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Barriers to genetic testing in clinical psychiatry and ways to
overcome them: from clinicians’ attitudes to sociocultural
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Genetic testing has evolved rapidly over recent years and new developments have the potential to provide insights that could
improve the ability to diagnose, treat, and prevent diseases. Information obtained through genetic testing has proven useful in
other specialties, such as cardiology and oncology. Nonetheless, a range of barriers impedes techniques, such as whole-exome or
whole-genome sequencing, pharmacogenomics, and polygenic risk scoring, from being implemented in psychiatric practice. These
barriers may be procedural (e.g., limitations in extrapolating results to the individual level), economic (e.g., perceived relatively
elevated costs precluding insurance coverage), or related to clinicians’ knowledge, attitudes, and practices (e.g., perceived
unfavorable cost-effectiveness, insufficient understanding of probability statistics, and concerns regarding genetic counseling).
Additionally, several ethical concerns may arise (e.g., increased stigma and discrimination through exclusion from health insurance).
Here, we provide an overview of potential barriers for the implementation of genetic testing in psychiatry, as well as an in-depth
discussion of strategies to address these challenges.
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INTRODUCTION
Genetic testing has evolved rapidly over recent years [1]. New
technologies in genetic testing provide important new informa-
tion about the diagnosis, treatment, and prevention of diseases
and are of great value for precision medicine [2–4]. Nonetheless,
at the time of writing, a range of barriers impedes such tests from
being implemented in clinical psychiatry [5–7]. This review
addresses the current state of genetic testing in psychiatry and
lists recommendations on how to overcome such barriers. We first
address general aspects of genetic testing, mainly its potential
clinical yield. We then briefly discuss methods and applications of
genetic testing in psychiatry, followed by a review on barriers to
genetic testing as well as proposed ways to overcome them.
Indications for genetic testing vary by disorder. Given the

current evidence and its widespread professional support we
highlight examples of clinical testing indications for autism
spectrum disorders (ASD). However, evidence to support direct-

to-consumer testing will require further investigation for all
psychiatric disorders. Regarding polygenic risk scoring (PRS) and
pharmacogenetics, evidence is increasing rapidly, with high
potential for future clinical translation of both, such as for
diagnostic purposes and pharmacological interventions [8, 9].

POTENTIAL OF GENETIC TESTING IN CLINICAL SETTINGS
To date, genetic testing has been implemented most extensively
in oncology and cardiology. For example, multigene panel testing
for hereditary cancer predisposition, including breast, ovarian, and
colorectal cancer, has been readily incorporated into clinical
practice [10–12]. Due to the extensive overlap in cancer
phenotypes and genetic heterogeneity, the use of panels
containing a broad variety of hereditary cancer genes can have
high clinical validity and improve risk assessment, early detection,
and prevention of cancer [13, 14]. For already diagnosed patients,
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genetic panel testing can provide useful information for treatment
decision-making [15]. Therefore, recommendations have been
made to extend the use of genetic testing in oncology and include
it as standard of care [15].
In cardiology, DNA-sequencing is widely used for the diagnosis

and clinical management of heritable heart diseases, such as
hypertrophic cardiomyopathy and long QT syndrome, with a
diagnostic yield of genetic testing in the range of 30–50% and
60–70%, respectively [16]. Recent studies have also reported a
potential role for PRS in cardiology. For example, in predicting
coronary artery disease, it has outperformed any single traditional
risk factor [17]. How psychiatry may benefit from the experience
with clinical translation of PRS gained in other fields of medicine
was recently reviewed elsewhere [18].
Oncology and cardiology are leading fields in the implementa-

tion of pharmacogenetic testing. The Clinical Pharmacogenetics
Implementation Consortium (CPIC) has produced prescribing
guidelines for various drugs according to CYP2D6, DPYD, and
TPMT genotypes in oncology [19–21], and CYP2C19, CYP2C9,
SLCO1B1, and VKORC1 genotypes in cardiology [22–24].
In psychiatry, genetic testing can be used to diagnose under-

