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Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current
global pandemic, it is time to analyze the evolution of the immune protection that infection
and vaccination provide. Cellular immunity plays an important role in limiting disease
severity and the resolution of infection. The early appearance, breadth and magnitude of
SARS-CoV-2 specific T cell response has been correlated with disease severity and it has
been thought that T cell responses may be sufficient to clear infection with minimal disease
in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia.
However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic
lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+
T follicular helper (Tfh), which play a critical role in infection control as well as long-term
protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes
interrupt viral replication by secreting antiviral cytokines (IFN-g and TNF-a) and directly
killing infected cells, negatively correlating with stages of disease progression. In addition,
CD4+ T helper cells have been reported to be key pieces, leading, coordinating and
ultimately regulating antiviral immunity. For instance, in some more severe COVID-19
cases a dysregulated CD4+ T cell signature may contribute to the greater production of
pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss
how cellular immunity is the axis around which the rest of the immune system components
revolve, since it orchestrates and leads antiviral response by regulating the inflammatory
cascade and, as a consequence, the innate immune system, as well as promoting a
correct humoral response through CD4+ Tfh cells. This review also analyses the critical
role of cellular immunity in modulating the development of high-affinity neutralizing
antibodies and germinal center B cell differentiation in memory and long-lived antibody
secreting cells. Finally, since there is currently a high percentage of vaccinated population
and, in some cases, vaccine booster doses are even being administered in certain
countries, we have also summarized newer approaches to long-lasting protective
immunity and the cross-protection of cellular immune response against SARS-CoV-2.
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HIGHLIGHTS

. The presence of cross-reactivity, either humoral or cellular,
between common cold hCoV and SARS-CoV-2 does not
prevent infection but may be associated with less severe
COVID-19.

. The presence of SARS-CoV-2-specific CD4+ Th1 IFN-g-
producing cells and CD8+ CTLs cells were associated with
reduced disease severity.

. T lymphocyte recruitment to infected lung tissues and T
lymphocyte apoptosis/necrosis caused by the cytokine
storm might be crucial determinants of CD4+ and CD8+
T-cell lymphopenia in severe COVID-19 cases.

. Severe/fatal disease presents with excessive hyperactivation of
immune function with increased Tregs and Th2 and/or Th17
cell-biased phenotype, leading to T cell exhaustion and
subsequently to a state of anergy.

. Functional memory B and T cells to SARS-CoV-2 have been
detected 12 months after natural infection. SARS-CoV-2-
specific T cell memory may be long lasting given that
COVID-19 convalescent patients develop SARS-CoV-2-
specific TSCM cells that display a non-exhausted phenotype.

. The immunogenicity of SARS-CoV-2 vaccines involves the
humoral response (number of spike-specific antibodies,
neutralizing antibodies, and antibody neutralization
capacity) and the cellular response (IFN-g-producing CD4+
and CD8+ T cells). Therefore, a combined analysis of
humoral and cellular immunity is necessary for the
identification of vaccine responders and the immune
protection evolution.
INTRODUCTION

Coronaviruses (CoVs) are enveloped viruses containing non-
segmented, single-stranded, positive-sense RNA genome whose
primarily hosts are vertebrates (1, 2). Human Corovaniruses
(HCoVs) have been responsible for significant health-related and
economic costs worldwide for the last 20 years. The first time we
received alarming information regarding HCoVs was with the
appearance of severe acute respiratory syndrome coronavirus
(SARS-CoV) in Guangdong Province (China) in November 2002
(3). By 2003, it had turned into a global infection with a mortality
rate of 10% (4). The second HCoV outbreak occurred a decade
later, in June 2012, with the Middle East respitatory syndrome
coronavirus (MERS-CoV), which originated in Jeddah, Saudi
Arabia (5). In the case of MERS-CoV, a 35% fatality rate was
reported worldwide (6). Finally, the current pandemic, which is
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), originated in Wuhan, China in December 2019
and causes the infection designated COVID-19 (Coronavirus
Disease 2019) (7).

CoVs are classified in the realm Riboviria, order Nidovirales,
suborder Cornidovirineae and family Coronaviridae with all 39
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species of CoVs distributed in 27 subgenera, five genera, and two
subfamilies (8, 9). HCoV are members of the Coronavirinae
subfamily and are, in turn, categorized by the International
Committee for the Taxonomy of Viruses into four major
genera: AlphaCoV, BetaCoV, GammaCoV, and DeltaCoV (9).
The AlphaCoV genera contains the common cold-causing
HCoV-229E and HCoV-NL63 HCoVs, whereas in the
BetaCoV genera are placed the common cold-causing HCoV-
HKU1 and HCoV-OC43, as well as SARS-CoV, and MERS-CoV
(10). SARS-CoV-2 sequence analysis has demonstrated a distant
similarity of 79% to SARS-CoV and a 50% similarity to MERS-
CoV with an 88% sequence identity to bat-SL-CoVZC45, bat-
SLCoVZXC21 and bat-derived SARS-like CoV (11, 12).

The emergence of numerous SARS-CoV-2 variants of interest
(VOI) and variants of concern (VOC) is one of the most
important developments in the COVID-19 pandemic (13). The
most important VOC variants reported to date are Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1) (14, 15), Mu (B.1.621)
(16), Delta (B.1.617.2) (17) and Omicron (B.1.1.529), with the
latest VOC reported in November 2021 (18). Understanding the
impact of these variants on cellular immunity, in the context of
COVID-19 infection and vaccination, is important for the
development of effective strategies against future SARS-CoV-
2 variants.
VIRAL INFECTIONS AND T CELL
IMMUNE RESPONSES

A harmonized innate and adaptive immune response is crucial
for the control and clearance of most viral infections. These two
branches of the immune system collaborate to protect the body
against infections. First, innate immunity includes evolutionarily
primitive molecular and cellular mechanisms that recognize
pathogens as common molecular patterns with the aim of
preventing infection and quickly eliminating them. Second, the
adaptive immune system takes longer to act but is characterised
by a much more accurate response, as T and B lymphocytes
undergo antigen-specific selection and proliferation. For many
primary virus infections, it typically takes 7-10 days to prime and
expand adaptive T cell immune responses in order to control the
virus (19). Virus specific T cells have been shown to be protective
against other viruses, like influenza (20), while heterologous
immunity against diverse influenza strains is associated with
conserved memory T-cell epitopes (21–23).

Coronaviruses and Immunity:
Previous Knowledge
The innate immune system includes physical and chemical
barriers to infection, as well as the germline-encoded receptors,
known as pattern recognition receptors (PRRs), which recognise
the commonmolecular structures of many pathogens. PRRs bind
to pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) and trigger
cellular responses. As we know from other CoVs, double-
stranded RNA (dsRNA), which is a by-product of viral
June 2022 | Volume 13 | Article 904686
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genome replication and transcription, is a relevant PAMP model
for CoVs (24, 25). It can be detected in the endosome by Toll-like
receptor 3 (TLR3) and in the cytoplasm by RNA helicases
ret inoic ac id- inducib le gene I (RIG-I) , melanoma
differentiation-associated protein 5 (MDA5), and protein
kinase R (PKR) (26–28). Single-stranded RNA (ssRNA) can
also be detected in the endosome by Toll-like receptor 7
(TLR7) (29). Altogether, this allows for the detection of viral
infection, activating signalling cascades like myeloid
differentiation primary response 88 (MyD88) and inducing the
production of type I interferons (IFNs) and nuclear factor kappa
B (NF-kB) activation which, in turn, will induce the transcription
of pro-inflammatory cytokines (30). Collectively, this triggers an
antiviral immune response that constraints viral replication in
infected and neighbouring cells.

However, CoVs are able to evade the mechanisms of innate
immune detection, thereby preventing the generation of a proper
immune response against viral infection (31). For example, the
non-structural protein 3 (NSP3) of previous HCoVs has a
papain-like protease domain that inhibits the activation of IFN
regulatory factor 3 (IRF3) and the ubiquitination of TANK-
binding kinase (TBK1), and RIG-I (32–35). Another example is
the capacity of both SARS-CoV and MERS-CoV to prompt the
production of double membrane vesicles lacking PRRs and their
replication within them, thereby eluding the host viral dsRNA
detection system (36, 37). Furthermore, the SARS-CoV and
MERS-CoV M protein has previously been shown to interact
with TNF receptor-associated factor 3 (TRAF3), disrupting
TRAF3-TBK1 association and thus suppressing type I IFN
production (38–40).

When the innate immune system is unable to control the viral
infection, the adaptive immune system assumes a very important
role. Previous studies of the adaptive immune response to earlier
CoVs reported that antibody response decreases rapidly after
infection or immunization, especially in cases of mild or
subclinical disease such as that caused by common cold CoVs
or mild MERS-CoVs, allowing for potential reinfection (41, 42).
Moreover, SARS-CoV and MERS-CoV have been shown to
impair T cell function and induce T cell apoptosis (43, 44).
Thus, a commonly observed phenotype during acute phase
disease in SARS-CoV and MERS-CoV patients, and also in
COVID-19, was lymphopenia, which was seen particularly in
patients with severe disease (43, 45, 46).

As is well known, the cytokine microenvironment generated
by antigen presenting cells directs T cell phenotype
differentiation and responses. Current evidence indicates that T
helper 1 (Th1) response is crucial for the successful control of
SARS-CoV and MERS-CoV (47).

