported log-rank tests p-values [68,69], two
presented C-index values [72,73], and one study reported the area under the Receiving
Operating Characteristics Curve (AUC) [70]. Median Absolute Error (MAE) and the HR
were calculated in two studies [68,73].

This heterogeneity was also shown in the output variable provided by the statistical
model developed. Overall survival (OS) was only used in two studies [72,73]. The rest
of the studies used very different output variables: HR; a binary classification between
high-risk and low-risk patients; a risk index of death, which correlates with survival; risk
of death at 10-years; the Lung-molGPA score, correlated with OS; a survival risk index;
progression-free survival (PFS); and binary classification of patients according to survival
(alive/dead) and metastasis (yes/no).

Finally, a quantitative model comparison with other reported models was addressed
in three studies [70,72,73].

4.4.2. Machine Learning-Based Approaches

This category includes the articles whose predictive models are built using exclusively
ML algorithms, making a total of 25 articles. Table 7 summarises the key information on
these studies.

Table 7. Information related to the techniques used in the articles that applied machine learning
techniques when building cancer prognosis predictive models.

First Author &
Reference Predictive Modelling Validation Technique(s) Performance Metrics Model Output Dimensionality

Reduction
External

Validation
Model

Comparison

Matsuo [73] DNN 10-CV MAE, C-index Predicted OS and PFS 4

Mohebian [74] BDT Bagging, hold-out and 4-CV
Sn, Sp, Acc, precision, F-score,
AUC, MCC, +LR, -LR, DOR,

DP, κ
Patient dichotomization 4 4

Obrzut [75] PNN, MLP, GEP, SVM,
RBFNN, and K-means 10-CV Acc, Sn, Sp, AUC Predicted OS at 5 years 4

Zhu [76] MOK Monte Carlo CV C-index Predicted overall prognostic score 4 4 4

Chaudhary [61] DL-based model 5-CV and 10-CV C-index, log-rank p-value, and
BS Patient dichotomization 4 4 4

Sun [77] SimpleMKL 10-CV AUC, Acc, precision, MCC,
and C-index Patient dichotomization 4 4

Zhang [78] ANN, K-means, SVM, and
XGBoost 10-CV AUC Predicted OS and patient

dichotomization 4 4 4

Zhao [79] Gradient Boosting, RF,
SVM, and ANN 10-CV ROC curve, Acc, CS, stability Patient dichotomization 4 4

Cheerla [80] DNN Hold-out C-index Predicted OS 4

Ferroni [81] MKL based on SVM 3-CV AUC, Sn, Sp, F- score, LR, HR,
C-index, and Acc Patient dichotomization

Jing [82] DNN Bootstrapping C-index Predicted DFS and patient
dichotomization 4 4

Sun [83] DNN 10-CV ROC curve, AUC, Sn, Sp, Acc,
precision, MCC Patient dichotomization 4 4 4

Tapak [84] NB, RF, AdaBoost, SVM,
LS-SVM, AdaBag Hold-out Sn, Sp, PPV, NPV, +LR, -LR,

Acc Patient dichotomization 4

Baek [85] SVM, LR, L2RR, RF Hold-out and 5-CV Acc, AUC, C-index, IBS Predicted DFS and OS at 5 years 4 4
Boeri [86] SVM, ANN 3-CV Acc, Sn, Sp, AUC Risk of recurrence and risk of death 4

Choi [87] RSF Bagging iAUC Predicted OS and patient
dichotomization 4 4

Zhang [88] MKL based on SVM 10-CV AUC Patient dichotomization 4 4

Arya [89] Ensemble of CNNs and RF 10-CV AUC, Sn, Sp, Acc, precision,
MCC Patient dichotomization 4 4 4

Tong [90] ANN 4-CV C-index HR 4

Owens [91] DL-based model Not detailed Silhouette score, log-rank
p-value Patient dichotomization 4 4

Malik [92] DL-based model 10-CV AUC, Acc, Sn, Sp, FPR,
F1-Score, MCC, κ Patient dichotomization 4 4 4

Zhao [93] ANN 10-CV C-index Patient dichotomization 4 4
Hassanzadez [94] DL-based model Hold-out and 5-CV Acc Patient dichotomization 4 4

Zhang [95] DL-based model Not detailed C-index, IBS Predicted OS 4 4

Chharia [96] DL-based model 5-CV Precision, Acc Probability of survival and patient
dichotomization 4 4

