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A B S T R A C T

Type 2 diabetes mellitus (T2DM) is a highly heterogeneous chronic disease with different pathophysiological
and genetic characteristics affecting its progression, associated complications and response to therapies. The
advances in deep learning (DL) techniques and the availability of a large amount of healthcare data allow us
to investigate T2DM characteristics and evolution with a completely new approach, studying common disease
trajectories rather than cross sectional values. We used an Kernelized-AutoEncoder algorithm to map 5 years
of data of 11,028 subjects diagnosed with T2DM in a latent space that embedded similarities and differences
between patients in terms of the evolution of the disease. Once we obtained the latent space, we used
classical clustering algorithms to create longitudinal clusters representing different evolutions of the diabetic
disease. Our unsupervised DL clustering algorithm suggested seven different longitudinal clusters. Different
mean ages were observed among the clusters (ranging from 65.3±11.6 to 72.8±9.4). Subjects in clusters
B (Hypercholesteraemic) and E (Hypertensive) had shorter diabetes duration (9.2±3.9 and 9.5±3.9 years
respectively). Subjects in Cluster G (Metabolic) had the poorest glycaemic control (mean glycated hemoglobin
7.99±1.42%), while cluster E had the best one (mean glycated hemoglobin 7.04±1.11%). Obesity was observed
mainly in clusters A (Neuropathic), C (Multiple Complications), F (Retinopathy) and G. A dashboard is available
at dm2.b2slab.upc.edu to visualize the different trajectories corresponding to the 7 clusters.
1. Introduction

Type 2 diabetes mellitus(T2DM) is a chronic and highly prevalent
disease ranking as eighth in terms of the overall burden of diseases
measure developed by WHO [1]. According to the International Dia-
betes Federation, estimates of the disease’s prevalence showed alarming
increases since 2000, tripling the number of affected subjects in 2019 to
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463 million [2]. Moreover, projections for the future indicate that the
global impact of diabetes is likely to continue increasing considerably.

Nowadays, the evidence suggests that T2DM is a complex highly
heterogeneous metabolic disease that encompasses different pathophys-
iological and genetic pathways [3]. The presentation and progression
of the disease can vary between subjects leading to poor glycemic and
metabolic control [4]. Indeed in Europe alone, the European Medicines
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Agency (EMA), for the period between 2005 and 2017, approved 40
new drugs to treat diabetes [5]. In Catalonia (Spain), according to
previously published data, 43.9% of the T2DM subjects did not reach
an adequate glycemic control [6]. This issue might be since T2DM
diagnosis is oversimplified via the assessment of blood levels of glucose
only.

The availability of routinely collected data from Electronic Health
Records (EHR) in recent years had a huge impact on clinical, pharma-
coepidemiologic and health services research, but the accuracy, quality
and heterogeneity of these data remain challenging to handle [7]. In
the case of the diabetic disease, for example, they have been recently
used to point out the complexity of T2DM and its pathophysiological
phenotyping [3,8]. In 2018, a seminal study from Sweden, identified
five novel clusters of subjects [3]. In a large Danish study of newly
diagnosed T2DM, authors identified several distinct pathophysiological
phenotypes according to beta cell function and insulin sensitivity [8].
However, these attempts to study different phenotype clusters in the
diabetic population have been done with cross sectional studies, rather
than focusing on the clinical evolution of the disease. Even if some
attempts to study typical T2DM trajectories exists [9–11], these are
limited to few factors that influence the evolution of the diseases,
e.g. a limited subset of common comorbidities [9], or the evolution
of few variables as the glycated hemoglobin (HbA1c) [10] or the
body mass index (BMI) [11]. To the best of our knowledge, there are
no studies focused on the whole evolution of the disease and that
take into consideration several factors including comorbidities, medical
treatments, HbA1c changes over time and other important variables for
the description of the disease.

Deep learning (DL) has been proved to be very effective in the
design of multivariate patient trajectories, especially for databases with
many missings values, which is very common among data collected
from EHRs, e.g. [12,13]. Even if the in recent years the number of
DL models to extract temporal information from EHRs has notably
increased, several challenges remain to be handled, with the major
ones being irregularity, sparsity and heterogeneity of the data and the
opacity of the models due to their black box nature [14].