There are a number of studies attempting to address the issue
of the immune memory persistence conferred by infection with
HCoVs. Some of those reveal that CD4+ and CD8+ memory T
cell responses were identified in the blood of 70-100% of SARS-
CoV patients four and six years after infection (48–50) and (51)
even detected CD8+ T cell responses 11 years post-infection.
These memory T cells may remain functionally active since
another study revealed that they could proliferate, produce
Frontiers in Immunology | www.frontiersin.org 3
IFN-g and induce delayed-type hypersensitivity (DTH) fast at
antigen reencounter (48). Overall, T cell responses have been
observed to have enhanced durability relative to antibody
responses in SARS-CoV and MERS-CoV, hence it seems
cellular response is crucial for the longevity of the immunity
conferred by infection with CoVs.

Pre-Existing Immune Reactivity
At the beginning of the pandemic outbreak, many studies
focused on the possibility of pre-existing immunity against
SARS-CoV-2. Considering that more than 90% of the human
population is seropositive for at least one out of three of the
common cold-causing HCoVs (52), it is reasonable to
hypothesize that there may be a degree of cross-reactivity
between the immunity conferred against common cold HCoVs
and immunity against SARS-CoV-2. Among unexposed donors,
20% to 50% had lymphocytes exhibiting significant reactivity to
antigen peptide pools of SARS-CoV-2 (53–57).

Multiple investigations into early serological response to
SARS-CoV-2 reported unconventional seroconversion patterns
resembling those of secondary immune responses. During a
secondary immune response, memory lymphocytes provide the
necessary mechanisms for rapid, antigen-specific, effective
immune responses, and when the same pathogen infects the
body a second time, it often originates only mild symptoms or
may not cause any symptoms at all. A large serological study of
COVID-19 patients found IgM seroconversion before IgG
(typical primary response), as expected in previously
unexposed individuals, but also synchronous IgM and IgG, and
IgM after IgG seroconversion, describing an uncommon pattern
of seroconversion to SARS-CoV-2 infection (58). In COVID-19
convalescent subjects, IgG against the S protein of the HCoV-
OC43 had higher titers than in unexposed subjects but that was
not true for the S protein of HCoV-229E, which suggests a more
significant cross-reactivity between betacoronaviruses (59). The
same authors suggested that the early parallel production of IgM
and IgG in response to SARS-CoV-2 infection might be
mediated by the stimulation of IgG memory B cells, as well as
by naïve B cells (59) indicating that the memory generated by
previous infections with other HCoVs would trigger a response
to infection by the current SARS-CoV-2.

However, although there are studies supporting the presence
of pre-existing SARS-CoV-2 cross-reactive antibody neutralizing
capacity (60), others found no association between the presence
of pre-existing cross-reactive antibodies to SARS-CoV-2 and
protection against SARS-CoV-2 infections and hospitalizations
(61). That might be explained by the fact that those pre-existing
cross-reactive antibodies share predominantly non-neutralizing
antibodies against the epitopes of previously circulating HCoVs
(61–63). Assuming that shared cross-reactive antibodies to
SARS-CoV-2 had no neutralizing activity, pre-existing cellular
immunity would play a crucial protective role.

Several studies have provided evidence of the cross-reactivity
of T cell responses between SARS-CoV-2 and the common cold
HCoVs (55–57, 64–67). Mateus J. et al. (64) detected cross-
reactive CD4+ memory T cells with peptide pools selected on the
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basis of homology between SARS-CoV-2 and other HCoVs and
concluded that memory CD4+ T cells recognizing common cold
HCoVs can exhibit substantial cross-reactivity to the
homologous epitope in SARS-CoV-2. Cross-reactive CD8+ T
cells also exist and, although they are less prevalent than cross-
reactive CD4+ T cells (53), might be important determinants of
immune protection at individual and population levels (68).

Nevertheless, pre-existing T cell immunity to SARS-CoV-2 has
apparently low avidity when compared to that developed following
infection with SARS-CoV-2 and may not participate in immunity
very effectively (69). Thus, the immunity developed by previous
HCoVs is not sufficient to prevent subsequent infection by SARS-
CoV-2 but might be associated with less severe COVID-19 (70).

Interestingly, there seems to be an inverse association
between cross-reactive antibody levels and age as shown by
Shrwani K. et al. (63), who found children and younger people
to have higher pre-existing cross-reactive antibodies to SARS-
CoV-2 than older individuals. In line with that finding, a
decrease in the magnitude and quality of SARS-CoV-2 cross-
reactive CD4+ T-cells response with age has also been reported
(71). Bearing this in mind, increased susceptibility to severe
COVID-19 in elderly patients may at least in part be explained by
a smaller pool of naïve T cells and the incapacity of the aged
immune system to maintainthe SARS-CoV-2 cross-reactive T
cells induced by previous HCoV infection.
SARS-COV-2 IMMUNE EVASION

Innate Immune System Evasion
As mentioned above, the first line of defense provided by our
immune system against infection comes from the innate immune
system. SARS-CoV-2, like other viruses and other HCoVs,
attempts to evade the innate immune system and has been
shown to do so by employing several different strategies.

Apparently, the main tactic by which viruses manage to evade
the innate immune system is the inhibition of type I IFN response at
different levels. It has been reported that SARS-CoV-2 may inhibit
viral RNA recognition by modifying its own RNA and mimicking
host RNA. The non-structural proteins NSP13, NSP14 and NSP16
perform this function by mediating the addition of a 7-
methylguanyalte cap at the 5’ end of viral RNA in order to elude
RIG-I and MDA5 recognition (72, 73). SARS-CoV-2 can also
inhibit type I IFN at different points of the signalling cascade,
leading to IFN production after non-self nucleic acid detection. The
SARS-CoV-2 NSP15 protein may reduce IFN production as there is
evidence that NSP15 binds to NRDP1 (74), the E3 protein ubiquitin
ligase, which is known to enhance TBK1 and IRF3 activation,
thereby promoting IFN production (75). TBK1 activation can also
be inhibited by the NSP13 SARS-CoV-2 protein (74, 76, 77), and is
decreased, along with IRF3 activation, by open reading frame 9
(ORF9)- cyclic GMP−AMP synthase (cGAS)-stimulator of
interferon genes (STING) interaction (78). The NSP12 SARS-
CoV-2 protein seems to impair the nuclear translocation of IFR3
by inhibiting IFN-b promoter activity (79, 80). Some studies have
reported the disruption of RIG-I-like receptor (RLR) signalosome
Frontiers in Immunology | www.frontiersin.org 4
binding to translocase of outer mitochondrial membrane 70
(TOM70) by ORF9b (74, 76, 81) and have suggested that ORF9b-
TOM70 interaction may inhibit IFN-b promoter activity (82).
Moreover, ORF9b expression by SARS-CoV-2 may prevent the
ubiquitination of NEMO (NF-kB essential modulator), NF-kB
activation and nuclear translocation (83). Furthermore, the
ISGlyation (labelling with interferon-stimulated gene 15 (ISG15),
an ubiquitin-like protein) of MDA5, which is required for
downstream pathway activation to lead to IFN-b secretion, may
be inhibited by the NSP3 protein of SARS-CoV-2 (84). The NSP3
protein also seems to antagonize IRF3 stabilization (85). Other
investigations have proposed that SARS-CoV-2-M protein
antagonizes RLR signaling by inhibiting IFN-b and IFN-k gene
expression and IFN-b promoter activity (86, 87). In addition, Xia H.
et al. (88) demonstrated that M protein reduces ISRE (interferon-
stimulated response element) reporter activity after treatment with
IFN activation. SARS-CoV-2 has been also shown to inhibit the IFN
signalling cascade at the signal transducer and activation of
transcription (STATs) phosphorialtion level. For example, the
expression inhibition and lysosomal degradation of interferon-a/b
receptor 1 (IFNAR1) by NSP14 and ORF3a SARS-CoV-2 proteins
impairs STAT1 phosphorylation, as reported by HaynM. et al. (89).

Adaptive Immune System Evasion
All the above-mentioned strategies allow SARS-CoV-2 to
overcome the first line of defense of the host and this is when
the host’s second line of defense comes into play: the adaptive
immune system. Unfortunately, SARS-CoV-2 has also developed
evasion mechanisms to overcome the adaptive immune system.

Humoral
A certain degree of SARS-CoV-2 antibody neutralization escape
has been detected in every variant of concern: Alpha or B.1.1.7
(90, 91), Beta or B.1.315 (92, 93), Gamma or P.1 (94, 95), Epsilon
encompassing the lineages B.1.427 and B.1.429 (96, 97), Delta or
B.1.617.2 (17, 98), as well as Omicron or B.1.1.529 (99–101). As
expected given the unprecedented high infection (and
reinfection) rate numbers of the Omicron variant, this VOC
was able to easily evade past infection humoral immunity
compared to the epidemiological surveillance data for Beta and
Delta variants (102). However, although the neutralization ability
of convalescent sera against Omicron is low, a certain degree of
neutralization still exists, indicating that there is still a certain
level of protective effect (102). Another relevant mechanism used
by SARS-CoV-2 to evade humoral response is the ability of this
virus to spread from cell to cell without exposure to the
extracellular environment (103). This reduces the likelihood of
SARS-CoV-2 detection by SARS-CoV-2-specific antibodies and
therefore limits the role of humoral immunity in preventing viral
spread within the host.

