ROYAL SOCIETY
OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Check for
updates

Research

Cite this article: Delgado R. 2022 Detecting
target species: with how many samples? R. Soc.
Open Sci. 9: 220046.
https://doi.org/10.1098/rs05.220046

Received: 12 January 2022
Accepted: 20 July 2022

Subject Category:
Ecology, conservation and global change biology

Subject Areas:
statistics/ecology/environmental science

Keywords:
sampling, Poisson, Negative Binomial, detection
error, target species

Author for correspondence:
Rosario Delgado
e-mail: delgado@mat.uab.cat

THE ROYAL SOCIETY

PUBLISHING

Detecting target species:
with how many samples?

Rosario Delgado

Department of Mathematics, Universitat Autonoma de Barcelona, Campus de la UAB,
Cerdanyola del Valles 08193, Spain

RD, 0000-0003-1208-9236

The detection of target species is of paramount importance in
ecological studies, with implications for environmental
management and natural resource conservation planning. This
is usually done by sampling the area: the species is detected if
the presence of at least one individual is detected in the
samples. Green & Young (Green & Young 1993 Sampling
to detectrare species. Ecol. Appl. 3, 351-356. (doi:10.2307/
1941837) introduce two models to determine the minimum
number of samples 7 to ensure that the probability of failing
to detect the species from them, if the species is actually
present in the area, does not exceed a fixed threshold: based
on the Poisson and the Negative Binomial distributions.
We generalize them to two scenarios, one considering the
area size N to be finite, and the other allowing detectability
errors, with probability 6. The results in Green & Young are
recovered by taking N— oo and 6=0. Not taking into
consideration the finite size of the area, if known, leads to an
overestimation of n, which is vital to avoid if sampling is
expensive or difficult, while assuming that there are no
detectability errors, if they really exist, produces an
undesirable bias. Our approximation manages to skirt both
problems, for the Poisson and the Negative Binomial.

1. Introduction

The study of different methods to determine the presence (or
absence) of a target species in an area of concern is currently a
topic of active research, which has one of its strongholds in the
paper by Green & Young [1]. The procedure introduced by the
authors for sampling for rare species has been integrated into
different monitoring protocols and field studies that have become
popular (see, for example, [2,3]) since for some ecological
applications an estimate of the prevalence of the species is
needed. Of special relevance is the work of Peterson et al. [4],
within the Western Division of the American Fisheries Society,
who developed a protocol to estimate the probability of the
presence of the bull trout (Salvelinus confluentus) in individual
patches (habitat units), which is an endangered species of those
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considered in the federal Endangered Species Act in the Pacific Northwest. Models based on empirical [ 2 |
studies, as is the case here, allow studies to assess sampling efficiency based on habitat characteristics
(species abundance distribution (SAD)). For example, in [5] the authors have studied the effect of
(under-)sampling as attenuation of the SAD, and how the sampling bias is induced to the SAD by
random sampling.

The procedure introduced in [1] has also been used, and shows its usefulness, in the early
detection of pest invasions and diseases, which is of paramount importance for the successful
management of the possible responses such as containment or eradication, implementing surveillance
traps to maximize the probability of detection and minimize economic costs. As an example, in a
recent paper [6], the authors model seasonal population dynamics to identify which days of the year
are most appropriate for trapping exotic fruit flies (Diptera: Tephritidae), getting New Zealand
authorities to change the seasonal fruit fly trapping calendar accordingly. The approach followed,
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based on that of Green & Young [1], is applicable to any invasive species with seasonal variation in
surveillance effectiveness. One more example: the authors of Yackel Adams et al. [7] introduce a
Poisson-based model application to report how long to look to infer the absence of an incipient
population of brown tree snakes (Boiga irregularis), and claim that their approach applies to other
invasive species.

In ecology, it is common to manage count data related to the number of individuals of the target
species present per spatial unit. Green & Young [1] considered that since the distribution of a rare
species is sparse, it can be assumed that it follows a Poisson distribution. This distribution has also
been considered in other fields of biology, such as microbiology, where it has been used, for example,
as a model for the total number of viable microbial cells (and clumps) in seeded dilutions, when the
organisms have been subjected to some form of sublethal treatment such as freezing, mild heating or
disinfectants [8, p. 65]. Since the Poisson distribution with parameter 1>0 has the same expectation
and variance, which match the parameter, it is useful as a model in the absence of overdispersion.

9007 ‘6 DS Uadp 0 Y

However, when this phenomenon is observed, that is, when the variance is significantly greater than
the mean of the distribution of the number of individuals, as in the example borrowed from
microbiology when some fraction of the organisms has greater intrinsic resistance or has received a
less severe treatment than other cells (see examples 4.3 and 4.4 in [8]), other probability distributions
can be used for modelling instead. Among them, the Negative Binomial stands out and it is the one
that will be considered in this work.

Count data appearing in ecology and other fields often exhibit simultaneously overdispersion and a
feature known as zero inflation, meaning that an excess of zero values is observed compared to what is
expected from the Poisson distribution. Both phenomena are related since zero inflation contributes to
an increase in the variance of the data, thus producing overdispersion. Taking both into account is
essential to avoid bias in the construction of ecological statistical models (see [9]). As the Negative
Binomial distribution can, at the same time, serve as a model in the presence of these two
phenomena, using it we can ‘kill two birds with one stone’. Therefore, we propose the Negative
Binomial as a model when overdispersion and/or zero inflation are present, although otherwise we
propose to continue using the classical Poisson distribution.

In this context, the subject under study in this work is the minimum number of samples necessary to
take from an area or habitat of interest, say #, to ensure that the probability of failing to detect the species
in the samples (that is, the probability of not capturing any individual of the species in any of the
samples, in case there is no error in detection) if the species is actually present in the area, is at most g
(B€(0, 1), small). Usually quadrats are used as samples to collect data and measure biodiversity, being
frames traditionally square or rectangular in shape, ranging in size from 1 to 20 m?, depending on the
habitat being surveyed (https://tools.mheducation.ca/web_resources/sch/ON_Sci_9_Unitl_Sec31.
pdf). Without loss of generality, we can assume that any of the samples has an area equal to one unit
area. We also assume that the sampling is unbiased, that is, the samples are taken at random from the
area. If this were not the case because the samples were taken in a clearly biased way, for logistical or
opportunistic reasons, for example, the models we use would no longer be valid and would have to
be modified accordingly.

