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Abstract—This paper presents a differential-mode 
microwave microfluidic sensor useful for the 
characterization/detection of the denaturation of Bovine 
Serum Albumin (BSA), a protein with numerous biochemical 
applications, caused by a chaotropic agent, specifically, urea. 
The sensor consists of a pair of uncoupled microstrip lines, 
each one loaded with a transversally oriented slot resonator, 
etched in the ground plane. The sensor is a device able to 
detect permittivity changes in the so-called material under 
test (MUT), or liquid under test (LUT), as compared to a 
reference (REF) material/liquid. However, since the changes in the permittivity of the BSA caused by the denaturation 
process are partially obscured by the presence of the urea in the LUT, a protocol to separate the effects of the urea in 
the sample is proposed. According to such protocol, two different BSA samples, with different concentrations, are 
needed. It is shown that, with such a method, the denaturation process can be detected and characterized through the 
so-called hydration contrast, related to the measured difference of the output variables (the cross-mode transmission 
coefficient) in both BSA samples. The reported protocol and denaturation detection method based on differential-mode 
microwave sensing, which has never been reported so far, provides hydration contrasts of 0.06 for 6M urea 
concentrations. 

 
Index Terms—Bovine serum albumin (BSA), defect-ground-structure (DGS), differential sensor, microfluidics, 

microwave sensor, protein denaturation, slot resonator.  

 

 

I. INTRODUCTION 

ICROWAVE sensors have been applied to the 

characterization of a wide diversity of materials and 

substances, as well as to the measurement of variables of 

different type, including physical, chemical, and biological 

variables. Among them, planar microwave sensors have been 

the subject of an intensive research activity in recent years, 

caused by the advantages of such sensors over non-planar 

sensors (e.g., waveguide or cavity sensors), including lower 

cost and profile, compatibility with additive and subtractive 

fabrication processes, potential for the implementation of 

conformal sensors and “green” sensors, and compatibility with 

other technologies, in particular microfluidics, among others.  
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Microwave sensors are devices sensitive to the dielectric 

properties of their surrounding medium, particularly, the 

permittivity. Nevertheless, there are many physical, chemical 

and biological variables that are intimately related to the 

permittivity. Therefore, microwave sensors are useful for a 

wide variety of applications, including moisture measurements 

[1]-[4], temperature measurements [3]-[5],[6] determination of 

motion variables [7]-[17], defect detection [18]-[19], solute 

concentration measurements in liquid solutions [20]-[24], 

liquid characterization [25], electrolyte concentration 

measurements in bio-samples [26],[27], non-destructive and 

label-free cellular analysis [28]-[30], or dielectric spectroscopy 

of biomolecules [31]-[37], to cite some of them. In many of the 

previous applications where the samples are liquids, the planar 
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sensors are combined with microfluidic channels [18],[20]-

[24],[26],[27] in order to drive the liquid under test (LUT) to 

the sensitive region (nevertheless, there are examples of sensors 

based on small liquid containers [25], as well as sensors where 

the sensitive element is a probe that can be submersed in the 

LUT [38]-[40]). In this paper, we report a microwave 

microfluidic sensor devoted to the detection and 

characterization of the hydration modification in a protein, 

particularly Bovine Serum Albumin (BSA), subjected to a 

chaotropic agent, i.e., urea. The urea acts as a denaturing agent, 

disrupting the hydrogen bonding network between water 

molecules and reducing the stability of the native state of the 

protein by weakening the hydrophobic effect, thereby 

denaturing the protein and modifying the structure of the BSA 

from a fully folded macromolecule to an unstructured unfolded 

coil, as depicted in Fig. 1.  

Usually, traditional techniques used to evaluate the 

denaturation of proteins are based on optical methods such as 

circular dichroism, UV-visible absorbance and fluorescence 

microscopy. Even if efficient, these techniques are delicate to 

use, suffer from rapidity and may also request labelling, thereby 

being costly and time-consuming. Demonstrating the possible 

detection of the denaturation of proteins with microwave 

sensing is consequently of great interest. It is expected that the 

dielectric properties of BSA change as consequence of 

denaturation. Thus, the use of microwave sensors seems to be 

an interesting approach for the detection of the denaturation 

process since microwave sensing is highly sensitive to water 

content and especially the ratio of bounded and free water 

molecules. However, the presence of the denaturing agent 

(urea) is expected to also generate a significant change in 

dielectric properties of the composite, actually a solution of 

BSA and urea. Thus, a method to cancel the effects of urea will 

be reported. The interest for the present study is justified by the 

fact that BSA constitutes a well-known molecule for chemists, 

and it is often chosen as a model since it can be subjected to 

simple and easy-to-control denaturation processes with 

different techniques, i.e., temperature, or a chaotropic agent, 

such as urea, the case considered in the present work. 

