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abstract

Since antiquity, the sense of smell (olfaction) is considered as a distance sense, just like sight and hear-
ing. Conversely, the sense of taste (gustation) is thought to operate by direct contact, similarly to touch.
With the progress of natural sciences, information at molecular, anatomical, and neurobiological levels
has also contributed to the taste-smell dichotomy, but much evidence inconsistent with a sharp differenti-
ation of these two senses has emerged, especially when considering species other than humans. In spite of
this, conflicting information has been interpreted so that it could conform to the traditional differentia-
tion. As a result, a confirmation bias is currently affecting scientific research on chemosensory systems
and is also hindering the development of a satisfactory narrative of the evolution of chemical communi-
cation across taxa. From this perspective, the chemosensory dichotomy loses its validity and usefulness. We
thus propose the unification of all chemosensory modalities into a single sense, moving toward a synthetic,
complex, and interconnected perspective on the gradual processes by which a vast variety of chemicals have
become signals that are crucially important to communication among and within cells, organs, and or-
ganisms in a wide variety of environmental conditions.
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Introduction

C HEMICAL sensing allows all cells, or-
gans, and organisms to get and share

information that is crucial to many different
biological activities. When it represents the
outer world (exteroception), chemical com-
munication is split into twomain senses, taste
and smell. Both of these senses rely, how-
ever, on interactions of chemosensory cues
with molecular receptors, so that one can le-
gitimately wonder whether a real need for a
binary representation of chemosensation ex-
ists. Actually, all visual perceptions pertain to
one sense, sight, which uses light reflected or
emitted by objects to explore the surround-
ing environment. Hearing is also considered
a single sense, but is specifically devoted to
perceive sounds, while touch is dedicated to
the detection of mechanical stimuli. Why is
chemosensation so special that it requires
a further subdivision in other senses? Cer-
tainly, the vast structural variety of chemo-
sensory substances requires a large number
of different molecular receptors and cannot
be classified by using a simple parameter such
as wavelength or frequency (Su et al. 2009).
But it is not reasonable, a fortiori, to reduce
all possible molecular interactions involved
into just two sensory categories. Accordingly,
one can argue that themain reason for a fur-
ther categorization of chemosensation lies
in the fact that two different organs are em-
ployed for chemosensory perceptions in hu-
mans, the tongue and the nose, providing
information about either material already in
the mouth or distant objects, respectively.
Actually, the taste buds on the tongue and
the olfactory epithelium at the roof of the
nasal cavity contain chemosensory cells that
are assumed to respond to different chemi-
cal stimuli, generating impulses that travel
along so-called gustatory or olfactory nerves
to thebrain,within specific signal transduction
mechanisms and processing pathways. Over-
all, such a differentiation is currently adopted
as thedefault premise for all studies onhuman
chemosensation, including the approaches
to critical biomedical issues. However, a third
chemosensory modality is considered as well,
known as “chemesthesis,” involved in the
detection of stimuli that activate nocicep-
tive fibers. For example, examining COVID-
19-associated multimodal chemosensory im-
pairments, it has been stated that “[t]aste
and chemesthesis are senses that are distinct
from smell, even though all three combine
to tell humans what ‘flavour’ a food or bever-
age has” (Marshall 2021:342). Indeed, multi-
modal experiences of flavor can arise by the
integration of gustatory and olfactory stimuli
withpain, touch, and thermal sensations that
do not fit into the traditional taste-smell dif-
ferentiation. In spite of this, by pinching the
nose while tasting, any person can qualita-
tively interpret lingual, nasal, or retronasal
events as olfactory or gustatory sensations,
albeit with substantial interindividual varia-
tions that prevent a clear distinction. How-
ever, such a dichotomic representation of
the chemosensory world has been extended
to any sentient form of life, from single-cell
to multicellular, and from aquatic to terres-
trial organisms. We will discuss here the puz-
zling ecological and evolutionary implications
of this tendency to generalize human traits,
wondering if a binary view of chemosensa-
tion is really valid and useful in science. For
a systematic approach to thematter, thediag-
nostic criteria onwhich the taste-smell differ-
entiation is constructedhavebeen summarized
as follows:

• The spatial perspective : olfaction is a distance
sense, assisting in navigation and orienta-
tion in an external fluidmedium by assess-
ing distributions of chemical cues in time
and space, while gustation is a contact sense,
detecting chemicals that have already en-
tered the mouth.

• The molecular perspective : the two senses are
different because they allow detection of
different molecules that interact with spe-
cific chemosensory proteins.

• The neurobiological/anatomical perspective :
smell perceptions aremediated by specific
organs and neural systems that aremorpho-
logically and functionally different from
those involved in taste perceptions.

Our discussion will provide evidence that
these diagnostic features are not consistent
with each other, and are troublesome even
when individually considered. It follows that
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taste-smell differentiation is essentially based
on invalid criteria, generating an unnatural
categorization of chemosensory processes
that prevents the development of a satisfac-
torynarrativeon theevolutionof chemical com-
munication. Paradoxically, it will also emerge
that the taste-smell differentiation does not
completely apply even to the human species
when considering the ectopic expression
of chemosensory genes in inner organs and
the chemotactic abilities of both spermato-
zoa and cells of the immune system. Finally,
beyond evolutionary and conceptual impli-
cations, we will also ask if differentiation be-
tween the chemical senses is really helpful
for organizing scientific efforts. By examining
the current literature, we conclude, instead,
that the taste-smell dichotomy is actually dis-
turbing research on chemosensation, since it
introduces a bias in the design and interpre-
tation of experiments, leading to miss or ob-
scure potentially useful information and, in
particular, any contrary evidence.

Spatial Differentiation

prejudiced assumptions about the

spatial range of the chemical senses

In neuroscience, olfaction is considered
a distance sense, since it allows the detection
of small volatile compounds released by a
source not physically connected with the tar-
get organism. Accordingly, smells are thought
to play critical roles in animals’ olfactory navi-
gation and tracking, allowing it to locate food,
identify mates, and avoid predators (Su et al.
2009; Touhara and Vosshall 2009; Pannunzi
and Nowotny 2019; Young et al. 2020; Marin
et al. 2021). Conversely, gustation is thought
to involve direct tactile contact with the emit-
ter of chemosensory cues, providing informa-
tion about food material already ingested in
the mouth, thus acting as a driver of feeding
behavior (Hemilä and Reuter 2008; Smith
2008; Yarmolinsky et al. 2009; Boesveldt and
de Graaf 2017; Cheok and Karunanayaka
2018). This spatial differentiation can be eas-
ily verified by only considering humans and
other land animals that sense odiferous com-
pounds transported by air. Among terrestrial
vertebrates, “macrosmatic” animals such as
dogs, rats, pigs, bears, and elephants recog-
nize sources of smell at a considerable dis-
tance, while the same animals detect taste
molecules (e.g., sugars) by a direct tactile
contact of their tongues with the emitter.
Although substantially limited to terrestrial
animals, this view led to generalization, ac-
cepting as a truism that olfaction is always a
distance sense. Such a selection of observa-
tions, however, cannot lead to such a univer-
sal conclusion. Indeed, contradictions and
ambiguities emerge in spatial differentiation
when aquatic environments—where water,
not air, transports the chemical stimuli—are
also considered. The chemosensory cues can
actually be differentially transported at a dis-
tance in air and water (Mollo et al. 2014,
2017). In extreme cases, volatile compounds
are insoluble in water (Figure 1A), where they
are insteaddetectedby a “tactile” formofolfac-
tion by fish and crustaceans (Giordano et al.
2017). Consequently, odiferous substances
are always detected from afar only on land.