The proper clusterization of T2DM subjects by their clinical char-
acteristics is a major issue. Progress in this field should enable us to
implement different strategies of precision medicine and include diag-
nostic algorithms for defining diabetes subtypes in order to implement
the most appropriate clinical decisions [15].

The objective of this study is to exploit the potential of unsupervised
deep learning algorithms to create different longitudinal phenotype
clusters of T2DM patients using routinely collected data extracted from
EHR. Hence, throughout this work, we make the following contri-
butions: on one hand we adapt a novel DL model, the kernelized
autoencoder (K-AE) [16] to work with EHR data, handling the problem
of sparsity and irregularity of the data with a different kernel matrix
and a different imputation process and trying to reduce the opacity of
the model showing the results and the AE latent space in an interactive
dashboard available at dm2.b2slab.upc.edu; on the other hand, we
use this model to calculate longitudinal clusters of the T2DM disease,
studying different typical trajectories.

2. Material and methods

2.1. Data source and study population

Data from this study were extracted from the Information System for
the Development of Research in Primary Care (SIDIAP) database [17]
from January 1st 2013 to December 31th 2017. This database contains
data from Electronic Health Records collected from approximately
5.6 million patients registered from 287 Primary Care Centers (PCC)
in Catalonia. The SIDIAP database contains data on demographics,
2

patient visits with health professionals, diagnoses, clinical variables,
lifestyles information, medications prescriptions/dispensations and re-
ferrals to specialists, and laboratory test results, introduced by health
professionals during routine health surveillance and health care.

We selected only subjects diagnosed with type 2 diabetes (ICD-10
diagnostic codes: E11 and E14 and their sub codes) [18]. In addition,
subjects were not eligible if they were under 18 years old or they had
other types of diabetes such as type 1 diabetes, secondary or gestational
diabetes. For each eligible patient, clinical and analytical variables
were available, such as glycated hemoglobin (HbA1c), body mass index
(BMI), diastolic and systolic blood pressure (DBP and SBP), lipid profile
and renal function. Furthermore, data on antidiabetic treatment (drugs
in the A10 group of ATC classification) [19] and diagnosis of the most
common comorbidities of diabetes were also available. ATC codes of
the antidiabetic treatments grouped per pharmacological class and ICD-
10 codes of the comorbidities are reported in Supplementary Tables
S1 and S2 respectively. We included only patients that had more than
18 years at the moment of the T2Dm onset, with at least three measures
for a minimum of two variables in the period under analysis, and who
had at least one measure of HbA1C and BMI. The T2DM onset date
was estimated for each subject as the minimum date between the date
of the first T2DM diagnosis, the first prescription of the antidiabetic
drugs, or the first measure of HbA1c>7% . The latter value was adopted
s for an important part of the study subjects an initial HbA1c was
etermined before 2010, when HbA1c was standardized and accepted
s a diagnostic criterion for diabetes. Thus, this algorithm was stricter
ut, at the same time, more precise in identifying the time of diagnosis
f T2DM in our database.

.2. Data preprocessing

Since routinely collected data extracted from EHR can contain
rrors arising from several different factors, we used clinical criteria
o remove any extreme values that could potentially be measurement
rrors. Removed values are reported in Supplementary Tables S3. The
tudy subjects diagram is presented in the Supplementary Figures S1.
o mitigate the problem of irregularity of the data we represented each
atient as a multivariate time series (MTS) 𝑃𝑖 ∈ R𝑛𝑡,𝑖×𝑛𝑣 where:

• 𝑛𝑣 is the number of variables considered for the analysis. We
used the following variables: age, age at diagnosis of the sub-
jects, sex, diabetes duration, five binary signals representing
common diabetes secondary conditions (cardiovascular disease
(CVD), chronic kidney disease (CKD), neuropathy, high blood
pressure (HTN), and ophthalmological complications),nine phar-
macological classes of antidiabetic drugs and 10 clinical and ana-
lytical variables (HbA1c, BMI, SBP, DBP, High-density lipopro-
tein (HDL), Low-density lipoprotein (LDL), Total cholesterol,
triglycerides (TG), Creatinine and albumin to creatinine ratio
(ACR)).

• 𝑛𝑡,𝑖 is the number of time steps. Since every patient had an
almost unique combination of number and frequency of measured
variables, we standardized medical examinations dates, creating
a temporal grid from January 1st, 2013 to December 31st, 2017,
with a fixed frequency of six months. Then, we re-sampled the
date of each examination according to this grid. In the case of
two or more examinations inside the same time interval of the
temporal grid, we used their mean value. Hence, we linearly
interpolated these points. For this reason the maximum number
of time steps is 10, but it can be lower, for example in the cases
of patients who died before the end of the study.