We initially consider the scenario in which the detection of the species in a sample is made without
error, that is, we assume that

f» (false positive rate): the probability of detecting the species if it is indeed not present, and
fn (false negative rate): the probability of not detecting the species if it is present,
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Figure 1. Example of an area A of size 64 m’, from which six quadrats of 1 m? have been chosen at random. Then, N = 64.

are both zero, and that the number of individuals of the species follows a Poisson distribution, both at the
sample level and at the area (habitat) level, with a mean of A individuals per spatial unit. In Green &
Young [1], the general formula

n= |~ 1loe(s)| (1)

(where [x] denotes the function ceiling that maps x to the smallest integer greater than or equal to x)
follows in this setting, where log denotes the natural logarithm, that is, the logarithm with basis the
number e. A formula as useful, simple and elegant as (1.1) could not fail to be widely adopted by the
scientific community in general, and applied to different fields by research involved in ecology,
microbiology and environmental studies (see [4, p. 4], for example).

However, it is possible that the size (surface) of the area of interest, necessarily finite, is known, a
situation that the formula (1.1) does not contemplate. As mentioned before, samples are generally
quadrats of fixed size. Then the number of quadrats in the area, say N, can be obtained by dividing the
size of the area by the size of the quadrats (see figure 1 for a visual illustration). Although for obvious
reasons it is usually not possible for all of them to have the same shape, this does not invalidate the
determination of N.

On the other hand, (1.1) also does not contemplate the possibility of error in detecting the presence
of individuals of a species in a sample (that is, a positive false negative rate, f, >0), which is a real
threat when the species is rare, that is, its population is scarce, and individuals are difficult to observe,
or in situations of insufficient sampling effort. Surveys are known to often miss species present in a
sample, even sessile species (see [10] and references therein). The problem is especially serious in
ecological studies, where the presence/absence of a species is related to habitat and environmental
variables to build habitat-based models [11]. And the same happens with the dynamic models of
metapopulations, which predict some ecological processes such as extinction, from the presence/
absence data (see [12]), or with models of abundance/occupancy relationships, which are of great
interest in metapopulations in biology and in macroecology (see [13] for a closed population,
assuming occupancy status does not change during the sampling period, and two generalizations: for
open populations in [14], and for non-zero false positive rate in [15]). It is also typical of ELISA
(enzyme-linked immunosorbent assay), which is a multiwell plate-based immunoassay for the
detection of analytes at relatively low cost, whose sensitivity (1—f,) and specificity (1—f,) are usually
high but do not reach the maximum value corresponding to the absence of error. Despite this, while
the frequency with which errors occur is unknown and will likely vary based on individual
experience, false positive errors (recorded occurrences of missing species) are rarely estimated in
ecological studies, while the opposite f,>0 inevitably occurs in most situations, leading to
underestimation occupancy.

With this in mind, our goal in this paper is to present generalizations of the formula (1.1) to two
scenarios:

— Scenario 1. When the size of the entire area (number of separate samples it contains) is known, say N.
In this way, we avoid the overestimation in the number of samples n, which is the consequence of a
simplification in the derivation of (1.1) in the section Derivation of power formulae [1], where the
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authors implicitly assume that the size of the area is infinite (that is, so large that, for practical
purposes, it can be considered as such). As the formula (1.1) overestimates the number of samples
to be taken, the alternative formula (2.1) is a better alternative as it gives the tightest valor of n, if
N is known. In this paper, we present (2.1) and prove it, in the absence of non-detection error, and
from it, (1.1) is the limit case when N — co.

— Scenario 2. Imperfect detectability when the non-detection error is present (f,, > 0). The formula (4.4)
takes it into account in the configuration of the infinite area assumption, and generalizes (1.1), which
is the particular case when there is no error (f, =0).

Obviously, the two scenarios can occur at the same time, and in this context, we get a
generalization of (1.1) both for the case of having finite N known and f, >0 at the same time,
which is (4.1), that incorporates both finiteness of the area size and non-detection errors. While in
the first part of the paper (§§2 and 3 and first part of appendix B), we will assume that there is no
detection error, that is, f, =f, =0, in §4 and in the second part of appendix B, we assume that f,=0
but f, >0, that is, there is (possibly) non-detection error in the samples. There, f, is denoted by &
to lighten the notation somewhat.
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Moreover, following [1], we consider two different models (in each scenario):

— model A: corresponding to the (non-overdispersed) Poisson distribution,
— model B: with the Negative Binomial distribution, incorporating both overdispersion and zero inflation,
although we will not consider other models developed specifically for the latter.
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The formulae mentioned above correspond to model A, while those corresponding to model B are the
generalizations of formula (5.3) that we present in §5. The formula (5.3) appears in [1] as the
counterpart to (1.1) when model A is replaced by model B.

In addition, we verified the validity of the models in an experimental phase using Monte Carlo
simulation, to approximate the probability of not detecting the presence of the species in the area
from the obtained number of samples, 1, and verifying that, indeed, it is of the order of .

The organization of the paper is as follows: in §2, we consider the scenario 1 and introduce the model
A (Poisson distribution) when the detection error has zero probability, if the study area has a finite size.
We compare the formula obtained for n with that of Green & Young [1], corresponding to an infinite area,
in §3. The §4 delves into the adaptation of the Poisson model to scenario 2, considering that the
probability of detection error is not zero. The model B (Negative Binomial) is treated in §5. The paper
ends with a few words of discussion and conclusion in §6, while in appendix A we prove some
technical results, and the topic at hand in appendix B is how to estimate the parameter (mean) of the
Poisson distribution (model A).

2. Known size of the area (scenario 1): deriving the number of samples
with the Poisson model (model A)

We assume that we have a habitat or area, say A, divided into N > 1 small areas or samples with the same
surface, which we assume without loss of generality to be equal to one unit. We consider that N, which is
the surface of A, is known (a different situation than [1], where it is implicitly assumed that it can be
taken as infinity). Denote by Y the number of individuals of the species in the entire area A, and by
X; the number of individuals of the species in the ith sample, i=1,..., N. Then, Y = Zfil X;. We
assume that the random variables Xj, ..., Xy are independent, all with the same distribution, a
Poisson with parameter (mean value) 1 >0, insensitive to the position and shape of the sample. This
is what we call model A, and we are in the scenario 1.

Denote by X a random variable with Poisson distribution with parameter 1, X ~ Pois(1). For the
moment we assume that 4 is known (we will return to this topic in appendix B). Since Y is the sum of
N independent Poisson variables with the same parameter 4, Y follows a Poisson distribution with
parameter the sum of parameters, that is, with parameter AN (>A>0), Y ~Pois(AN). With g
introduced earlier as the upper bound for the probability of not capturing any individuals of the
species in any of the samples if the species is actually present in the area, established by the research
team, we can now derive the formula for the minimum number of samples, 1, such that this
probability is, in fact, less than or equal to .