In parallel, the argument that taste is a
contact sense is also based on a biased gener-
alization. Terrestrial vertebrates only detect
a-amino acids and simple sugars, which are
typical nonvolatile taste metabolites, by con-
tact with their taste buds, butmarine animals
(e.g., sharks) can recognize such compounds
at a distance because they are very soluble in
water (Tricas et al. 2009). Although the de-
tection of chemosensory molecules always
implies physical contact/interaction with the
molecular and anatomical receptors that cap-
ture them, the above soluble taste molecules
can actually travel for long distances in water
before reaching the chemosensory systems of
a shark. This fact contradicts, however, the
assumption that all gustatory substances are
detected by contact with the emitter.
biases in conditional reasoning:

the “waterborne olfaction”

Do the above arguments necessarily imply
the complete demise of the traditional and
deep-rooted taste-smell dichotomy or can its
universality be downgraded to conditional
statements that preserve the spatial range of
the senses? An attempt in this direction starts
from the assumption that volatile compounds
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Figure 1. Schematic View of the Spatial Distributions of Chemosensory Molecules According to

Their Potential Volatility in Air and Solubility in Water

Chemosensory cues can be classified into types based on their potential volatility in air and solubility in water.
Natural situations are somewhere between these ideal extreme cases in A–D. Representative examples of chemo-
sensory molecules occurring both in terrestrial and aquatic environments are reported below, along with their
estimated volatility and solubility taken from a recent review (Mollo et al. 2017).
A. Isofuranodiene is a furanosesquiterpene with molecular weight (MW) of 216, estimated water solubility at

257C of 1.01 × 10−1 mg L−1, and vapor pressure of 7.65 × 10−2 Pa. It is found in marine mollusks and cnidarians
and in several terrestrial flowering plants used as fragrance ingredients. Similarly to the ideal compound de-
scribed in A, isofuranodiene is responsible for olfactory perceptions in terrestrial environments, while it is de-
tected by touch by aquatic organisms (Giordano et al. 2017).
B. a-amino acids have MW ranging from 75 (Gly) to 204 (Trp), estimated water solubility at 257C between

2.85 × 103 mg L−1 (Trp) and 1.00 × 106 mg L−1 (Asp), and vapor pressure between 2.47 × 10−7 Pa (Tyr) and 1.46 ×
10−4 Pa (Glu). As in the situation shown in B, they are not transported by the aerial medium but produce a panel
of taste sensations when they come into contact with the human tongue. Instead, they are easily transported by water
in aquatic environments stimulating the appetitive behavior of fish and crustaceans (Mollo et al. 2017 and refer-
ences therein).
C. Cadaverine is an aliphatic diamine with MW 102, estimated water solubility at 257C of 1.00 × 106 mg L−1, and

vapor pressure of 1.35 × 102 Pa. Along with putrescine, it is well known for its repulsive odor to humans, while it
also acts as a feeding attractant both for rats and fish (Mollo et al. 2017 and references therein). The compound
is easily transported by both fluid media (air and water), thus fitting within the situation described in C.
D. Friedelin is a pentacyclic triterpenoid with MW 426, estimated water solubility at 257C of 6.82 × 10−5 mg L−1,

and vapor pressure of 5.19 × 10−7 Pa. It has been isolated from both oak cork and leaves, and from a marine alga
(Mollo et al. 2017 and references therein). Friedelin is also the most prominent triterpenoid in cannabis (Russo
and Marcu 2017). Triterpenoids are often associated with taste perceptions and, given their high molecular
weight and their extremely low solubility in water, need to be detected by touch in both terrestrial and aquatic
environments within the situation described in D.
See the online edition for a color version of this figure.
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that are insoluble in water (Figure 1A) can be
both “terrestrial smells” and “aquatic tastes,”
while nonvolatile but water-soluble compounds
(Figure 1B) can act as both “terrestrial tastes”
and “aquatic smells.” With reference to olfac-
tion, this has led to the proposition that aquatic
and terrestrial vertebrates actually detect op-
posite bouquets of odorants (Tierney 2015),
and to introduce the concept of waterborne
olfaction (Hemilä andReuter 2008). Evenac-
cepting this discontinuity for selected groups
of chemosensory substances, a spatial differ-
entiation of the chemical senses featuring
any possible combination of the distribu-
tions of chemical cues in nature becomes
impracticable. Actually, only in the cases il-
lustrated in Figures 1A and 1B, chemical
cues with opposite physicochemical proper-
ties can be detected within “opposite” spatial
ranges by terrestrial and aquatic organisms.
Instead, in the case of compounds that are
both volatile and soluble (Figure 1C), as well
as in the case of compounds that are neither
volatile nor soluble (Figure 1D), chemosen-
sory molecules are actually detected within
“similar” spatial ranges. It follows that a spatial
differentiation of the chemical senses cannot
simultaneously embrace all four conditions A–
D and is therefore unrealistic. The picture
becomes even more confused when consid-
ering: chemical cues that are neither air-
borne nor waterborne and disperse in two
dimensions on the sea surface; amphiphilic
molecules that canmove long distances in wa-
ter when dispersed as colloidal suspensions
(micellae); and nonvolatile compounds that
are transported in the atmosphere as aero-
sol particles (Tsoukatou et al. 2001; Zimmer
and Zimmer 2008; Mollo et al. 2014).

Knowledge of the actual spatial distribu-
tion of chemosensory signals in different
environments can greatly contribute to a bet-
ter understanding of the heterogeneous dis-
tribution of species in a variety of habitats
(Figure 2). Actually, as illustrated in Figure 1,
terrestrial and aquatic species are differen-
tially exposed to chemosensory molecules
according to their physicochemical proper-
ties.Nevertheless, confusion exists in thema-
rine literature generated by the assumption
that all chemicals encountered by fish and
crustaceans are transported by water (Hara
1994; Caprio and Derby 2008; Scott 2008).
This position does not take into adequate
consideration that a huge number of hydro-
phobic compounds are actually detected in
aquatic environments by contact forms of
chemical communication (Mollo et al. 2014,
2017; Giordano et al. 2017). However, as we
stated above, many of these insoluble com-
pounds are volatile, thus detected at a distance
on land. On the other hand, the chemosen-
sory adaptations inamphibians and secondarily
aquatic vertebrates, suchaswhales (Figure 2G)
and sea snakes, offers fascinating opportuni-
ties to evolutionary biologists when taking
into proper consideration not only the spatial
behavior of these animals, but also the chem-
ical cues most frequently encountered by
them, and their physicochemical properties
(Kishida and Hikida 2010). In this perspec-
tive, however, a distinction between olfaction
and a so-called “waterborne” or “underwater”
olfaction requiring molecular interactions
with waterborne cues that are traditionally
considered to be pertinent to the gustatory
modality introduces a puzzling evolutionary
discontinuity. Actually, there are proper cases
of aquatic olfaction in air-breathing animals
that are able to sense hydrophobic odors that
adhere to the surface of submerged objects in
aquatic environments and are also volatile on
land(Figure1A).Thestar-nosedmole(Condylura
cristata)and thewater shrew (Sorex palustris) are,
in fact, both able to “sniff” underwater by blow-
ing bubbles on the substrate and quickly re-
inhaling them, providing a mechanism for
mammalian olfaction underwater (Catania
2006). It is worth emphasizing, however, that
water-breathing aquatic animals do not neces-
sarily require afluidcarrier to sense hydropho-
bic compounds. Indeed, they are able to detect
insoluble compounds, distributed in nature as
illustrated in Figures 1A and 1D, by the direct
tactile contact with their chemosensory or-
gans. But this goes beyond any chemosen-
sory dichotomy based on spatial criteria.
two-dimensional