Additionally, it is present in blood plasma and circulatory 

system. It binds with ligand and contribute to 80% of the 

osmotic blood pressure, and is also responsible for maintaining 

blood pH [41]. Small changes in the local environment of a 

protein can cause structural changes and, thereby, affect the 

original function of the protein, which is of great interest in 

understanding folding/unfolding dynamics [42]. 

 
 
Fig. 1. Sketch showing the denaturation of BSA. 

 Concerning the proposed sensing structure, it is based on a 

differential-mode topology, where two uncoupled microstrip 

lines are loaded with transversally oriented slot resonators, the 

sensing elements. A differential-mode sensing scheme has been 

chosen because it has been found that significant sensitivities 

and very good resolutions result by considering the cross-mode 

transmission coefficient as the differential output variable 

(examples of these sensors are reported in [26],[27],[43]). Other 

differential sensors can be found in [44]-[46]. On the other 

hand, it has been demonstrated that DB-DGS-loaded and slot-

loaded microstrip lines exhibit a very strong dependence of its 

resonance frequency with the dielectric constant of the material 

(solid or liquid) in contact with the resonator [47], and this is a 

key aspect in order to achieve high sensitivity in the cross-mode 

reflection coefficient when the sensor operates differentially. 

Additionally, differential sensors are robust to cross-

sensitivities potentially caused by changing ambient factors 

(e.g., temperature or humidity), since these environmental 

variables are seen as common-mode stimuli by such sensors. 

By contrast single-ended sensors, typically based on frequency 

variation [25],[48]-[57] or phase variation [16],[19],[58]-[62], 

are less tolerant to the effects of changing ambient factors 

(though they are, in general, smaller).  

 The work is organized as follows. The topology, the circuit 

model and the working principle of the sensor are reported in 

Section II. Section III includes the fluidic part of the sensor and 

reports the first tests by considering the single-ended version of 

the slot-based sensor and different LUTs involved in this work, 

particularly DI water, phosphate-buffered saline (PBS), and two 

solutions of BSA in PBS. The characterization of the BSA 

denaturation caused by urea is the subject of Section IV. 

Finally, the main conclusions of the work are highlighted in 

Section V. 

II. SENSOR TOPOLOGY, CIRCUIT MODEL AND WORKING 

PRINCIPLE 

The topology of the single-ended version of the proposed 

slot-based sensor (excluding the fluidic channels) and the 

equivalent circuit model are depicted in Fig. 2. This sensor 

exhibits a notch in the frequency response dictated by the 

following frequency [63] 

𝑓0 =
1

2𝜋
(𝐿𝐶

𝜀𝑟+𝜀𝑀𝑈𝑇

𝜀𝑟+1
)

−1/2 

                         (1) 

where C and L are the capacitance and inductance, respectively, 

of the slot resonator in contact with air, ɛr is the dielectric 

constant of the substrate and ɛMUT is the dielectric constant of 

the material under test (MUT), or, in our specific case, liquid 

under test (LUT). In the model, G accounts for the dielectric 

losses of the substrate, whereas GMUT and CMUT model the 

presence of the MUT, contributing to the enhancement of the 

conductance, and capacitance of the slot resonator. The access 

lines to the slot resonator are described by the characteristic 

impedance Z0 and electrical length l, where  and l are the 

phase constant and length, respectively, of such lines. Note that 

the validity of the model is restricted to frequencies in the 

vicinity of slot resonance (around 1 GHz in the present work), 
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since the considered resonators (slots) are distributed elements. 

The choice of this frequency obeys a trade-off. At lower 

frequencies, larger sensor dimensions result. At higher 

frequencies, the measurements are more complex. In addition, 

the changes in the permittivity of the samples at this frequency 

are enough to be detected.  