lying genetic syndromes (e.g., 22q11.2 deletion syndrome) and—
in research settings—to provide insight into prognosis and
treatment response, particularly for disorders with high heritability
estimates, such as ASD, attention deficit and hyperactivity
disorder, schizophrenia, and bipolar disorder [25, 26]. The under-
lying causes of these disorders are often elusive, resulting in a
range of diagnostic and prognostic uncertainties for patients and
families. Identifying a genetic condition underlying the diagnosis
can help clarify medical risks associated with the diagnosis, test
family members at risk for the condition, and avoid unnecessary
testing, particularly in ASD [27–31]. Additionally, genetic testing
may provide information to identify, classify, and discriminate
between different stages of disease or patient subtypes, thereby
contributing to the objective of personalized patient care [32–34].
In research settings, genetics has also been shown to help identify
prognostic factors, although their clinical applicability has
remained unresolved so far [35]. Furthermore, genetic variation
in drug response (pharmacogenomics) has been widely investi-
gated: while evidence supports lower chances of drug-gene
interactions for patients undergoing pharmacogenetic testing,
effects of such genetic testing on remission rates have remained
unclear [36]. In line with such findings, the CPIC has issued
guidelines on the dosing of antidepressants according to CYP2C19
and CYP2D6 genotypes [37, 38]. However, with the advance of
technology and new methodologies, focus has shifted from
targeted CYP genotyping to genome-wide association studies
(GWASs) as an important source of pharmacogenetics data.
GWASs have proven successful in identifying complex pharmaco-
genomic traits in medicine, including psychiatry [39]. The largest
GWAS of antidepressant response to date found that SNP-based
heritability is significantly different from zero, although currently
the power to predict such a response in other cohorts using
whole-genome data seems limited [40]. Finally, genetic testing
may also be a valuable part of multi-omics approaches, including
neuroimaging, digital phenotyping, and computational models,
when aiming to perform multimodal analyses of predictions for
diagnosis, prognosis, and treatment response in psychiatry
[41–43].

Should we move from targeted genetic testing to broad
genetic testing?
Targeted genetic testing may be done to confirm a suspected
diagnosis based on phenotypical or clinical features, family or
personal medical history, such as in Duchenne muscular dystrophy
and Fragile X syndrome [44, 45]. Using targeted genetic testing, a
clinician aims to uncover whether an a priori hypothesized genetic
etiology of a specified disease entity is present. In broad genetic

testing, the disease entity is not pre-specified, but the clinician still
suspects a genetic etiology of the clinical presentation. An
example of broad genetic testing is whole-genome sequencing
(WGS, sequencing of the entire genome) to examine a possible
underlying genetic etiology in ASD (the current yield being
around 10% in ASD) [46].
While targeted genetic testing answers a defined hypothesis

(“this genetic etiology”), broad genetic testing addresses the
question of genetic causation more broadly (“a genetic etiology”)
[47]. Broad testing has an increased probability of revealing
incidental findings—which is the subject of ongoing debate about
the consequences for patients and their families, interpretation of
results, usefulness for research, and ethical, financial, and political
concerns [48].
As next-generation sequencing gradually becomes less expen-

sive, WGS and whole-exome sequencing (WES; sequencing the
~1% coding part of the genome) are becoming more and more
feasible options in clinical practice [49]. However, cost-
effectiveness has not yet been fully established and is likely to
vary according to the clinical setting; [49, 50] for example, genetic
testing is likely to be more cost-effective in neonatology than in
family medicine settings.

Readiness—what is an appropriate test?
With ever-evolving technologies, it is essential to monitor and
continuously evaluate whether tests meet the requirements to be
considered sufficient to be implemented in clinical practice [51]. In
general, genetic tests are assessed on the basis of four main
topics: (1) analytical validity: the ability to accurately and reliably
measure the genotype of interest—this is usually done by testing
the sensitivity and specificity of the test; (2) clinical validity: the
ability to accurately and reliably detect or predict a clinical
condition—in addition to sensitivity and specificity, the positive
and negative predictive values (PPVs and NPVs, respectively) of a
test are examined; (3) clinical utility: the comparison of risks and
benefits, and the assessment of clinical usefulness—this involves
consideration of efficacy, effectiveness, and safety; and (4) ethical,
legal, and social implications [48, 51–56].
ASD and intellectual disability (ID), collectively referred to as

neurodevelopmental disorders (NDD), at present qualify as the
only psychiatric disorders with enough evidence supporting
genetic testing as part of standard clinical practice. Chromosomal
microarray analysis (CMA) has been offered as a diagnostic tool for
developmental delay as well as ASD for some years (for an
example of a description with clinical indications, see cited
references) [57, 58]. Nowadays, WES is recommended as first-tier
clinical genetic diagnostic tool for NDD [59], with discussions
ongoing for the incorporation of WGS as the first-choice genetic
test in NDD [60]. Nonetheless, studies suggest low adoption rates
of such tests in clinical practice [61]. For pharmacogenomics,
important initiatives were recently launched in Europe with the
funding of a large pharmacogenomics project for psychotropic
medications by the EU Horizon 2020 program [62, 63].
Furthermore, when evaluating the clinical utility of genetic tests,

special consideration must be given to risk. The effect size of risk
(or resilience) on a group level, traditionally represented as the
odds ratio (OR), must be translated to measures of individual risk,
such as PPVs and NPVs. Although group- or population-level effect
sizes may appear substantial, their clinical translation requires the
application on an individual level, i.e., a translation that represents
the individual risk of the patient, rather than the complete at-risk
population [64].