Cellular
Notwithstanding these considerations regarding neutralization
escape, T-cell immunity against SARS-CoV-2 seems to be more
robust, since SARS-CoV-2-CD4+ and CD8+ T cell responses are
not substantially affected by the Alpha, Beta, Gamma and
Epsilon variants of concern (B.1.429), likely because T cell
June 2022 | Volume 13 | Article 904686
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responses against SARS-CoV-2 are highly multi-antigenic and
multi-specific, with many different epitopes being recognized by
CD4+ and CD8+ T cells in a given individual (55, 67, 104–106).
Nonetheless, a T-cell response reduction to SARS-CoV-2
variants of concern Alpha, Beta, and Gamma (107) has been
demonstrated in vaccinated individuals and, as assessed in
COVID-19 convalescent patients and vaccinated individuals,
two SARS-CoV-2-spike mutations in the Delta (B.1.617.2) and
the Delta plus (AY.2/B.1.617.2.2) may play a crucial role in HLA
recognition and in reducing cellular immune response (108). In
the case of vaccinated individuals, the above mentioned effect
may be due to the fact that the multi-specificity conferred by
natural SARS-CoV-2 infection cannot be achieved. Furthermore,
SARS-CoV-2 is able to reduce T-cell response through a
mechanism mediated by infected monocytes. These can
directly reduce T cell response and inhibit epithelial cell
survival through the hypoxia inducible factor 1-alpha (HIF-
1a)/glycolysis-dependent axis, potentially contributing to
immunopathology. This may explain why elevated glucose
levels in diabetic individuals enhance viral replication and
cytokine expression in monocytes (109).

Nevertheless, there are scarce studies investigating the T-cell
immune escape of SARS-CoV-2 variants due to the difficulty of
measuring T-cell response in clinical practice compared to
antibody detection assays. More research needs to be
conducted on this issue in order to draw firmer conclusions.
NATURAL INFECTION WITH SARS-COV-2
(COVID-19)

In natural infection, when innate immunity stimulates the
adaptive response and sufficient effector T and B cells have
proliferated and differentiated, they work together to rapidly
and specifically eliminate infected cells and circulating virions. In
an orchestrated immune response, the humoral branch alone
cannot clear an ongoing infection and a cellular immune
response will also be necessary. Thus, the presence of both T
cells and antibodies is associated with the successful resolution of
the average of cases of COVID-19 (53). T lymphocytes, the cells
responsible for cell-mediated immunity, recognize the antigens
present on antigen-presenting cells (APCs), and help phagocytes
to destroy these microbes or to kill the infected cells. The best
defined T lymphocytes are helper and cytotoxic (or cytolytic) T
lymphocytes (CTLs), which present the cluster differentiation
markers CD4+ and CD8+, respectively. T cells also assist B
lymphocytes to proliferate and differentiate into plasma cells that
secrete different classes of antibodies. This process requires a
fairly well-defined time frame. In SARS-CoV-2 infection,
following an incubation period of four to seven days before
symptom onset, patients with COVID-19 progress towards
recovery after seven to 10 days or else develop serious illness
(110–112). The course of severe COVID-19 is characterised by
an increased inflammatory response with a marked reduction in
the number of T cells, frequently of both CD4+ and CD8+ T cells
(113–116). In addition, symptomatic SARS-CoV-2 infection
Frontiers in Immunology | www.frontiersin.org 5
tends to elicit a higher peripheral blood T cell response with
respect to asymptomatic infection (117, 118).The reduced
frequencies of peripheral T cells during acute infection are
likely to be associated with decreased CD4+ T cell proliferation
and CD8+ T cell hyperactivation with T cell migration into the
lungs (119). However, Liao L. et al. (120) have observed an
increase of T cells in bronchoalveolar lavage fluids in mild
patients but not in severe patients, suggesting a difference in T
cell migration into the lungs in severe patients (120–122).

Meanwhile, arguments supporting the role of cellular
immunity in the control of primary SARS-CoV-2 infection
are supported by the fact that neutralizing antibody titers do
not correlate with lessened disease severity in primary COVID-
19 (123–125). Unlike neutralizing antibodies, SARS-CoV-2-
specific CD4+ and CD8+ T cells were found to be associated
with reduced disease severity in the same individuals (124). In
agreement with these findings, there are reports of healthy
individuals successfully controlling a SARS-CoV-2 infection
with little to no neutralizing (or receptor binding domain
-RBD- IgG) antibodies detectable post-infection, while having
significant SARS-CoV-2-specific T cell memory (67, 68, 124,
126). On the other hand, neutralizing antibody titers (and total
spike antibody titers) have indeed been positively correlated
with COVID-19 disease severity (58, 127–129), possibly
indicating that under normal conditions the adaptive immune
response works in strict balance, but when one arm becomes
unbalanced the other tries to compensate. Thus, a defect in the
cellular response would cause a greater humoral response to
correct this deficiency. The role of cellular response has also
become evident in patients with agammaglobulinemia and no
circulating B cells who have fully recovered from infection (130,
131) and subjects with pharmaceutical depletion of B cells who
resolved COVID-19 infection without requiring intensive care
(132–136). Moreover, in patients with haematological
malignancy, CD8+ T cells appear to compensate for the lack
of humoral immunity and were associated with improved
outcomes, indicating a role for T cells in protection against
SARS-CoV-2 infection (137).

CD4+ T cell responses to pathogens are divided into three
major types: Th1, Th2, and Th17. Th1 immune response, which is
characterized by T-bet-dependent responses and IFN-g secretion,
is generated against intracellular pathogens including viruses. In
the Th1 response, pathogen clearance is mediated through effector
cells including innate lymphoid cells 1 (ILC1), NK cells, and
cytotoxic T lymphocytes (138–140). During SARS-CoV-2 acute
infection, patients display a proliferation of IFN-g-producing Th1
(IFN-g, IL-12, IL-15, IL-2 and TNF) cells and it has been suggested
that this Th1 cell-biased phenotype is associated with less severe
disease (54, 141). In patients with moderate disease, the core
COVID-19 inflammatory cytokine signature with IL-1a, IL-1b, IL-
17A, and IFN-a observed in the first 10 days from symptom onset
declined steadily (142) and the same happens with the innate
cytokine IL-12, a key inducer of Th1 immune response, as well as
IFN-g (142). Early induction of IFN-g-secreting SARS-CoV-2-
specific T cells with accelerated viral clearance is present in these
patients with mild disease (125) Figure 1.
June 2022 | Volume 13 | Article 904686
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The effector cells of CD8+ lineage are CTLs, whose major
function is to eliminate cells harboring viruses. SARS-CoV-2
CD8+ T cells are specific for a range of SARS-CoV-2 antigens,
and spike, nucleocapsid, M, and ORF3a proteins are well
represented (53, 56, 67, 126, 143, 144). CD8+ CTLs eliminate
intracellular microbes mainly by killing infected cells by releasing
cytotoxic proteins stored within cytoplasmic granules to the
target cell and subsequently triggering cellular apoptosis. In
acute COVID-19, SARS-CoV-2-specific CD8+ T cells exhibit
high levels of IFN-g, granzyme B, perforin, and CD107a
molecules, some of which are present in the cytotoxic granules
and are associated with potent cytotoxic effector functions (68,
124, 126, 145), developing fast CD8+ T cell responses (124).
Patients with milder disease and recovery have been associated
with a more robust clonal expansion of CD8+ T cells in
peripheral blood (146). These findings would explain why, in
SARS-CoV-2 infections, the presence of virus-specific CD8+ T
cells has been associated with better COVID-19 outcomes (124,
144). Taken together, these observations suggest that cytotoxic
activity is critical for the clearance of many viral infections and is
therefore also important for the eradication of the infection
reservoir. As with peripheral blood results, there is also an
increase in SARS-CoV-2-specific CD8+ T cells in the
respiratory tract of moderate COVID-19, as demonstrated in
bronchoalveolar lavage fluid collected from COVID-19 patients.
Bronchoalveolar lavage fluid CD8+ T cells showed clonal
Frontiers in Immunology | www.frontiersin.org 6
expansion, suggesting T cell migration to the infected site
resulting in the overall peripheral counts (147).