Theorem 2.1. In scenario 1 and with model A, the minimum number of samples n to extract from area A such [ 5 |
that the probability of not capturing any individual of the species in any of the samples if the species is actually
present in the area, less than or equal to B, is

n= [—%log B+(1-0) e‘“ﬂ > 0. (2.1)

Proof. First, we see that the value of n given by the formula (2.1) is positive. Indeed, since 1 >0, we
have to check that g+ (1 —f3) e N e (0, 1) (since then, its logarithm is a negative number). In fact, since
Be€ (0, 1), the positiveness of the exponential ensures that this quantity is strictly positive. Besides,
1-8 _
1-8
which holds due to the fact that —AN < 0. Second, we check that n <N, which holds since

B+(1-Be N <leme N < 1,

*sosi/Jeunof/6106uiysgnd/aposjedos

log(B+ (1 —B)e™)> - AN<=+(1-B)e™ >eMNe=p(l—e*N)>0

(thus, —(1/M)log B+ (1 —-p) e ) <N and then n <N).

Now we deduce the expression (2.1). For any n > 1 (n < N), we draw n samples at random from the area
A, and we can assume without loss of generality that they are the first, say samples 1, ..., n. Then, not
capturing any individual of the species in any of the n samples is equivalent to saying that
S, X; = 0. With this in mind, the goal is to find the minimum number 7 such that

P(ixizo/y>o> <B. (2.2)
i=1

We determine the minimum integer n that verifies (2.2) as follows:

9007 ‘6 DS Uadp 0 Y

y P(Y L, Xi=0NY >0) P(Z7=1Xi:002ﬁ”+1x,»>0)
P<;Xi—O/Y>0>— 1p(y>0) - P(Y > 0)
P( L Xi= O)P(Z;\in+1 X; > 0)
B P(Y > 0) (2.3)

where we have used that > !, X; and Zf\i 441X are independent random variables, which is a
consequence of the assumption of independence of Xj,..., Xy. Then, since they are sums of
independent random variables with Poisson distribution with the same parameter A, they have
distributions Pois(An) and Pois(A(N — 1)), respectively. Then, by (2.3) we can write

n e—/\n(l _ e—)t(N—n)) e M _ o=AN
P<;Xi—O/Y>O>— T R (2.4)

Finally, we can isolate n from (2.4) and (2.2). In fact, by (2.4),

(22)¢e=e M e < Bl —eW)eme ™™ <B4+ (1-B e

and taking the natural logarithm, which is an increasing function, on the two sides of the inequality:
—AN 1 —AN
(22)«<= - <log(B+(1—-B)e " V)=n> —Xlog(B+(l—B)e ).

Then, the minimum integer value of n is given by this expression if it is an integer, or the next higher
positive integer if it is not, finishing the proof. L]

Green & Young [1, p. 352] define B (and here we quote the authors) as ‘the probability of allocating n
quadrats and failing to collect a species that is actually present in that habitat and has some mean density m’
(note that with our notation, m=24). So, B is clearly the probability of not detecting conditional on
the presence of the species in the habitat. The problem is that these authors implicitly assume that
P(Y>0)=1, which is contradictory to the Poisson model, for which P(Y>0)=1 —eN except if we

are in the limit situation where fixed 2, N — +c0. Indeed, in [1] the expression (2.2) is replaced by

P(}njxi - 0) <8,
i=1

with Y7 | X; ~ Pois(An), which is equivalent to e < 8, that translates into (1.1).
The problem of estimating A from the available information (data) is covered in appendix B.



Table 1. Two examples of how the overestimation of n using the formula (1.1), with respect to the formula (2.1), decreases as  [J}
N increases. In both cases, the maximum overstatement (achieved with the minimum N) is greater than 28%
(100 x 666/2330 = 28.58% and 100 x 67/233 = 28.76%).

R’
example 1: B = 0.05, A = 0.001, (1.1) = 2996 example 2: B =0.05, A = 0.01, (1.1) = 300 E,
N n given by (2.1) (1.1)-(2.1) n given by (2.1) (1.1)-(2.1) g%
3500 2543 453 350 255 45 g
4000 7 2698 298 400 270 30 %
aw e e e Ty a
6000 2950 46 600 295 5 8
o0 e e s = g
w06 mwo s v B
8500 2992 4 850 300 0 &
9000 2994 2 900 300 0
10 000 7 2995 1 1000 300 0
e we Ty e 0 e

3. Comparing with the formula (1.1)

In the following proposition, whose proof is in appendix A, we show that, indeed, the value of n given by
(2.1) is not greater than that given by (1.1), although they tend to match when N — co. What is more, it
gives an upper bound on the difference between (1.1) and (2.1), stating exactly what that difference is for
N large enough. In the experimental simulation phase at the end of this section, we will see that if N is
known, (2.1) is a refinement (providing a tighter value) of (1.1), which is, therefore, an overestimate (see
examples 1 and 2 in table 2).

Proposition 3.1. For any (0, 1), >0 and N > 1, we have that

@@ 0<(1.1)-21) < [(1/0)1og(1+ ((1—B)/B)e V)],
(b) limy_,10(2.1) =(1.1), and
() for N large enough, (1.1)-2.1)=[(1/A) log(1 + ((1 - B)/B)e™™)] -1 > 0.

3.1. Examples

As example 1, we consider the particular case where 8= 0.05 and A =0.001. Applying (1.1) we obtain n =
2996. Therefore, to record the improvement in determining the minimum number of samples 1 needed to
extract from the area A, such that the probability of detecting the presence of the species, if it is actually
present in area, is not greater than g, for different values of N using formula (2.1), we start with N = 3000
(>2996). The recorded values appear in table 1, along with another example where § remains unchanged
but 2 =0.01, yielding (1.1) = 300.

In example 2, we start with N=300. As we can see from these examples, if obtaining samples is
expensive or difficult, the savings on samples by using (2.1) instead of (1.1), if N is known, can really
be worth the effort.



Table 2. £ =107 iterations of the algorithm 1 for some values of N in the two examples of table 1, both using (2.1) and (1.1) [ 7 ]
to determine n. p = Probability of not detecting the presence of the species in area A, if present, from the n samples, which
must be approximately equal to 3, ideally not greater, although the simulation procedure may lead to a result that (narrowly)
violates this constraint.