The combination of measured variables and dates of the measure-
ments changed from patient to patient, implying the possibility of
missing values in the matrix Pi. We imputed such data using a two-
step algorithm: firstly, we imputed missing values for a variable 𝑣𝑛
when a patient had at least two existing measurements. For this we

defined for each variable a mixed model, using the other variables as
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fixed effects and the patient as random effect. For each variable the
best mixed model was chosen using the Bayesian Information Criterion
(BIC). In the second step, we estimated values of 𝑣𝑛 for patients having
no, or just one, measures of that variable by using the Iterative Robust
Model-Based Imputation (IRMI) [20] algorithm.

The Kernelized AutoEncoder To cluster patients considering the whole
evolution of different variables during the five years of the follow-up
period we used a Kernelized AutoEncoder (K-AE) [16], a deep learning
model that can learn the representation of MTS mapping them in a
latent space that embeds similarities and differences between patients.
The MTS inputs that contain data extracted from EHRs of the patients
are mapped in the latent space by an encoder built on a bidirectional
stacked LSTM layer [21]. Then the decoder, composed by another
stacked LSTM, maps the vectors in the latent space back in the original
MTS. Furthermore, vectors in the latent space are aligned to a kernel
matrix K built from the original MTS. Hence the model is trained with
a cost function that is the weighted sum of the reconstruction error and
the kernel alignment cost, namely:

𝐿 = 𝛼𝑑
1
𝑛𝑝

𝑛𝑝
∑

𝑖=1
𝑀𝑆𝐸(𝑃𝑖, 𝑃𝑖) + 𝛼𝑘

‖

‖

‖

‖

‖

𝑍𝑍𝑇

‖𝑍𝑍𝑇
‖𝐹

− 𝐾
‖𝐾‖𝐹

‖

‖

‖

‖

‖𝐹
(1)

Where:

• 𝛼𝑑 and 𝛼𝑘 are the weights of the reconstruction loss and kernel
alignment cost functions respectively.

• 𝑃𝑖 is the estimation of the MTS 𝑃𝑖 made by the decoder.
• 𝑛𝑝 is the number of patients.
• 𝑀𝑆𝐸(𝑃𝑖, 𝑃𝑖) is the Mean Square Error between the reconstructed

and the original MTS calculated for each patient for 𝑛𝑡,𝑖 time steps
available for that patient.

• 𝑍𝑍𝑇 ∈ R𝑛𝑝×𝑛𝑝 is a matrix containing the dot products of the
representations in the latent space of the MTS.

• ‖ ⋅ ‖𝐹 represents the Frobenius norm.
• K is the kernel matrix for the alignment.

2.3. Kernel matrix

In the original K-AE proposed by Bianchi et al. the kernel matrix
was based on the time series cluster kernel [22]. Since this algorithm is
based on some assumptions on the data (that are described as Gaussian
Mixture Models with a time dependent mean and a constant covariance
and missing values that must be Missing At Random), we decided to
use a different kernel matrix based on the less restrictive Fast Global
Alignment kernel (GAK) [23].

Practically, our kernel matrix K was obtained by iterating the origi-
nal GAK algorithm several times using at each iteration a different set of
variables to mitigate the possible effects of errors due to the imputation.
At each iteration the unnormalized GAK was computed using only a
random subset of variables chosen among the 10 clinical variables,
the diagnosis and the pharmacological treatment (except for the first
iteration in which all these variables were used) and it is added to the
precedent GAK value. At the end of the iterations K was normalized to
have 1 on the principal diagonal. This kernel alignment should help the
Encoder create a latent space that better represents patients’ evolutions
and maintains distances between patients.

All these steps have been implemented in Python 3.8.10, using
Tslearn 0.4.1 [24] for the creation of the kernel matrix and Tensorflow
2.4.3 [25] to create and define the deep learning model.