METHODS AND APPLICATIONS FOR GENOMIC TESTING IN
PSYCHIATRY
The field of psychiatric genetics has advanced tremendously over
the past 20 years, with high potential for diagnostics, prognosis,
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and treatment [1, 25, 65]. Several types of genetic approaches
have been developed, including copy number variant (CNV)
analysis, (targeted) next generation sequencing (NGS), and PRS.
Below, we present a brief overview of genetic methodologies with
the highest yield and utility within clinical settings in psychiatry.

Diagnosis and prognosis
With the advent of GWASs, hundreds of new genetic loci have
been discovered to be associated with various diseases, including
psychopathological traits [66] and psychiatric disorders such as
anxiety and mood disorders [67, 68], and schizophrenia [69–71].
While genome-wide association analysis itself cannot be used as a
test for diagnostic or prognostic purposes at an individual level, it
does provide scientific support for individual calculations of PRS.
PRS can be considered as a measure of the cumulative impact

of hundreds to thousands of individually weakly associated
common genetic variants [72, 73]. As such, PRS is commonly
defined as a single value estimate of an individual’s propensity to
a phenotype. It is calculated as a sum of their genome-wide
genotypes weighted by the corresponding genotype effect sizes
from summary statistics GWAS data [72, 73]. While common
genetic variants usually only confer a subtle increase in risk for
complex phenotypes when examined individually, their cumula-
tive impact expressed in PRS confers a more substantial risk for
the disease [8, 74, 75]. Findings from recent studies suggest that
PRS may become a useful tool in psychiatry for both diagnostic
and prognostic purposes. For example, patients with psychotic
symptoms, as well as their relatives, have been found to present
significantly higher PRS for schizophrenia and bipolar disorder
than healthy controls [34, 76, 77]. PRS has also been shown to be
useful in identifying a subset of individuals more likely to relapse
and develop schizophrenia among individuals with first-episode
psychosis [78–80], patients with schizophrenia likely to be
treatment-resistant [81], as well as to be a predictor of
antipsychotic effectiveness in individuals with first-episode
psychosis [82]. However, several barriers, including low clinical
significance, still need to be overcome before PRS can be clinically
useful (see section “Barriers to genomic testing in clinical
psychiatry settings”) [9, 83].
While the risk for most psychiatric disorders has been shown to

be influenced by many common, low-risk variants (as outlined
above), rare and highly penetrant variants can also play a role.
Even though each rare variant explains only a fraction of disease
vulnerability in the population, on an individual level, they confer
a much greater risk of developing a certain disorder than the risk
predicted by PRS. For example, the risk for ASD in individuals with
a 3q29 deletion or a 7q11.23 duplication is estimated to be 38%
[84, 85] and 33% [86], respectively. Moreover, when comparing
European individuals with ASD to matched controls, cases have
been shown to carry a 1.19-fold higher global burden of rare CNVs,
rising to a 1.69-fold higher prevalence for loci previously
implicated in either ASD and/or ID [31]. Finally, the proposed
clinical implementations of genetic testing in ASD include the
development of new therapeutic strategies and the identification
of treatable somatic comorbidities [30, 87, 88].

Treatment response prediction
Genetic variants, such as single-nucleotide variants (SNVs), have
been associated with a higher risk of adverse drug reactions to
psychotropic medications, such as antipsychotics and antidepres-
sants [89]. For example, this is the case with clozapine, a second-
generation antipsychotic drug indicated for treatment-resistant
schizophrenia and useful in other psychotic and mood disorders
[90]. Clozapine may induce agranulocytosis, a life-threatening
condition that is associated with genetic variation in several
genes, including HLA-DQB1, HLA-B, and SLCO1B3/SLCO1B7 [91–95].
The subset of patients carrying any of these variants present a risk
up to 1175% higher than the overall clozapine-treated population;