The role of T folicular helper (Tfh) cells at germinal centers in
the development of a long-lasting, high-affinity antibody response
is well known (148, 149). In T cell-dependent immune responses,
T cells are important in the formation of an extrafollicular focus, in
which B cells proliferate and differentiate into plasma cells, most of
which are short-lived. The activation of T cells in the
extrafollicular focus will cause some of them to develop into Tfh
cells and migrate into the germinal centers, where they perform
their functions, which are necessary for the development of both
the bone marrow resident plasma cells and the memory B cells
that enter in the recirculating lymphocyte pool (150, 151).
Importantly, it appears that the germinal center reaction in
humans after vaccination persists over a longer period (152–
154). Evidence suggesting that the above described process is
indeed what occurs following SARS-CoV-2 infection have been
provided by Mudd PA et al. (155) given that a high-magnitude,
SARS-CoV-2-specific CD4+ T cell response in the draining lymph
nodes is present during the development of high-titer neutralizing
antibody responses in the setting of COVID-19 mRNA
vaccination. The fact that CD4+ T cells in this type of response
provide help to B cells for the production of antibodies has been
demonstrated in other situations. For example, individuals with
uncontrolled HIV and extremely low CD4+ T cell counts during
vaccination lack seroconversion (156), and this has also been
FIGURE 1 | Cellular immune response in Mild COVID-19. In mild COVID-19, there is an early induction of the Th1 cell-biased phenotype with IFN-g secreting SARS-
CoV-2-specific T cells. In turn, SARS-CoV-2-specific CD8+ T cells perform rapid responses, acting as CTLs, secreting cytotoxic granules and high levels of IFN-g.
Moreover, activated Tfh cells in the draining lymph nodes activate the naïve B cells that are necessary for the development of long-lived plasma cells and memory B
cells. Cellular immune response in Severe COVID-19. During a severe course of COVID-19, there are reduced numbers and functions of DCs, leading to decreased
numbers of CD4+ T cells. In this case, an elevation of Th2 phenotype and/or a dysregulation of the Treg/Th17 cell ratio toward the Th17 phenotype can be seen.
Furthermore, decreased numbers of CD8+ T cells with an exhausted phenotype results in reduced CTL functionality while the T cell-mediated activation of B cells in
extrafollicular focus induces their differentiation into short-lived plasma cells.
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observed in pat ient s sub jec ted to T ce l l - focused
immunosuppressive regimens following solid organ
transplantation who received a standard two-dose BNT162b2
regimen (157). Overall, there is direct and indirect evidence of
the need for a robust T response for the generation of high-titer
neutralizing antibody responses following COVID-19 infection or
mRNA vaccination. However, a lower quality and lack of
durability of humoral response has been observed during
natural SARS-CoV-2 infection. Thus, although there is evidence
of a robust T-cell-mediated activation of B cells in the non-
germinal-center, this may be due to a loss of germinal centers
through a specific block of germinal center type B cell-lymphoma
6 (Bcl-6)+ T follicular helper cell differentiation (158) Figure 1.
This may compromise the early development of the high-affinity
antibodies that could contribute to a certain attenuation of viral
spread. Moreover, in COVID-19 patients, the relationship
between plasmablasts and activated Tfh is weak, even though
these individuals have a robust plasmablast response (114). At
least part of the plasmablast response may be through activated
(CD38+HLA-DR+) CD4+ T cells, which might play a role in
providing B cell help as a part of an extrafollicular response (114).
Relation of Cellular Components With
Disease Severity
As mentioned above, an immune response properly coordinated
in time between the different components of innate and adaptive
immunity is essential for it to be successful. In fact, if the adaptive
immune response starts too late, fatal COVID-19 develops,
defined as a situation in which the viral load is high (159).

IFN-g has already been discussed as a cytokine secreted by
CD4+ Th1 cells, but it is also secreted by differentiated CTLs. It
contributes to classical macrophage activation and inflammation
in the host’s defense and in hypersensitivity reactions. It is likely
that both CD4+ Th1 cells and CD8+ T cells contribute to the
IFN-g–induced phagocytic clearance of ingested microbes. These
functions would explain the beneficial effect of rapid IFN-g
secretion in response to an infectious process. Thus, Zheng M.
et al. (160) reported the secretion of IFN-g by both CD8+ T cells
and CD4+ Th1 cells under conditions of severe COVID-19
disease. Therefore, a poor T cell response contributes to SARS-
CoV-2 viral persistence and COVID-19mortality, whereas strong
T cell responses are protective in the majority of individuals. As
seen in SARS-CoV-2 infection in non-human primate models,
the deletion of CD8+ T cells impairs this protection (161).Thus,
human individuals with higher levels of IFN-g secreting T cells
(measured by enzyme-linked immunosorbent spot assay) against
the SARS-CoV-2 S protein, nuclear proteins, and membrane
proteins have a better protection against the virus (162), while a
CD4+ T cell IFN-g expression decrease has been reported in
severe SARS-CoV-2 infection peripheral blood samples, and the
T cells of these patients seemed to be unable to produce IFN-g in
response to viral proteins (163).

Patients with severe COVID-19 have marked reductions in the
number and frequency of both CD4+ and CD8+ T cells, but
increased activation of T cells (142, 145). Specifically, in an
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autopsy report, low levels of hyperactive T-cells in peripheral
blood and an accumulation of mononuclear cells in the lungs of
the individual were observed (164). In addition, the high
proportion of M/NP-specific CD8+ T cell responses compared
to the spike-specific CD4+ T cell response seen in mild disease is
not found in severe disease (144). In fact, the percentages and
absolute numbers of CD8+ T cells in severe disease were
significantly reduced (163). This finding could suggest a
protective role of CD8+ T-cell response in mild disease or a
pathogenic role of the CD4+ T-cell response in severe disease
(144). The same applies in the case of ICU (intensive care unit)
patients: total T-cell, CD4+ and CD8+ T-cell counts in peripheral
blood were significantly lower than in non-ICU COVID-19 cases,
and the counts correlated negatively with patient survival (165).
Some authors have observed an increased expression of the
inhibitory receptor NKG2A, suggesting a decrease in CD8+ T
cell functionality (160). NKG2A expression is upregulated on NK
cells and CTLs in COVID-19 patients, with a decreased capacity to
produce CD107a, IFN-g, IL-2, granzyme B and TNF-a., which
suggests functional exhaustion of cytotoxic lymphocytes in
COVID-19 patients (160). The upregulation of NKG2A
expression may be a consequence of and to compensate for the
hyperactivation of CD8+ T cells in the severe stage of COVID-19.

There is a cellular subset composed mainly of mucosal-
associated invariant T (MAIT) cells, the CD161+ CD8+ T cells
which undergoes a strong reduction in frequency in individuals
with severe COVID-19 (145). During viral infections, MAIT cells
can become activated and migrate to infection sites (166, 167).
The sharp decline in circulating MAIT cells in severe COVID-19
patients correlates with their presence in the airways of the
patients (168). The reduction of this population in peripheral
blood is likely to be indicative of sequestration in the lungs,
potentially exacerbating tissue inflammation.

During many acute viral infections, the period of peak T-cell
responses and plasmablast detection in peripheral blood is
relatively short (169–171). However, there is a subgroup of
COVID-19 disease patients with an over-aggressive immune
response and/or a “cytokine storm” (172) due perhaps to a
failure to regulate responses or a prolonged period of peak
immune responses because there is a stability over time of
CD8+ and CD4+ T-cell activation and plasmablast response
(114). There has been speculation on possible causes for the
well-known cytopenia occurring in COVID-19. One of these
causes may be related to the recruitment of T cells to infected
lung tissues to control viral infection (173). Another cause might
be the apoptosis or necrosis of T cells caused by the cytokine
storm that occurs in severe cases of COVID-19 (174). The severity
of the disease also correlates with cytokine levels and these
patients secrete higher levels of IL-6 and IL-10 (175). Thus, in
ICU patients a further increase in IL-6 and IL-10 plus TNF-a
(165) has been observed and has also been found to be higher in
the bronchoalveolar lavage fluid of deceased patients than in those
who survive IL-6 (120). The increase in TNF-a may explain why
antibody levels correlate with disease severity, since this cytokine
secreted by CD4+ T cells serves as a co-stimulatory signal for B
cells. Furthermore, the expansion of plasma cells in severe disease
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has been associated with large and oligoclonal B cell
expansions (145).

The significant lymphopenia that COVID-19 patients present
in the acute and severe phase is associated with a lower number
and the functional impairment of dendritic cells (DCs), which are
fundamental in T-cell antigenic presentation, compared to mild
patients (119, 145, 176), and those cells are significantly decreased
in fatal cases compared to survivors (177). Plasmacytoid DCs
(pDCs), which is responsible for the production of the type I IFNs
involved in virus defense, were also mainly reduced in abundance
and impaired in function in severe COVID-19 patients (145). In
fact, during COVID-19 infection, the rapid loss of DCs numbers
and function may contribute to delayed T cell responses and the
features of low level IFN-I/IFN-III (178).

This would partially explain the correlation of a fatal disease
course with the age of the patients since we should not forget the
process known as “immunosenescence”, which features a
reduction in the ability to fight novel infection (179) and a
reduced abundance of DCs in elderly patients (180). Thus, the
presence of an immunosenescent phenotype, demonstrated by
an elevated neutrophils-to-lymphocytes ratio, was found in
severe COVID-19 patients but not in mild disease (181).

Furthermore, patients with severe fatal disease up to 10 days
from the onset of symptoms have a excessive hyperactivation of
the immune function, demonstrated by significantly increased
HLA-DR expression and IFN-g synthesis. In fact, a robust T cell
response in critical patients may contribute to hyperreactivity and
immunophatogenesis (182). Moreover, the proportion of T
regulatory (Treg) lymphocytes increases significantly in this
phase, which negatively regulates immune response (112). As
discussed previously, the Th1 cell-biased phenotype is associated
with less severe disease (54, 141), but patients with SARS-CoV-2-
induced acute respiratory distress syndrome (ARDS) often tend to
have a Th1:Th2 ratio weighted towards the Th2 type, leading to
substantial lung tissue damage (183, 184). In addition, a broad
elevation of Th1, Th2 and Th17 signatures, including
inflammasome-dependent cytokines such as IL-1b, IL-18 and
Th2 and Th17 cytokines has been identified in patients with
severe COVID-19 (142). Th2 and Th17 immunity depend on the
transcription factors GATA-3 and RORgt, respectively, and the
predominant response is driven by (IL-4, IL-5, IL-13) and (IL-17,
IL-22) respectively (138–140). Also, dysregulation of the Treg/
Th17 cell ratio toward the Th17 phenotype is an important
contributor to disease severity. IL-17 secreted during SARS-
CoV-2 infection can promote migration of neutrophils and
monocytes into the pulmonary interstitium resulting in its
consequent inflammation, as well as the activation of other
cytokine cascades (G-CSF, TNFa, IL-1b and IL-6), which
contribute to aggravating this inflammation and tissue damage
(185). Thus, patients with severe COVID-19 showed a markedly
high number of CCR6+ Th17 cells in peripheral blood (164), even
though not all patients with severe COVID-19 have increased IL-
17 expression (163). These data suggest that the dysregulation of
Th polarization occurs in severe COVID-19 and a bias towards
this type of Th response might define the disease course Figure 1.
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Whether or not infection and hyperactivation persist, the
immune system eventually enters an anergy state in which the
number of lymphocytes (including T and B lymphocytes), NK
cells and DCs continues decreasing in patients with a fatal
outcome. CD4+ T cell function is impaired, as evidenced by
decreased activating receptors and an increased expression of
CD45RA and CD28 (112). Thus, deceased patients have lower
frequencies of HLA-DR+ and IFN-g-secreting cells within CD4+
and CD8+ T cells than survivors (186, 187).