chemotactile perceptions

In terrestrial vertebrates, smells can stimu-
late appetite long before food intake (Boes-
veldt and de Graaf 2017). In fact, olfaction
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not only contributes, together with taste, to
flavor discrimination, but especially assists in
navigation by assessing odorant distributions
in time and space, and provides information
that is required for locating predators, food,
or mating partners. In a sense, olfaction per-
forms a function similar to that of sight and
hearing, with the difference that it helps to
detect molecules instead of light or sound.
Accordingly, variability in the size of theolfac-
tory bulb in vertebrates has been explained
by the so-called “olfactory spatial hypothe-
sis,” proposing that the primary function of
olfaction is indeed navigation, with anatomi-
cal differences being associated with variabil-
ity in navigational demand ( Jacobs 2012).
Figure 2. Species Distribution in Heterogeneous Chemosensory Habitats

According to their lifestyle and habitat, animals are differentially exposed to chemosensory molecules in keeping
with their spatial distributions illustrated in Figure 1. In aquatic environments, planktonic crustaceans as Daphnia
(A) and Eurytemora (B), microalgae as Thalassiosira (C), and jellyfish (D), squids (E), sharks (F), and whales (G) live
in the pelagic zonewherewaterborne compounds represent thepredominant chemosensory distance cues andgen-
erate three-dimensional gradients of concentration. However, pelagic animals also encounter hydrophobic cues
when they come into contact with other organisms and especially when potential food enters their mouth. In the
benthic dominion, instead, shrimp (H), octopuses (I), and mullets ( J) live in close relationship with the substrate.
They explore by touch a two-dimensional chemosensory space encountering a vast variety of insoluble chemical sig-
nals. They are especially emitted by sessile organisms such as sponges (K), cnidarians (L), and algae (M), which are
permanently attached to the sea bottom and rely on defensive chemical weapons to prevent predation. Benthic an-
imals also sense waterborne cues, but do not chase themby navigating thewater column. Cuttlefish (N), instead, has
an intermediate benthopelagic lifestyle, oftennavigating in the three-dimensional space.Manyof the chemical signals
perceived by both pelagic and benthic aquatic animals also occur on land, where their two- and three-dimensional
spatial distributions can substantially differ, being conditioned by volatility rather than by solubility in water. Among
terrestrial animals, hermit crabs (O) and elephants (P) are able to detect chemosensory cues dispersed in air, but
cannot navigate in the aerial medium. Instead, seabirds (Q) and insects (R) can fly toward the emitter of airborne
foraging cues. This latter response is a way by which flowering plants (S) attract their pollinators. However, when they
came intodirect contact withpotential food sources, all terrestrial animals also sense by “touch” chemical cues that are
not volatile. See the online edition for a color version of this figure.
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According to this position, which is also con-
sistent with the idea that “[s]mell and taste
are functional concepts” (Atema 2018:485), ol-
faction specifically assists in navigation, both
in aquatic and terrestrial environments, by
detecting waterborne and airborne cues, re-
spectively. Conversely, taste can only provide
information about food material that comes
into direct contact with receptors in the
mouth (Hemilä and Reuter 2008; Boesveldt
and de Graaf 2017). As we have already dis-
cussed, this position is not universally valid.
It is worth noting, however, that many ani-
mals can follow chemosensory signals not
only within either airborne (Engman et al.
2020) or waterborne (De Lange et al. 2005)
plumes, but also by following traces adherent
to the substrate by using chemotactile organs
such as barbels, oral tentacles, and other cuta-
neous outgrowths (Mollo et al. 2017). This is
particularly evident in marine benthic ani-
mals that evaluate potential food sources by
detecting compounds adherent to the solid
substrate or to the surface of their prey. Che-
motactile navigation is crucial for fish species
that explore the marine substrate, following
hydrophobic traces with their barbels (e.g.,
mullets, Figure 2J), and for benthic mollusks
able to track gradients of appetitive chemo-
tactile stimuli and to recognize and avoid po-
tentially dangerous stimuli (Yafremava et al.
2007; Mollo et al. 2014). Contact perceptions,
those definitely associated to taste in humans,
can thus provide information useful to locate
distant objects as well, although within a two-
dimensional space. This evidently undermines
spatial taste-smell differentiation, but also
has critical implications when approaching
the study of chemically mediated ecological
interactions such as defense against preda-
tors, communication with conspecifics, and
the search for food sources in both aquatic
and terrestrial environments. There is plenty
of evidence, in fact, that both terrestrial and
aquatic organismsmove on a two-dimensional
chemosensory “patchwork” andmake choices
crucially important to survival by sensing
chemicals that adhere to the substrate (Mollo
et al. 2017). For example:

• defensive chemical cues can be airborne,
waterborne, or surface-adsorbed, or can act
directly in themouth of predators (Wheeler
et al. 1964; Krug 2006; Carbone et al. 2013;
Giordano et al. 2017);

• chemotactile information plays a central
role in ants’ social interaction, navigation,
and resource exploitation (Riveros et al.
2021);

• bumble bees discriminate between foods of
different concentrations by means of che-
motactile perceptions (Ruedenauer et al.
2015);

• in the sea slug Pleurobranchaea californica,
the function of the olfactory bulb is per-
formed in the in the peripheral nervous
system of a chemotactile oral veil (Gillette
and Brown 2015);

• octopuses (Figure 2I) use specialized che-
motactile sensory receptors on their arms
to sense several poorly soluble natural pro-
ducts (van Giesen et al. 2020), especially
terpenes, which occur in a large variety
on benthic substrates. It is worth mention-
ing that the renowned intelligence of the
octopus is actually accompanied by its high
ability to perceive and integrate sensory in-
formation from the environment (Mollo
et al. 2019) and that, during food choice,
the octopus turned out to be more depen-
dent on chemical cues than visual ones
(Maselli et al. 2020). Accordingly, octo-
puses have about 10,000 chemoreceptor
cells in each sucker, while only about 100
of these cells are present in each sucker
of cuttlefish (Figure 2N; Graziadei 1964a,b),
which forage above the substrate. Chemo-
receptor neurons are even simpler in visu-
ally oriented andmore active squids (Emery
1975) that are adapted to pelagic life (Fig-
ure 2E);

• communicationwith conspecifics bymeans
of pheromones can be mediated by chem-
ical cues that can be either volatile or non-
volatile, either soluble or insoluble in water,
or either detected at a distance or by contact
(Mutis et al. 2009; Wyatt 2014, 2015; Thoß
et al. 2019; Chung-Davidson et al. 2020);

• wolf spiders use female chemotactile cues as
indicators of potential risks and this affects
subsequent male courtship behaviors (Mos-
kalik and Uetz 2011), while web-based che-
motactile cues also influence male courtship
in the black widow spider ( Johnson et al.
2011); and

• pheromones secreted by some sea slug
species induce an alarm response in trail-
following conspecifics (Sleeper et al. 1980;
Cimino et al. 1991).
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The emerging complexity of the spatial
range of chemical communication indicates
that, beyond a sharp and unnatural differen-
tiation between taste and smell based on spa-
tial criteria, greater attention to the kind of
chemical information helping many species
across taxa to find food andmates, and to se-
lect habitat, could significantly contribute to
outlining realistic scenarios for theheteroge-
neous species distribution in nature.