Abbreviations: BDT, Bagged Decision Tree; PNN, Probabilistic Neural Network; MLP, Multilayer Perceptron; GEP,
Gene Expression Programming; RBFNN, Radial Basis Function Neural Network; MOK, Multi-Omic Kernel; DL,
Deep Learning; DNN, Deep Neural Network; MKL, Multiple Kernel Learning; SVM, Support Vector Machine;
NB, Naïve Bayes; LS-SVM, Least-Squares Support Vector Machine; LR, Logistic Regression; L2RR, L2 Regularised
regression; RF, Random Forest; ANN, Artificial Neural Network; XGBoost, Extreme Gradient Boosting; RSF,
Random Survival Forest; CV, cross-validation; Sn, Sensitivity; Sp, Specificity; Acc, accuracy; AUC, Area Under
Curve; MCC, Matthews Correlation Coefficient; +LR, Positive Likelihood Ratio; -LR, Negative Likelihood Ratio;
DOR, Diagnostic Odds Ratio; DP, Discriminant Power; κ, Cohen’s kappa coefficient; ROC, Receiving Operating
Characteristics; CS, Calibration Slope; LR, Likelihood Ratio; FPR, False Positive Rate; HR, Hazard Ratio; MAE,
Mean Absolute Error; PPV, Positive Predictive Value; NPV, Negative Predictive Value; BS, Brier Score; IBS,
Integrated Brier Score; iAUC, integrated Area Under Curve; OS, Overall Survival; DFS, Disease-Free Survival;
PFS, Progression-Free Survival.
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Ten studies applied DL [61,73,80,82,83,91,92,94–96] while the remaining fifteen used
SL. The SL models employed were very diverse. Eight studies used algorithms based on
decision trees including Bagged Decision Trees (BDT) [74], Random Forest (RF) [79,84,85],
Random Survival Forest (RSF) [87], Extreme Gradient Boosting (XGBoost) [78], gradient
boosting [79], and AdaBag [84]. Two studies trained K-means clustering classifiers [75,78],
and three evaluated a simple Multiple Kernel Learning (MKL) classifier either with Gaus-
sian Kernel [77] and based on SVM [81,88]. Seven studies built predictive models based on
Support Vector Machines (SVM) [75,78,79,84–86] and one presented a Multi-Omic Kernel
(MOK)-based classifier [76]. Four studies applied Artificial Neural Networks [78,79,86,90,93]
and some other works considered variations of these, such as a Probabilistic Neural Net-
work (PNN) [75], a Multilayer Perceptron (MP) [75], a Radial Basis Function Neural Net-
work (RBNN) [75], or even an ensemble of Convolutional Neural Networks (CNNs) and
RF [89]. Other approaches were based on a Naïve Bayes classifier [84], a Logistic Regression
(LR) classifier [85], or an L2 Regularised Regression classifier [85]. Finally, an evolutionary
algorithm, a Gene Expression Programming algorithm, was applied in [75].

Dimensionality reduction approaches were used in 20 studies. Feature selection
was used based on different methods: Particle Swarm Optimisation (PSO) for categorical
features [74], univariate CPH regression analysis [61,78], logistic regression [85,86], minimal
Redundancy Maximum Relevance (mRMR) [83,88,89,94,96], the log-rank test [87], or a
variance-based feature extraction approach [90].

Feature extraction was applied in several other studies, using kernel-based meth-
ods [76,77], autoencoders [61,78,80,85,91], K-means clustering [79], Principal Compo-
nent Analysis (PCA) [90], Neighbourhood Component Analysis (NCA) [92], non-linear
functions [93], or deep embedded features [95].

Several CV schemes (3-fold, 4-fold, 5-fold, 10-fold, and Monte Carlo) were utilised
in 18 studies [61,73–79,81,83,85,86,88–90,92–94,96]. Hold-out, bagging, and bootstrapping
were used in five [74,80,84,85,94], two [74,87], and one studies [82], respectively. Four
studies validated the models using multiple validation strategies. Nine studies provided
external validation of their models on independent data sets [61,76,78,82,83,87,89,91,92].

The heterogeneous scenario described previously in terms of the diversity of perfor-
mance metrics implemented is mirrored for ML models. The most commonly used metric
was the Acc, accounting for fourteen studies [74,75,77,79,81,83–86,89,92,94,96], followed by
the AUC, used in twelve studies [74,75,77,78,81,83,85–89,92]. The C-index followed, being
used in 11 studies [61,73,76,77,80–82,85,90,93,95]. Sp and Sn were estimated to measure
model performance in eight studies [74,75,81,83,84,86,89,92]. In five studies, precision was
estimated [74,77,83,89,96]. Matthew’s correlation coefficient (MCC) [74,77,83,89,92] and
positive/negative likelihood ratios [74,84] were used in five and two studies, respectively;
F-score [74,81,92] was used in three studies and ROC curve [79,83] in two studies. Barely,
the log-rank p-value for the CPH regression model [61,91] and the Brier Score (BS) as
the error of the model [61], stability and calibration slope [79], predictive values [84], Co-
hen’s kappa coefficient (κ) [74,92], Diagnostic Odds Ratio (DOR) and Discriminant Power
(DP) [74], mean absolute error (MAE) [73], False Positive Rate (FPR) [92], Integrated Brier
Score (IBS) [85,95], and Silhouette score [91] were also estimated.

There was a modicum of homogeneity in the ML output variable. Patient risk di-
chotomization followed OS, being used in seven studies [76,78,81,82,87,92,93]. Overall survival
(OS) was primarily used appearing as model output in seven studies [73,75,78,80,85,87,95].

Dichotomization of patients into short/long-term survivors was done in six pa-
pers [77,83,88,89,94,96]. Binary recurrence or risk of recurrence [74,84,86] were evaluated
as prognosis indexes in three studies. Evaluated recurrence was either loco-regional [74,86]
or systemic (metastatic) [84,86].

