
This is the **accepted version** of the journal article:

Agathokleous, Evgenios; Peñuelas, Josep; Azevedo, Ricardo A.; [et al.]. «Low levels of contaminants stimulate harmful algal organisms and enrich their toxins». *Environmental Science & Technology*, Vol. 56, issue 17 (September 2022), p. 11909-12784. DOI 10.1021/acs.est.2c02763

This version is available at <https://ddd.uab.cat/record/299899>

under the terms of the IN COPYRIGHT license

PERSPECTIVE

Title: Low levels of contaminants stimulate harmful algal organisms and enrich their toxins

Evgenios Agathokleous^{1,2*}, Josep Peñuelas^{3,4}, Ricardo Antunes Azevedo⁵, Matthias C. Rillig^{6,7},
Haoyu Sun⁸, Edward J Calabrese⁹

¹Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China.

²Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People's Republic of China.

³CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain.

⁴CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.

⁵Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil.

⁶Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195, Berlin, Germany.

⁷Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany.

⁸Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

⁷Department of Environmental Health Sciences, Morrill 1, N344, University of Massachusetts, Amherst, MA 01003, USA.

[✉]correspondence: evgenios@nust.edu.cn or globalscience@frontier.nokudai.ac.jp [E.A.], ORCID: 0000-0002-0058-4857, www.evgenios.info

Abstract: A widespread increase in intense phytoplankton blooms has been noted in lakes worldwide since the 1980s, with the summertime peak intensity amplifying in most lakes. Such blooms cause annual economic losses of multi-billion USD and present a major challenge, affecting eleven out of the seventeen Sustainable Development Goals. Here, we evaluate recent scientific evidence for hormetic effects of emerging contaminants and regulated pollutants on *Microcystis* sp., the most notorious cyanobacteria forming harmful algal blooms and releasing phycotoxins in eutrophic freshwater systems. This new evidence leads to the conclusion that pollution is linked to algal bloom intensification. Concentrations of contaminants that are considerably smaller than the threshold for toxicity enhance the formation of harmful colonies, increase the production of phycotoxins and their release into

36 the environment, and lower the efficacy of algaecides to control algal blooms. The low-dose
37 enhancement of microcystins is attributed to the up-regulation of a protein controlling
38 microcystin release (McyH) and various microcystin synthetases in tandem with the global
39 nitrogen regulator Ycf28, nonribosomal peptide synthetases, and several ATP-binding
40 cassette transport proteins. Given that colony formation and phycotoxin production and
41 release are enhanced by contaminant concentrations smaller than the toxicological threshold
42 and widely occurring in the environment, the effect of contaminants on harmful algal blooms
43 is more prevalent than previously thought. Climate change and nutrient enrichment, known
44 mechanisms underpinning algal blooms, are thus joined by low-level pollutants as another
45 causal mechanism.

46

47 **Keywords:** biphasic response; cyanobacteria; dose-response relationship; emerging
48 contaminants; harmful microalgal bloom; hormetic effect

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70 **Introduction**

71 Aquatic harmful algal blooms (HABs) are considered a climate change co-stressor in freshwater
72 and marine ecosystems [1] as well as a major environmental issue that can severely affect
73 aquatic ecosystems, human health, and economy [2] (see also
74 <https://www.epa.gov/nutrientpollution/harmful-algal-blooms>). HABs can result in acute human
75 illness, primarily due to phycotoxins ingested through contaminated seafood, direct skin contact,
76 or inhalation [3–5]. Blooms of harmful cyanobacteria also enter water supply systems in all
77 major continents but Antarctica [5–7]. The toxic effects of HABs are often similar to infectious
78 diseases, such as norovirus, thus making their diagnosis difficult or impossible [4]. Health risks
79 due to toxic HABs are linked with socioeconomic impacts, especially for human sub-populations
80 whose wellbeing depends on aquacultures and shellfish cultivation [4]. Lethal harmful blooms
81 might also be responsible for still mysterious species extinctions, e.g. dinosaurs [8]. They may
82 even delay ecosystem recovery following extinction events, as was the case after the end-
83 Permian extinction [9].

84 Algal blooms are linked with economic losses exceeding US\$4 billion per year in the US

85 alone [10]. The dimension of the issue of HABs is gigantic considering that it affects 11 of the
86 17 UN Sustainable Development Goals set forth to be achieved by 2030, namely no poverty,
87 zero hunger, good health and wellbeing, clean water and sanitation, affordable and clean energy,
88 decent work and economic growth, sustainable cities and communities, sustainable consumption
89 and production, life below water, life on land, and partnerships for the goals

90 (<https://www.unep.org/news-and-stories/press-release/tackling-harmful-algal-blooms>) [10].