2.4. Clusters definition and validation

Once we obtained the vectors in the latent space, we divided pa-
tients into different clusters testing different state of art algorithms for
clustering (k-mean, clara, and hierarchical clustering) in this space [26].
The definition of the optimal number of clusters in a vector space can
be a delicate issue. This is true especially in this case where a series
3

of hyperparameters, such as the dimensions of the different layers and
the importance given to the kernel alignment, can affect the structure
of the latent space, changing the distribution of the clusters. Optimal
cluster number and hyperparameters have been chosen maximizing
mean silhouette width calculated not in the clustering space (i.e. the
latent space of the K-AE) but in the space defined by the original data
of the subjects. Once we obtained the clusters in the latent space using
different configurations of the K-AE, clustering algorithm and number
of clusters, we divided the study period into ten intervals of 6 months
each. Then, for each interval we considered only those patients that
had at least a measure of HbA1c and BMI. We calculated the silhouette
width for the period considering, aside from the two variables just
mentioned, also the pharmacological treatment, the comorbidities, the
age and the diabetes duration in the corresponding period.

Clusters were defined separately for men and women. Once we ob-
tained the clusters for both sexes, we matched them to pair each cluster
of men with a cluster of women. In order to do so, we represented
each cluster with a vector with the mean of all values of the patients in
that cluster, and we calculated the euclidean distance between men and
women clusters, pairing clusters according to the minimum distance.

To validate our clustering method, we also clusterized patients using
the same variables used to create the latent space considering not their
evolution but rather a baseline value, similarly to what was done in
other works [3,8]. All results were also compared with a random cluster
as a reference.

The clinical characteristics in each cluster were described for mean
and standard deviation for continuous variables and frequencies and
percentages for categorical variables. The evolution of different vari-
ables for each cluster has been tested using linear mixed models count-
ing for sex and age of the patient as a random effect and studying the
effect of each cluster on the variable evolution respect to the disease
duration. The percentages of patients diagnosed with comorbidities or
that received a given drug prescription for each cluster was tested
with the two-proportion z-test (𝛼 = 0.05). The statistical analyses were
performed using R3.6.3 software [27].

3. Results

3.1. Clusters validation results

In order to better visualize results of this work we developed a web
app available at dm2.b2slab.upc.edu.

After applying the inclusion criteria, we obtained 11,028 patients,
of which 5226 women and 5802 men. Patients’ age (calculated at
01.01.2013) ranged from 24 to 100 years, with a mean of 69.8±10.6
years. Age at T2DM onset ranged from 18 to 91 years, with a mean of
59.4±10.9 years. Of these patients, 8790 were still active at the end
of the study, 1793 died during the analyzed period and the remain-
ing 445 were transferred from the database. Mean age at death was
81.4±8.7 years.

Clusterization and validation have been carried out separately for
sexes, obtaining in both cases an optimal number of clusters equal
to 7. The relationship found between men and women clusters was
bijective, i.e. each cluster of one sex was paired with exactly one cluster
of the other sex and the other way around. For both sexes, the best
configuration of parameters of the K-AE generated a latent space that
can be used to cluster patients better with respect to using a baseline
value for each variable, as reported in Fig. 1.

3.2. Clusters description

The main statistics of the seven clusters are reported in Table 1,
while Fig. 2 contains the mean values of the different variables such
as drug usage and comorbidities for the different clusters. Numerical
values for these variables are reported in Supplementary Tables S4, S5
and S6.

http://dm2.b2slab.upc.edu/
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Fig. 1. Mean silhouette width evolution. Colors represent different clustering methods: green lines for clusters obtained with our K-AE model; blue lines for clusters obtained
with a single basal value; and red lines for random clusterization. Dot and continuous lines represent respectively women and men clusters. K-AE used to cluster women had the
following parameters: encoder dim. = 200; decoder dim. = 100; Latent space dim. = 200; 𝛼𝑘 = 0.4. K-AE used to cluster men had the following parameters: encoder dim. = 150;
decoder dim. = 200; Latent space dim. = 150; 𝛼𝑘 = 0.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Graphical representation of variables, comorbidities and drug usage for the seven clusters (Neuropathic Cluster-NC, Hypercholesteraemic Cluster-HCC, Multiple
Complications Cluster-MCC, Vascular Disease Cluster-VDC, Hypertensive Cluster-HTC, Retinopathy Cluster-RC, and Metabolic Cluster-MC) for women and men. Variables
plots represent the mean value of all the measures of the corresponding cluster over the analyzed period, comorbidities plots represent percentage of patients in the cluster that have
been diagnosed for the corresponding diseases and drugs plots represent the percentage of patients in the cluster that used at least once one medication in the corresponding class.
Note that CKD-EPI represents 100-eGFR in order to be coherent with other variables where higher values indicate worse values. (Used abbreviation: Chol. Tot.-Total Cholesterol,
Opth.Comp. = Ophthalmological Complications; Neuropt. = Neuropathies; Sulf. = Sulfonylureas, Metfor. = Metformin.).
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Table 1
Main statistics for the seven clusters (Neuropathic Cluster-NC, Hypercholesteraemic Cluster-HCC, Multiple Complications Cluster-MCC, Vascular
Disease Cluster-VDC, Hypertensive Cluster-HTC, Retinopathy Cluster-RC, and Metabolic Cluster-MC).