DFS was used in two articles [82,85]. A binary classification according to survival was
used in two studies [79,84]. Finally, an ad-hoc survival risk label [61], predicted overall
prognostic score [76], and progression-free disease (PFS) [73] were used in one study each.
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To end, a model comparison with models published in the scientific literature was
faced in 19 studies [61,73–79,82–85,88,89,92–96].

4.4.3. Mixed Approaches

The scientific articles gathered in this section used a combination of ML algorithms
and statistical models to predict the clinical outcome of cancer patients from multimodal
data. In total, 14 papers are discussed (Table 8).

Table 8. Information related to the techniques used in the articles that applied a mixed ap-
proach (conventional statistics together with machine learning) when building cancer prognosis
predictive models.

First Author &
Reference

Predictive
Modelling

Validation
Technique(s)

Performance
Metrics

Model
Output

Dimensionality
Reduction External Validation Model

Comparison

Yousefi [97] DL-CPH Monte Carlo CV C-index Risk index of death, correlated to
OS 4

Katzman [98] DL-CPH Bootstrapping,
hold-out and 3-CV C-index HR 4 4

Mobadersany [99] DL-CPH Monte Carlo CV C-index HR 4

Huang [100] DL-CPH 5-CV C-index, log-rank test
p-value HR and patient dichotomization 4 4

Wang [101] DL-CPH Not detailed C-index, AUC, Acc,
log-rank test p-value

Risk index of recurrence,
correlated to RFS and Patient
dichotomization. Recurrence

probability in a specific time point

4 4

Shao [102] Adaboost for diagnosis
and CPH for prognosis 5-CV C-index, BS Risk index of death and patient

dichotomization 4 4

Chen [103] DL-CPH 15-CV C-index Patient dichotomization 4
Hao [104] DL-CPH Not detailed C-index Patient dichotomization 4 4
Ning [105] DL-CPH 10-CV C-index Patient dichotomization 4
Chai [106] DL-CPH Not detailed C-index Patient dichotomization 4 4 4

Vale-Silva [107] DNN-based model Hold-out Ctd, IBS Conditional survival probability
for 1 to 30 years 4 4

Wang [108] NMF-CPH 3-CV C-index Survival probability and patient
dichotomization 4 4 4

Poirion [109] Ensemble of DL and
SVM models Hold-out and 5-CV

Log-rank p-value,
C-index and Silhouette

score
Patient’s risk of death 4 4 4

Zhang [110] DL-CPH 10-CV AUC Patient dichotomization 4 4

Abbreviations: CPH, Cox Proportional Hazards; ML, Machine Learning; DL-CPH, Deep Learning Cox Propor-
tional Hazard; DNN, Deep Neural Networks; NMF, non-negative matrix factorisation; CV, cross-validation;
LOO-CV, Leave-One-Out Cross-Validation; AUC, Area Under Curve; Acc, accuracy; BS, Brier Score; Ctd, time-
dependent concordance index; IBS, integrated Brier Score; OS, Overall Survival; HR, Hazard Ratio; RFS, Recur-
rence Free Survival.

Twelve studies applied DL [97–101,103–107,109,110] and two used SL [102,108]. Most
DL approaches combined DL techniques and CPH as output layer (n = 10), although [109]
built an ensemble of DL and SVM models. In articles dealing with SL, several ML algo-
rithms were used but also combined with CPH or Elastic net-CPH.

Eleven out of the fourteen studies compared the resulting model performance with
other models [97–102,104,106–109]. Ten of the studies applied dimensionality reduction
techniques [100,102–110].

All studies except [101,104,106,107] used CV methods with different schemes (ten,
five, three, fifteen, Leave-One-Out, Monte Carlo). Bootstrapping [98] and hold-out [98,107]
were also used. The validation approach was not detailed in [101,104,106].

Six articles detailed the use of external data sets for model validation [98,101,106,108–110].
Performance metrics were more homogeneous than in conventional or ML models. C-index
was primarily used in 12 studies [97–106,108,109]. Log-rank test p-value was estimated in
three studies [100,101,109]. AUC [101,110] and accuracy [101], BS [102], integrated Brier
Score (IBS) [107], and time-dependent C-index (Ctd) [107] were more scarcely used.

The main model output was the high/low risk classification [100–102,104–106,108,110].
In [103], the patients were dichotomised into short or long-term survivors. The HR [98–100]
was used in four studies. The risk of death was evaluated in two studies [97,102]. Interest-
ingly, the conditional survival probability in a time span of 30 years was the output of the
model presented in [107]. An individual’s recurrence risk index [101] and the patient’s risk
of death [109] were also proposed as prognostic indexes.
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4.5. Data Sources

This section summarises the sources from which data were obtained to build predic-
tive models across the reviewed papers, distinguishing between public repositories and
institutional databases, as shown in Table 9. Thirty-three out of the forty-three included
articles used data from public repositories, while eleven studies built their models using
data from institutional (private) databases.

Table 9. Summary of data sources used to build predictive models of cancer prognosis.

