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Fermi Problem Originating in Mathematics Education Research  

Lluís Albarracín & Jonas Ärlebäck 

 

Enrico Fermi is remembered for many contributions to theoretical and experimental 

physics, but from an educational point of view, he also importantly contributed to 

popularize the use of the kind of questions we today call Fermi problems (also known as 

Fermi questions1). Fermi problems (FPs) are back-of-envelope problems that arose from 

the need to make order of magnitude calculations and Fermi himself used them in his 

research and physics classes. The procedure proposed by Fermi was to decompose the 

original problem into simpler sub-problems, and to solve these by making reasonable 

estimates and educated guesses, to reach a solution to the original question. In the 

literature this way of working is known as the Fermi (estimates) method. 

Although originating in physics, the use of FPs have spread to different subjects and 

contexts with multiple purposes as well as to various educational levels.2 However, 

educational research focusing on FPs have been relatively scarce. In this article we will 

highlight some of the recent research developments on the use of FPs in Mathematics 

education. Our aim is to showcase a framework for facilitating the use of FPs with 

students, and also to call for further research focusing on the educational use of FPs 

within as well across subject disciplines. 

Fermi Problems in Physics Education 

We have no ambition to provide a comprehensive review of the literature on FPs in 

physics education (for a general review see2), but rather to highlight some of the 

research findings. For example, studying the correlation between first year university 

students learning the Fermi estimates method and their examination results, Robinson 

showed that students successfully can develop this problem-solving competence to 

effectively solve FPs, but that this however does not come easy for all students.3 

Barahmeh et al. showed this also in the context of teaching 9th grade students physics 

and illustrate how the students’ skills in making measurement predictions, taking 

measurements, and making productive use of measurements improved4. Both Robinson 



and Barahmeh et al. stress the value of the Fermi method for allowing students to think 

freely and without solemnly no relying on  predetermined formulas for solving the tasks, 

and for promoting discussions of different solutions. Cordry on the other hand used the 

Fermi estimation method to raise critical environmental issues concerning the world 

population and the limited resources of planet earth. Students were generally surprised 

by the results of engaging in this problem—especially when they realize that the present 

global human population exceeds what they just calculated is feasibly sustainable.5 The 

situation that arose allowed for a discussion about limitations of the method, such as 

that some quantities are difficult to estimate and that the values of other quantities are 

inferred by old habits or are taken for granted. Similar results of raising critical 

awareness about ones’ beliefs and understandings are presented by Morgan, who used 

FPs based on the Drake equation and a pre-/post-test strategy to show the change of 

students' opinions and beliefs about the existence of extraterrestrial life.6 Together 

these studies point to the potential and use of FPs to contrast and discuss different 

solutions and opinions, and to impact beliefs on other important issues, such as climate 

change. 

Fermi Problems in Mathematics Education 

There has been a recent line of research in mathematical education exploring the 

possibilities of using FPs in the classroom in the context of mathematical modelling. 

Mathematical modelling activities are in many respects similar to the practices of 

scientific research, but the focus is on the mathematical nature of the models used and 

developed and not on the phenomenon studied per se. However, many of the findings 

from this research are arguably transferable to the classrooms of other sciences if 

adapted and interpreted adequately with respect to the discipline in question. 

Importantly, FPs can be used for different pedagogical purposes at practically all 

educational levels. For early primary students, they can be used as a basis for classroom 

projects such as devising a strategy to compare the populations of a city and a town.7 

With younger students, it might be necessary for the teacher provide (part of) an outline 

of the necessary estimates needed. For older primary students however, Peter-Koop 

found that students are fully capable of generating their own mathematical models 

when for example estimating the number of cars in a motorway traffic jam. Indeed, the 



students solved the problem in a myriad of ways while developing for them new 

mathematical knowledge in order to work out their solutions.8 A positive effect on the 

development of primary students’ general modelling skills have also been shown, as FPs 

facilitate awareness of the different phases of problem solving in context as well as the 

development of the modelling sub-competences of simplifying, mathematising, 

interpreting and explaining real phenomena.9 

At the lower secondary level, some students can develop considerably more complex 

models than primary students, 10 whereas upper secondary students generally can use 

their more extensive knowledge of the real world to generate even more sophisticated 

models.11 One of the difficulty students are found to have is however determining key 

variables of a problem. Here, engaging student in collaborative work or in carefully 

designed sequences of problems using different real contexts have proven to promote 

the development and adaptation of increasingly more complex models.12 In the latter 

approach, the key has been to base the sequence on a particular concept such as density 

for example, and propose several problems where density as an idea is central, and let 

the students develop their own models. In addition, working with sequences of 

problems, secondary students develop their flexibility as problem solvers and their 

ability to choose and use appropriate strategies in different problem contexts.13 

At the college level, FPs can have a more specific role and support students in developing 

more specific modelling competences. However, even for university students the 

modelling needed to solve a FP is complex, requiring them to regulate their modelling 

processes by monitoring how their immediate goals or subgoals align and relate to the 

problem statement.14 In addition, FPs also have been seen to promote students in 

validating their problem solving processes and results in modelling activities.15 

Recent Developments: Fermi Problem Activity Diagram 

Focusing on the research in mathematics education and the other STEM disciplines ,our 

review of the literature on FPs1 has allowed us to identify four types of mathematical 

activities that are used to achieve the numerical values needed of quantities to be able 

to provide a solution and answer to the problem in question. These four activities are: 

1) guesstimation (providing a fast answer as in traditional FP solving); 2) measurement 

and experimentation (of relevant values, in the lab or the field and using tools); 3) 



looking for data (in official databases or online newspapers); and 4) statistical data 

collection (using surveys and questionaries etc.).  