NC (A) HCC (B) MCC (C) VDC (D) HTC (E) RC (F) MC (G)

All 832 1472 562 1305 4135 1232 1490
Male 315 831 250 893 2065 724 724# patients
Fem. 517 641 312 412 2070 508 766
All 69.4 ± 10.2 65.3 ± 11.6 69.3 ± 10.3 72.8 ± 9.4 71.1 ± 9.9 68.9 ± 10.5 69.2 ± 10.9

Male 68 ± 10.4 64.7 ± 11.6 69 ± 9.5 71.4 ± 9.4 69.2 ± 9.9 66.8 ± 10.1 66.7 ± 11.1Age1 [y]
Mean±SD2

Fem. 70.3 ± 10.1 66.2 ± 11.5 69.6 ± 11 75.7 ± 8.9 73.0 ± 49.7 72 ± 10.3 71.5 ± 10.1
All 58.7 ± 10.5 56.1 ± 11.5 57.4 ± 11.6 62.2 ± 9.8 61.6 ± 10 56.5 ± 11.2 57.8 ± 11.2

Male 57.6 ± 10.4 55.8 ± 11.4 58.1 ± 10.4 61 ± 9.6 60 ± 9.9 54.8 ± 10.5 55.8 ± 11.3Age at diagnosis [y]
Mean±SD Fem. 59.4 ± 10.5 56.6 ± 11.6 56.9 ± 12.5 64.7 ± 9.9 63.2 ± 9.8 59 ± 11.9 59.8 ± 10.8

All 10.7 ± 5.1 9.2 ± 3.9 11.9 ± 6.5 10.6 ± 4.8 9.5 ± 3.9 12.4 ± 6.7 11.3 ± 5.7
Male 10.4 ± 4.5 8.9 ± 3.4 10.8 ± 5.4 10.4 ± 4.5 9.2 ± 3.6 12 ± 6.2 10.9 ± 5.4T2DM duration [y]

Mean±SD Fem. 10.9 ± 5.4 9.5 ± 4.4 12.7 ± 7.2 11 ± 5.3 9.8 ± 4.1 13 ± 7.2 11.7 ± 5.9
All 14.66 10.87 21 26.9 14.07 17.61 16.31

Male 20.32 13.48 22.4 25.98 14.67 17.27 15.33Death [%]
Fem. 11.22 7.49 19.87 28.88 13.48 18.11 17.23

1Age calculated on January 1st, 2013.
2SD: Standard Deviation.
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Similar mean ages were observed for clusters A, C, F, and G. Patients
in cluster B were the youngest in terms of age and age at diagnosis, with
mean values that were statistically lower than all other clusters. The
mean age and age at diagnosis of clusters D and E were statistically
higher than all other clusters but the difference between these two
clusters was not statistically significant. The subjects in cluster F had a
longer period of diabetes duration; however, this value was statistically
similar to cluster C. In the clusters B and E, the subjects had a shorter
period of diabetes duration, with values that are statistically similar
(pairwise t-test with Benjamini–Hochberg adjustment, 𝛼 = 0.05 [28]).
The percentage of deaths was highest in cluster D, followed by cluster
C, while cluster B was the one with the lowest death percentage.