Type of
Repository Repositories & Programs/Studies Used by

Public
Repositories

ICGC Data Portal (e.g., Pan-Cancer Atlas
Initiative, TCGA Program) [61,69,76,77,80,83,85,87–95,97,99,100,102–110]

EGA (e.g., METABRIC Study) [79,82,83,89,96,98,109]
GDC Data Portal (e.g., TARGET Program) [61,76,78,95]
GEO [61,95,106,108–110]
COSMIC [85]
ArrayExpress Archive of Functional Genomics
Data [61]

Institutional databases N/A [71–75,81,82,84,86,87,101]
Abbreviations: ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas; EGA, Euro-
pean Genome-Phenome Archive; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium;
GDC, Genomics Data Commons; GEO, Gene Expression Omnibus; COSMIC, Catalogue of Somatic Mutations
in Cancer.

5. Discussion

This paper provides the reader with overall knowledge on the integration of clinical,
molecular, and image data with the objective of predicting the clinical outcome of cancer,
mainly as recurrence, progression, or death. To that end, the information from 43 state-of-
the-art scientific papers has been broken down throughout this article.

Throughout this review, we noticed that three major approaches have been adopted to
infer prognosis: (1) the use of multivariate statistical methods; (2) the application of ML
algorithms; and (3) the combination of ML methods and statistical tests to build predictive
models. It seems that the approach taken has evolved with time. Statistical methods were
more prominently used in earlier years, whilst ML-based methods replaced them over
time. Mixed approaches that combine ML algorithms and conventional survival modelling
were the favourites for quite some time. However, in 2020 and 2021 a number of predictive
models were published, and those showed some of the best performances to date—they
are based solely on DL architectures or consist of frameworks where DL networks have a
special relevance [61,73,80,82,83,91,92,94–96], indicating that this approach in predictive
modelling is gaining traction in the task of cancer outcome.

Conventional survival modelling techniques are known to work well with low-
dimensional data sets, as those containing clinical and non-omics molecular information.
However, over the years, the advent and cheapening of high-throughput molecular tech-
niques have generated massive and multi-view data that cannot be handled in the same
way. Here comes into play Machine Learning, which not only can deal with bigger data sets,
but is also able to model the nonlinear association between variables [12]. Thus, Machine
Learning techniques have been adopted to learn from imaging and omics information along
with the abovementioned data. In more recent years, Deep Learning, a subfield within
Machine Learning, has proven to be a better option to tackle this problem; given that it
does not require prior feature engineering, its flexible structure allows for better integration
of multimodal data and ultimately does a better job at leveraging the interactions between
the different modalities [10]. Several publications present predictive models that result
from the combination of DNN and CPH regression as the last layer of the DL architecture.
This strategy aims to provide the best of both worlds since ML algorithms struggle to deal
with censored data in survival analysis [12]. However, it seems like DL-based models have
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become sophisticated enough to take in and process censored survival data, since many of
the more recently published papers present DL-based frameworks able to manage without
CPH models to estimate survival time or hazard of event, as mentioned above.

An essential concern in this matter is ascertaining whether the integration of multi-
modal data improves cancer prognosis prediction. Although it has been widely accepted
that multimodal data provides a more complete picture of the topic of research, the existing
algorithms for DR and predictive modelling are not always capable of achieving an optimal
integration of multimodal data or, on some occasions, some modalities are not as relevant
as expected. To this aim, some papers—usually those whose models were fed with a variety
of data types—devote a section to the training and comparison of models using different
combinations of one or several data modalities [61,68,69,77,80,83,87,97,99,101,102]. In most
cases, it is proven that the integration of multimodal data increases the performance values,
especially when incorporating multi-omics data.

Considering the boom in omics techniques, the reader might think that this data
modality has become central in any experiments focused on the biology of human diseases,
but clinical and non-omics molecular data continue to provide valuable information. For
example, in [98] IHC data and the mutational status of four genes relevant to the disease,
along with gene expression data, are used to predict survival. This multimodal data set
is complementary and non-redundant. Furthermore, some upsides of using non-omics
molecular data it is low cost and easy to obtain in comparison to omics data, which requires
lengthy lab work, data quality control and data pre-processing. Another example can
be found in [100], which utilises genomics, transcriptomics, clinical, and IHC data; IHC
data indicates the presence or absence of two important protein receptors in breast cancer
cells, the oestrogen receptor and the progesterone receptor, which not only have prognostic
value by themselves but are also targets of hormone therapy. Again, this IHC information
complements the omics data by providing additional information on the status of certain
proteins known to be involved to some degree in the progression of cancer and, therefore,
in the survival of the patients.