Note that the validity of (1) is subjected to the presence of 

thick enough substrate and LUT, to consider that the field lines 

generated by the slot resonator do not reach the opposite 

extreme of the substrate or LUT (semi-infinite substrate and 

MUT approximation). The relative sensitivity, a key figure of 

merit, is given by 

𝑆 =
1

𝑓0

𝑑𝑓0

𝑑𝑀𝑈𝑇
                                      (2) 

and, after some simple calculation, it can be expressed as 

𝑆 = −
1

2

1

(𝑟+𝑀𝑈𝑇)
                                   (3) 

From (3), we can deduce that, as reported in [63], the relative 

sensitivity does not depend on the geometry of the slot 

resonator. Moreover, for high dielectric constant MUTs, such 

as liquids (the MUT used in this work), the relative sensitivity 

is dominated by the dielectric constant of such MUT. Thus, the 

dielectric constant of the substrate has a small effect on the 

relative sensitivity of the sensor.  

As mentioned, expressions (1) and (3) are valid provided the 

semi-infinite substrate and MUT approximations are satisfied. 

In practice, the MUT, or the LUT in our case, can be made thick 

enough, so that such approximation holds. However, it is not 

obvious that the substrate can be considered to be semi-infinite 

in the vertical direction, at least for the typical thicknesses of 

most considered commercial microwave substrates. 

Nevertheless, for finite substrates, expressions (1) and (3) are 

valid by replacing ɛr with ɛr,eq, the so-called equivalent 

dielectric constant of the substrate. Such equivalent dielectric 

constant was defined in [63] as the dielectric constant of am 

hypothetical semi-infinite substrate providing the same  

contribution to the capacitance of the slot resonator. Obviously  

 

 

                       (a)                                                      (b) 
 
Fig. 2. Typical topology (a) and circuit model (b) of the proposed slot-
based sensor. Dimensions are given in mm. The ground plane is 
depicted in grey colour.  

 

ɛr,eq < ɛr, but ɛr,eq  ɛr in the limit where the substrate thickness 

is thick enough, so that the semi-infinite approximation is valid. 

The equivalent dielectric constant depends on the ratio between 

the slot width and the substrate thickness, except for the semi-

infinite substrate approximation, where ɛr,eq = ɛr, as indicated  

[63]. This means that if such approximation is not valid, the 

relative sensitivity given by (3) actually depends on the 

geometry of the sensing element. However, as it has been 

demonstrated in [63], the dependence is soft. 

In differential-mode configuration, two independent sensing 

structures are used, one for the reference (REF) material, and 

the other one for the LUT. The topology of such four-port 

structure, based on a pair of identical microstrip lines, each one 

loaded with a slot resonator, is depicted in Fig. 3. The working 

principle in this case is mode conversion caused by symmetry 

disruption, very sensitive to the presence of unbalanced loads 

in the pair of sensing (slot resonator) elements. Namely, if the 

loads of both slot resonators are the same, the responses of both 

lines should be identical, in particular the transmission 

coefficients should satisfy S21 = S43, and mode conversion does 

not arise (this aspect has been corroborated experimentally, 

with the bare, and hence balanced, structure, though the results 

are not shown). Nonetheless, if the REF and LUT resonators are 

loaded with different materials, or samples, S21  S43, and axial 

symmetry is truncated. The differential output variable in such 

sensors is typically the cross-mode transmission coefficient. 

Considering that the lines are uncoupled, the cross-mode 

transmission coefficient is given by [64],[65] 

 

𝑆21
𝐷𝐶 =

1

2
(𝑆21 − 𝑆43)                            (4) 

Inspection of (4) shows that, when both slot-loaded lines are 

identically loaded, or unloaded (i.e., they exhibit the same 

frequency response), mode conversion is prevented and the 

cross-mode transmission coefficient is (ideally) null. However, 

if the sensing slot resonators are loaded with different samples, 

mode conversion arises, and the magnitude of the cross-mode 

transmission coefficient is determined by the level of 

asymmetry. If the response of each individual line is quite 

sensitive to the presence of a material on top of the slot 

resonator, it is expected that a small perturbation in the LUT, 

with regard to the REF liquid, will result in a significant 

variation between the transmission coefficients of both lines, 

which will be reflected in the cross-mode transmission 

coefficient. Indeed, the slot resonators have been chosen as 

sensing elements since these resonant elements exhibit high 

relative sensitivity in their use as single-ended sensors, as 

demonstrated in [47],[63], thereby giving rise to a significant 

sensitivity of the cross-mode transmission coefficient with the 

differential dielectric constant, when the differential-mode 

counterpart is considered. Such high sensitivity of the cross-

mode transmission coefficient with the differential dielectric 

constant, plus the benefits inherent to differential sensing, are 

the main reasons for choosing a differential-mode sensing 

scheme in this work. 
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Fig. 3. Topology of the differential-mode four-port structure sensor 
based on a pair of microstrip lines loaded with slot resonators.  