~

3

: D
example 1: 5 =10.05, A = 0.001 example 2: =10.05, A = 0.01 é_

e
3000 2330 (2.1) 0.05003096 300 233 (2.1) 0.05001881 é
4000 2698 (2.1) 0.04991710 400 270 (2.1) 0.04977368 %
5000 2876 (2.1) 0.04994049 500 288 (2.1) 0.04973971

3.2. Experimental simulation phase

We can carry out a simulation experiment in which, fixed g and 4, for the value of n given by (2.1), we
approximate the probability p of not detecting the presence of the species in area A from the 1 samples,
using a Monte Carlo method (by the Law of the Large Numbers), and verify that indeed, this probability
is very close to f. If, instead, n is given by the formula (1.1), the probability obtained by simulation is
clearly much lower, showing the overestimation of # in [1]. Naturally, N and A fixed, the higher the
number of samples 1, the lower the probability p, as the examples in table 2.

Therefore, it is about looking for a trade-off between # and p, taking into account that when #n improves
(decreases), p worsens (increases) and vice versa. The compromise solution that we have adopted has been
to establish an upper bound for p, B, to determine the smallest number of samples 7 that guarantees that p
does not exceed this bound. In doing so, with (2.1) we find a very tight value of n, which is, however,
overestimated when (1.1) is used instead. This is precisely the leitmotiv of this work. We have implemented
the algorithm that performs the simulation (see algorithm 1) using the R programming language [16].
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Algorithm 1.

Input N,B,A, number of iterations K
Output the approximated probability p
1: compute n by (2.1) or (1.1), as appropriate
2: initialize counters count.num = 0, count.denom =0
3:foriin 1:K do
4: X =(Xj,...,XN) = rpois(N, X) # simulation of the number of individuals in any of the
N samples of A, following N i.i.d. Poisson distributions with parameter A
Y= 2?1:1 X; # number of the individuals in the entire area A
If Y > 0 then # if the species is present in the area A
count.denom = count.denom + 1
if Z';-:l X;=0then  # if the species is not present in the 7 selected samples
: count.num = count.num + 1
10: p = count.num/count.denom
return p

Y XN T

With the examples in table 1, with K= 107 iterations, we obtain the results in table 2 by applying
algorithm 1 to n obtained both from (2.1) and from (1.1).

4. What if detectability is imperfect? (scenario 2 with model A)

We can introduce the non-detection error (scenario 2) and study its effect on the previous formulae
(model A). This is the error of not detecting the presence of an individual of the species in a
sample in which it is actually found. We denote by 6 € [0, 1) its probability, i.e. the false negative rate f,



(we use ¢ instead of f, to lighten the notation a bit), and we assume that this error occurs (or does not) [ 8 |
independently for the different individuals of the species present in the samples. The opposite error (false
positive), which corresponds to recording the presence of a species in a sample when it is not there, is
assumed never to occur. We can prove the following result, similar to theorem 2.1, where we observe
the effect of detectability error in determining the minimum number of samples.

Theorem 4.1. In scenario 2 and with model A, with detectability error 5 € [0, 1), the minimum number of ?
samples n to extract from area A such that the probability of not capturing any individual of the species in any
of the samples if the species is actually present in the area, less than or equal to B, is

n= [—ﬁlog B+ (1-p) e’)‘N)—‘ > 0. (4.1)

*sosi/Jeunof/6106uiysgnd/aposjedos

Proof. The presence of the non-detection error affects expression (2.2), which now becomes:

n n =
P<ZXI-:OU(ZXi>0ﬂnodetect>/Y>0> <pB 42) ©
i=1 i=1 Pe
N
and then, similarly to (2.3) and (2.4), we can expand the probability on (4.2) in this way: ']
fw
n n o,
P(ZXi—OU(ZXi>Oﬂnodetect>/Y>O> )
i=1 i=1 N
)
P Xi=0NY >0)+P(X1, X; > 0(\nodetect Y > 0) 38
- P(Y > 0) L
P(Z?zl X;i=0NEN, . Xi > O> +P(3_1, Xi > 0\ nodetect)
- P(Y > 0)
e—)\n(l _ e—/\(N—n)) 4 (*)
= T (4.3)
with
n 00 n
(x) =P (Z X;i>0 ﬂ nodetect> = P( X = jﬂ nodetect)
i=1 =1 \i=1
00 n n 00 j
. . C o (AnY
= P(nodetect/ZXi=]>P< Xi:]>:26/e An F
j=1 i=1 i=1 =1 :
where we have used that E?:l X; ~ Pois(An). Then,
0 S j
(*) — ef)\n Z ()t]l’l' ) — e—An(eAnS -1)
j=1
Finally, substituting (*) in (4.3) we have
n n
P(in =0l J <ZX, > oﬂnodetect> /Y > 0)
i=1 i=1
e*)‘”(l _ ef/\(an)) + ef)\n(e)\nﬁ o 1)
B 1—e N
e—)\n(e/\né _ e—)\(N—n)) e—/\n(l—ﬁ) _ e—)LN
- 1—e MW T 1-eMW
and imposing (4.2), we get
1
>4 _ gy e N
n> AT 6)10g(,3+ (1—B)e ™),
ending the proof. n

The estimation of A for model A in scenario 2 from available data is also considered in appendix B.
If 6 = 0 (false negative rate f, equals zero), the formulae (4.1) and (2.1) coincide. In the limit, when 6 — 1, the
formula (4.1) converges to oo, which is reasonable since it corresponds to the unlikely situation in which
the probability of non-detection is 1, that is, the probability of detecting the presence of the species in a



Table 3. K= 10" iterations of algorithm 2 for examples 3 and 4. p = Probability of not detecting the presence of the species in Ea
area A, if present, from the n samples, with & the probability of not detecting any individual.

example 3: N'= 3500, 5 =10.05, A =0.001
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0.1 378 0.04996806 3329 004766190 R
0.2 3688 0.04992643 3745 004749297 &
111 S 10
04 4917 0.04991602 4993 0.04761596
i G i S B L

sample where it is present, is zero. In the intermediate cases, (4.1) > (2.1), which is logical, since the existence
of non-detection errorleads to a larger number of samples. In other words, the minimum number of samples to
be taken from the area can be substantially different depending on whether detectability error is taken into
account and, in the first case, depending on the magnitude of the error.