Molecular Differentiation

anthropomorphic bias and its

evolutionary implications

The human ability to discriminate be-
tween airborne and waterborne stimuli can
be extended to other air-breathing animals,
but it certainly does not apply to water-
breathing animals. Accordingly, it has been
proposed that new demands on chemosen-
sory systems dramatically arose during the
water-land transition, since the olfactory stim-
uli changed from hydrophilic to mainly hy-
drophobic and airborne compounds (Krång
et al. 2012). In this view, “[t]errestrial verte-
brates were given the ‘evolutionary option’
to sense odorants that were volatile and not
soluble in water” (Tierney 2015:547). This
position implies that both the complex bio-
synthetic pathways required for theproduction
of volatile compounds, and the extremely com-
plex combinatorial coding that characterize
olfactory perceptions mediated by odorant
receptors (ORs), suddenly appeared on land
(Figure 3A, Scenario A). Conversely, a vast
literature on marine natural products sug-
gests that, before incidentally becoming air-
borne on land, many small molecules already
played a key role in chemical communication
in aquatic systems.Actually, volatile andhydro-
phobic terpenoids from extant land plants,
representing themost abundant group of bio-
genic volatile organic compounds (BVOCs)
in the atmosphere (Peñuelas and Staudt 2010),
occur and are detected in aquatic environ-
ments aswell (Mollo et al. 2017).These signals
characterize a kind of complex language me-
diating crucial ecological interactions (Peñue-
las et al. 1995), both in aquatic and terrestrial
ecosystems (Mollo et al. 2014, 2017). The
same applies to volatile aldehydes of terres-
trial plants that are almost insoluble in water
and are also produced by marine diatoms
(Figure 2C; Pohnert 2000; d’Ippolito et al.
2002, 2003; Adelfi et al. 2019). In parallel,
comparativegenomicandphylogenetic stud-
ies support that chemosensory receptors have
been conserved across aquatic and terrestrial
taxa, and that OR genes orthologous to those
present in mammals, evolved in marine en-
vironments prior to the appearance of the
earliest vertebrates (Figure 3A, Scenario B;
Putnam et al. 2007, 2008; Churcher and Tay-
lor 2009, 2011).
indiscernibility of the chemical senses

at the intermolecular distance

The fluid medium (air or water) in which
chemical signals are dispersed affects the dis-
tance range of chemical communication not
only at relatively large spatial scales, as in the
case of the navigation of birds and pelagic
fish, but also at a microscopic scale, as in bac-
terial chemotaxis. Complex aqueous media
covering chemosensory cells and organs can
also considerably influence the approach of
the ligands to the receptors. The mucus and
the saliva of vertebrates, as well as the sensillar
lymph of invertebrates, can have a crucial im-
pact in this phase, requiring the action of sol-
uble carriers to bring hydrophobic ligands
into contact with chemosensory receptors. In
the end, however, chemical cues must always
come into contact with molecular receptors
to finally trigger chemosensory perception,
so that there is no action at a distance in the
ligand-receptor recognition step (Mollo et al.
2017). Consequently, one might ask whether
it would be better to adopt the idea that a sin-
gle chemosensory modality actually underlies
the detection of chemical signals coming
from distances that can vary according to a
wide range of environmental and physico-
chemical conditions. However, another ques-
tion remains: Are taste and smell different senses
because they involve different molecules?
toward a unifying theory across

ligands and receptors

Taste and smell are “chemical senses.” Ac-
cordingly, one might reasonably argue that
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the difference between the two chemosen-
sory modalities must entail the structures of
molecules interacting with specific chemo-
sensory proteins. The universality of such a
distinction based on chemical features is,
however, definitely falsified by the existence
in nature of chemosensory compounds that
simultaneously trigger olfactory, gustatory,
and chemesthetic sensations (examples in
Figure 4). This implies that the terms “smell”
and “taste,” being applicable to the same
concrete chemical objects, actually lose their
significance.

Once the universal sensory specificity of
ligands has been falsified, the classification
of their macromolecular counterparts, the
chemosensory receptors, whose specific func-
tion is inextricably linked to diagnostic chem-
ical stimuli, also becomes impracticable. In
addition, it is worth mentioning that molecu-
lar receptors have coevolved with an enor-
mous variety of natural products, which are
produced by both unicellular and multicellu-
lar species through an equally vast variety of
biosynthetic pathways, within a dynamic evo-
lutionary history. This biosynthetic “profli-
gacy” demands a high energy expenditure
that is, however, justified by the critical roles
played by chemical cues in fundamental bio-
logical processes. Whether or not chemosen-
sory receptors have driven the evolution of
ligands or vice versa, their specific interac-
tions gradually evolvedwithin and throughout
a vast variety of biotic and abiotic conditions.
Figure 3. Saltational Versus Gradual Evolution of Odorant Receptors

The hypothesis that dramatic changes in olfactory systems allowed terrestrial animals to sense volatile/hydropho-
bic cues (Krång et al. 2012) and that “[t]errestrial vertebrates were given the ‘evolutionary option’ to sense odorants
that were volatile and not soluble in water” (Tierney 2015:547) is only justified if these kinds of molecules are dis-
tributed on land only. Volatile/hydrophobic molecules are instead widely distributed in aquatic ecosystems (Mollo
et al. 2014, 2017; Giordano et al. 2017). In parallel, an evolutionary scenario implying the “sudden” appearance of
ORs after the conquest of land (Scenario A) is implausible (Mollo et al. 2014). Indeed, studies in molecular
phylogenetics on the rhodopsin-like family of GPCRs (B) indicate that genes from the sea anemone Nematostella
vectensis and the marine cephalochordate Branchiostoma floridae are orthologous to vertebrate OR genes, forming
a monophyletic clade (Churcher and Taylor 2009, 2011). Consequently, chordate ORs most likely evolved from
a clade of rhodopsin-like genes present in the ancestor of cnidarians and bilaterians (Churcher and Taylor
2011), while vertebrateORs evolved prior to the split between cephalochordates and chordates (Churcher and Tay-
lor 2009). Approximate divergencedates are expressed inmillion years ago (Mya), according to Putnamet al. (2007,
2008). A gradual evolutionary trend is thus proposed here (Scenario B), supporting that the evolution of ORs con-
tinued without interruption during the transition from aquatic to terrestrial life. See the online edition for a color
version of this figure.
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Figure 4. Molecules Detected By Multiple Chemosensory Systems: Each of the Chemicals Shown Is