The clusters showed different clinical profiles, as reported in Figs. 2,
3 and in Supplementary Figures S2–S10 and Table S4 . Regarding
glycaemic control, the mean HbA1c ranged from 7.0% to 8.0%. Cluster
G had the worst glycaemic control, while cluster E the best glycaemic
control. The variability of HbA1c was different among the clusters. In
cluster C, we observed stable level of HbA1c, while in clusters A, B, D, E
and F we observed upward trends, with markedly different slopes, that
of cluster B being more than double that of other clusters. In cluster G,
we observed a downward slope over the analyzed period. The majority
of the subjects in the clusters A, C, E, F and G were obese (BMI>30),

hile in clusters B and D subjects were overweight (BMI>25). Cluster
had the highest, and cluster B the lowest, mean BMI. This variable

ended to decrease over time in the clusters A, B, D, E and G; on the
ontrary, it tended to increase for clusters C and F.

Regarding the lipid profile, subjects in the cluster A, B and E were
haracterized by high levels for total cholesterol, LDL and HDL, being
luster B the one with the highest values, while triglycerides were
igher in cluster C and G than the rest of the clusters. Conversely,
luster D was characterized by the lowest levels for HDL, LDL and total
holesterol. For all clusters LDL and total cholesterol tend to decrease
ver time, as well as triglycerides, even if in this case this trend is
ignificant only for clusters B, C, E and G, with the slope of cluster

being more than double of the one of the other clusters. On the
ontrary, HDL remains stable over time, except for clusters B and G
here it tends to increase. The renal profile among the clusters was
lso different. The mean glomerular filtration rate (eGFR) in all clusters
anged from 56.3 to 78.1 ml/min/1.73m2. The lowest (eGFR) was
bserved in cluster C (which also had the highest ACR and creatinine
evels); furthermore, in this cluster we observed a higher decrease of the
GFR. On the contrary, cluster B had the highest eGFR and the lowest
CR and Creatinine, with values that remained stable over time.

Metformin was the most frequently prescribed drug in all of the
lusters, except in cluster G subjects in whom the most frequently
5

rescribed drug was insulin. In cluster B, 86.6% of the subjects had o
metformin prescription at some time during the analysis period. This
ercentage is significantly higher than in all other clusters. In contrast,
luster C was the one with the lower percentage of patients treated with
etformin (77.4%). Sulphonylureas were mainly prescribed in cluster E

nd B (44,6% and 44.4%) with percentages that are statistically similar
o each other, and higher than in all other clusters. In cluster G, the
ighest percentages of prescriptions of all other classes of antidiabetic
rugs (SGLT-2i, DPP-4i and arGLP1) occurred. Subjects in this cluster
ere also more frequently insulin-treated (97,5%), followed by cluster
(70.28%), while subjects in cluster E were the least frequently treated
ith insulin (8.6%). In all cases, the percentages of insulin-treated
atients were significantly different among all clusters. The results of
he usage of antidiabetic drugs among the clusters are presented in
upplementary Table S5.

The distribution of common comorbidities among the clusters was
lso different. Cardiovascular complications were almost entirely rep-
esented in cluster D (the oldest), significantly higher than in all other
lusters. For instance, cardiovascular disease was only found in 2.2%
f the subjects from clusters B and E. Neuropathy occurred mostly in
luster A, while in cluster E, the complication only occurred in 4.1%
f the subjects. Renal complications were primarily present in cluster
(69.4%), while the percentage in other clusters was much lower,

anging from 1.88% in cluster E to 0.2% in cluster B. High blood
ressure was very common in all clusters, except for cluster B: in cluster
it was present in all patients, while in other clusters it ranged from

1% to 81%, except for cluster B where it was 9.24%. In contrast,
phthalmological complications were primarily prevalent in cluster
, followed by cluster C, while in other clusters, this complication
ccurred less frequently.

Due to differential clinical factors, we named cluster A as Neuro-
athic Cluster (NC), cluster B as Hypercholesteraemic Cluster (HCC),
luster C as Multiple Complications Cluster (MCC), cluster D as Vascular
isease Cluster (VDC), cluster E as Hypertensive Cluster (HTC), cluster
as Retinopathy Cluster (RC) and cluster G as Metabolic Cluster (MC).

. Discussion

Results of our unsupervised deep learning cluster analysis suggest
even longitudinal phenotype clusters of T2DM persons with different
linical evolutions.