If we take the limit as N — oo in (4.1) we get the equivalent of (1.1) in the scenario of non-detection
error with probability §, which is the following expression:

- {_ /\l(olg(—ﬁc)‘s)—‘ (4.4)

and if §=0, (4.4) and (1.1) match; in the limit, when § — 1, the formula (4.4) converges to +oo; and in the
intermediate cases, (4.4) > (1.1).
Analogous to proposition 3.1, we obtain the following result that we state without proof.

Proposition 4.2. For any €(0, 1), >0, N>1 and 6 € [0, 1), we have that

@ 0< (4.4) — (41) < [(1/(A (1 - 8) log(1 + (1 - B)/B) e V)],
(b) imy_10(4.1) = (4.4), and
() for N large enough, (4.4) — (4.1) = [(1/(A (1 = 8))) log(1 + ((1 - B)/B)e™™)] -1 > 0.

In table 3, we record the approximation for the probability of not detecting the presence of the species
in the area, if it is present, from the n samples, in two examples: example 3, with false negative rate &
ranging from 0 (no detection error) to 0.1, and N =3500, and example 4, with §=0.1 to 0.5 and N=
6000. In both examples, f=0.05 and A=0.001. The estimated values of p have been obtained by
simulation using the algorithm 2, implemented with the programming language R. Note that with
6 =0, the algorithms 2 and 1 are, in fact, the same.

Algorithm 2.

Input N, B, A, §, number of iterations K

Output the approximated probability p
1: compute n by (4.1) or (4.4), as appropriate
2: initialize counters count.num.detect = 0, count.denom = 0
3:foriin 1:K do



4: X =(Xy,...,Xn) = rpois(N,\) # simulation of the number of individuals in any of the N
samples of A, following N i.i.d. Poisson distributions with parameter A

5 Y= 21]\1:1 X; # number of the individuals in the entire area A

6 if Y>0then  # if the species is present in the area A

7: count.denom = count.denom + 1

8 if Z?:] X; > 0then  # if the species is indeed present in the n selected samples

9 a = runif (1) # a (pseudo-)random number in (0,1)

10: ifa>60" then #1- 8> = probability of detect the species
11: count.num.detect = count.num.detect + 1
12: p = 1 — count.num.detect /count.denom

return p

In the examples in table 3, we observe two phenomena in addition to the expected fact that the larger the
value of N, the smaller the difference between the two models: (i) that using (4.4) instead of (4.1) to determine
the number of samples n gives an overestimate, since the approximate probability by simulation is
unnecessarily much smaller than f=0.05 and (ii) that the values obtained for p remain stable when &
increases. This seems quite common sense because the formulae (4.1) and (4.4) have been obtained
precisely to determine the minimum value of n that ensures, with each model, that the probability p of
not detecting the presence of the species in area A with the n samples is less than or equal to S,
considering the presence of the false negative error 6. Since the second model is less fit than the first, it
effectively leads to an overestimation of 7, which translates into a lower value of p, clearly below g.

5. Oversampling and zero inflation. Model B: Negative Binomial
distribution

As explained in the introduction (§1), in the presence of oversampling and/or zero inflation phenomena,
the Poisson distribution (model A) is no longer a suitable model for counting individuals per unit
area. Instead, we consider the Negative Binomial distribution (model B). We first consider the scenario
1 (finite size N of the area of interest), and that there are no detection errors (6 =0).

Analogously to §2, if we denote by Y the number of individuals of the species in the entire area A,
and by Xj, ..., Xy the number of individuals of the species in each of the N samples that make up A, now
we assume that these random variables are independent, all with Negative Binomial distribution with
parameters r (a positive integer) and p € (0, 1). Let X be a counting random variable with distribution
NB(r, p). So, for any k>0,

k+r—1 r

rex=n = (4777 )pra-p

and its expectation and variance are, respectively, E(X)=rp/(1 —p) and Var(X) = rp/(1 —p)*. Note that

since p € (0, 1), we have that Var(X) > E(X) (overdispersion), unlike what happens in model A, with

the Poisson distribution, in which case E(X)=Var(X)=A4. If we denote by 1 the expectation of

X ~NB(r, p), that is, A=rp/(1 —p), then p=1/(r + 1) and we have that Var(X)=A(1+(1/r) >4, and
Var(X) A1+ A/r) A

= = - >
E(X) Py L=t

is known as the dispersion index [17], which is 1 for the Poisson distribution. As stated in §1, the Negative
Binomial distribution not only captures the phenomenon of overdispersion, but also that of zero inflation
since P(X=0)=(1-p) =(1—A/(r+A)) is greater than the mass given at zero by Pois(4), which is e™.
In fact, what happens is that

A\ 1 4
Hm(1-——) =lim(——] =e™? 5.1
rirglo( r+ A) P (1 + /\/r) ¢ (5.1)

being a decreasing sequence, and in the sense of the limit of the distributions,

r—00

. . A .
lim NB(r, p) = rlgg NB (r, H——)\> = Pois(A).

As the sum of independent random variables with distribution NB(r, p) is a distribution of the same
type with first parameter the sum, we have that Y ~ NB(*N, p). Recall that g is the upper bound of the
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probability of not capturing any individual of the species in any of the samples, if the species is actually [ 11 |
present in the area. Then, we can obtain the expression for the minimum number of samples, #, such that
this probability is less than or equal to S, in the following theorem.

Theorem 5.1. In scenario 1 and with model B, the minimum number of samples n to extract from area A such
that the probability of not capturing any individual of the species in any of the samples if the species is actually
present in the area, is less than or equal to B, is

_ [ ~1log(B+ (1= B)A/(1+A/r)™)
"= {7 log (14 A/7) —‘ =0

(5.2)

Proof. The proof is similar to that of theorem 2.1 considering that if X ~NB(r, p) then

. ~ A ri 1 r
P(X—O)—(]—p)—(l r+A)_(1+A/r)
where 2 =1p/(1 —p). And with respect to Y ~NB(rN, p), we have that

PY=0)=(1-p" = (l i AY)YN_ (1 +1A/r) rN

(where 1y denotes the expectation of the variable Y, 1y = Nrp/(1 — p) = NA). Therefore, since Y 1 ; X; and
>N 41 X; are independent random variables, with respective distributions NB(r#, p) and NB(+(N —n), p),
we have that

sos1/JeuInof/6105uiysignd/aposjesos
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~ /AN = A/ 4 A/ V)
P<;X10/Y>O> = T

_a/a+ A" =1/ + AN
1— @A/ 4+ /)N

and imposing that this probability is less than §, we can isolate # and obtain

5 log B+ (1—B)A/(L+A/r)™)
- rlog(1/(1+4 A/r))

which ends the proof. =

5.1. Spedial situations

5.1.1. Model A as limit of model B when r - +o00

Note that if in the formula (5.2) we take the limit as » — +o0, by using (5.1), we rediscover the formula
(2.1) corresponding to model A with the Poisson distribution.