therefore, performing genetic testing for this variant may be
clinically useful in certain situations, e.g., when patients are
prescribed clozapine but do not undergo regular blood checks
[92, 96–98]. Another scenario where such testing may be of use is
in patients diagnosed with 22q11 deletion syndrome. Although
this group shows similar clinical improvement after clozapine
therapy, seizures and other rare serious side effects are more
commonly reported compared to clozapine-treated patients
without 22q11 deletion syndrome (OR= 6.5 and OR=22.1,
respectively) [99].
Moreover, investigating the clinical usefulness of genetic testing

for indications is also relevant for lithium, given the high variability
in response, the narrow therapeutic window, the potential severity
of side effects, and the associated current underuse of this drug. In
the largest lithium response GWAS to date by The International
Consortium of Lithium Genetics (ConLiGen), a single locus of four
linked SNPs on chromosome 21 was significantly associated with
lithium response (all p values<5.0×10−8) [100]. The same study
showed that patients treated with lithium who carried these
associated alleles had a significantly lower rate of relapse
compared to carriers of the alternate alleles (p value=0.03, hazard
ratio=3.8) [100]. Another study (using largely the same dataset,
based on 14 different sites) evaluated the extent to which lithium
response could be predicted based on almost 48,000 genotyped
SNPs using machine learning and found that lithium response
could be predicted to above-chance levels in two sites of the
dataset and in a subset with only those patients that were
followed prospectively [101]. However, response could not be
predicted in the overall dataset and it was suggested that this was
due to heterogeneity arising from multisite data pooling [101].
Furthermore, over 50 cytochrome P450 enzymes are key for the

metabolism of several medications, with 90% of all medications
being metabolized by six of them, especially CYP3A4 and CYP2D6
[102]. CYP3A4 is implicated in the metabolism of over 50% of
commonly prescribed psychotropic drugs, including antipsycho-
tics, antidepressants, anxiolytics, and mood stabilizers [89], and
CYP2D6 enzymes mediate the oxidative metabolism of at least 30
psychotropic medications [103, 104]. Additionally, polymorphisms
of their encoding genes have been shown to influence patients’
responses to risperidone and aripiprazole [105, 106], while recent
evidence on clozapine hints that not genotype-predicted enzyme
activity but rather phenoconversion-predicted enzyme activity
(i.e., considering inducers and inhibitors) influences clozapine
levels and symptom severity [98].
Finally, clinical guidelines have been developed by the CPIC on

the prescription of selective serotonin reuptake inhibitors and
tricyclic antidepressants by CYP2D6 and CYP2C19 genotypes
[37, 38]; atomoxetine by CYPD26 genotypes [107]; opioid therapy
by CYPD26, OPRM1, and COMT genotypes [108]; and carbamaze-
pine and oxcarbazepine by HLA-A and HLA-B genotypes [109].

BARRIERS TO GENOMIC TESTING IN CLINICAL PSYCHIATRY
SETTINGS
Although promising, many of the abovementioned techniques
and methodologies are not yet ready for direct implementation in
the clinic. Below we elaborate on and analyze several barriers to
the implementation of genetic testing in clinical psychiatry (Fig. 1),
so that they may be more easily overcome, enabling safe and
informed genetic testing and potentially setting the stage for
precision medicine in psychiatry.

Methodological
Several methodological challenges currently stand in the way of
the applicability of genetic testing at a patient level in psychiatry.
First, the effect sizes and the explained variances of PRS at this
moment are small, hampering their utility for individual risk
prediction [53]. This individual risk prediction is expected to
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improve by increasing GWAS sample size. However, even
(relatively) large effect sizes found to date do not guarantee that
PRS will be useful for individual risk prediction. It has recently been
shown that PRS for schizophrenia did not improve individual
outcome prediction compared with information from a routine
psychiatric examination [110]. Thus, to achieve clinical utility, PRS
must not only have predictive power, but also provide information
that cannot be obtained by conventional means.
Second, there is still uncertainty about whether findings from

studies can be extrapolated to people of different ancestries as
risk differences attributable to ancestry may differ up to 10-fold
[111]. So far, results remain conflicting, e.g., regarding the use of
PRS for prognosis prediction in patients with first-episode
psychosis. Similar discriminatory power for predicting case-
control status and disease course was found in people of
European and Brazilian ancestry, while this discriminatory power
was considerably lower in people of African ancestry [79, 112]. At
the policy level, these issues may raise concerns regarding health
inequities as people of non-European ancestry may be at a
disadvantage if they cannot also benefit from research, largely
derived from European subjects [113, 114]. In addition, some
authors even argue that PRS may be a “public health hazard,”
criticizing the lack of interpretation of genome-wide association
signals at a cellular and physical level [115].