Health care professionals often need to identify, quantify, and in-
erpret relationships among different health variables [29]. Access to
ig real-world clinical data and the advances in artificial intelligence
pplications in recent years has made it possible to develop algorithms
hat generally are more accurate for the prediction and classification

f patients [29]. Increasingly, deep learning is changing the analysis
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Fig. 3. HbA1c and BMI evolution calculated over a period of 10 years for the seven clusters (Neuropathic Cluster-NC, Hypercholesteraemic Cluster-HCC, Multiple
Complications Cluster-MCC, Vascular Disease Cluster-VDC, Hypertensive Cluster-HTC, Retinopathy Cluster-RC, and Metabolic Cluster-MC). Dot lines represent the mean
values while intervals represent lower and upper quantiles computed with 0.95 confidence intervals.
of databases extracted from EHRs. It requires less manual feature
engineering, while the high volume and coverage of healthcare datasets
enable successful training of complex deep learning models [30].

In general, architectures based on AEs have proven to be optimal
when dealing with data extracted from EHR. In DeepPatient [13], the
authors suggest that a vector of features learned without supervision
can be used effectively for several tasks, from disease prediction to
clustering. In [12], the authors showed that an architecture based on a
variational AE can be used to cluster longitudinal data from patients,
resulting in purer clusters than in methods not based on unsupervised
deep learning. Similar results were achieved in [31], where a denoising
AE was used to derive patients representations to be used for prediction
and study of patient similarity. As for these studies, also our results
suggest that patient representation obtained through our K-AE model
can be used to obtain better clusters with respect to classical techniques
not based on DL.

The diagnosis of T2DM is made on chronically elevated blood
glucose concentrations and on exclusion of other forms of diabetes
(autoimmunity, pregnancy, pancreatic disease. . . ) [32]. The fact that
this diagnosis process is based only on one consequence of the diseases
(high HbA1c) and on exclusion criteria should admonish us to the lack
of understanding we have of the diseases causes and on the urge to
develop precision medicine for diabetes [32]. One step further is this
6

field is represented by the stratification of T2DM patients in different
groups on the basis of different clinical characteristics [33]. To date,
several studies have been published regarding the possible phenotyping
of T2DM, although none of them clustered patients based on the evo-
lution of the disease. They rather stratified them based on observations
at a single time (e.g. at diagnosis), possibly analyzing the evolution
of the diseases for a limited period of time after the observations,
but only once the patients were stratified. This limits the affidability
of the clusters and also their applicability in clinical practice, since
these studies are often based on the measures of variables that are
not routinely collected in clinical practice [15]. To the best of our
knowledge, this is the first time that the evolution of T2DM has been
investigated through longitudinal clusters. Our algorithm, in fact, used
a K-AE to map 5 years of routinely collected data from EHR in a latent
space that embedded the different characteristics and trajectories of
patient phenotypes.

One of the most recent works related to T2DM phenotype clustering
was realized by Ahlqvist et al. [3]. Five different clusters were identi-
fied based on six different variables measured at diagnosis, these being
glutamic acid decarboxylase (GAD) antibodies, age at diagnosis, BMI,
HbA1c, and homoeostasis model estimates of 𝛽-cell function (HOMA-B)
and insulin resistance (HOMA-IR). According to clustering of subjects
based on these phenotypic variables, five subgroups were defined: SAID
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severe autoimmune diabetes; SIDD, severe insulin-deficient diabetes;
SIRD, severe insulin-resistant diabetes; MOD, mild obesity-related di-
abetes; MARD, mild age-related diabetes. Even if this study has been
confirmed by subsequent works, although with some differences due
to the variables used [34] or the population [35], a recent study sug-
gested that in five years from diagnosis, approximately a quarter of the
patients changed cluster with respect to their initial classification [36].
This result suggests that T2DM is a complex disease that shows different
phenotype trajectories that can hardly be described by a cross sectional
study.