5.1.2. The limit when N — oo

On the other hand, taking the limit as N — oo in (5.2) we obtain the expression corresponding to (1.1) with
the Negative Binomial model B, which is

_[=1_ log(B)
"= [7 log (1 + )\/r)—‘ (53)

from which (1.1) can be found again by taking the limit as ¥ — +oc0. Formula (5.3) matches formula (3) in [1].

5.1.3. Model B in scenario 2 (imperfect detectability)

Recall that 6 [0, 1) is the probability of the error corresponding to not detecting the presence of any
individual of the species in any sample in which the species is actually found, and that we assume
that the error corresponding to recording the presence of a species in a sample never occurs when it is
not present. Analogously to theorems 5.1 and 4.1, we obtain that

g |Zllog B+ (1-B)A/(1+ (1~ 8)/m™)
| log 1+ A(1—8)/r

> 0. (5.4)



If we take the limit as N — +o0 we get the formula corresponding to (4.4) for model B:

_ |1 log(B)
"= [Tlogu Y 6)/1’)—" (55)

5.2. Parameter estimation in model B

Note that the parameter pair (, 1) is equivalent, though statistically preferred for estimation purposes, to
the usual parametrization (r, p) of the Negative Binomial, and henceforth we will refer to this distribution
using the parametrization (r, 1).

How can the parameters (, ) of the model B be obtained? We randomly take an arbitrary number 1,
of samples from area A (the larger, the better estimates we get), and denote by x1, ..., x,, the realization
of variables Xj, ..., X,,, denoting the number of individuals of the species in each of the ny samples. If 6=0,
X1, ..., Xn, can be observed, and the natural (biased) moment estimators of the parameters are

2
modelB, § =0: A =%, 7= ) (5.6)

with the notations

1y

X=— x; ( the sample mean value)

and
1 & 2

§2=— lez — (x)® (the sample variance without Bessel's correction)
M=

If 6> 0, the number of individuals of the species present in each of the 1y samples cannot be observed,
and instead x1, ..., x,, denote the number of individuals of the species actually detected in any of the ng
samples. From these observed values we estimate the parameters by

- X . ®
modelB, § > 0: /\:1—8"‘253(—?' (5.7)

6. Discussion and conclusion

Studying the presence/absence of target species in an area of interest is one of the most important tasks
in ecological studies, with implications for the environmental management and planning for the
conservation of natural resources. Given the impossibility of carrying out an exhaustive follow-up of
the entire study area, a common case in practice, samples of a certain size, which can be assumed to
be 1 without loss of generality, are taken to determine from them the presence/absence of the species
of interest. Sampling necessarily induces uncertainty in our conclusions and we have used different
probabilistic models for this uncertainty, which allow addressing the question of determining the
minimum number of samples, 1, necessary to ensure that the probability of failing to detect the
species from them if the species is actually present in the area is at most a fixed (and small) g€ (0, 1).

Specifically, we use the Poisson model, and its counterpart, the Negative Binomial model, when there
is overdispersion and/or zero inflation. These models have been introduced in [1] but implicitly for a
horizon in which the size of the area is infinite. In this work, we have adapted the models to
incorporate the size of the area (equivalently, the number of non-overlapping samples that could be
drawn from it, N) and show that not taking this information into account, when it is known, always
leads to an overestimate of n. If obtaining samples is expensive or difficult, the savings on samples
with the approach presented in this paper can really be worth it.

When building models for the occupancy and abundance of wild species in a given habitat,
evaluation of the predictive accuracy of the models depends on the reliability of the data. If the data
lack reliability because there are individuals of the species that are not detected as such by mistake,
that is, if detection error (false negative) is present, the models must be adjusted accordingly. In
general, the higher the probability of the detection error, the lower the efficiency of the model and the
greater the bias in the estimation of the parameters.

9p007z 6 s uadp 205y sosyjewmol/bobunsiqndfaanosiedor g



¢ start )
(2

Y

yes (scenario 1) IsN no

J\ known? ’
yes (scenario 2) Detection no yes (scenario 2) no
(6>0) error? (5=0) * (6>0) (8=0) +

yes o no yes o no yes Overdispersion no yes o
and/or zero and/or zero and/or zero andlor 2610
NB (1, A) inflation? pois (A) ‘ NB (r, A) inflation?, pois (A) NB (1, 1) inflation? pois (A) NB (r, A) inflation?
Y
— R poa—
{model A model A model A
L “.1) J L 2.1 (4.4)
iBe | iB2» | A B6) AB2)
model B modellﬂ model B ‘ model B|
(5.4) (5.2) (5.5) (5.3)
AL #GT A7 (5.6) YRREN)) A #(5.6) /

Figure 2. Pipeline of practice to implement the approach to find the minimum number of samples n to ensure that the probability
of failing in detecting the species from them, if the species is actually present in the area, does not exceed a fixed threshold 3.

Fortunately, ecological models of wildlife habitat based on the presence/absence data that assume
detection errors are now quite common. These models assume that if a species is present in a given
sample, its presence is not detected with probability (false negative rate) f, =6>0. And this is of great
importance to be aware of the presence of this detection error, and to act accordingly in the
construction of the model, since the models that do not take it into account will suffer from bias in
the estimation of their parameters [11].

Some of the researchers who have dealt with this type of model accept the presence of this bias and
focus on ensuring the usefulness of the model despite detection error. An example is [18], which points
out that the methodology of estimating the relative abundance of a species using a machine learning
classification algorithm to detect the species in areas where its presence had not been previously
confirmed, can be applied to compare the relative abundances between different areas if the detection
error is the same in all of them. Others, such as Blasco-Moreno et al. [9], follow a different approach,
considering the presence of false zeros due to observer detection errors (or errors in the experimental
design) and suggesting to minimize their presence when performing the experiment, before building a
statistical model for the occupancy/abundance of the species of interest, if possible removing them
from the dataset before analysis. And still other authors focus on trying to avoid the negative bias in
the estimation of parameters derived from the fact that species can go unnoted even though they are
present. For example, MacKenzie et al. [19] propose a likelihood-based method to estimate site
occupancy rates when the probability of detection error is positive, which avoids bias in estimating
the proportion of occupied patches when there is error detection.