Implementational
Pharmacoeconomic research has shown conflicting evidence
regarding cost-effectiveness of genetic testing [116]. Early studies
in major depressive disorder seemed to suggest single gene
testing was cost-ineffective [117]; however, more recent, multi-
gene, commercially available pharmacogenomic testing has been
reported to be cost-effective [118]. Without unequivocal evidence
of its cost efficiency, the integration of pharmacogenomic testing
in clinical practice will be impeded, as policy makers and other key
stakeholders will refuse to provide funding.
In the United States of America (USA), physicians have

historically considered funding a considerable barrier to the use
of pharmacogenomic testing in clinical practice [119], and for
successful implementation, at least genotyping costs must have
public or private insurance coverage [5, 120]. Currently, some
insurance providers in the USA (such as Managed Medicare and
Medicaid) have introduced coverage determinations that enable
reimbursement of pharmacogenetic testing, and while the
number of claims for coverage of pharmacogenetic testing
remains low, it has more than doubled in recent years [121].
Apart from implementation costs, some studies have also

identified perceived pragmatic barriers to the implementation of
genetic testing, such as infrastructure, human resources, and
sustainability [6, 120, 122, 123]. The former would include the

Barriers Recommenda�ons

Methodological
• Applicability and generaliza�on across popula�ons
• Inequi�es in health provision

• Transla�on of group level findings to individual risk predic�on metrics
• Fostering of interna�onal, cross-popula�on collabora�ons
• Making summary sta�s�cs publicly available

Implementa�onal
• Perceived lack of cost-effec�veness
• Coverage of costs
• Facili�es needed for implanta�on

• Informing policy makers and insurers about gene�c research findings
• Implementa�on of projects and gene�c tes�ng/counseling clinics
• Large-scale interna�onal collabora�ons and sharing resources between 

ins�tu�ons

Clinicians’ knowledge, a�tudes, and prac�ces

• Perceived lack of u�lity
• Lack of knowledge, experience, and educa�on
• Lack of incorpora�on of gene�c e�ology into most 

psychiatric diagnos�c systems

• Improved and intensified training programs
• Interdisciplinary collabora�ons
• Adding gene�c e�ology as specifier to our diagnos�c systems and inclusion 

of gene�c tes�ng in diagnos�c work-up

Poten�al harms of gene�c tes�ng
• Psychological distress for pa�ents and family members
• Possible nega�ve impact on self-percep�on, perceived 

control, s�gma�za�on, and discrimina�on

• More research focused on gene�c tes�ng and counseling outcomes, 
including quality of life

Ethical concerns of clinicians, pa�ents, and families
• Ethical, social, and cultural issues
• Inequali�es between low-, middle-, and high-income 

countries
• Possible mental incompetence

• Development of guidelines with special considera�ons for psychiatric 
disorders

• Implementa�on of moral case delibera�on sessions in clinical guidelines

Access to gene�c counseling and understand of risk by pa�ents
• Low uptake of gene�c counseling services
• Limited availability of gene�c counseling services
• Possible misunderstanding of findings

• Increased involvement of pa�ents and families in the development, 
implementa�on, and evalua�on of gene�c tes�ng

• Broad access to gene�c counseling

Fig. 1 Barriers to genetic testing in clinical psychiatry settings and recommendations on how to overcome them. The first panel lists
barriers as grouped in six different categories according to the nature of the barriers (i.e, methodological, implementational, etc.). In the same
regard, recommendations are provided for each of the barrier categories.
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required availability of testing facilities that may be accessible to
all, as well as the availability of genetic counseling. Genetic testing
should be accompanied by the provision of appropriate services
ready to explain the implications of testing, perform the testing
itself, and provide guidance regarding the test results [124, 125].

Clinicians’ knowledge, attitudes, and understanding
Studies show that clinicians see the potential benefits of using
genetic testing, such as guidance in therapeutic decision-making and
a positive impact on patients’ motivation and adherence, but they
also mention several barriers [126, 127]. These include a lack of
knowledge (not knowing which test to order or not feeling
comfortable with interpreting test results), a perceived lack of utility
(the results do not alter clinical decision-making), and even potential
harmful implications to patients (concerns about the impact on the
patients’ employability or insurability) [128]. It would be hard to make
a case for genetic testing on an already underserved, stigmatized
population such as those with mental illness, when such a procedure
would result in a loss of health insurance or employment [129].
Another significant barrier to the adoption of genetic testing is