A Fermi problem Activity Template (FPAT) is a characterization that focuses on the 

structure of the solution of a FP in terms of the four different types of activities outlined 

above.16 These templates show the sub-problems and variables needed to be 

considered, the type of activity that allows each partial result to be achieved and the 

operations that combine these to arrive at the final result. In the FPAT each activity is 

represented by a specific symbol/shape according to the following scheme: 

guesstimation (ellipse), experimentation (trapezoid), looking for data (rectangle), 

statistical data collection (hexagon). Figure 1 presents a FPAT that describes a possible 

way to estimate the number of toilet paper rolls needed in a school in a school year. 

 

Figure 1: A FPAT for the Toilet Paper Roll Task 

To determine how many toilet visits a person make each day, a statistical survey or data 

collection could be conducted (hexagon). Due to the potential delicate nature of the 

amount of toilet paper usage, guesstimation could be used to estimate the average use 

of toilet paper per toilet visit (ellipse). To find the length of the paper on a toilet paper 

roll, one can engage in trying to calculate the total length using geometrical arguments 

or, as suggested in Figure 1, conduct some investigation involving either unrolling the 

paper roll and measure the length or some weighing process (trapezoid). The last two 

pieces of data needed to complete the calculation, the number school days in a year and 

the number people in the school, are suggested to be looked up (rectangles). 

The FPAT graphical representation of the four potentially involved activities 

(guesstimation, experimentation, looking for data, and statistical data collection) 

provide a quick overview of the envisioned and potential solutions to a FP, as well as a 



way to visualize and represent an a posteriori analysis of students’ work. Hence, a FPAT 

characterization of a task can prepare the teacher on what to expect in term of what 

different problem solving routes the students might take and what to prepare in class. 

In this way the FPAT reduces some of the challenging aspects associated with the 

openness of using FPs in class.  

However, given the differences in epistemologies, learning goals and practices of 

teaching and learning mathematics and the one hand, and physics on the other, what 

would a FPAT in a physics educational setting look like? For example, in physics the 

activities experimentation and statistical data collection are fundamentally intertwined 

and hence it is probable not as productive to separate the two from a physics education 

perspective as it is in mathematics education. In addition, in physics well-established 

physical laws and defined quantities play a central role which potentially provide at least 

a partial pre-structuring of some of the aspects involved in solving FPs in physics 

educational settings. We illustrate this latter point using an example of a FP combining 

two FPs discussed in Author11 and Weinstein17 respectively: How much power does an 

average student use climbing the stairs to the observation deck in the Empire State 

building? 

This FP is pre-structured by the definition of power (P) understood and measured in 

watts or joules per second (1 W = 1 J/s), which can be determined by estimating the 

change in potential energy during a given amount of time; if the mass m kg is displaced 

vertically h meters in t seconds, then the power used is 𝑃 =
𝑚𝑔ℎ

𝑡
 (g being the 

acceleration due to earth’s gravity). Hence, the corresponding FPAT for this problem 

have the structure illustrated in Figure 2 below: 

 



Figure 2: The FPAT describing the structure of the Empire State Building power task 

To solve this FP students in a class can engage in measuring their own weights to 

collect data in order to establish a representative measure of central tendency (mean, 

median or mode for example) of an average student’s weight using some statistical 

analysis (hexagon). To determine the height of the stairs, the distance between the 

ground floor and the observatory floor, a guesstimation approach could be used by 

having students share and discuss their own personal experiences with tall buildings 

(ellipse). Finally, to find the estimated time it takes to climb all the stairs, the students 

can make some experiment using the stairs in the school (trapezoid) and then using 

proportional reasoning to scale up to the estimated height of the stairs in the Empire 

State Building. In addition, if an effort is made to keep track of the uncertainty and 

variation in the derived estimated values (using measures of spread for the weight and 

a fix percentage error margin for the height and the time for example), an error and 

propagation of error analysis based on the structure of the FPAT could be calculated 

resulting in an interval capturing reasonable answers to the FP.  

In this example, an upper bound can be established using the official data from the 

Empire State Building Run-Up in which runners covers the 1,576 steps and 86 floors up 

to the (lower) observation deck situated 320 meters above the ground floor. Using the 

record time for men (9 minutes and 33 seconds) and women (11 minutes and 23 

seconds),18 together with an estimate for a runners’ weight, an upper bound can be 

calculated. 

Final Remarks 

With this contribution we intend to show that there is a plethora of research that shows 

the potential of FPs as tools in the classroom that transcend the initial and traditional 

use of Fermi. However, many aspects of the use of FP in educational settings are still 

unexplored, both from an in-discipline as well as a cross-discipline context. We are 

convinced of the potential and multiple benefits of using FP for in classrooms, and that 

developing theoretical as well as practical tools facilitating the use and further uptake 

of FPs are fruitful endeavors. In a globalized world where large and hard to grasp 

numbers figure in the public discourse and decision-making that directly affect us all, we 

believe that FPs can play a fundamental role in promoting the skills needed to 



understand the world better, by focusing on creative ways of thinking, developing 

critical thinking and supporting decision-making. In particular, we think that future 

research productively could focus on empirical studies investigating similarities and 

differences related the use of FPs in different disciplines. Connected to the FPAT 

framework, interesting questions to look into are for example How are similarities and 

differences manifested in the FPAT framework in teaching and learning of mathematics 

compared with the teaching and learning of physics? And What characterize a FPAT 

representation of students’ work in introductory classes compared to more advanced 

classes? 
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