A consequence of these experiments is that new biological information can be drawn.
Indeed, many predictive models were not only developed to classify patients according
to their risk, but also to explore features or whole data modalities with a high impact on
survival prediction. Again, the easiest way of doing so is by sequentially adding or ex-
cluding information, re-training the model, and examining the changes in the performance
metrics. For instance, Zhu et al. [76] present a survival pan-cancer study that uncovers
the most relevant features in prognosis prediction for 14 types of cancer. Surprisingly, it is
shown that the molecular profiles obtained from multi-omics data contribute with varying
degrees to prognosis prediction depending on the cancer type. The work of Zhao et al. [79]
reveals that one cluster of patients highly correlated to increased mortality is defined by
the overexpression of 11 genes, some of which were unknown to be linked to cancer. On
another hand, Mobadersany et al. [99] is one of the few publications found to integrate
image and genetic information for prognosis prediction. In this publication, heatmaps are
generated to show the parts of H&E digitised slides that correlate with poor prognosis.
Some histological characteristics already known to be associated with it are highlighted,
such as microvascular proliferation, whereas low-density infiltrate in the cortex is revealed
as a new trait associated with poor prognosis. Finally, Baek and Lee [85] utilise for the first
time the cellular prevalence, along with multi-omics and clinical data, for cancer recurrence
and survival prediction. The cellular prevalence feature allows identifying new candidate
genes whose mutations have a high impact in the early stages of cancer development.

It is worth mentioning that in the vast majority of the articles, clinical variables
are considered as input data for the predictive models. In particular, demographic data
and pathological data are among the most used in the articles reviewed, evidencing the
importance of this type of information for the estimation of cancer prognosis and the
explainability of the models. This is highly relevant since, despite the availability of modern
sequencing and medical image acquisition techniques, clinical data are still involved
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in clinical prognostic models providing significant and valuable information, with the
advantage that such data are currently easier to acquire, less expensive, and part of the
clinical routine. All these findings, and many others, provide a valuable insight that sheds
light on the biology of cancer.

Nevertheless, several problems and limitations arise when tackling the task at hand.
The most predominant ones are listed below, and potential solutions are pointed out.

I. Lack of data. Although efforts have been made to extensively collect and provide the
scientific community with varied information on cancer (as discussed in Section 4.4),
the amount of data is still not enough. The cancer-related data sets found in this review
contain hundreds to thousands of observations, but are not as large as data sets from
other areas (i.e., finances) that usually contain tens of thousands of observations [113].
According to the curse of dimensionality phenomena, the amount of data required
to develop models that ensure statistically reliable results grows exponentially with
the dimensionality. Therefore, survival predictive models would improve not only by
increasing the sample size but also the follow-up time of patients.

II. Only a few multimodal data sets are publicly available. Access to most existing
multimodal data is reserved for the hospitals or research centres that own the data. A
change in the data privacy legislation and ensuring the privacy of sensitive medical
data by computing on encrypted data is paramount to promoting predictive analysis
of private databases [114].

III. Heterogeneity in data. Heterogeneity is present at many levels. Firstly, the data
sets gather information from patients of different demographics, types of cancer,
and treatments. Although having a representative sample of a population is key
to training models with good generalizability, this adds heterogeneity that must be
handled properly, especially when it supposes an imbalance in the number of patients
of different classes or characteristics (i.e., the information of patients of a rare cancer
subtype will likely not be captured by the algorithm). Secondly, the multimodality
of data considered in this review inherently entails heterogeneity, and the data sets
from the reviewed papers seldom gather all the four main types of data discussed in
Section 3. Thirdly, whenever possible, models should be able to deal with missing
data. Even within a data set, many patients will contain missing data, as not all
of them undergo the same tests and follow-up period. Fourthly, the experimental
techniques used to gather the anatomopathological, non-omics, and omics data are
extremely varied, which influences the amount and quality of data, the format of the
data itself, and the pre-processing needed.

IV. Data integration. The availability of multi-omics data has brought about a break-
through in information analysis techniques. The complexity of these techniques and
the difficulty of choosing the optimal ones for each case requires the collaborative
effort of multidisciplinary teams that include experts in the field of Data Analysis,
Statistics, and Machine Learning who can guide and support the data treatment and
development of robust and generalisable models.

V. Lack of external validation. Another limitation is the lack of independent data sets to
externally validate the generated models. External validation is paramount to detect
potential issues as bias or overfitting and demonstrate the generalisation capability of
models [24]. Many studies do not validate the predictive models with independent
data sets, although there is an increasing trend to do so. Fortunately, the accessibility
to cancer-related data sets grows bigger every day.

VI. Most studies are single-institution and retrospective, while multi-centric and prospec-
tive studies are very scarce. Multi-centric studies often result in data sets with a bigger
number of observations, and the data collected tends to more accurately reflect the
variety of features displayed by the subjects of a population. Additionally, new data
gathered in prospective studies could be useful in the validation of the predictive
models trained with the initial data.
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VII. Difficulty in comparing state-of-the-art models. Experimental replicability and repro-
ducibility are pivotal topics in ML. There is no unified performance measure used in
the reviewed articles, which makes a fair quantitative comparison almost impossible.
Further efforts should be made to establish common practices that should be evaded
to fairly compare results with the state-of-the-art [115].

VIII. The ‘black box’ problem. Most ML algorithms operate in such a complex manner that
understanding how information is processed becomes challenging, thus turning the
trained models into opaque systems [116]. Naturally, non-expert audiences cannot
completely trust them with tasks as important as the management of patients. How-
ever, the rise of Explainable Artificial Intelligence (XAI) is contributing to solving this
problem and paving the way for the application of ML models in clinical practice [26].