Another important factor to be taken into account during any
maintained immune response is a phenomenon called
exhaustion, which is observed, for example, in some chronic
viral infections when CTL effector responses gradually extinguish
over time (188). Exhausted cells express increased levels of
multiple inhibitory receptors, notably programmed cell death-1
(PD-1), since the programmed cell death-ligand 1 (PD-L1)/PD-1
immune checkpoint axis is the strongest T cell exhaustion
inducer, alongside cytotoxic T lymphocyte-associated protein 4
(CTLA-4), T cell immunoglobulin mucin-3 (TIM-3),
lymphocyte activation gene-3 (LAG-3), and others. It has been
reported that increased T cell exhaustion, observed by the high
level expression of PD-1 and TIM-3 (165) induced by IL-10
(189) and decreased functional diversity correlates with the
degree of disease severity in patients with COVID-19 (190). In
particular, Kreutmair S. et al. (191) showed that CD4+ T cells
increased PD-1 expression during the first days following
hospital admission and then normalized in moderate patients
but remained elevated in severe disease (191). Likewise, as in
memory CD4+ T cells, the frequency of PD-1 expressing cells
were reported to be higher after one month in recovered patients
with severe COVID-19, and correlated with the age of the patient
(145). However, Rha M.S. et al. (192) reported that SARS-CoV-
2-specific CD8+ T cells expressing PD-1 were found not to be
exhausted but functional. This is explained by the fact that PD-1
is expressed on exhausted T cells but is also expressed on recently
activated T cells (193–196) and the persistence of antigen
encounter results in the maintenance of PD-1 expression,
leading to exhausted T cells (197). PD-1 expression in the
peripheral blood of COVID-19 patients is also increased in the
exhaustion of other T cell subsets such as gd T, mucosa-
associated invariant T and invariant NKT cells which, in
agreement with their exhausted phenotype, produce less IFN-g
than cells from healthy donors (168). Also, the T cells of ICU
patients expressed increased PD-1 in bronchoalveolar lavage
fluid as compared to peripheral blood T cells (198).

Regarding ligand PD-L1, both soluble and membrane-bound
PD-L1 increased levels are associated with the degree of severity
in COVID-19 (199–201). PD-L1/PD-1 overexpression in the
white adipose tissue of obese individuals during IFN-g secretion,
which leads to the dysfunction of T cells and especially to a
reduction in cytotoxic activity, explains why SARS-CoV-2
infection can worsen disease in obese individuals (202).
Overall, we can outline that T cells of COVID-19 patients
display a higher expression of PD-1 and that this elevated
expression is correlated with disease severity, but whether or
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not PD-1 expressing T cells in COVID-19 are functional needs to
be investigated further. To assess exhaustion, it will be important
to take into account not only the expression of PD-1, but other
exhaustion markers and the time since a particular cell has
encountered the antigen in order to differentiate an exhausted
cell from a recently activated cell.

In the resolution of inflammation when the virus is eliminated,
both adaptive regulatory cells, such as regulatory T and B cells and
innate immune cells, such as macrophages and regulatory DCs,
also contribute (203). In recovered patients, the number of
peripheral blood lymphocytes gradually increases (186, 187)
with a marked high frequency of spike specific CD4+ T cell
response (53, 126, 144), while the effector function of T cells is
not compromised (204). Two to four months after SARS-CoV-2
infection resolution, most of the components of cellular immunity
return to normality (204), though with significant increases in
regulatory T cell frequencies and TIM-3 expression on CD4+ and
CD8+ T cells, while the cytotoxicity of T cells is significantly
diminished (204). However, this immune response reversion is
slower and the virus clearance time is prolonged in some critically
ill patients even after entering the recovery stage (112).
BALANCE BETWEEN INNATE AND
ADAPTIVE IMMUNITY

The first contact with pathogens is established by the host innate
immune system. It is noteworthy that the innate immune system is
indeed capable of eliminating some infections on its own,
particularly when the infection is localized and caused by a low
number of pathogens. But innate immunity is not sufficient to
protect us fully from infectious diseases, in part because, as
discussed earlier, many pathogens have features that allow them
to evade innate immune responses. At this early stage, the innate
cytokine IL-12 has been shown to stimulate the differentiation of
naive CD8+ T cells into effector CTLs and it is involved in the
differentiation of CD4+ T cells into Th1 cells, both contributing to
the IFN-g–induced phagocytic clearance of ingested microbes.
However, in some circumstances, the innate immune response
seeks to fill the gap left by the absence of a T cell response,
attempting to assume t control of the immune response against the
virus with an ever-expanding innate immunity activation.
Following this thread, there are many studies that have identified
innate cytokine/chemokine signatures of immunopathology (145,
205–209). The most common observation in this line is an elevated
frequency of neutrophils in blood (145) and massive numbers of
neutrophils in the lungs, both of which are associated with severe,
end-stage COVID-19 disease (147, 206–208), as well as the
cytokine storm (172). In severe COVID-19 patients, IL-12 and
IFN-g increased over time; however, T cell depletion was detected
in these patients and the remaining T cells did not produce larger
amounts of IFN-g (142). This suggests that the secretion of IFN-g
by innate cells, such as ILCs and NK cells, or resident T cells in
tissues were the primary contributors to the enhancement of the
IL-12 and IFN-g cytokine levels observed in severe patients.
Frontiers in Immunology | www.frontiersin.org 9
The other finding reported is the role that the sex of the patient
plays in the type of predominant immune response. It has been
shown that male patients have higher plasma levels of innate
immune cytokines, including IL-8 and IL-18, along with activated
non-classical monocytes. In contrast, female patients seem to
generate a more robust T cell activation during SARS-CoV-2
infection. A poor T cell response might be responsible for the
worse outcomes observed in male patients, while in female patients,
higher levels of cytokines related to innate immune response appear
to be associated with worse disease evolution (210).

A recently published study in mice suggests that specific T cell
and antibody responses develop independently of SARS-CoV-2
detection by some of the pattern recognition receptors (PRRs) of the
innate immunity system: TLR2-5 and TLR7, STING-cGAS, NLRP3
(inflammasome activation), as well as RIP3 kinase (mediator of
nedroptosis) and gasdermin D (mediator of pyroptosis). On the
other hand, these specific T cell responses, mainly featuring CD8+ T
cells, are affected by the altered recognition of SARS-CoV-2 by the
MDA5-IFNAR1 signalling pathways (211). Airway epithelial cells
from children appear to show an increased expression of MDA5
compared to its expression level in SARS-CoV-2 positive adult
epithelial cells (212). Consistent with this, we found several studies
showing that children eliminate SARS-CoV-2 faster than adults,
probably by detaining viral replication earlier (213–216).

In general terms, we have sought to emphasize that a balance
between the innate and the adaptive immune response is
paramount for a favourable evolution and resolution of
COVID-19 disease and its imbalance has detrimental
consequences, including the inability to configure a competent
adaptive response or the overactivation of the innate immune
system which results in a cytokine storm.
IMMUNE MEMORY

The balance between naïve and memory T cells is crucial for
infection control. Naïve T cells are responsible for primary
infection response and memory T cells promote antigen-
specific immune responses, being able to protect the host from
re-infection with the same pathogen. Immune memory against
SARS-CoV-2 correlates positively with patient disease severity
during acute phase infection, both in humoral and cellular
response (217). Thus, it has been shown that memory B cells
percentages among hospitalized cases were significantly higher
than among non-hospitalized cases following infection (218).

There are some studies that report relatively stable humoral
immunity for up to 6-12 moths post-infection (217–221) and
Zhang J. et al. (217) described the detection of neutralizing
antibodies in convalescent COVID-19 patients even at 12
months following symptoms onset. However, further studies
show a clear decline of SARS-CoV-2 neutralizing antibodies in
the first months after infection (222–224), along with a
progressive decline in total antibody levels eight months after
SARS-CoV-2 infection (218, 225). These inconsistencies in the
results of humoral immunity longevity may be due to variations
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between the studied cohorts and the use of different techniques
or distinct antibody-detection epitopes in the assays.