Our deep learning algorithm suggested 7 typical trajectories inside
the diabetic population with different evolutions of the disease. The
Multiple Complications and Metabolic clusters have the highest BMI, a
high percentage of insulin drugs use (70.3% and 97.5%, respectively)
and a percentage of Metformin usage lower than in other clusters.
Moreover, in the Multiple Complications Cluster, we observed higher
percentages of renal complications (69.4%) and the highest levels of
ACR, with signs of macroalbuminuria. In the Metabolic Cluster the
percentage of renal complications is much lower but still it is the
second highest one. This is also the only cluster in with both BMI
and HbA1c tend to decrease over time. It is interesting to note that
those two clusters share some similarities with the SIRD cluster (high
BMI, renal complications,..) and that they could represent two pos-
sible evolutions of patients that at diagnosis were assigned to this
cluster, with the Metabolic Cluster characterized by a more intense
pharmacological treatment. The Vascular Disease and Hypertensive
clusters were composed by older subjects (compared with the rest of
the clusters at the moment of diagnosis) and both of them showed
better glycaemic control with respect to other clusters (mean HbA1c
7.3%±1.3 and 7.0%±1.1, respectively). Also in this case, these two clus-
ters share similarities with the MARD cluster and they show different
treatments, with the Vascular Disease cluster characterized by a higher
use of insulin. The Hypercholesteraemic cluster was characterized by
an early age at diagnosis of T2DM, and relatively low BMI, that tends
to decrease over time, sharing some similarities with Ahlqvist SAID
and SIDD clusters. Their SIDD cluster can also be compared with our
Retinopathy Cluster, characterized by a similar age at diagnosis but a
higher BMI that slightly increases over time with respect to the HC.
Moreover, both SIDD and our RC clusters had the highest percentage
of ophthalmological complications. Finally, the Neuropathic cluster is
similar to the RC in terms of Hba1C and BMI but with a higher age at
diagnosis and a shorter diabetes duration.

Recent guidelines on treatment of diabetes highlighted the im-
portance of personalized treatments for risk management of patients
with T2DM [37]. From this point of view, subclassification of T2DM
patients could be a powerful tool for the personalization of diabetic
management [38]. The treatment of different risk factors and compli-
cations (such as CVD, obesity, CKD, and others) is in fact often decided
separately, without discussions on the whole clinical phenotypic evo-
lution of diabetes in each individual patient [38]. Our unsupervised
algorithm suggested 7 different longitudinal clusters of patients that
showed different clinical profiles, but that also had different treatments
and comorbidities. As mentioned before, for instance, the Metabolic
and the Multiple Complication Clusters share common phenotypic char-
acteristics such as age at diagnosis, diabetes duration and high levels
of HbA1c. However, the pharmacological treatment in the Metabolic
Cluster is more intensive, while the rate of patients developing comor-
bidities (such as CVD and ophthalmological) were much lower. Further
studies will be necessary to evaluate the future clinical applications
of the proposed stratification. The proposed approach, once validated
and improved, might be a useful instrument to support the clinical
management of type 2 diabetes.

The present study has some limitations. Firstly, we only have access
to a limited amount of health care data and for a limited period of time
(5 years). Therefore, the clustering would be more precise if possible
7

linkage with genetic data or specific laboratory parameters related to g
𝛽-cell function. Secondly, data came from the routine clinical practice
of primary care attended T2DM subjects, hence there was missing data.
To minimize the effect of this, we only filtered subjects who had a
minimum of two variables measured during the analyzed period and
had at least one measure of HbA1C and BMI. It should also be noted
that recent studies have questioned the utility and existence of different
clusters in the T2DM population [39,40]. Besides the clusters described
in current work, the main advantage of its technique is to map patient
data into a single vector of the latent space. Distances between different
vectors embed differences between the patients they represent in terms
of the evolution of the disease, obtaining a metric to evaluate patients’
similarities. Such representations could represent a further step toward
precision medicine in diabetes but also in the management of all the
chronic diseases, since it relies only on routinely collected data and
can potentially be applied to the study of all chronic diseases.

Another limitation of the methodology is the interpretability. Deep
learning models can produce accurate predictions; however, the pres-
ence of the black-box models decreases the interpretability and trans-
parency of their inner workings. This may be an important issue since
clinicians often are unwilling to accept machine recommendations
which lack clarity as to their underlying reasoning [30]. In order
to make our results clearer, we developed an interactive dashboard
showing the evolution of the clusters but also a representation of the
latent space obtained by the K-AE.

In conclusion, using unsupervised deep learning algorithms on rou-
tinely collected health care data from primary care centers in Catalonia,
seven different clusters were obtained in terms of evolution of clinical
characteristics, comorbidities, and important outcomes. Although our
finding confirms the heterogeneity of the T2DM subjects, further stud-
ies are needed to provide more clinical and genetically enriched data
to perform more precise type 2 diabetes subtype clustering. The de-
velopment of unsupervised deep machine learning might be a valuable
tool for future applicability in decision-support to help clinicians in the
management of T2DM or other chronic diseases. Ultimately these inno-
vative methodologies will help develop precise strategies to implement
and improve disease management, using a more individualized target
approach.
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