While it provides a review of recent literature, this review has limitations, as it is
a narrative non-systematic. As a result, the evidence presented does not encompass an
exhaustive synthesis. Despite this, the strength of a narrative review is that it builds on
a research area by offering a summation [117]. In addition, we only included studies
published in English to increase feasibility, which may have excluded relevant studies
published in other languages; however, this is an unlikely source of bias [118].

6. Conclusions

To the best of our knowledge, this is the first review focused on the integration of
multimodal data comprising clinical, anatomopathological, omics, molecular non-omics,
and medical imaging data in order to predict cancer prognosis.

Cancer poses a threat that requires an attack from all angles. Research on cancer prog-
nosis is an open front in which much progress has been made. Cancer is a heterogeneous
and complex disease whose origin and evolution are governed by multiple genetic and
environmental factors, many of which remain unknown. The evolution of current clinical
environments is favouring the collection of multimodal data. It is also our belief that only
by integrating data from as many modalities as possible could cancer prognosis prediction
be made in the most accurate way, given the incredible complexity of this disease. In fact,
this review is proof that the integration of multimodal, multi-view data provides a more
complete and holistic approach to cancer outcome prediction.

On another hand, this review suggests that the development of predictive models with
clinically useful reliability is evolving. The use of ML techniques has shifted conventional
statistical approaches, making possible the handling of complex and massive multimodal
data sets using a multi-faceted data-driven approach and successfully achieving a better
identification of subgroups of patients of different risk. This methodological approach not
only has the potential to improve clinical management and contribute to the implementation
of personalised medicine, but also to generate new knowledge on cancer biology and the
processes leading to its progression.

Thus, it is not far-fetched to expect a breakthrough in this exciting, emerging field in
the coming years that will revolutionise cancer research as we know it.

Author Contributions: B.L.-D.: Conceptualization, investigation, methodology, visualization,
Writing—original draft, Writing—review & editing; B.P.-T.: Conceptualization, investigation, methodology,
visualization, Writing—original draft, Writing—review & editing; D.S.-M.: Conceptualization, investiga-
tion, methodology, supervision, visualization, Writing—original draft, Writing—review & editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded with funds from the Project PI-0032-2017. Subvención para la
financiación de la investigación y la innovación biomédica y en Ciencias de la Salud en el marco de la
iniciativa territorial integrada 2014–2020 para la provincia de Cádiz. Consejería de Salud y Familias.
Junta de Andalucía. Unión Europea, financed by the Fondo de Desarrollo Regional (FEDER). This
research also received funds from PAIDI TIC-212 and from the University of Cádiz, Plan Propio
UCA 2022-2023.

Conflicts of Interest: The authors declare no conflict of interest.



Cancers 2022, 14, 3215 22 of 26

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. International Agency for Research on Cancer. Cancer Today: Data Visualization Tools for Exploring the Global Cancer Burden in
2018. Available online: Gco.iarc.fr (accessed on 24 September 2020).

3. Wild, C.P. The Global Cancer Burden: Necessity Is the Mother of Prevention. Nat. Rev. Cancer 2019, 19, 123–124. [CrossRef]
[PubMed]

4. Loomans-Kropp, H.A.; Umar, A. Cancer Prevention and Screening: The next Step in the Era of Precision Medicine. Npj Precis.
Oncol. 2019, 3, 3. [CrossRef]

5. Wild, C.P.; Espina, C.; Bauld, L.; Bonanni, B.; Brenner, H.; Brown, K.; Dillner, J.; Forman, D.; Kampman, E.; Nilbert, M.; et al.
Cancer Prevention Europe. Mol. Oncol. 2019, 13, 528–534. [CrossRef]

6. Ahmed, A.A.; Abedalthagafi, M. Cancer Diagnostics: The Journey from Histomorphology to Molecular Profiling. Oncotarget 2016,
7, 58696–58708. [CrossRef]

7. Falzone, L.; Salomone, S.; Libra, M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front.
Pharmacol. 2018, 9, 1300. [CrossRef]

8. Li, X.; Warner, J.L. A Review of Precision Oncology Knowledgebases for Determining the Clinical Actionability of Genetic
Variants. Front. Cell Dev. Biol. 2020, 8, 48. [CrossRef]

9. Doherty, G.J.; Petruzzelli, M.; Beddowes, E.; Ahmad, S.S.; Caldas, C.; Gilbertson, R.J. Cancer Treatment in the Genomic Era. Annu.
Rev. Biochem. 2019, 88, 247–280. [CrossRef]

10. Zhu, W.; Xie, L.; Han, J.; Guo, X. The Application of Deep Learning in Cancer Prognosis Prediction. Cancers 2020, 12, 603.
[CrossRef]

11. Gress, D.M.; Edge, S.B.; Greene, F.L.; Washington, M.K.; Asare, E.A.; Brierley, J.D.; Byrd, D.R.; Compton, C.C.; Jessup, J.M.;
Winchester, D.P.; et al. Principles of Cancer Staging. In AJCC Cancer Staging Manual; Amin, M.B., Edge, S.B., Greene, F.L.,
Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 3–30. ISBN 978-3-319-40617-6.