III. FLUIDIC PART AND VALIDATION TESTS 

For the application of the sensor to the characterization of 

liquid samples, as those considered in the present work, it has 

been necessary to design fluidic channels with the 

corresponding accessories (in order to fix the channel to the 

sensor substrate and to inject the liquids in a controllable way). 

The fluidic channels have been fabricated by means of the DWS 

J29+ 3D Printer using DWS DS3000 biocompatible resin 

material, at 5.8 mm/h print speed and 50 µm layer height. The 

microfluidic tubing has been glued directly to the fluidic 

channel with cyanoacrylate glue. Figure 4 shows the picture of 

the fluidic channel (including dimensions). To attach the fluidic 

channel to the sensor, a 100 µm laser cut double-sided tape 

(TESA 61532) with the same dimensions as the fluidic channel 

has been used. Finally, to avoid substrate absorption, a 50 m 

dry film of polymer (with the acronym DF and similar 

properties to the SU-8 polymer, which is traditionally employed 

in microfluidics) with an estimated dielectric constant of 3.5 has 

been applied on top of the sensing region. The considered 

substrate for the sensor is the Rogers RO4003C with dielectric 

constant r = 3.55, thickness h = 1.524 mm and loss tangent 

tan = 0.0022. 

 
 
Fig. 4. Photograph of the designed fluidic channel including fluidic 
accessories. The dimensions of the fluidic channels are (in mm): lch = 35, 
wch = 6 and hch = 2. 

The first experimental validation tests have been carried out 

by considering only one half of the sensing structure, i.e., it has 

been demonstrated the functionality of the structure as a single-

ended sensor. For that purpose, the fluidic channel has been 

loaded with different LUTs: (i) deionized (DI) water, (ii) 

phosphate-buffered saline (PBS) and (iii) solutions of BSA in 

PBS (at 1 and 2 mg/ml). For the PBS, 2.72 g of (KH2PO4 + 12 

H2O) and 7.16 g of Na2HPO4 were added in 200 mL of DI water 

to obtain the buffer solution at 200 mM and with a pH of 7.4. 

This solution was then diluted in DI water with a buffer/water 

ratio of 1:3 to obtain our phosphate buffer at 50 mM 

(millimolar) and a pH of 7.4. The pH measurement was 

performed using a probe connected to a Hanna Instruments 

HI2211 pH meter. The solution of BSA 2 mg/mL is prepared 

by dissolving 0.2 g of freeze-dried BSA in 100 mL of PBS and 

the solution of BSA 1 mg/mL by diluting the previous solution. 

These first experimental validation tests have had a twofold 

purpose: (i) to check if the sensor sensitivity is good enough, 

and (ii) to verify that there is not liquid leakage by using the 3D 

printed fluidic channels.  

The measured transmission coefficient (magnitude) for the 

different LUTs is depicted in Fig. 5. The measurements have 

been carried out by means of the Copper Mountain 

Technologies C1420 vector network analyzer with the sensor 

located on an anti-vibration table. For each sample, several 

measurements have been repeated independently (three times) 

in order to verify the reproducibility of the results 

(repetitiveness). From Fig. 5, it can be seen that first, and 

foremost, the different LUTs can be clearly differentiated 

(resolved) and, secondly, there is not an appreciable change in 

the resonance frequency (mainly related to the dielectric 

constant of the LUT). The different LUTs mainly modify the 

magnitude of the transmission coefficient in the vicinity of 

resonance. This change in the magnitude of the transmission 

coefficient is attributed to the change of the dielectric loss (loss 

tangent) of the LUT. However, the dielectric constant of the 

different samples scarcely varies, the reason being that the PBS 

and the solutions of BSA in PBS are essentially water solutions, 

dominated by the properties of DI water. The invariability of 

the dielectric constant of the different liquid samples (LUT) is 

fully justified by the fact that the resonance frequency, very 

sensitive to LUT, does not appreciably vary in Fig. 5. Let us 

mention that other sensors based on active configurations have 

been proposed to differentiate the change in the resonance 

amplitude affected by the loss of the material under study 

[66],[67]. 
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Fig. 5. Measured magnitude of the transmission coefficient for the 

different considered LUTs. Line with different styles (solid, dash and dot) 

represents independent measurements.  