Known to Cause Gustatory, Olfactory, and Trigeminal/Chemesthetic Sensations

The alcoholic monoterpene citronellol has both a fresh floral smell and a bitter or sweet taste depending on its
stereochemistry. Cinnamaldehyde is responsible for both the typical taste and smell of cinnamon. Camphor has both
a bitter taste and an aversive smell to flies (National Center for Biotechnology Information 2005a; Zhang et al. 2013).
Menthol produces a minty smell and a moderate bitterness (Green and Schullery 2003; National Center for Biotech-
nology Information 2005b) but also affects the sensitivity of gustatory receptors to stimulation by other cues (Lundy
and Contreras 1993). Polyamines, such as putrescine, which is responsible for the foul odor of putrefying flesh, also
inducemultimodal taste sensations (National Center for Biotechnology Information 2004a; Hussain et al. 2016). Iso-
thiocyanates contribute to both the taste and odor of Brassicaceae (National Center for Biotechnology Information
2005c; Wieczorek et al. 2018; Matsunaga et al. 2019), interacting with both taste and odorant receptors. The alkaloid
nicotine activates: the taste system via taste receptors anddownstreameffectors that are common to sensing sweetness,
bitterness, and umami; the nicotinic acetylcholine receptors; and the canonical olfactory pathway (National Center
for Biotechnology Information 2004b; Oliveira-Maia et al. 2009; Bryant et al. 2010). All molecules listed above also
activate TRP ion channels that cannot be unambiguously classified within taste or smell sensory systems, occurring
in epithelial cells in both the nose and tongue ( Jordt et al. 2004; Al-Anzi et al. 2006; Lin et al. 2008; Gewehr et al.
2011; Alpizar et al. 2013; Ortar et al. 2014; Wieczorek et al. 2018) as well as in extraoral organs (Cheng 2018). This
difficulty in classification has led to the creation of a new ad hoc sense, indicated as “chemesthesis” or trigeminal
sense, responsible for the pungency, thermal sensation, and pain produced by hot chili peppers (Lundström et al.
2011). Indeed, the archetypal member of the family of TRP channels, the transient receptor potential vanilloid sub-
type 1 (TRPV1), is activated by capsaicin (Tominaga 2005; Pingle et al. 2007; Aroke et al. 2020), the pungent compo-
nent of peppers. Chemesthesis is considered the third chemical sense involved in human eating and drinking
behaviors (Green 1996; Kadowaki 2015). See the online edition for a color version of this figure.
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A large part of this evolutionary trend took
place in aquatic environments but contin-
uedwithout interruptionduring the transition
from aquatic to terrestrial life (Figure 3A,
ScenarioB).Combinedwith thegradual evo-
lution of molecular interactions, shifts of
function also occurred. This is confirmed
by the highly diversified functions of chemi-
cal signaling in extant species. On one hand,
it has been speculated that hormones acting
in chemical communication among different
cell types and organs within the same organ-
ism represent some of the oldest signaling
molecules (Kushiro et al. 2003). On the other
hand, several hormones are terpenoid deriva-
tives, as are most hydrophobic chemicals act-
ing as mediators of a variety of ecological
interactions in marine and terrestrial habi-
tats. Hormones lie outside a taste-smell sche-
matization (Foster et al. 2014), although their
receptors, which are highly specific toward
their endogenous ligands, can be also respon-
sive to chemically distinct exogenous agents,
including endocrine-disrupting chemicals and
natural compounds involved in exteroception.
Accordingly, the ligand-binding domain of
the estrogen receptor alpha (ERa) shows a
structural architecture very similar to bacte-
rial taxis receptors (LakshmananMangalath
and Hassan Mohammed 2021).

In support of the idea that ORs and taste
receptors (TRs) do not act as selective medi-
ators of smell and taste, respectively, it is
worth recalling that they are not only ex-
pressed in nasal and oral cells. This ectopic
expression of chemosensory receptors is asso-
ciated with a variety of functions, including
spermchemotaxis,woundhealing,hairgrowth,
muscle regeneration, cancer cell inhibition,
adiposity, hormone release, and innate im-
munity (Lee et al. 2019). The remarkable
diversification in the location, distribution,
and function of chemosensory receptors across
taxa has been often highlighted in the litera-
ture, where it has been shown that:

• ORs and TRs, both belonging to the large
family of G-protein-coupled receptors
(GPCRs), as well as transient receptor po-
tential (TRP) ion channels, are expressed
in a wide range of tissues, including in
“nonsensory” inner organs (Kadowaki 2015;
Dalesio et al. 2018; Weidinger et al. 2021),
implying that the restricted perception of
these receptors as mere mediators of smell
and taste is “outdated” (Foster et al. 2014);

• ORs have been found to be expressed in
mammalian “taste” cells, raising the “intrigu-
ing possibility that taste and olfaction might
overlapmore thanpreviously thought” (Ma-
lik et al. 2019:298);

• insect ORs, which are characterized by an
inverted direction of membrane insertion
compared to vertebrate GPCRs, are func-
tional in true taste neurons of Drosophila,
producing responses to smells that are sim-
ilar to those obtainedwith tastes (Hiroi et al.
2008);

• ionotropic receptors (IRs) have been dis-
covered in Drosophila melanogaster (Benton
et al. 2009) as variants of the ionotropic
glutamate receptors (iGluRs), represent-
ing a class of receptors that only evolved
within invertebrates (Croset et al. 2010;
Wicher and Miazzi 2021). Although iGluRs
mediate neuronal communication at syn-
apses throughout vertebrate and inverte-
brate nervous systems (Gereau and Swanson
2008), IRs are expressed in invertebrate che-
mosensory organs and have several tuning
modalities, which cannot be defined as
“taste” or “olfaction” (Ai et al. 2010; Sil-
bering et al. 2011; Rytz et al. 2013; Hussain
et al. 2016; Frank et al. 2017; Knecht et al.
2017). IRs are, in fact, associated with a
variety of sensory functions, including taste,
olfaction, thermosensation, and hygrosen-
sation (Eyun et al. 2017; van Giesen and
Garrity 2017). Moreover, IRs are also ex-
pressed in the dorsal organ cool cells of
Drosophila, where they are involved in cool
avoidance behaviors (Ni et al. 2016);

• alongwith IRs, olfactory sensory neurons of
insects express gustatory receptors (GRs)
responding to CO2 (Kwon et al. 2007);

• polyamines are transported by both air
and water, occurring in nature within
the distribution illustrated in Figure 1C.
Chemosensation of polyamines in insects
is mediated by IRs (Silbering et al. 2011;
Hussain et al. 2016), while in both aquatic
and terrestrial vertebrates, these compounds
are detected by a further group of GPCRs,
the traceamine-associatedreceptors (TAARs;
Borowsky et al. 2001; Hussain et al. 2013).
However, the study of available RNA-Seq
data from human tissues has led to an ap-
preciation of the ectopic expression of
TAARs, especially in the ovary and testis
(Flegel et al. 2013);
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• soluble proteins are concentrated in olfac-
tory organs of vertebrates and invertebrates
and seem to be involved in the delivery of
hydrophobic molecules to membrane che-
mosensory receptors by crossing the aque-
ous layer covering chemosensory neurons.
Among them, odorant-binding proteins
(OBPs) are produced in both the olfactory
and gustatory sensilla of Drosophila and are
involved in the transport of both hydro-
phobic odorant and bitter tastant mole-
cules (Swarup et al. 2014); and

• neither insect ORs nor OBPs are univer-
sally distributed in terrestrial arthropods
and may be absent in aquatic crustaceans.
In particular, they were not found in two
planktonic crustaceans, the freshwater cla-
doceran Daphnia pulex (Peñalva-Arana et al.
2009; Figure 2A) and the marine copepod
Eurytemora affinis (Eyun et al. 2017; Fig-
ure 2B). IRs withmultiple sensory functions,
which are themost dominant chemosensory
proteins in crustaceans, outnumbering TRP
channels and gustatory receptor-like recep-
tors (Kozma et al. 2020), allow these aquatic
animals to sense volatile/hydrophobic mole-
cules as well.