12. Wang, P.; Li, Y.; Reddy, C.K. Machine Learning for Survival Analysis: A Survey. ACM Comput. Surv. 2017, 51, 1–36. [CrossRef]
13. Maji, P. Recent Advances in Multimodal Big Data Analysis for Cancer Diagnosis. CSI Trans. 2019, 7, 227–231. [CrossRef]
14. Goel, M.K.; Khanna, P.; Kishore, J. Understanding Survival Analysis: Kaplan-Meier Estimate. Int. J. Ayurveda Res. 2010, 1, 274–278.

[CrossRef] [PubMed]
15. Peto, R.; Peto, J. Asymptotically Efficient Rank Invariant Test Procedures. J. R. Stat. Soc. Ser. A 1972, 135, 185–198. [CrossRef]
16. Mantel, N. Evaluation of Survival Data and Two New Rank Order Statistics Arising in Its Consideration. Cancer Chemother. Rep.

1966, 50, 163–170.
17. Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–220. [CrossRef]
18. Bewick, V.; Cheek, L.; Ball, J. Statistics Review 12: Survival Analysis. Crit. Care 2004, 8, 389–394. [CrossRef]
19. Gao, Y.; Zhou, R.; Lyu, Q. Multiomics and Machine Learning in Lung Cancer Prognosis. J. Thorac. Dis. 2020, 12, 4531–4535.

[CrossRef]
20. Burki, T.K. Predicting Lung Cancer Prognosis Using Machine Learning. Lancet Oncol. 2016, 17, e421. [CrossRef]
21. Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine Learning Applications in Cancer Prognosis

and Prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [CrossRef]
22. Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N.; Bellazzi, R. Integrated Multi-Omics Analyses in Oncology: A Review of Machine

Learning Methods and Tools. Front. Oncol. 2020, 10, 1030. [CrossRef]
23. Tufail, A.B.; Ma, Y.-K.; Kaabar, M.K.A.; Martínez, F.; Junejo, A.R.; Ullah, I.; Khan, R. Deep Learning in Cancer Diagnosis and

Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions. Comput. Math. Methods Med. 2021,
2021, 9025470. [CrossRef] [PubMed]

24. Cruz, J.A.; Wishart, D.S. Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Inform. 2006, 2, 59–77.
[CrossRef]

25. Okser, S.; Pahikkala, T.; Aittokallio, T. Genetic Variants and Their Interactions in Disease Risk Prediction—Machine Learning and
Network Perspectives. BioData Min. 2013, 6, 5. [CrossRef] [PubMed]

26. Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.;
Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward
Responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]

27. Li, Y.; Wu, F.X.; Ngom, A. A Review on Machine Learning Principles for Multi-View Biological Data Integration. Brief. Bioinform.
2018, 19, 325–340. [CrossRef] [PubMed]

28. Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 1–15. [CrossRef]
29. Clancy, S. Genetic Mutation. Nat. Educ. 2008, 1, 187–188.
30. Yi, K.; Ju, Y.S. Patterns and Mechanisms of Structural Variations in Human Cancer. Exp. Mol. Med. 2018, 50, 1–11. [CrossRef]
31. van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in Sequencing Technology. Trends Genet. 2018, 34,

666–681. [CrossRef]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
Gco.iarc.fr
http://doi.org/10.1038/s41568-019-0110-3
http://www.ncbi.nlm.nih.gov/pubmed/30683893
http://doi.org/10.1038/s41698-018-0075-9
http://doi.org/10.1002/1878-0261.12455
http://doi.org/10.18632/oncotarget.11061
http://doi.org/10.3389/fphar.2018.01300
http://doi.org/10.3389/fcell.2020.00048
http://doi.org/10.1146/annurev-biochem-062917-011840
http://doi.org/10.3390/cancers12030603
http://doi.org/10.1145/3214306
http://doi.org/10.1007/s40012-019-00236-9
http://doi.org/10.4103/0974-7788.76794
http://www.ncbi.nlm.nih.gov/pubmed/21455458
http://doi.org/10.2307/2344317
http://doi.org/10.1111/j.2517-6161.1972.tb00899.x
http://doi.org/10.1186/cc2955
http://doi.org/10.21037/jtd-2019-itm-013
http://doi.org/10.1016/S1470-2045(16)30436-3
http://doi.org/10.1016/j.csbj.2014.11.005
http://doi.org/10.3389/fonc.2020.01030
http://doi.org/10.1155/2021/9025470
http://www.ncbi.nlm.nih.gov/pubmed/34754327
http://doi.org/10.1177/117693510600200030
http://doi.org/10.1186/1756-0381-6-5
http://www.ncbi.nlm.nih.gov/pubmed/23448398
http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.1093/bib/bbw113
http://www.ncbi.nlm.nih.gov/pubmed/28011753
http://doi.org/10.1186/s13059-017-1215-1
http://doi.org/10.1038/s12276-018-0112-3
http://doi.org/10.1016/j.tig.2018.05.008


Cancers 2022, 14, 3215 23 of 26

32. Rauluseviciute, I.; Drabløs, F.; Rye, M.B. DNA Methylation Data by Sequencing: Experimental Approaches and Recommendations
for Tools and Pipelines for Data Analysis. Clin. Epigenetics 2019, 11, 193. [CrossRef]

33. Taft, R.J.; Pang, K.C.; Mercer, T.R.; Dinger, M.; Mattick, J.S. Non-Coding RNAs: Regulators of Disease: Non-Coding RNAs:
Regulators of Disease. J. Pathol. 2010, 220, 126–139. [CrossRef] [PubMed]

34. Boellner, S.; Becker, K.-F. Reverse Phase Protein Arrays—Quantitative Assessment of Multiple Biomarkers in Biopsies for Clinical
Use. Microarrays 2015, 4, 98–114. [CrossRef] [PubMed]

35. Orakpoghenor, O.; Avazi, D.O.; Markus, T.P.; Olaolu, O.S. A Short Review of Immunochemistry. Immunogenet. Open Access 2018,
3, 122.