91 Hence, control and management of HABs [11] is of utmost importance for human welfare and
92 wellbeing, ecosystems health, and biosphere sustainability.

93 A widespread increase in intense freshwater blooms of phytoplankton has been noted
94 worldwide since the 1980s, with the summertime peak intensity increasing in most lakes [10, 12,
95 13]. Importantly, lake algal blooms exhibited a pronounced increase in the 2010s (except in

96 Oceania) [14]. Climate change affects HABs in various ways, and climate simulations suggest
97 species-specific changes in the abundance of harmful algae in the next decades [4, 10, 15, 16].
98 However, the reasons of the global increase in intense blooms since the 1980s remain unclear
99 [17]. The phenomenon cannot be fully explained only by previously hypothesized environmental
100 drivers, such as fertilizer use, precipitation, and temperature, because of the absence of consistent
101 temporal matching [10, 12]. An analysis of about 9,500 events of HABs also suggests that the
102 intensification of HABs may be linked to increased aquaculture industry and marine exploitation
103 [17]. Moreover, anthropogenic factors (e.g. fertilizer, gross domestic product, and population)
104 may be stronger drivers of global algal bloom intensification than climatic factors (e.g.
105 temperature, wind speed, pressure, and rainfall) [12]. Stronger intensification of lake algal
106 blooms occurs in Asia, South America and Africa than in other regions, and is linked to the
107 persistent reliance of developing countries on agricultural fertilizers [12, 14]. However, these
108 regions are also often hot spots of contamination, including pharmaceutical pollution [18–20], a
109 factor hitherto unaccounted for in the evaluations of potential HABs driving mechanisms.

110 Hormesis is a biphasic dose response that is increasingly revealed in a vast array of plants
111 and other aquatic and terrestrial organisms exposed to a plethora of contaminants applied
112 individually or in mixtures [21–28]. That is, the responses to contaminants are opposite between
113 low sub-toxic doses and high toxic doses, with low doses commonly inducing positive effects on
114 individual organisms (Fig. 1). Such low doses are considerably below what was previously
115 thought to be a toxicological threshold below which no effects occur, and are now widely shown
116 to enhance the defense capacity of organisms, protect them against harmful drugs and other
117 stresses, and promote the development of resistance [21–28]. Such effects of low doses of
118 contaminants would be profoundly important for the control and management of HABs [11], e.g.
119 due to higher doses of algaecides that would be needed to counteract low-dose contaminant

120 enhancement and prevent stimulation by low-dose algaecides. However, low-dose effects are
121 not accounted for in current HAB control strategies.

122 In this article we review evidence pertaining to the potential of contaminants to induce
123 hormesis in HABs-forming organisms. We discuss how this could affect HABs and control and
124 management programs, thus offering a novel perspective to address the HAB problem (Fig. 2).

125 We focus on *Microcystis* sp., which produce peptide hepatotoxins and neurotoxins, and which
126 are the most notorious HAB-forming cyanobacteria in eutrophic fresh water systems [5, 10, 29].
127 *Microcystis* sp. also dominated about one third of 76 lakes studied worldwide and are commonly
128 linked to exacerbation of bloom conditions [10]. While changes in harmful algae abundance and
129 HAB intensification are largely linked to climate change and eutrophication [4, 14–16], this
130 review suggests the possibility that pollution contributes to the intensification of HAB problem,
131 enhancing algal colony formation and boosting synthesis and release of harmful toxins, even at
132 pollutant concentrations hundreds-fold smaller than those considered toxic.

133 **Occurrence of hormesis in harmful algae**

134 This review revealed numerous studies showing that various chemicals often induce
135 hormesis in HAB-forming and toxin-producing cyanobacteria (blue-green algae) [30], in
136 particular in different strains of *Microcystis aeruginosa* [31–59] and in *M. wesenbergii* [60, 61].
137 However, hormetic responses were also revealed in the neurotoxin-producing *Anabaena flos-*
138 *aquae* [62] and the bloom-forming haptophyte *Prymnesium parvum*, which produces the
139 phycotoxin prymnesi [63]. Such hormetic responses were further identified in *Synechocystis* sp.
140 [51], which may also contribute to blooms formation [64]. These data indicate that contaminants
141 widely induce hormesis in some of the most abundant bloom-forming and toxin-producing
142 cyanobacteria (Fig. 1).