the lack of general understanding of genetics, probability and risk
prediction by patients, families, and clinicians themselves [130].
Genetic knowledge is also seen as advancing at an accelerating

pace. What is standard practice at the start of a clinician’s
residency may already be outdated by the end of it. This rapid
change and advancement may cause clinicians, including
psychiatrists, to feel uncomfortable making decisions about which
tests to order, interpreting the results, and most importantly,
communicating such results to patients and families [131].
Finally, genetic etiology has not been incorporated into most

psychiatric diagnostic systems, e.g., the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5). Classification of most
psychiatric disorders, such as schizophrenia, still relies solely on
clinical signs and symptoms. Of note, the identification of a
‘medical’ cause is explicitly formulated as an exclusion criterion for
most diagnoses, such as schizophrenia. This implies that people
who meet the schizophrenia inclusion criteria and have an
identified genetic etiology (e.g., 22q11 deletion syndrome)
formally cannot be diagnosed with schizophrenia [88].

Psychological consequences and potential harms
Obtaining genetic risk information may also carry negative
consequences for patients and their family members. First, there is
the risk that patients and relatives may misinterpret complex genetic
information. For example, when it is stated that “addiction is 50%
genetic in origin”, this can be understood in several ways. Families
may understand that relatives have a 1 in 2 chance of developing a
similar disorder or that a lack of positive family history somehow
confers immunity [132]. Clearly, both conclusions are false; but the
impact of such (common) misconceptions can be dramatic. As the
positive perception of genetic testing increases with better under-
standing, it is essential to provide a clear explanation and confirm
that the information has been correctly understood.
Psychological side effects of genetic testing include anticipatory

fear and anxiety, particularly when a positive test result is
expected and its implications are feared [133, 134]. After receiving
a positive genetic test result, patients have been shown to feel as
a burden on their families and experience feelings of blame and
guilt. This psychological distress affects not only the patient but
also family members, who themselves are confronted with a
possible increased genetic risk of disease [134]. Self-perception
can change negatively after realizing that one is at increased risk
for a certain disease, something one may have been previously
unconcerned about. Furthermore, given the common perception
that genetic risks are immutable, perceived control over the
disease, and motivation to change health-related behavior can
decrease, secondary to a diminished belief that changing behavior
will reduce risks [135, 136].

Lastly, commonly reported concerns with genetic testing
include stigmatization and discrimination. Patients with psychia-
tric disorders are already among the most stigmatized groups in
society, which can impair help-seeking and quality of treatment,
and can lead to feelings of exclusion [137, 138]. Fear that genetic
information will be used for discriminatory purposes by employers
and insurance companies also constitutes an important barrier
[129].

Access to genetic counseling
Adequate care after genetic testing, including support groups or
psychological follow-up, is pivotal for both patients and relatives to
cope with results [139, 140]. This can be achieved by embedding
genetic testing in genetic counseling. However, at this point, genetic
counselors receive relatively few referrals from psychiatrists, despite
the reportedly high demand for psychiatric genetic counseling
among people with mental illness [141]. Genetic counselors often do
not provide this service to patients with mental illness and while
most believe psychiatric genetic counseling may be valuable for
both patients and family members, they also doubt the utility [141].
This is mainly due to the perception of genetic counselors that they
do not have sufficient psychiatric genetic data, resources and time
[141]. These issues are even more pressing in low- and middle-
income countries (LMIC), where medical genetics training is even
less implemented. Moreover, social and cultural determinants also
play a key role in the uptake and understanding of genetic services.
It has been argued that religious principles and cultural beliefs can
pose barriers to the acceptability and use of genetic services [134].
However, we believe the opposite may also hold: religious traditions
and thinking may provide valuable insights when discussing ethical
aspects of genetic testing, e.g., regarding coping strategies when
dealing with the setback of receiving a genetic diagnosis.

RECOMMENDATIONS TO OVERCOME BARRIERS TO GENOMIC
TESTING
Below we outline recommendations to overcome the barriers
discussed in the previous section. This is not meant as an
extensive list and as new insights develop, undoubtedly new
avenues to address such challenges will ensue.