In a longitudinal study, Rodda L.B. et al. (226) detected
memory T cells, which secrete IFN-g and are able to clonally
expand following SARS-CoV-2-antigen re-exposure, at least
three months after disease onset. Further investigations have
detected maintained SARS-CoV-2-specific memory T cell
responses in COVID-19 convalescent patients at least 7-12
months after infection (217, 221, 227) and this has been found
to be true regardless of disease severity (227). Considering
immune memory at the tissue level, SARS-CoV-2-specific lung
resident memory T cell can be detected at least 10 months
following infection (228). Lung resident memory T cells may
be key players in limiting the severity of COVID-19 or the
potential for reinfection. In this regard, it has been described that
a higher number of these resident memory T cells in the lungs
corresponds with a higher degree of clinical protection (229).

Therefore, both B and T memory cells exhibit robust memory
response (225), indicating that, in the event of a re-encounter
with SARS-CoV-2, the levels of total and neutralizing antibodies
and effector T cells necessary to respond efficiently to infection
might be rapidly recovered. In fact, B and T cell memory
functional responses to SARS-CoV-2 are still detectable 12
months after natural infection (230).

Immune Memory Phenotypes
Individuals who have undergone mild symptomatic SARS-CoV-2
infection show, after a few months, an increase in circulating Th1
cytokine-producing CXCR5+ Tfh and CXCR5- non-Tfh cells,
CD4+ CXCR3+ proliferative memory T cells and IFN-g-
producing CD8+ T cells (226). In these mild COVID-19 cases,
CD8+ T memory cell responses predominate over CD4+ T
memory cell responses and, additionally, the memory CD8+ T
cells specific for SARS-CoV-2 M and NP proteins exhibit the
highest frequency of multiple cytokine production (144).
Additionally, the SARS-CoV-2-specific memory CD4+ T cells
of recovered individuals have the capacity to express CXCR5,
ICOS, CD40L and proliferate at spike-protein re-exposure (226).
The expression of these markers and a variety of cytokines is
important for T-B cells interaction (231) as they enable memory
CD4+ T cells to help reactivate memory B cells and therefore start
producing antibodies against SARS-CoV-2 since, as discussed
above, their levels may have decreased over time. This may serve
to explain why, during the memory phase, an abundance of Tfh
cells correlates with antibody response (232–234).

Regarding the immune memory to SARS-CoV-2 in
convalescent individuals, a number of authors have underlined
the contribution of a subtype of terminally differentiated
memory cells: the terminally differentiated effector memory T
cells re-expressing marker CD45-RA (TEMRA). TEMRA have
generally been associated with protection against viral infection
(22, 235–238). During the memory phase following SARS-CoV-2
infection, a high prevalence (218, 227) and a progressive
enrichment of the TEMRA phenotype and T stem cell memory
(TSCM) phenotype in SARS-CoV-2-specific CD8+ T cells (239)
has been described. The same authors postulate that the
differentiation towards one phenotype or the other might be
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associated with disease severity with a bias towards TSCM in mild
disease and increased TEMRA in severe disease. In agreement with
previous studies that highlight the role of type I IFN in memory
development (240), Adamo S. et al. (239) reported an expression
enrichment of the genes involved in IFN signaling pathways in
SARS-CoV2-specific memory CD8+ T cells. Thus, type I IFN
signaling might be a key driver directing cells to become long-
lived memory cells. While it has already been mentioned that
TEMRA cells are associated with protection against viruses, it has
also been shown that they can accumulate during chronic viral
infections (241). In Long COVID syndrome, when compared to
COVID-19 convalescent individuals, an increase in CD8+ T
effector memory (TEM) and CD8+ TEMRA cell number,
accompanied by a decrease in their functional activity, has
been reported (242).

The success of long-term memory T cells depends on the
generation of TSCM cells (243) since they have a higher self-
renewal ability and are multipotent cells, being able to
reconstitute several memory phenotypes (244). T cell memory
developed during SARS-CoV-2 infection may be long-lasting
since COVID-19 convalescent patients develop SARS-CoV-2-
specific TSCM cells (192, 227, 239). Cohen K.W. et al. (245)
defined most SARS-CoV-2 CD4+ T cells as displaying a central
memory profile. Furthermore, Gurevich M. et al. (221) reported
the presence of IL-2-secreting and IFN-g+IL-2-secreting SARS-
CoV-2-specific central memory T cells that might be long-lasting
memory phenotypes in accordance with previous studies (246).
There are two different subsets of CCR7+ stem cell-like
progenitors: CCR7+PD-1−TIGIT− cells are observed to display
stem cell-like features, whereas CCR7+PD-1+TIGIT+ cells seem
to exhibit exhausted traits (192, 247). SARS-CoV-2-specific TSCM

cells rarely express PD-1 and TIGIT, making them non-
exhausted-like progenitors but functional memory T cells (227).
VACCINATION

A good adaptive immune response and immune memory are
vital to the success of vaccines and the achievement of a low
degree of reinfection. When studying natural immunity to the
virus, including the role of SARS-CoV-2 specific T cells, it is
critical to fill in the current gaps in our knowledge for improved
vaccine design. The generation of a robust cellular immune
response is a desirable attribute for a vaccine against SARS-
CoV-2 because, as we have referred to throughout this report,
following natural infection, t T-cell response is activated rapidly
to control disease progression (53, 55, 144, 248), and these virus-
specific T-cell response have been shown to be associated with
milder disease in COVID-19 patients (126).

mRNA vaccination leads to the development of both humoral
and cellular immunity against the Covid-19 spike protein (249,
250) Figure 2. The onset of protection for mRNA vaccines has
been observed as early as 10-12 days after the first dose (251) and
during this phase T cells and spike-specific antibodies are
detectable (250, 252) but neutralizing antibodies do not appear
until after the second vaccine dose (253–256). In fact, the
presence of anti-S reactive T cells secreting IFN-g or IL-2 is
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remarkable as early as three days post-vaccination, but it is not
until 14 days after completing the vaccination schedule that they
reach their maximum levels (121). The development of humoral
responses is gradual and they only consistently reach peak levels
after the second vaccination dose (257, 258). In fact, the highest
frequencies of spike-binding germinal centre B cells and
plasmablasts in draining lymph nodes were reached at twelve
weeks after the second immunization (152). However, the
natural course of humoral immunity is to decrease over time,
with reductions in neutralizing antibody titers (259, 260). At
three months post-vaccination, the neutralization capacity was
significantly decreased, in agreement with lower S-RBD antibody
levels (261) in all variants described to date, from Alpha to
Omicron (260). This may, feasibly, be due to the fact that not all
vaccine-induced plasmablasts commit or are maintained as long-
lived memory plasma cells (123, 262, 263). However, these
reductions do not necessarily correspond to proportional
reductions in vaccine efficacy over time, and neither do
reductions in vaccine efficacy against mild disease necessarily
predict reductions in efficacy against severe disease. This may be
because protection against severe disease is mediated not only by
antibody response, which might be relatively short lived for some
vaccines, but also by cell-mediated immunity and memory
responses, which are generally longer lived (152). In fact,
memory humoral and cellular responses are still detectable in
vaccinated individuals who have not undergone COVID-19, and
in those who have recovered from COVID-19, eight months after
vaccination, despite a progressive decline in antibody levels
(230). At six months, although vaccinated individuals show a
decreased level of anti-S IgG, all of them present cell-mediated
immune responses. The decrease in antibody titers is apparently
compensated by an increased neutralization capacity and a
robust cellular immune response, which is reflected by a high
Frontiers in Immunology | www.frontiersin.org 11
level of IFN-g synthesis by the stimulated T-cells (264). In mice,
the primary source of serum IFN-g one day after secondary
immunization are CD4+ and CD8+ T cells, which results in
improved myeloid cell activation after secondary immunization
(211). Given all of the information mentioned above, the
assessment of humoral immune response as determined by the
measurement of antibodies against the receptor-binding domain
of the spike protein after vaccination underestimates the
immunogenicity of SARS-CoV-2 vaccines and a combined
analysis of humoral and cellular immunity was proposed for
the identification of vaccine responders (265).

The type of response that vaccines should trigger must always
be Th1 cell response or balanced T-cell responses, because when
the response is Th2 cell, it has been associated with enhanced
respiratory disease (266–270). Moreover, we have looked at how
T cells also play a critical role in B-cell maturation and therefore
the induction of a strong and durable antibody response (150). In
most of the current COVID-19 vaccines that have reported
clinical trial results, the induction of cellular response in
humans has a Th1 bias and/or is characterized by IFN-g
expression and appears to be substantially protective against
severe disease in all the major viral variants (271). Thus, in a
longitudinal study, Painter M. M. et al. (250) show that mRNA
vaccines induce Th1 and Tfh cell responses following the first
dose, correlated with post-boost CD8+T cells and neutralizing
antibodies, respectively, which is expected since Th1 cells
predominantly facilitate CD8+ T cell response, while Tfh cells
help promote optimal B cell, germinal center, and antibody
responses (150, 272–274). At three months, 87% of vaccinated
individuals developed either CD4+ or CD8+ T cell responses
(261) but after the first dose, in subjects who had no previous
contact with SARS-CoV-2, vaccination induced rapid and robust
SARS-CoV-2-specific CD4+ T cell responses compared with
CD8+T cell responses, which developed gradually and were
variable in magnitude (250). However, other authors observed
a robust, stable and fully functional response of Spike-specific
CD8 T cells after primary vaccination (275). Differences in
cohort or methodology may have affected the discrepancy in
these findings, but these observations indicate that SARS-CoV-2-
specific CD4+ T cells are largely contributors to the protection
observed early after the first vaccine dose (251, 276).