Our work aligns with the latter: if the detection error § is not taken into consideration in the
determination of #, it is underestimated, that is, it is estimated with a negative bias. What we have
done in this work to avoid this bias is to adapt a model that was suitable when §=0, to the case in
which 6> 0, thus avoiding the underestimation of #n. That is, beyond the convenience of investigating
which variables affect the probability of non-detection, as was done in [20], assuming the probability
of non-detection &[0, 1) is known, we provide a version of the formulae obtained when this
probability is assumed to be zero, which are § dependent.

The models we propose are a combination of assumptions about (i) the distribution of site occupancy
and (ii) the detection probabilities, which seems to provide a useful flexible framework for statisticians
and biologists. From a statistician’s point of view, surveying for target species is similar whether the
area is small or large, or whether the biological population is rare or abundant. However, studies of a
rare species have more complicated logistics, requiring more time and resources, especially if the
probability of detection is not vey great. For this reason, models that provide an adjusted estimate of
the number of samples from the area of interest are necessary to ensure that the probability of failing
to detect a rare species, if it is actually present in the area, is at most a fixed threshold, like the ones
we present here, are undeniably useful for applications in ecology such as (i) management of invasive
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Table 4. Summary of formulae to determine n. Taking the limit as r — +co in the formulae corresponding to the Negative [JEZJ}
Binomial (model B) we obtain those corresponding to the Poisson model (model A).

model A: Poisson distribution Pois(1)

g
number of samples n scenario 1. Area size N ‘é

B
scenario 2. 6> 0 [ x5 Iog(,8—|— (1—B)e )] (41) [— A";g ] (44 E
§=0 [-1og(B+(1—-Be™)] @1 [~ Llog(B)] (1.1 8

b5
model B: Negative Binomial distribution NB(r, 2) §
number of samples n scenario 1. Area size N g

, 1 log(B+(1-B)1/(1+(A(1-3) /)" og(B) :
scenario 2. § >0 [71 = w057 . 1 (5 4) H MWW (5 5)
S e

L e e T I~ i 63

Table 5. Summary of estimates. Model A: w,, is the number of the n samples for which we have detected the presence of the
species (= the number of them that contain at least one individual, if 5 =0). Model B: x;, ..., x, are the number of individuals
of the species that have been detected in any of the samples (= the number of individuals indeed present in any of them, if
5=0). ¥ is the sample mean value, s2 is the sample (uncorrected) variance.
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model A: Pois(4) model B: NB(r, 1)
scenario 2. 6 >0 3= _ |og$1:;) _ Iog(11ivg,/n) (86) X _ %’ T % (57)
B L S R L ( ?}Z ...............
A =—log(1—a)=—log(1—") (B2) A=x 7= ()

species (due to limited resources, government agencies often give priority to interventions to invasive
exotic species), (ii) management of threatened species that, by definition, are rare in the study area,
(iii) spatial planning (decisions about which areas will be protected for the conservation of the
species) and (iv) biogeography (identification of biodiversity hotspots from species richness studies).

Figure 2 schematically shows the procedure to be followed, from a practical point of view, to
determine 7 according to the different scenarios, and indicates the formulae to be used in each
situation, which are summarized in table 4. Table 5 provides the estimates of the parameters of both
models A and B.
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Appendix A. Technical results

Lemma A.1. Let 1, s be positive real numbers such that r >s. Then,

[¥] — [s] :{{:::1_1 or



Proof of lemma A.1. We can decompose r =1m; +a;, and s =mj, +a, with my, m, non-negative integers m
and 0 <ay, 4, <1 (note that r > s implies that m; —m, is a non-negative integer). Then,

i3S
(my+1) = (my+1)=my —my ifa;,a >0 ‘9:_4
. _ (m1+l)—m2:m1—m2+1 ifa; >0,a0=0 8
’Vﬂ [SW_ m1—(m2+1):m1—m2—1 ifa1:0,a2>0 (Al) E"
mp —mp ifu1:a2:0 é
On the other hand, since 0 <44, 4, <1, we have that —1 <a; —a, <1 and therefore, %
@
0y —ay] = { 1 ifa; —a, >0 8
1721770 otherwise, that is, if a1 —a <0, TC_-,.
=
and therefore, %
3

[r—s| = [(m —mz) + (m —az)]| = (M1 —ma) + [a1 — a2]
7{m1—m2+l if & —a, >0 (A2) 7
o lmy —my otherwise. 2
S
Then, from (A 1) and (A 2) it is trivial to check that ' 8
i
Ifay,ap >0,a1 —a, >0, [ﬂ_[S—IZml_mZI [7—5W2m1—m2+1 Q
Ifa, a0 >0, —a <0, [r]—1T[s]=m —my, [r—s]=m —m :
Ifa; > 0,82 =0, [r]—T[s]=m —ma+1, [r—s]=m —my+1 =
Ifa;=0,a, >0, [r] = T[s]l=m —my—1, [r—s]|=m —my §

Ifa; =a,=0, [r] = [s] =mg —my, [r—s]=m3 —my :

concluding that in any case, [r] — [s] is either equal to or one smaller than [r — s], which concludes the
proof. L]

Proof of proposition 3.1. We first prove that for any N >1, (1.1)—(2.1) > 0. This is a consequence of the
fact that
1 N 1
~3log(B+(1-p)e™™) < —~log(B),

—AN

which is equivalent to (1 — ) e > 0 (that is trivially true), by the fact that the logarithm is an increasing

function, and that the function ceiling is not decreasing.

(@) If for any N>1, we define
1 1
r=—-log(B) and s=—"Tlog(B+(1-p) e ™), with r > s. Then,

_ 1 1 VN B+(1-pe™
r—s=—log(B) +log (B+(1-p)e >_X10g(f)

1 1-B8 _w
7Alog(1+ B e >>O

and by lemma A.1,

(1.1)—(2.1) = Hlog (l + % e’)‘N)—‘ or one smaller. (A3)
From which it follows immediately that (1.1)—(2.1) < [(1/A)log(1 + ((1 — B)/B) e ).
(b) to see that (2.1) converges to (1.1) as N — +oo, we first check the limit

o1 oy 1
Jim —~log (B+ (1 - B)e ™) = —Tlog(B)

which is a trivial check since e — 0. We now consider two different situations:
(1) —(1/Mlog (B) is a positive integer, say z. So, [z] = z and for N large enough, z — 1 <—(1/A)log
(B+(1—p) e™) <z from which it follows that [—(1/A)log(B + (1 — B)e )] =z.
(i) z<—(1/Mlog (B) <z+ 1, with z a positive integer. Then, [—(1/A)log(B)] = z + 1 and for any N
large enough, z<—(1/MDlog @B+1-pe™M<-(1/Vlog (B <z+1, for which
[—(1/A) log(B+ (1 — Bye W)] =z +1.
In both cases, (2.1) = (1.1) for N large enough, resulting in limy_.;(2.1) = (1.1).