Education
From medical school to medical specialty training, the acquisition
of appropriate genetics knowledge, skills, and attitudes should be
encouraged. This is of paramount importance given the role of
psychiatrists in providing support and management to patients
and families with, or at risk of, highly heritable psychiatric
conditions [142]. Such education helps prepare for future clinical
advances and should include empowering clinicians to identify
patients who could benefit from genetic testing and counseling,
to correctly interpret and apply results in clinical practice, and
finally, to communicate genetic information in an understandable
and nondirective manner [143].
Psychiatrists should always be aware of and assess the emotional,

ethical, legal, and social impact of genetic information on patients
and their families [128]. This can be further facilitated by
interdisciplinary collaboration between general practitioners, medical
geneticists, genetic counselors, and psychiatrists, which in turn may
increase clinicians’ knowledge and adherence to genetic testing
recommendations and improve patient satisfaction [144, 145].
Furthermore, the International Society of Psychiatric Genetics

formed a Residency Education Committee to identify key genetic
knowledge to be taught in psychiatry training programs [142, 143].
Following this educational guideline may help empower future
generations of psychiatrics and ensure adequate implementation of
psychiatric genetic testing in clinical settings [4, 146].
On a similar note, training residents in the genetic aspects of

mental health would encompass a wide range of clinical benefits.
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For example, specific training may raise residents’ awareness of
genetic risk, allow for community support to patients and families,
and facilitate reproductive counseling and family planning to
parents with affected children. In addition, training programs may
enable residents to make better informed medication choices to
reduce the risk of severe medication side effects [142–144].

Implementation of genetic counseling
Initiatives such as PDGENE [147], an ongoing project aimed at
offering both genetic testing and genetic counseling at no cost for
people with Parkinson’s disease in North America, are considered
potentially useful in increasing not only patients’ access to genetic
counseling, but also clinicians’ knowledge about the clinical
relevance of test results [148]. Similar initiatives can be
implemented in the field of psychiatry, to give patients and
clinicians better access to genetic counseling, both on-site and
remotely. In 2012, the first specialist psychiatric genetic counseling
clinic opened in Canada, which was successful in fulfilling unmet
needs of patients and family members with questions about the
etiology and recurrence risks of disease and has been shown to
enhance empowerment and self-efficacy [149].
It is important to make psychiatric genetic counseling services

culturally appropriate, socially and financially accessible, and
ethically coherent in order not to further alienate already under-
served populations [150]. Especially for LMIC, resources for
implementing genetic testing and counseling are currently limited.
This could be enhanced by large-scale international collaboration
[65, 151–153] and sharing resources between institutions, for
example, through university-based exchange programs or
government-level collaborations. An example of the latter is Genetic
Testing in Emerging Economies (GenTEE), a European Union
initiative aimed to inform policy decisions in LMIC on the challenges
of delivering equitable access to genetic testing services [154].

Dissemination
We believe there is also a pressing need to help shape public
mental health policies and clinical guidelines, by informing both
public health systems and private insurance companies about
tests that have shown beneficial clinical applicability, such as
pharmacogenomic testing in cases of repeated nonresponse or
high susceptibility to side effects. Factors considered by insurers
when formulating medical coverage policies for pharmacoge-
nomic testing include availability of clinical guidelines, use by
physicians in current clinical practice, cost-effectiveness, and
patient interest [5]. Moreover, the most determining factor in
coverage is conclusive evidence of positive pharmacogenomic
testing for health outcomes [146, 155, 156]. Whenever these
conditions are met, insurers and public health systems should
consider funding genetic testing. In the past few years, inroads
have been made in the US, where pharmacogenetic testing, now
covered by several insurance providers, has seen an increasing
trend in its uptake [121]. In the Netherlands, the Dutch
Pharmacogenetics Working Group [157] has already integrated
pharmacogenetic testing into the prescription systems.

Overcoming implementation barriers
Commercially available pharmacogenetic tests are becoming
increasingly accessible due to reduced pricing and simplified
implementation procedures [158]. For example, a proposed
“evidence-based” genetic testing panel includes a minimum gene
and allele set for pharmacogenetic testing in psychiatry that
includes 16 variant alleles within five genes (i.e., CYP2C9, CYP2C19,
CYP2D6, HLA-A, HLA-B) [159]. Such a panel would allow the
standardization of protocols to serve as an accompanying tool for
clinicians in selecting psychotropic medications and dosing,
including antidepressants and mood stabilizers [40, 160, 161].
In addition, some commercially available pharmacogenetic test

panels may be well equipped to facilitate the implementation of

most pharmacogenomic dosing guidelines relevant to psychiatry,
including those associated with CYP2D6 and CYP2C19
[159, 161, 162]. However, one should be aware that currently
commercially available gene panels show dramatic variability
[163]. A standardized, transparent, and systematic evaluation of
available evidence is needed to establish this evidence and reduce
heterogeneity [159, 163, 164].
Regarding the current lack of integration of genetic etiology in

the DSM-5, one way to close this gap is by adding genetic
etiology as a specifier to the diagnosis, in addition to the
symptom-based diagnostic criteria, as has been suggested for
ASD [88]. By including known specifiers in classification systems
whilst omitting exclusion criteria such as “attributable to a known
medical condition,” clinicians will be encouraged to assess and
document genetic and nongenetic etiologies for improved
diagnostics [88].