143 Hormetic responses of HAB-forming and toxin-producing cyanobacteria are induced by
144 many chemicals, such as arsenate [44, 45], environmental estrogens [65], chlorinated

145 organophosphorus flame retardants (Cl-OPFRs) [52], halogenated organic compounds [50],
146 heavy metals [37], hydrogen peroxide (algaecide) [30], and the principal compound of yellow
147 dye luteolin [32] and other allelopathic chemicals/algaeicides [42, 58, 59, 62]. They were also
148 induced by various antibiotics [31, 34, 36, 39, 40, 43, 46–48, 51, 53, 54, 66, 67], nanomaterials
149 [56], polycyclic aromatic hydrocarbons [49], rare earths [33, 35], and several pesticides and
150 disinfectants [34, 38, 41, 57, 60, 63]. Hence, hormetic responses represent a universal
151 phenomenon across chemically diverse contaminants. The studies providing such evidence
152 commonly apply environmentally-relevant concentrations, demonstrating that realistic
153 concentrations widely enhance harmful algae and the production of microcystins. The occurrence
154 of contaminants (e.g. hydrophobic organic compounds) in the surface layers of some lakes with
155 frequent *Microcystis* blooms in the last decades provides support for this hypothesis [19].
156 Furthermore, concentrations of such contaminants (polycyclic aromatic hydrocarbons) are
157 positively associated with phytoplankton biomass in lakes, with biomagnification of these
158 contaminants during phytoplankton blooms [20].

159 The hormesis-inducing contaminants include regulated pollutants (e.g. heavy metals) but
160 also many unregulated global contaminants of emerging concern (not subject to regulation
161 limiting their concentrations in the environment), such as various agrochemicals, nanomaterials,
162 and pharmaceuticals [31–48, 50, 51, 53, 54, 56–60, 62, 63, 65–67]. This is of profound
163 importance since sub-NOAEL stimulation of such HABs-forming and toxin-producing
164 organisms cannot be captured by the traditional dose-response models. Importantly, multi-
165 component mixtures of same or different (e.g. herbicide-antibiotics) types of contaminants
166 widely induce hormesis in these cyanobacteria, which can persist in the presence of other co-
167 stressors too [31, 34, 66, 67, 35, 43, 48–51, 53, 54]. The presence of multiple contaminants can
168 change the concentrations at which low-dose stimulation occurs. For example, cell density of *M.*
169 *aeruginosa* significantly increased by the singular antibiotics ciprofloxacin and sulfamethoxazole

170 and their combination at 0.05-0.2, 0.1-0.2, and 0.02-0.1 $\mu\text{g L}^{-1}$, respectively, after 8 days of
171 exposure [48]. In another example, one-week-long singular exposures of *M. aeruginosa* to the
172 polycyclic aromatic hydrocarbons phenanthrene and benzo[α]pyrene and their mixture revealed
173 growth hormesis at $\leq 1000 \mu\text{g L}^{-1}$ phenanthrene and at $\leq 279 \mu\text{g L}^{-1}$ mixture, whereas singular
174 benzo[α]pyrene significantly inhibited growth at all tested concentrations ($\geq 200 \mu\text{g L}^{-1}$) [49].
175 Concurrent contaminants may even produce additive or synergistic effects on the low-dose
176 hormetic stimulation of microcystins and growth, indicating magnified hazard and risks [34, 48,
177 50]. Thus, the issue of contaminant-induced hormesis in such cyanobacteria becomes more
178 pressing because mixture effects are commonly neglected in ecological risk assessments.

179 **Biological mechanisms of hormesis: driving harmful algal blooms**

180 Hormetic responses of HAB-forming and toxin-producing cyanobacteria appear in electron
181 transport rate, fluorescence intensity, and photochemical quantum yield of PSII [31, 33, 54, 56,
182 57, 60, 61, 66, 67, 34–36, 41, 43, 48, 51, 53]. Chlorophylls and less frequently carotenoids also
183 respond in a hormetic fashion [33, 35, 38, 41, 43, 45–48, 52, 53, 61, 62, 65, 67]. For example,
184 tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a Cl-OPFR, significantly increased chlorophyll
185 *a* and carotenoid concentrations in *M. aeruginosa* by ≈ 27 – 32% at 0.1 and 1 mg L^{-1} , whereas the
186 response returned to levels similar to the control or below [52]. Increasing concentrations of
187 reactive oxygen species (ROS) and decreasing ratio of high-potential to low-potential form of
188 cytochrome *b*₅₅₉ also occur, suggesting thermodynamic transformation of cytochrome *b*₅₅₉,
189 whose states are modulated by nitric oxide, to yield mild ROS and enhance stimulation [31, 50,
190 52, 56–58]. ROS such as hydrogen peroxide are key molecules and essential in cell signalling
191 [68]. This mild increase in ROS contributes to overcompensation response of photosynthesis,
192 while cytochrome P450 is also an important component of the stress response and contaminant
193 biodegradation [31, 48]. Low doses of contaminants can also activate clathrin-mediated