(o) Finally, if we set 1 >0 and e (0, 1), we introduce the function f by
1 1-B
f(N) = /\log(l +—B e > >0,

then f is a monotonically decreasing function of N, since f(N)=—((1-5)/p) e™N/1+(1=-p)/
B) e *N) <0, which converges to 0 as N — +oo. Since the function ceiling is nondecreasing, [f ()]
is a monotonically decreasing function of N, and converges to 1 as N — co. This fact, together
with (A3) and that limy_.;»(2.1) = (1.1), necessarily imply that for N large enough,

(1.1)—(1.2) = Hlog(l +% e"\N)—‘ -1,

finishing the proof.

Appendix B. Estimation of the parameter A in model A

When unknown, the parameter A in model A, which is the mean value of the Poisson distribution that
models the number of individuals of the target species in a (generic) sample, must be estimated. The
procedure for doing this depends on whether the false negative rate f, =& can be considered to be =0
or >0.

B.1. Case 6=0

Instead of estimating 1, we can equivalently estimate a, which is defined as the probability that a sample
contains at least one individual of the target species, i.e.

a=P(X>0)=1-e"

With this notation, A can be obtained from a by 1 = —log (1 — @) and to estimate the value of 4, fixed N,
we could estimate ¢ instead. Indeed, by its definition, a can be estimated by the proportion of samples
that contain at least one individual of the target species, of those that have been taken from the area. That
is, if we take n samples from the area A, then the estimate of « is

w,
n

a= (B1)
with w,, the number of the n samples containing at least one individual of the target species, and therefore the
estimate of 1 is

model A,6=0: X:—log(l—&):—log(l—%) (B2)

Then, the estimated value of n can be obtained from the formula (2.1). In this way, we have reached a
situation of ‘a snake biting its own tail’, that is, a vicious circle: we need the estimation of a to
determine 7, and at the same time we need a value of # to obtain an estimate of a by (B1). The way
to break it is to first estimate o by setting an arbitrary value of n, say 1y, by (B1), and then use the
estimated value of a to get the n optimal.

Can we know, a priori, what value of 1y will give a ‘good” (in a certain sense) estimate of a? The
answer is yes, and it is based on the confidence interval of the estimate. Since @ is a proportion, its
asymptotic confidence interval with a fixed confidence level of y € (0, 1) is

a+ Z(1+y)/2 - (BS)

where Z@,,),> is obtained from the standard Normal distribution as the inverse of its distribution
function at (1 +7)/2. For example, if y=0.95, then (1 +%)/2=0.975 and Z; 975 =1.96. From (B 3) we can
isolate 1 so that half the interval length, which is the error in estimating o by @, is no greater than a
fixed error level & >0, in this way:

cv(l—cv)S8<:>Z2 a(l—a)

2\ = a2 ™ o =
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and then, we use a(1 — @) < 1/4 (in fact, the function f(x) = x (1 — x) reaches its global maximum, which
is 1/4, when x=1/2). So, if we isolate 1y from the following inequality,

o 1/4

< g?
(1+v)/2 no —

we make sure that what we wanted is fulfilled. Indeed, we make sure of it with

1
2

no 2 Z(l+y)/2@' (B4)
For example, if y = 0.95 is the confidence level, and &= 0.05 is the error level, from (B 4) we obtain that the
number of samples to take from area A to estimate a by (B 1) with an error no greater that ¢ (saying this

with a confidence of approximately y), is
1
2 2
Mo 2 Zhy gz = 196 1 e = 38416,

So, ny =385 samples are enough to estimate o by the number of those samples that contain at least one
individual of the target species ((B 1) with 1 =ny).

Note that a posteriori, the approximation (B 4) can be used if the estimated value of o obtained from g
samples, &, verifies that npa(1 — @) is large enough (say, greater than 20, which is a commonly accepted
reference value for approximating the Binomial distribution by the Normal, although the approximation
is better the larger the triple product is).

Remark B.1. What happens if the estimate of a that we find is zero? In other words: what if all the
samples we draw do not contain individuals of the target species? Using the classical formula (B 3) leads
to a dead end with a confidence interval reduced to 0. What then? Instead, we can try to find a likelihood
interval for the estimate of o in the sense that a fixed ‘likelihood’ level y, the probability of observing that
none of the 1y samples have individuals of the target species is greater than 1 — ¥ (not too small):

1-a)*>1-4y,
which is equivalent to
nplog(l — a) > log(1 — ). (B5)

The MacLaurin series for log (1 —a) is

g1~ == 3 = —a- G -G

and therefore, using « to be close to zero (it must be, since its estimate turned out to be zero), we have that
log (1 — o) & —a, and replacing log (1 — @) with —a in the expression (B5), we can isolate o and get

_log(1—17)
no

that is, the approximate likelihood interval for o with ‘likelihood” level y is
log(1 —
no

As a particular case, if y=0.95, the likelihood interval is
—2.995732 3

log©9)y _ 1o, — [~ 0,2,

no no o

0, -

which is where the usual name of ‘rule of three’ comes from.

B.2. (ase 6>0

To estimate A in scenario 2 (non-detection errors with probability §>0), we will use the parameter o
defined now as the probability that a sample contains at least one individual of the target species and we
detect its presence. With similar arguments to the proof of theorem 4.1, we can see that

a=1-—e"19

~
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and we can isolate 4 and express it as a function of a, given that § is known, by A =—-log (1 —a)/(1 - 9). [ 18 |
Then, o can be estimated by the proportion of samples that have been taken from the area, for which the
presence of at least one individual of the species has been detected. That is, if we take 1 samples from the
area A, then the estimate of « is again given by the expression (B 1), but now w,, is the number of the n
samples in which we have detected the presence of the species.

Analogously to the § =0 case, we first estimate a by setting an arbitrary value of 1, say 1y, and then
obtain the estimate of 4 analogously to (B2) by

*sosi/Jeunof/6106uiysgnd/aposjedos

.5 _log(l—a) log(1-%Y
model A, 6 >0: A= 15 = 135 (B6)
and then get the optimal value of n from formula (4.1).
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