CD4+ T cell responses were detected after immunization with
ChAdOx-1 S, Ad26.COV2.S, mRNA-1273 or BNT162b2
vaccines, and did not show significant differences between the
different variants of concern, including the Omicron variant
(143). One or two doses of vaccine elicited a persistent and
robust cellular immune memory response even when vaccinated
individuals had been infected previously (277–279), with an
homogeneity in the magnitude (264). Although previous
infected individuals had similar frequencies of vaccine-induced
CD4+ T cells as non-infected individuals, the former produced
greater IFN-g following spike-stimulation (230) In addition, T
cell reactivity following vaccination or natural infection proved
to be similar across early strains (Alpha, Beta and Gamma) given
that 93% and 97% of CD4 and CD8 epitopes are 100% conserved
across these variants, potentially reducing the severity of
FIGURE 2 | Parameters to be assessed regarding humoral and cellular
response to SARS-CoV-2 mRNA vaccine. The top and middle figure outline
the immunological response achieved after the first and second doses of
mRNA vaccines, respectively. The bottom figure summarizes the parameters
needed to assess protection against SARS-CoV-2.
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COVID-19 if a progression of infection occurs, even though
neutralizing antibodies for emerging variants might be reduced
in comparison with the original strain of SARS-CoV-2 (280).
The same applies to the latest variants, since SARS-CoV-2
vaccination induces immunological CD4+ and CD8+ T cell
memory able to cross-recognize variants from Alpha to
Omicron (281). Furthermore, CD4+ and CD8+ SARS-CoV-2
spike-specific T cell responses triggered by prior infection with
the original strain or BNT 162b2 vaccination, remain largely
intact against the Omicron strain (282). This is due to the fact
that the vast majority of T cell epitopes are fully conserved (279–
281, 283–286), which suggests that the continued evolution of
variants has not been associated with increased viral escape from
T cell responses at the population level, and HLA binding of the
mutated epitopes has been well conserved for the majority of the
epitopes in Alpha to Omicron variants (281). Furthermore, it has
been proposed that the phenotype of memory and the helper
subset distribution of SARS-CoV-2-specific CD4+ and CD8+ T
cells responses elicited by second dose vaccine are similar to the
ones detected in individuals who have gone through a natural
SARS-CoV-2 infection (250).

The effect of the booster dose (a third vaccination dose) is
different in naïve individuals than in recovered COVID-19
individuals. In naïve individuals, this booster significantly
increased the levels of spike-specific antibodies and B and CD4+
T cells, while in recovered COVID-19 individuals, the booster dose
has minor effects (230), in line with what was observed for the
second vaccine dose (249, 250). Moreover, the second vaccine dose
in individuals who have undergone symptomatic infection with
SARS-CoV-2 is associated with lower neutralizing antibody levels,
in addition to T and B cell spike-specific frequencies, which
suggests that a vaccine over-boost strategy may lead to anergy
and exhaustion (249, 257). It is important to differentiate between
the immune response driven by the spike protein vaccine and the
response resulting from SARS-CoV-2 infection, where the innate
immune response triggers the adaptive immune response, and
many more elements come into play in a much more complex
process. In addition, the effect of repeated doses on overactivation
and the role played in its regulatory mechanisms, as well as the
appearance of exhausted cells, merits further study.

Age is an important factor influencing vaccine responses, and
there have been studies that report elderly people responding
poorly to influenza, Hepatitis A and B, and pneumococcal vaccines
as they develop lower antibody levels and weaker cell-mediated
responses (287). Immunosenescense is likely to affect the vaccine
response to SARS-CoV-2, as spike-specific IFN-g T cell responses
to vaccines were impaired in the age group over 80 years (288, 289)
and individuals with a higher number of immunosenescent CD8+
TEMRA cells have lower spike-specific CD4+ T cell responses (261).
For example, a study of COVID-19-naïve nursing-home residents
found that both humoral and cellular responses declined after four
weeks and remained lower than those of healthcare workers after
24 weeks (290). These data emphasize the need for additional
measures for the fragile elderly population.

Considering this information, to ensure that responses
mediated by antibodies with neutralizing capacity are
Frontiers in Immunology | www.frontiersin.org 12
complemented by T cell responses, an alternative parallel
strategy in vaccine generation should involve the inclusion of
additional antigens and T cell epitopes. This needs to be taken
into account since early functional T cells specific to SARS-CoV-
2- have a prognostic value with important implications for
vaccine design and immune monitoring (125).
DISCUSSION

SARS-CoV-2, the coronavirus responsible for the last global
pandemic, which originated in December 2019, is the causative
agent of the disease called COVID-19. The existence of cross-
reactivity between the immunity created by the common cold
coronaviruses and SARS-CoV-2 has not avoided infection but
may have possibly reduced the severity of the disease in some
individuals. SARS-CoV-2, like other viruses, has evolved
immune evasion mechanisms. In fact, multiple evasion
mechanisms have been observed at the level of innate and
adaptive humoral immune response; however, the evasion
mechanisms involved in cellular response, although existing,
require further study.

SARS-CoV-2 infection triggers a potent immune response
that directs CD4+ T cellular adaptive response towards Th1
polarization and an activation of CD8+ CTLs, both IFN-g
producers, as well as an antibody-producing humoral response.
Different mechanisms cause an imbalance in this response,
leading to an overactivation of the innate immune system and
resulting in a cytokine storm, together with a hyperactivation of
the adaptive immune response that will consequently cause an
exhaustion of the latter. The fundamental role played by cellular
immunity as the main axis of the immune response against
SARS-CoV-2, directing the different components involved, such
as the innate response and the humoral response, is evidenced
throughout this review.

Many efforts are being made during this pandemic to avoid
both primoinfections and reinfections, using massive vaccination
strategies. Both natural infection and vaccines produce long-
term memory T cells, CD4+ and CD78+, which would protect
the population particularly by avoiding severe infections and
being associated with a better prognosis. Even so, the immunity
provided by vaccination is more limited than the one provided
by natural infection. This is because the immune response in
vaccination is limited to the spike protein, which affects the
variety of the T cell response and, notably, CD8+ T cell memory,
which seems to be associated with a better prognosis in the case
of non-spike-specific CD8+ T cells. Thus, a future vaccination
strategy should include antigens, which are also important for
the cellular response, to fill in these gaps.

A successful vaccination strategy requires knowledge of the
previous immunity of the individual to SARS-CoV-2 since the
cellular immune response to the vaccine is different in naïve
individuals and in those who have been previously infected. In
the latter, there is a faster and more robust response, which is
already detectable with the first vaccine dose. The different studies
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performed to date make it possible to reach some conclusions
concerning the role of cell-mediated immunity in SARS-CoV-2
infection/vaccination (Table 1). Hopefully, in the future, the
analysis of cellular immunological memory generated by a
previous infection or by vaccination will provide us with the tools
required to fight against future variants of SARS-CoV-2 in terms of
infection control, as well as future revaccination programs.
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191. Kreutmair S, Unger S, Núñez NG, Ingelfinger F, Alberti C, De Feo D, et al.
Distinct Immunological Signatures Discriminate Severe COVID-19 From
non-SARS-CoV-2-Driven Critical Pneumonia. Immunity (2021) 54
(7):1578–93.e5. doi: 10.1016/j.immuni.2021.05.002

192. Rha MS, Jeong HW, Ko JH, Choi SJ, Seo IH, Lee JS, et al. PD-1-Expressing
SARS-CoV-2-Specific CD8+ T Cells Are Not Exhausted, But Functional in
Patients With COVID-19. Immunity (2021) 54(1):44–52.e3. doi: 10.1016/
j.immuni.2020.12.002

193. Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry
EJ. Network Analysis Reveals Centrally Connected Genes and Pathways
Involved in CD8+ T Cell Exhaustion Versus Memory. Immunity (2012) 37
(6):1130–44. doi: 10.1016/j.immuni.2012.08.021

194. Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory
Receptors Beyond T Cell Exhaustion. Front Immunol (2015) 6(JUN).
doi: 10.3389/fimmu.2015.00310

195. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, et al.
A Distinct Gene Module for Dysfunction Uncoupled From Activation in
Tumor-Infiltrating T Cells. Cell (2016) 166(6):1500–11.e9. doi: 10.1016/
j.cell.2016.08.052

196. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ,
et al. Dissecting the Multicellular Ecosystem of Metastatic Melanoma by
Single-Cell RNA-Seq. Sci (2016) 352(6282):189–96. doi: 10.1126/
science.aad0501

197. Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE,
et al. Chronic Virus Infection Enforces Demethylation of the Locus That
Encodes PD-1 in Antigen-Specific CD8+ T Cells. Immunity (2011) 35
(3):400–12. doi: 10.1016/j.immuni.2011.06.015

198. Saris A, Reijnders TDY, Nossent EJ, Schuurman AR, Verhoeff J, Van Asten S,
et al. Distinct Cellular Immune Profiles in the Airways and Blood of
Critically Ill Patients With COVID-19. Thorax (2021) 76(10):1010–9.
doi: 10.1136/thoraxjnl-2020-216256

199. Vitte J, Diallo AB, Boumaza A, Lopez A, Michel M, Allardet-Servent J, et al.
A Granulocytic Signature Identifies COVID-19 and its Severity. J Infect Dis
(2020) 222(12):1985–96. doi: 10.1093/infdis/jiaa591

200. Chen J, Vitetta L. Increased PD-L1 Expression may be Associated With the
Cytokine Storm and CD8+T-Cell Exhaustion in Severe COVID-19. J Infect
Dis (2021) 223(9):1659–60. doi: 10.1093/infdis/jiab061