194 endocytosis to facilitate a swift absorption of macro- (C, N, P) and micro-nutrients (Ca, K, Mg)
195 to enhance chlorophylls, photosynthesis, growth, and microcystins production [33, 35].

196 As a result of the physiological hormetic controls (Fig. 3), cell density and proliferation,
197 growth rate, as well as biomass exhibit hormetic responses to contaminants [30, 31, 42, 43, 46–
198 53, 33, 54, 56–59, 66, 67, 34–37, 39–41]. These hormetic responses appear generally across
199 different stresses, highlighting that low, sub-NOAEL doses of contaminants can act in promoting
200 the growth of the population of harmful algae, forming more robust, dense, and competitive
201 colonies. The broad hormesis literature, including algae, demonstrates that the low-dose
202 enhancement is restricted by the limits of biological plasticity [21, 69–73]. Thus, the stimulation
203 is modest in amplitude, typically 30–60%, and rarely exceeding 100%, independently from the
204 organisms, biological mechanisms, and stressors [21, 69–73]. Similarly modest, but significant,
205 are also the responses of chlorophylls, photosynthesis, and harmful algal growth/densities or
206 proliferation to low doses of contaminants [31–47, 49–54, 56–63, 65–67, 74]. For instance, the
207 stimulation of *M. aeruginosa* growth (cell density) by antibiotics was commonly less than 60%
208 and as a rule smaller than 100% [31, 34, 36, 43, 46–48, 53, 54, 66, 67]. These suggest a lower
209 effect amplitude of low, sub-NOAEL doses of contaminants to enhance HABs compared to
210 fertilization effect of N and P, which are essential nutrients providing substance for physiological
211 functioning and growth. However, regarding effect amplitude range, the contaminants
212 enhancement is similar to that of atmospheric partial pressure of CO₂ (*p*CO₂) and warming effect
213 on marine harmful algae, mostly consisted of dinoflagellates [75], suggesting that contaminants
214 enhancement is equally important. Elevated *p*CO₂ overall increases HABs growth rate by 20%,
215 but the effect varies among species and strains, often being null or negative [75]. The growth
216 response of harmful algae to warming (+3–5 °C) is also highly variable and inconsistent across
217 species, strains, and latitude, including not only positive effect but often null or negative effect
218 [75]. Hence, regarding effect direction, it emerges that sub-NOAEL doses of contaminants have

219 a similar potential to enhance harmful algal growth with the two major global change factors,
220 $p\text{CO}_2$ and temperature. Similar to the inconsistency and variability of N and P inputs, $p\text{CO}_2$ and
221 temperature effects [76], the contaminant effects, and thus the NOAELs, the sub-NOAEL
222 concentrations stimulating growth, toxicities, and algaecide resistance, would vary
223 spatiotemporally and with chemical mode of action. However, except antibiotics, the number of
224 studies is limited for each of the many contaminants reported to induce hormesis, not permitting
225 a scientifically sound comparison among contaminants at this point of time. It is also possible but
226 not irrefutable that sub-NOAEL doses of contaminants may induce a more consistent and
227 universal enhancement of harmful algal growth than the two global change factors, $p\text{CO}_2$ and
228 temperature, a hypothesis that remains to be tested.