Precisely the complexity and diversity of
thedifferent chemosensory systems, and fam-
ilies of chemoreceptors, prevent a sharp dif-
ferentiation of the chemical senses that, on
those categories, individually taken, should
be founded. In principle, each different type
of ligand, or receptor, or molecular interac-
tion,oreven theiranatomicalorphyleticdistri-
bution can be used to define a new chemical
sense, for which we could coin a new name.
Whathasbeendone for thecapsaicin receptor
and the so-called “chemesthesis” or “trigemi-
nal sense” could be actually applied to define
a huge number of different chemical senses.

Anatomical and Neurobiological

Differentiation

toward a unifying theory across

organs and neurophysiological

systems

At the anatomical level, the taste buds on
our tongues are the primary organs of taste,
and the olfactory epithelium at the back
of the nasal cavity is responsible for detect-
ing odors. This distinction, however, cannot
include the vast variety of chemosensory sys-
tems in the animal kingdom. Aristotle him-
self already argued that “the organ of smell
just is whatever part of its body an organism
uses to perceive odour” ( Johnstone 2012:
166). The evolution and diversification of
complex organs is, however, a gradual and
cumulative process. Accordingly, CharlesDar-
win stated: “If it could be demonstrated that
any complex organ existed, which could not
possibly have been formed by numerous, suc-
cessive, slight modifications, my theory would
absolutely break down. But I can find out no
such case” (Darwin 1859:189). Therefore, it
should not be surprising that single-celled or-
ganisms contain simple but already efficient
sensory structures. This is particularly evident
in the case of vision, with a functional eye-like
“ocelloid” in dinoflagellates (Gavelis et al.
2015) and in the case of cyanobacteria that
seem to “have what it takes to qualify for
the most basic definition of vision” (Nilsson
and Colley 2016:R369). There is evidence
that the senses of touch and hearing also
originated in unicellular organisms (Lump-
kin et al. 2010; Exbrayat and Brun 2019).
Conversely, in the case of chemosensation
it has been proposed that the sense of smell
“is more correctly defined by the neural sys-
tem used” (Kamio and Derby 2017:517), im-
plying that olfaction evolved after transition
to multicellularity. Actually, such a defini-
tion of olfaction opposes a gradual evolution
of the olfactory systems across phylogeny,
neglecting the important similarities of cell
membrane structure and function in aneu-
ral and neural systems, whichhave long been
emphasized to underlie related neurobio-
logical phenomena (Eisenstein 1975). In fa-
vor of a gradual evolution of olfaction, it
has been recently found that the ancestral
orthologs of the synaptic genes involved in
the fundamental way neurons communicate
are present in multiple aneural organisms
(Viscardi et al. 2021). In parallel, relevant stud-
ies have clarified that both olfactory and gus-
tatory abilities in multicellular organisms (as
well as chemosensory learning abilities) have
evolved from forms of life not equipped with
complex neuronal networks. In particular:

• prokaryotes have been proposed as model
systems for understanding the evolution of
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olfactory and gustatory systems in higher
organisms. Actually, bacteria respond to vo-
latile chemical gradients (Nijland and Bur-
gess 2010), but also utilize contact-dependent
signaling (Blango andMulvey 2009);

• an unmistakable form of chemosensory
learning has been demonstrated in the
unicellular but multinucleated eukaryote
Physarum polycephalum (the true slimemold;
Boisseau et al. 2016); and

• comparative structural analyses of both
odorant and gustatory receptors in insects,
unicellular eukaryotes, and plants indicate
a common origin of these proteins in the
last common eukaryotic ancestor (Benton
2015; Benton et al. 2020).

Chemosensation is, however, not always
mediated by complex neural systems even
in humans. Responding to chemotactic gra-
dients with directed cellular migration is, in
fact, also a feature of single human immune
cells (Thomas et al. 2018). Even human sper-
matozoa are attracted by bourgeonal (an ar-
omatic aldehyde) that can be smelled by the
nose (Vosshall 2004). This also applies to
sperm attractants affecting the reproductive
behavior of many other animals, including
marine cnidarians (Miller 1979; Coll et al.
1995), as well as to pathogen-associated mo-
lecular patterns inducing a chemotactic re-
sponse in earthworm coelomocytes (Daly
et al. 2017). Of course, whether innate or
adaptive, these sensory perceptions cannot
be classified as olfactory or gustatory phe-
nomena based on the specific neural systems
employed. On the other hand, when con-
sidering multicellular organisms, an evident
functional promiscuity emerges in the study
of anatomical and neurophysiological struc-
tures. For example,

• the sensory sensilla on the mouth parts
of insects are involved in both gustatory
and olfactory functions (Rana andMohan-
kumar 2017; Ruschioni et al. 2019);

• electrophysiological recordings indicate that
Drosophila taste neurons also respond to
odor ligands (Hiroi et al. 2008);

• bimodal neurons respond to both gusta-
tory and olfactory stimuli in rats (Samuelsen
and Fontanini 2017);

• the vomeronasal organ (VNO), which is
specifically discussed in the next section,
is a structure supporting the accessory che-
mosensory modality of “vomerolfaction,”
which involves the detection of both vola-
tile and nonvolatile chemical cues;

• the tongues of snakes facilitate the access to
vomerolfaction by bringing both airborne
and nonvolatile chemical stimuli to the
VNO (Kubie and Halpern 1975; Halpern
and Kubie 1980; Ache and Young 2005;
Daghfous et al. 2012);

• histological observations indicate a close
interaction between taste buds and the
VNO(Schmidt andWöhrmann-Repenning
2004);

• the nose-tapping behavior in plethodontid
salamanders allows pheromone recogni-
tion by bringing nasolabial grooves into
contact with marked substrates (Graves
1994); and

• secondarily aquatic mammals, such as dol-
phins, seem to perceive orally both tastes
and what othermammals perceive by smell
(Kremers et al. 2016).
is vomerolfaction a different sense?

VNO is enclosed in a capsule on the ante-
rior nasal septum of mammals (Dulac and
Torello 2003), allowing detection of chem-
icals collectively called “vomodors” (Cooper
and Burghardt 1990). These chemical cues
mainly interact with specificG-protein-coupled
receptors, the type-1 vomeronasal receptors
(V1Rs; Dulac and Axel 1995) and the type-2
vomeronasal receptors (V2Rs; Herrada and
Dulac 1997; Matsunami and Buck 1997; Ryba
and Tirindelli 1997). Although the concept
of vomerolfaction is per se linked to the pres-
ence of the VNO, both V1Rs and V2Rs have
been also found in fish that do not have this
organ (Grus and Zhang 2009). Indeed, a
comparative analysis between the olfactory
transcriptome of Danio rerio (zebrafish) and
mouse revealed a high degree of molecular
conservation, indicating that “the molecular
and cellular mechanisms underpinning ol-
faction in teleosts and mammals are similar
despite 430 million years of evolutionary di-
vergence” (Saraiva et al. 2015:1). Recently,
it has also been shown that the chemosen-
sory receptor repertoire of Scyliorhinus can-
icula, the catshark, is dominated by V2Rs
(Sharma et al. 2019). Variations in the num-
ber of different vomeronasal genes across
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taxa seem to reflect adaptations to terrestrial
or aquatic lifestyles (Shi and Zhang 2007).
Accordingly, V1Rs bind small airborne com-
pounds (Boschat et al. 2002; Del Punta et al.
2002), while V2Rs mediate detection of large
water-solublemolecules (Leinders-Zufall et al.
2009; Haga et al. 2010). In spite of this, how-
ever, the above findings conflict with the idea
that a special chemosensorymodality is strictly
associated to the VNO, with its specific func-
tion. Accordingly, it is worth mentioning that:

• VNO receptors can be ectopically ex-
pressed in the main olfactory epithelium
ofmammals, while certainORs are also ex-
pressed in vomeronasal neurons (Rodri-
guez et al. 2000);

• the VNO is also known to contain formyl
peptide receptors (FPRs), which are not
only involved in chemotaxis, but also have
roles in homeostasis of organ functions,
and modulation of inflammation (Rivière
et al. 2009);

• the VNO is not only involved in the identi-
fication of pheromones, but also in medi-
ating interspecies defensive and feeding
behaviors (Halpern and Martınez-Marcos
2003; Papes et al. 2010);

• the VNO has no obvious function in hu-
mans, where pheromonal communication
seems to be conveyed via the main olfac-
tory system (Frasnelli et al. 2011); and

• histological observations indicate a close
interaction between taste buds and the
VNO (Schmidt andWöhrmann-Repenning
2004).
holistic flavors

When focusing on humans and other ver-
tebrates, it has long been clarified that gusta-
tory and olfactory cells respond to chemical
stimuli by generating impulses that travel
along gustatory or olfactory nerves to specific
processing areas in the cerebral cortex.How-
ever, a convergence of taste and smell infor-
mation inflavor perceptionhas beenproposed
to occur in the anterior insula, operculum,
ventrolateral prefrontal cortex, and the or-
bitofrontal cortex (de Araujo et al. 2003; Mc-
Cabe and Rolls 2007; Seubert et al. 2015)
This convergencehas been recently supported
by dynamic causal modeling demonstrating
an effective connectivity, integration, and
synergy of taste and smell in the human brain
at anterior insula and rolandic operculum
(Suen et al. 2021). This is consistent with stud-
ies on associative learning that shows how
odors take on taste qualities, reflecting the
central integration of odors and tastes into
flavors (Prescott et al. 2004). Actually, such a
chemosensory synergy not only contributes in
determining the palatability of food, but also
induces combined emotions by activating
the same areas of the limbic system, recalling
memory associations about the reward value
of the consumed item. Consequently, in ad-
dition to the issues discussed in previous sec-
tions about the taste-smell differentiationbased
on spatial criteria, the central convergence
of taste and smell into a “holistic flavor ex-
perience” (Seubert et al. 2015:1662) also
undermines the special role of taste in evalu-
ating food palatability.
Is It Only a Matter of Semantics?

Fromall of the above arguments it emerges
that both single cells andmulticellular organ-
isms use a variety of molecular, anatomical,
and physiological systems to carry out funda-
mental activities for survival, mediating inter-
and intraspecific communication over long
and short distances, as well as by contact. This
results from the continuous adaptation, over
long periods of time, to environmental fac-
tors and biotic interactions. However, in spite
of such an intricate diversification, it is still
possible to preserve a sharp differentiation of
the chemical senses, and the related terminol-
ogy, but at the cost of anthropomorphizing bi-
ology and evolution regardless of how much
this may hamper research on the chemosen-
sory world. Actually, this is what is currently
happening in science, favoring the spread of
a variety of prejudices and oversimplifications.
The following are a few examples from a vast
biased literature:
• Researchers loyal to the traditional view
that olfaction is a distance sense continue
to consider only waterborne stimuli when
studying underwater olfaction. Their choice
is based on the idea that aquatic organisms
especially sensewater-soluble chemicals since
they cannot encounter airborne, volatile
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odorants (Ache and Young 2005; Caprio
and Derby 2008; Scott 2008; Krång et al.
2012; Tierney 2015). However, they neglect
that chemotactile navigation, oriented by
following hydrophobic traces adhering to
the substrate, is also crucial formany aquatic
species to locate distant objects (Mollo et al.
2017).

• Since a-amino acids and other waterborne
cues are considered major “olfactory” sti-
muli perceived by sharks at a distance (Me-
redith and Kajiura 2010; Figure 2F), shark
species have been ambiguously called “swim-
ming noses” (Yopak et al. 2015). Reason-
ably, instead, waterborne compounds are
detected by the shark’s molecular recep-
tors of taste, which arewell conserved from
fish to terrestrial vertebrates (Oike et al.
2007; Bachmanov et al. 2014; Morais 2017;
Amodeo et al. 2018). Conversely, it has been
even claimed that in aquatic animals “all
chemicals sensed are in aqueous solution,
and strictly all chemoreception should be
termed ‘taste’” (Rebora et al. 2019:147).
Once again, both the above positions over-
look the notion that aquatic animals are
alsoable toperceivehydrophobic cueswhen
they come into contact with chemosensory
receptors in the mouth or in chemotactile
appendages (Mollo et al. 2017).

• The Orco protein is coexpressed with in-
sect olfactory receptors (Sato et al. 2008;
Mukunda et al. 2014; Cattaneo et al. 2017),
and is thought to have evolved from within
the gustatory receptor gene family (Robert-
son 2019; Thoma et al. 2019). All currently
known and functionally characterized in-
sect Orcos bind a nonvolatile and hydro-
phobic compound, the synthetic agonist
VUAA1 ( Jones et al. 2011), but natural
ligands of Orco have not yet been identi-
fied. The existence of natural chemosensory
molecules with physicochemical features
similar to VUAA1 could be reasonably con-
ceived and found in nature among com-
pounds with the spatial distribution shown
in Figure 1D. But this will comewith the cost
of “reforming the illusion” that the involved
receptor proteins are olfactory structures
and that olfactory cues must be necessarily
airborne or waterborne. For example, many
Orco-positive neurons have notably also
been found in the antennae and palps
of the truly “submarine” larvae of the ma-
rine intertidal insect Clunio marinus, whose
larvae can live for one year, but the adult
life span is only a few hours (Missbach
et al. 2020). Both air- and waterborne stim-
uli have been especially considered in the
study of the chemosensory adaptations of
C. marinus, because chemical cues “need
to be taken up from different media”
(Missbach et al. 2020:12). Thus, chemical
cues that are not taken up from the air or
from water (Figure 1D) have lamentably
been disregarded as possible ligands of C.
marinus Orco/OR complexes because of
prejudice.

• Fish OR genes have been grouped accord-
ing to the assumption that their correspond-
ing receptors can only detect olfactory
waterborne molecules (Niimura and Nei
2005;Niimura 2012), disregarding the real
patterns of affinity of the receptors for
ligands. Olfactory GPCR genes have thus
been artificially separated into receptors
for airborne molecules and receptors for
waterborne molecules. This position actu-
ally neglects that fish can also detect insol-
uble molecules when possible food enters
the mouth or chemotactile organs come
into contact with the emitter of the chem-
ical signal. This latter aspect was also not
adequately considered as a possible expla-
nation of the “unexpected” presence of
functional ORs in fish that are very similar
to those present in terrestrial vertebrates
(Niimura and Nei 2005; Amemiya et al.
2013; Picone et al. 2014).