201. Sabbatino F, Conti V, Franci G, Sellitto C, Manzo V, Pagliano P, et al. PD-L1
Dysregulation in COVID-19 Patients. Front Immunol (2021) 12.
doi: 10.3389/fimmu.2021.695242

202. Eljaafari A, Pestel J, Le Magueresse-Battistoni B, Chanon S, Watson J, Robert
M, et al. Adipose-Tissue-Derived Mesenchymal Stem Cells Mediate PD-L1
Overexpression in the White Adipose Tissue of Obese Individuals, Resulting
in T Cell Dysfunction. Cells (2021) 10(10):2645. doi: 10.3390/cells10102645
June 2022 | Volume 13 | Article 904686

https://doi.org/10.1016/S2213-2600(20)30076-X
https://doi.org/10.3389/fimmu.2020.00827
https://doi.org/10.1073/pnas.0914839107
https://doi.org/10.1038/ncomms11653
https://doi.org/10.1084/jem.20200872
https://doi.org/10.1084/jem.20200872
https://doi.org/10.1182/blood-2009-03-211052
https://doi.org/10.4049/jimmunol.1002932
https://doi.org/10.4049/jimmunol.1002932
https://doi.org/10.1128/JVI.06075-11
https://doi.org/10.1126/science.abb8925
https://doi.org/10.1038/s41577-020-0311-8
https://doi.org/10.1007/s00281-017-0636-y
https://doi.org/10.1111/bjh.16659
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/science.abd4570
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1038/s41569-018-0064-2
https://doi.org/10.1038/nri3547
https://doi.org/10.1038/nri3547
https://doi.org/10.1093/cid/ciaa248
https://doi.org/10.1016/j.xcrm.2020.100092
https://doi.org/10.1016/j.xcrm.2020.100092
https://doi.org/10.1038/s41598-020-75659-5
https://doi.org/10.1155/2020/8827670
https://doi.org/10.3390/cells10061550
https://doi.org/10.3390/cells10061550
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.ijid.2020.07.003
https://doi.org/10.1038/ni.2035
https://doi.org/10.1038/nm1492
https://doi.org/10.1038/s41423-020-0401-3
https://doi.org/10.1016/j.immuni.2021.05.002
https://doi.org/10.1016/j.immuni.2020.12.002
https://doi.org/10.1016/j.immuni.2020.12.002
https://doi.org/10.1016/j.immuni.2012.08.021
https://doi.org/10.3389/fimmu.2015.00310
https://doi.org/10.1016/j.cell.2016.08.052
https://doi.org/10.1016/j.cell.2016.08.052
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1016/j.immuni.2011.06.015
https://doi.org/10.1136/thoraxjnl-2020-216256
https://doi.org/10.1093/infdis/jiaa591
https://doi.org/10.1093/infdis/jiab061
https://doi.org/10.3389/fimmu.2021.695242
https://doi.org/10.3390/cells10102645
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Moga et al. Robustness Cellular SARS-CoV-2 Immunity
203. Dorward DA, Russell CD, Um IH, Elshani M, Armstrong SD, Penrice-Randal
R, et al. Tissue-Specific Immunopathology in Fatal COVID-19. Am J Respir
Crit Care Med (2021) 203(2):192–201. doi: 10.1164/rccm.202008-3265OC

204. Liu J, Yang X, Wang H, Li Z, Deng H, Liu J, et al. Analysis of the Long-Term
Impact on Cellular Immunity in COVID-19-Recovered Individuals Reveals a
Profound Nkt Cell Impairment.MBio (2021) 12(2):e00085–21. doi: 10.1128/
mBio.00085-21

205. Aid M, Busman-Sahay K, Vidal SJ, Maliga Z, Bondoc S, Starke C, et al.
Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus
Macaques. Cell (2020) 183(5):1354–66.e13. doi: 10.1016/j.cell.2020.10.005

206. Li S, Jiang L, Li X, Lin F, Wang Y, Li B, et al. Clinical and Pathological
Investigation of Patients With Severe COVID-19. JCI Insight (2020) 5(12):
e138070. doi: 10.1172/jci.insight.138070

207. Radermecker C, Detrembleur N, Guiot J, Cavalier E, Henket M, d’Emal C,
et al. Neutrophil Extracellular Traps Infiltrate the Lung Airway, Interstitial,
and Vascular Compartments in Severe COVID-19. J Exp Med (2020) 217
(12):e20201012. doi: 10.1084/jem.20201012

208. Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, et al.
Viral Presence and Immunopathology in Patients With Lethal COVID-19: A
Prospective Autopsy Cohort Study. Lancet Microbe (2020) 1(7):e290–9.
doi: 10.1016/S2666-5247(20)30144-0

209. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S,
Wang B, et al. An Inflammatory Cytokine Signature Predicts COVID-19
Severity and Survival. Nat Med (2020) 26(10):1636–43. doi: 10.1038/s41591-
020-1051-9

210. Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex
Differences in Immune Responses That Underlie COVID-19 Disease
Outcomes. Nature (2020) 588(7837):315–20. doi: 10.1038/s41586-020-2700-3

211. Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MKD, Trisal M, et al.
Mechanisms of Innate and Adaptive Immunity to the Pfizer-BioNTech
BNT162b2 Vaccine. Nat Immunol (2022) 23:543–555. doi: 10.1038/
s41590-022-01163-9

212. Loske J, Röhmel J, Lukassen S, Stricker S, Magalhães VG, Liebig J, et al. Pre-
Activated Antiviral Innate Immunity in the Upper Airways Controls Early
SARS-CoV-2 Infection in Children. Nat Biotechnol (2021) 40:319–24.
doi: 10.1101/2021.06.24.21259087

213. Dufort EM, Koumans EH, Chow EJ, Rosenthal EM, Muse A, Rowlands J,
et al. Multisystem Inflammatory Syndrome in Children in New York State. N
Engl J Med (2020) 383(4):347–58. doi: 10.1056/NEJMoa2021756

214. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF,
et al. Multisystem Inflammatory Syndrome in U.S. Children and
Adolescents. N Engl J Med (2020) 383(4):334–46. doi: 10.1056/
NEJMoa2021680

215. Weisberg SP, Connors TJ, Zhu Y, Baldwin MR, Lin WH, Wontakal S, et al.
Distinct Antibody Responses to SARS-CoV-2 in Children and Adults Across
the COVID-19 Clinical Spectrum. Nat Immunol (2021) 22(1):25–31.
doi: 10.1038/s41590-020-00826-9

216. Whittaker E, Bamford A, Kenny J, Kaforou M, Jones CE, Shah P, et al.
Clinical Characteristics of 58 Children With a Pediatric Inflammatory
Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA
- J Am Med Assoc (2020) 324(3):259–69. doi: 10.1001/jama.2020.10369

217. Zhang J, Lin H, Ye B, Zhao M, Zhan J, Dong S, et al. One-Year Sustained
Cellular and Humoral Immunities of COVID-19 Convalescents. Clin Infect
Dis (2021) ciab884. doi: 10.1093/cid/ciab884

218. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological
Memory to SARS-CoV-2 Assessed for Up to 8 Months After Infection.
Science (2021) 371(6529):eabf4063. doi: 10.1126/science.abf4063

219. Bilich T, Nelde A, Heitmann JS, Maringer Y, Roerden M, Bauer J, et al. T Cell
and Antibody Kinetics Delineate SARS-CoV-2 Peptides Mediating Long-
Term Immune Responses in COVID-19 Convalescent Individuals. Sci Transl
Med (2021) 13(590):eabf7517. doi: 10.1126/scitranslmed.abf7517

220. He Z, Ren L, Yang J, Guo L, Feng L, Ma C, et al. Seroprevalence and Humoral
Immune Durability of Anti-SARS-CoV-2 Antibodies in Wuhan, China: A
Longitudinal, Population-Level, Cross-Sectional Study. Lancet (2021) 397
(10279):1075–84. doi: 10.1016/S0140-6736(21)00238-5

221. Gurevich M, Zilkha-Falb R, Sonis P, Magalashvili D, Menascu S, Flechter S,
et al. SARS-CoV-2 Memory B and T Cell Profiles in Mild COVID-19
Frontiers in Immunology | www.frontiersin.org 19
Convalescent Patients. Int J Infect Dis (2022) 115:208–14. doi: 10.1016/
j.ijid.2021.12.309

222. Bonifacius A, Tischer-Zimmermann S, Dragon AC, Gussarow D, Vogel A,
Krettek U, et al. COVID-19 Immune Signatures Reveal Stable Antiviral T
Cell Function Despite Declining Humoral Responses. Immunity (2021) 54
(2):340–54.e6. doi: 10.1016/j.immuni.2021.01.008

223. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-Month Consequences
of COVID-19 in Patients Discharged From Hospital: A Cohort Study. Lancet
(2021) 397(10270):220–32. doi: 10.1016/S0140-6736(20)32656-8

224. Wheatley AK, Juno JA, Wang JJ, Selva KJ, Reynaldi A, Tan HX, et al.
Evolution of Immune Responses to SARS-CoV-2 in Mild-Moderate COVID-
19. Nat Commun (2021) 12(1):1162. doi: 10.1038/s41467-021-21444-5

225. Sherina N, Piralla A, Du L, Wan H, Kumagai-Braesch M, Andréll J, et al.
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