Bridging the gap between bench and bedside
We also signal a need to leverage the potential of genetic
findings for diverse patient populations. The past years have
indeed witnessed an increase in GWASs of mixed populations by
the Psychiatric Genomics Consortium, as well as the coming into
existence of genetic studies in currently underrepresented
populations, as exemplified by the Latin America Genomics
Consortium. Further advancing such diversity will facilitate
greater PRS accuracy in populations of non-European ancestry
[112, 113]. By addressing these research (and consequently
health) inequities, the full and equitable potential of PRS will also
be realized in individuals already underserved by health services
[124, 125, 134].
Additionally, it is necessary to translate group level findings to

individual risk prediction metrics to increase the clinical relevance
of PRS [8, 53, 75, 165]. This can be done by using PPVs as these
allow for stratification of individuals into groups with different
outcome probabilities and because they depend on both the
strength of association and the baseline prevalence [85].
Furthermore, before stratifying the entire population into risk
groups, a more feasible goal may be to identify a subset of
individuals already at risk for a certain disease, based on genetic
factors in combination with clinical risk factors [53]. This may allow
for better risk prediction at an individual level, as modest effect
sizes conferred by PRS will lead to more substantial differences in
absolute risk when applied in populations with a higher
prevalence of certain phenotypes (as opposed to the low
population prevalence of these phenotypes) [85]. Finally, more
research should tackle the lack of current knowledge on the
impact on quality of life in patients and their families after genetic
testing in the context of psychiatry [140].

Developing new guidelines
First, we propose an update on current diagnostic guidelines that
build on previous efforts, analogous to those published for ASD
and ID [166, 167]. A statement on genetic testing is also available
from the International Society of Psychiatric Genetics website (last
updated in 2019) [168]. Furthermore, treatment guidelines should
incorporate pharmacogenomic recommendations from the CPIC
clinical guidelines [169] that are already available and further
guidelines should be developed as new evidence arises for other
drug classes, e.g., antipsychotics. The Dutch Pharmacogenetics
Working Group [157] has called for a Europe-wide implementation
of its pharmacogenetic guidelines, which would aid in their
homologation and widespread use [170].
Moreover, genetic testing and counseling may be included in

guidelines of psychiatric associations across the globe [171]. These
guidelines should encompass special considerations for situations
involving people with psychiatric disorders, including those with
impaired mental competence. For example, in such guidelines
ethical case deliberation sessions may be suggested for situations
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where obtaining informed consent is not possible [172].
Procedures should be standardized and should aim to uphold
human rights and bioethical principles, while at the same time
accounting for cultural differences across the world.

Empowering patients and families
For successful implementation of clinical genetic testing, it is
essential that patients, families, and caretakers’ associations are
involved in the process of development, implementation, and
evaluation of genetic testing. These key stakeholders should be
actively empowered and encouraged to provide voices and input
that shape public mental health policy, clinical guidelines, and
research proposals. By doing so, barriers to access genomic testing
and genetic counseling may be overcome. Genetic counseling for
psychiatric disorders has proven to be effective in increasing
empowerment in both patients and family members [140, 149, 173].
We recommend that the next step is to make genetic counseling
widely available for patients and families. The Genetic Counselling
Outcome Scale or its abbreviated version, the Genomics Outcome
Scale, may be used to measure patient-reported outcomes when
evaluating genetic counseling and testing services [174].

CONCLUSIONS
With the advancement of new genetic testing methodologies,
more discoveries can be made at a rapid pace in the field of
psychiatric genetics. Several challenges currently hamper the
implementation of psychiatric testing, be it broad or more
targeted genetic testing in clinical settings. We are optimistic
about the implementation of genetic testing in clinical psychiatry
around the world as a variety of recommendations can be
followed to overcome such barriers. To achieve this, it will be
essential that all relevant stakeholders, and especially patients and
family, are actively involved. We encourage future research
projects to investigate the potential beneficial effects of these
recommendations on genetic counseling settings and the quality
of life of patients and their relatives around the world.
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