IV. DENATURATION OF BSA: PROTOCOL AND RESULTS 

The second and main experimental validation campaign of 

this work has been focused on the characterization of the 

denaturation of BSA using the four-port structure (differential) 

sensor. Figure 6 shows the photograph of the sensor with the 
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fabricated 3D channels, including the capillaries for liquid 

injection. The challenge is the characterization of the 

denaturation process, rather than retrieving the dielectric 

constant and loss tangent of the LUT. Note, however, that the 

denaturation process of BSA in this work is activated by means 

of urea (acting as chaotropic agent). Thus, the presence of urea 

will significantly obscure the changes in the dielectric 

properties of BSA related to the denaturation. Consequently, 

since the proposed sensor is essentially a device able to detect 

changes in the dielectric properties of the LUT, a protocol to 

subtract the effects caused by the presence of urea is needed, to 

be discussed next. Nevertheless, let us mention that, among the 

several chaotropic agents, urea has been chosen to carry out the 

denaturation of BSA because this chaotropic substance 

achieves maximal solubility in the medium (when not used in 

large amounts), resulting in denaturation. The presence of urea 

causes proteins to unfold by competing and disrupting 

hydrogen bonds in the proteins. Preparation of an 8M urea 

solution has been done by introducing 4.8 g of solid urea into a 

10 mL flask and filling it up with phosphate buffer (PBS). From 

this urea solution, concentrations of 1.5M, 3M, 4.5M and 6M 

were obtained by diluting the solution with different PBS 

volumes. 

 

                              (a)                                               (b) 

Fig. 6. Photograph of bottom (a) and top (b) views of the fabricated 
sensor with the 3D channels mounted on top of each sensing region. 

 

For our experiments, two BSA solutions of 1 mg/mL and 2 

mg/mL were prepared. To allow several independent tests 

utilizing the same original liquids, all solutions were separated 

into numerous replicates and kept at 2°C to conserve them. 

Before the beginning of the measurements, the samples were 

placed at room temperature for 30 minutes, while replicates 

were kept frozen for measurement at later stages. The 

measurements started by injecting the buffer solution (PBS) in 

the REF channel and the BSA solution at a concentration of 1 

mg/mL and 2 mg/mL in the LUT channel. These measurements 

served as a reference during the data treatment due to the 

dissolved BSA in PBS. Then, the BSA 1 mg/mL was injected 

in the REF channel, and the mixture of the BSA 1 mg/mL and 

the lower urea concentrated solution (1.5M) in the LUT 

channel. Next, we performed the measurement by injecting 

BSA 2mg/mL in the REF channel and the mixture of BSA 2 

mg/mL and urea at 1.5M in the LUT. Finally, the above-

mentioned measurements were repeated with an increased 

concentration of urea (3M, 4.5M and 6M) for the two 

concentration of BSA (1 and 2 mg/mL). All the measurements 

were repeated three times independently for repeatability 

purposes. 

Following the previous protocol to perform the 

measurements, the following results were obtained. Figure 7 

depicts the cross-mode transmission coefficient (magnitude) for 

each BSA solution (at a concentration 1 mg/mL and 2 mg/mL) 