36. Matsuda, K. Chapter Two-PCR-Based Detection Methods for Single-Nucleotide Polymorphism or Mutation: Real-Time PCR and
Its Substantial Contribution Toward Technological Refinement. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier:
Amsterdam, The Netherlands, 2017; Volume 80, pp. 45–72.

37. Fass, L. Imaging and Cancer: A Review. Mol. Oncol. 2008, 2, 115–152. [CrossRef] [PubMed]
38. Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.;

Fenstermacher, D.; et al. Radiomics: The Process and the Challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Cross-
Ref] [PubMed]

39. Zhong, G.; Ling, X.; Wang, L.-N. From Shallow Feature Learning to Deep Learning: Benefits from the Width and Depth of Deep
Architectures. WIREs Data Min. Knowl. Discov. 2019, 9, e1255. [CrossRef]

40. Niknejad, A.; Petrovic, D. Introduction to Computational Intelligence Techniques and Areas of Their Applications in Medicine.
Med. Appl. Artif. Intell. 2013, 51, 2113–2119.

41. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A Guide to
Deep Learning in Healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef]

42. Tan, P.-N.; Steinbach, M.; Kumar, V. Data Mining Introduction; The People Post and Telecommunications Press: Beijing, China, 2006.
43. Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2018, arXiv:1811.12808.
44. Venkatesh, B.; Anuradha, J. A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 2019, 19, 3–26. [CrossRef]
45. Zebari, R.; Abdulazeez, A.M.; Zeebaree, D.Q.; Zebari, D.A.; Saeed, J.N. A Comprehensive Review of Dimensionality Reduction

Techniques for Feature Selection and Feature Extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [CrossRef]
46. Sharma, N.; Saroha, K. A Novel Dimensionality Reduction Method for Cancer Dataset Using PCA and Feature Ranking. In

Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi,
India, 10–13 August 2015; pp. 2261–2264.

47. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.
[CrossRef] [PubMed]

48. Adossa, N.; Khan, S.; Rytkönen, K.T.; Elo, L.L. Computational Strategies for Single-Cell Multi-Omics Integration. Comput. Struct.
Biotechnol. J. 2021, 19, 2588–2596. [CrossRef] [PubMed]

49. Mirza, B.; Wang, W.; Wang, J.; Choi, H.; Chung, N.C.; Ping, P. Machine Learning and Integrative Analysis of Biomedical Big Data.
Genes 2019, 10, 87. [CrossRef] [PubMed]

50. Bersanelli, M.; Mosca, E.; Remondini, D.; Giampieri, E.; Sala, C.; Castellani, G.; Milanesi, L. Methods for the Integration of
Multi-Omics Data: Mathematical Aspects. BMC Bioinform. 2016, 17, S15. [CrossRef] [PubMed]

51. Liew, A.W.-C.; Law, N.-F.; Yan, H. Missing Value Imputation for Gene Expression Data: Computational Techniques to Recover
Missing Data from Available Information. Brief. Bioinform. 2011, 12, 498–513. [CrossRef]

52. Vivian, J.; Eizenga, J.M.; Beale, H.C.; Vaske, O.M.; Paten, B. Bayesian Framework for Detecting Gene Expression Outliers in
Individual Samples. JCO Clin. Cancer Inform. 2020, 4, 160–170. [CrossRef]

53. Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using Machine Learning Approaches for Multi-Omics Data Analysis: A
Review. Biotechnol. Adv. 2021, 49, 107739. [CrossRef]

54. Rappoport, N.; Shamir, R. Multi-Omic and Multi-View Clustering Algorithms: Review and Cancer Benchmark. Nucleic Acids Res.
2018, 46, 10546–10562. [CrossRef]

55. Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-Omics Data Integration, Interpretation, and Its Application.
Bioinform. Biol. Insights 2020, 14, 117793221989905. [CrossRef]

56. Cantini, L.; Zakeri, P.; Hernandez, C.; Naldi, A.; Thieffry, D.; Remy, E.; Baudot, A. Benchmarking Joint Multi-Omics Dimensionality
Reduction Approaches for the Study of Cancer. Nat. Commun. 2021, 12, 124. [CrossRef] [PubMed]

57. Huang, S.; Chaudhary, K.; Garmire, L.X. More Is Better: Recent Progress in Multi-Omics Data Integration Methods. Front. Genet.
2017, 8, 84. [CrossRef] [PubMed]
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