• Although OR genes in fish are more di-
verse than those in mammals, an analysis
of the increased number of OR genes in
the tetrapod lineage has contributed to
the view that olfaction is mainly a terres-
trial sense (Niimura 2009, 2012). However,
it could be argued that, rather than sup-
porting a greater importance of olfaction
on land than in water, the association of in-
creasing OR gene number with decreasing
OR gene diversity suggests a preponder-
ant role for signal amplification among dif-
ferent possible fates of gene duplication
(Zhang 2003). In this view, OR signal am-
plification (i.e., the immediate effect of
gene duplication) implies an increased
sensitivity to smell (Kondrashov 2012). Thus,
duplicationsmost likelyfirst acted as amech-
anism of adaptation to the extreme rare-
faction of aerial volatile/hydrophobic cues.
This mechanism would have represented
an important transitional step, because the
same chemosensorymolecules were already
detected, but at much higher concentra-
tions, in the aquatic environment. Actually,
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hydrophobic compounds are highly con-
centrated on the surfaces of many extant
benthic organisms, such as sessile sponges,
cnidarians, or mollusks, in their mucous se-
cretions, and on the substrates on which
they live (Mollo et al. 2014, 2017; Giordano
et al. 2017). Many of these molecules are,
instead, quite rarefied in the air (Mollo
et al. 2014). Positive selection should have
thus favored the long-term persistence of
OR gene duplications, ensuring the detec-
tion of astonishingly low concentrations of
volatile chemosensory signals by terrestrial
animals. This trend neither affected the
complex combinatorial recognition pattern
of the stimuli, nor required the dramatic
evolution of new kinds of receptors during
the water-land transition (Figure 3). In this
view, the emerging model is characterized
by both higher probability and lower dis-
continuity than the aforementioned the-
ories requiring a “sudden” evolution of
smell on land. Therefore, a plausible evo-
lutionary scenario envisages the structural
and functional conservation of “aquatic”
chemosensory receptors in semiaquatic spe-
cies with limited mobility on Earth. The
gradual amplification of the signals by gene
duplication has then set the stage for adap-
tations in the mechanisms of breathing and
locomotion on land, progressivelymatching
enhanced sensitivity to extremely diluted
signals with increased range of action in re-
production, defense, and food capture.
Does Philosophy Need Science?

The belief that taste and smell are different
senses has prevailed since antiquity. The
theme was already debated by ancient Greek
philosophers, and especially by Aristotle in
his theory of the senses, where taste and smell
are thought to differ in terms of both their
spatial range (Sorabji 1971) and their proper
“objects” ( Johnstone 2012). Philosophically
musing with senses, Aristotle argued that
all smelling must be done at a distance from
the object smelled, while what is perceived
by taste is directly contacted (Sorabji 1971).
This spatial differentiation has remained
substantially unmodified over time among
philosophers, with smells still considered as
spatially extended (O’Callaghan 2016) and
coming from some direction and distance
(Aasen 2019). On the other hand, Aristotle
also stated that “[t]wo senses are different
if they have different proper objects and
two senses are the same if they have the same
proper object” ( Johansen 1996:11). Although
an ontological controversy is still alive inmod-
ern philosophy to define odors as “objects” or
“features” (Skrzypulec 2019), it is worth con-
sidering that in Aristotle’s time it was believed
that everything was made up of a combina-
tion of primary elements (fire, water, air, and
earth), which “do not have strict substantial
forms, and for this reason they are substances
only potentially” (Sokolowski 1970:265). In
such prescientific conditions there were no
tools to differentiate sensory systems, objects,
and stimuli as material entities with specific
physicochemical features. Later philosophical
studies, up to the contemporary age, espe-
cially focused on the representational aspects
of senses, treated olfactory objects as mental
objects, and sometimes relegated chemical
senses to the rank of “lower senses” (Becker
2009; Richardson 2013; Barwich 2019). Actu-
ally, only very recently has philosophical re-
search begun to consider that both taste and
smell register chemical properties (Korsmeyer
2019), and a “molecular structure theory”
has been offered proposing that “smells are
the molecular structures of chemical com-
pounds within odor plumes” (Young 2016:
520). It is worth mentioning, however, that
this latter position converges in a spatial def-
inition of olfaction as a distance sense, as-
suming that odiferous molecules are diffused
in “plumes.”

From the above, it appears that the ar-
guments proposed in the present article
could open intriguing avenues in the relevant
philosophical debate. Although it has been
recently highlighted that “science needs phi-
losophy,” which should be perceived as not
antagonist to scientific progress (Laplane et al.
2019), it is also certainly clear that present-day
“philosophy must find paths of inquiry and
verification that lie within reality as it is con-
ceived today in all its manifestations. This re-
ality, however, can in no instance be genuine
andwholly present without science” ( Jaspers
1971:13).
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Conclusions

Living organisms perceive a vast variety of
chemical stimuli, obtaining information on
the surrounding world. These molecules are
differentially distributed in the environment
so that they generate gradients of concentra-
tion that can develop in both two- and three-
dimensional spaces, depending on specific
physicochemical properties. Such gradients
provide the detector organism with useful in-
formation for identifying and locating the
source, and contribute greatly to the character-
ization of different habitats and chemosensory
spaces, favoring a variety of adaptations to per-
ceive, decode, and integrate chemical infor-
mation. This complexity does not allow for
discrimination between two different chemi-
cal senses (taste and smell), or four if consid-
ering chemesthesis and vomerolfaction, based
only on spatial range, the molecules involved,
or the anatomical and neurophysiological sys-
tems because differentiation implies amisrep-
resentation of natural conditions. All of the
positions that have been adopted to classify
different chemosensoryperceptions arebased
on idiosyncratic evidence and cannot be ac-
cepted as universal. In particular, the growing
evidence of a complex interplay among and
between receptors and ligands involved in
the detection of chemical and physical stimuli
prompts a definitively more interconnected
view of the senses.

An analysis of the theoretical and empiri-
cal research led us to demonstrate the fallacy
of the taste-smell differentiation, which can-
not be applied to all forms of life, especially
aquatic organisms. We argue that anthropo-
morphic biases have fostered the neglection
of key processes shaping ecological and evolu-
tionary scenarios, thus profoundly hampering
our research efforts for a better understand-
ing of the evolution of chemosensation, es-
pecially during the transition both from
aquatic to terrestrial life, and from single cell
tomulticellular organisms. This has prompted
us to propose the unification of all chemosen-
sory modalities within a comprehensive theo-
retical framework that opposes the current
misleading nomenclature, whose universality
is falsified by abundant evidence. Our vision
is that there is no taste and no smell in na-
ture, no chemesthesis and no vomerolfac-
tion, but a vast and blurred variety of modes
of chemical communication that could be
collectively called “chemosensation,” which
always starts from the interactions between
ligands and receptors, two chemical entities
both occurring in an immense structural va-
riety in nature.

Perhaps ordinary people, chefs, wine tast-
ers, perfumers, and poets will not need to re-
vise their view on chemical senses, since the
taste-smell distinctionfits ratherwell with the
human condition and its associated percep-
tual categorizations. Conversely, biologists
strictly need to incorporate information from
the study of the entire diversity of living orga-
nisms and their ecological interactions when
approaching the complex theme of the evolu-
tion of chemical communication and espe-
cially when designing experimental protocols.
A comprehensive approach is, however, ham-
pered by what has become an “epistemological
obstacle” pervading the chemosensory liter-
ature: the ancient belief that taste and smell
are two different senses. Relevant informa-
tion has been, in fact, extensively misinter-
preted according to an anthropomorphic
confirmation bias. Following Bachelard’s state-
ment: “Intellectual habits that were onceuse-
ful and healthy can, in the long run, hamper
research” (Bachelard 2002:25), the time has
come to abandon the differentiation between
the chemical senses and start asking better
questions about the complex, nuanced, and
interconnectedmanners by which a vast vari-
ety of chemicals have become signals cru-
cially important to survival.
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