mixed with the different urea concentration (1.5M, 3M, 4.5M 

and 6M). The reference level, as stated before, was the 

measurement when in the REF channel was injected PBS and 

in the LUT channel only the BSA solution (at 1mg/mL or 

2mg/mL). As it can been seen from Fig. 7, the difference in the 

magnitude of the cross-mode transmission coefficient from 

each measurement is caused by the variation of the input 

variable, mainly, the differential permittivity between the 

liquids at both channels. When PBS is injected in the REF 

channel and the BSA solution (in PBS) in the LUT channel, the 

cross-mode transmission coefficient is roughly null because 

there is not an appreciable difference in the dielectric properties 

between both liquids, thereby preserving the symmetry of the 

sensor structure. That is, the presence of BSA in the PBS does 

not alter the dielectric properties of the composite (note that 

such similarity between the dielectric properties of PBS and the 

BSA solution in PBS is naturally inferred by using differential-

mode measurements). However, the symmetry is clearly 

truncated when urea is added in the BSA solution injected in 

the LUT channel. The higher the urea concentration is, the 

higher the cross-mode transmission coefficient (magnitude) 

becomes. However, measuring the cross-mode transmission 

coefficient from each individual BSA configuration is not 

enough in order to characterize the denaturation process, since 

the effect we are measuring is the change in the dielectric 

properties of the liquid, rather than the denaturation process 

itself. Certainly, denaturation is expected to alter the dielectric 

properties of the BSA solutions, but such variations are also 

caused by the presence of urea (note that microwave methods 

exhibit a limited selectivity, unless spectroscopic methods are 

used).  

Indeed, urea, rather than the denaturation of the BSA protein, 

is the main cause of permittivity changes in the BSA solution. 

Thus, the method used to characterize the denaturation process 

of BSA utilizes both results (BSA 1 mg/mL and 2 mg/mL) 

together, rather than individually. This is necessary due to the 

significant effects of urea in the modification of the dielectric 

properties of the composites. In other words, the denaturation 

process cannot be detected/characterized by considering only 

one set of results. Nevertheless, the values of the considered 
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BSA concentrations (1 mg/mL and 2 mg/mL) are arbitrary. The 

hypothesis it that the BSA by itself is not able to generate 

appreciable changes in the dielectric properties of the solution 

with urea. Therefore, if there are changes between the results 

for the two sets of measurements (each one with different 

concentration of BSA), such differences should be attributed to 

the changes in the dielectric properties caused by the 

denaturation process. Indeed, the bounded water molecules are 

not expected to be equal for both sets of results. The 

representation of the maximum value of the magnitude of the 

cross-mode transmission coefficient (at 0.98 GHz) and 

subtracting the effect of the reference level are shown in Fig. 8. 

From this figure, it follows that the slope for both sets of data 

points is clearly different, and this should be attributed 

necessarily to the denaturation process. The contrast between 

both curves corresponds to the hydration contrast and it arises 

as the urea concentration increases. This conclusion is 

consistent with the notion that when the chaotropic substance 

(urea in our case) becomes more concentrated, the amount of 

bound water molecules increases, resulting in a higher fraction 

of denatured BSA. Figure 9 depicts the hydration contrast (as 

the difference of the cross-mode transmission coefficient) as a 

function of the urea concentration. 
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(b) 

Fig. 7. Cross-mode transmission coefficient (magnitude) for each BSA 
solutions when mixed with different urea concentrations: (a) BSA 
1 mg/mL, (b) BSA 2 mg/mL. Legend format is REF / LUT. Line with 
different styles (solid, dash and dot) represents independent 
measurements. 
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Fig. 8. Measured maximum value of the magnitude of the cross-mode 
transmission coefficient for both BSA solutions (1 mg/mL and 2 mg/mL) 
as a function of the urea concentration. 
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Fig. 9. Magnitude of the cross-mode transmission coefficient contrast 
(hydration contrast) as function of the urea concentration. Error bar 
represents the standard deviation of the data set, and reveal that 
precision is reasonably good.  

V. CONCLUSIONS 

In conclusion, a slot-based sensor devoted to the 

characterization of the denaturation process of the BSA 

molecule activated by urea has been reported in this paper. The 

sensor is a 4-port network operating in differential-mode, with 

two independent sensing structures, and the working principle 

is mode conversion caused by symmetry disruption. A protocol 

to detect and characterize the denaturation process has been 

proposed. It has been demonstrated that with the fabricated 

sensor, the denaturation process can be characterized, by 

measuring the cross-mode transmission coefficient contrast 

between two solutions of BSA, of different concentration. This 

contrast is related to the hydration of the protein in the change 

from the folded macromolecule to the unfolded one, due to the 

denaturation process. With this work it has been demonstrated 

that low-cost microwave sensors are useful for the 

characterization/detection of denaturation in proteins. 
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