229 Recent studies now shed light on the molecular mechanisms explaining the hormetic
230 responses of these cyanobacteria to antibiotics, widely applied as multi-component mixtures
231 (Fig. 3). The enhanced cell density or proliferation, growth rate, and photochemical quantum
232 yield of PSII by different multi-component mixtures of antibiotics alone or with herbicides in *M.*
233 *aeruginosa* is linked with increased energy generation by excitation of carbon metabolism and
234 photosynthesis, as indicated by several transcriptomic/proteomic alterations, as well as promoted
235 replication of DNA [31, 34, 43, 48, 54, 66, 67]. There are many genes involved in these hormetic
236 responses, and numerous proteins are up- or down-regulated to modify ATP, biosynthesis,
237 carbohydrate metabolism, carbon fixation/utilization, cell division, cell redox homeostasis,
238 chlorophyll synthesis, circadian rhythms, pentose phosphate, photosynthesis, gene/protein
239 transcription and expression, oxidation-reduction, quorum sensing, ribosome, translation, and
240 DNA and its repair [31, 34, 43, 46–48, 51, 53, 66, 67]. These genetic changes also modulate
241 transport proteins, ion homeostasis, cell division inhibitors, N compound metabolism, P
242 metabolism, and stress response [31, 34, 43, 46–48, 51, 53, 66, 67].

243 This review revealed lack of studies reporting underlying molecular mechanisms of
244 hormesis induced by contaminant types other than antibiotics. Nevertheless, a limited number of
245 studies suggest similar molecular mechanisms for different contaminants. Specifically, low-dose
246 graphene oxide nanomaterials improved photosynthetic performance of *M. aeruginosa* and
247 enhanced the production of microcystins while increasing the abundance of *sul1*, *sul2*, *tetW*, and
248 *tetM* in wastewater and the gene copy numbers of *mcyA-J* [56]. The hormetic stimulation of *M.*
249 *aeruginosa* by sub-NOAEL doses of Cl-OPFRs also occurred in tandem with upregulation of the
250 type I NADH dehydrogenase (NDH-1) complex (*ndhD1*, *ndhG*, *ndhH*, *ndhI*, *ndhJ*, *ndhL*, *ndhM*)
251 and its mediated cyclic electron transfer pathway [52]. More studies are needed to unravel the
252 underlying molecular mechanisms of sub-NOAEL stimulation by various kinds of contaminants
253 as well as to understand how the composition of complex chemical mixtures affects the
254 underlying molecular mechanisms.

255 **Microcystins**

256 There are several toxins produced by HABs, which are a chemically diverse group of
257 secondary metabolites, posing a threat of aquatic resources and human health [77–80]. Species of
258 the genus *Microcystis* produce the hepatotoxins microcystins [5]. Such toxins can cause
259 profound effects on wildlife. For example, long-term studies recently suggest that neurotoxins
260 produced by the cyanobacterium *Aetokthonos hydrillicola* cause a neurological disease (vacuolar
261 myelinopathy) and lead to mass eagle deaths [81]. Not only do cyanotoxins affect other toxicogenic
262 cyanobacteria [5], but microcystins are also found in drinking water, often at levels raising
263 concerns for human health [7]. *Microcystis* blooms occur in at least 108 countries, in 73% of
264 which microcystin is also detected [29]. Microcystins at concentrations found in the environment
265 during blooms (e.g. <1 to 300 $\mu\text{g L}^{-1}$) dysregulate proteins, impair metabolism, modify DNA
266 repair, inhibit photosynthesis, and negatively affect the growth and reproduction of various
267 organisms [80, 82–85]. For example, concentrations of microcystins inhibiting photosynthesis of

268 aquatic plants ranged from as little as $\leq 1 \mu\text{g L}^{-1}$ to $< 100 \mu\text{g L}^{-1}$ after short- ($\leq 1 \text{ d}$) to long-term
269 ($> 7 \text{ d}$) exposures [80]. They can even be lethal and reduce population density, albeit low doses of
270 microcystins may initially produce positive effects, such as increased population density and
271 longevity, before turning into adverse [80, 82–84]. For instance, the LC50 values (dose killing 50%
272 of the population) for *Ceriodaphnia dubia* and *Daphnia magna* were 5.5 and 58.7 $\mu\text{g L}^{-1}$ [82].

273 In recognition of the profound effects of microcystins on ingesting organisms, we
274 evaluated how contaminants affect microcystins. We found that various contaminants induce
275 hormesis, promoting microcystins synthesis and elevating intracellular microcystins
276 concentrations [31–34, 43–48, 53–56, 65–67]. Microcystins are typically enhanced within 1–4
277 days and increase further and often remain elevated for nearly four weeks from exposure to
278 protect against stress in early stages and enhance the survival odds of alive cells in the algal
279 population [31, 32, 34–36, 43, 48, 53, 54, 56]. Even growth-inhibitory high doses of
280 contaminants such as antibiotics and microplastics can enhance microcystin production and
281 concentrations and release in the environment before suppressing it [36, 55, 59, 74]. Hence, low
282 or high sub-lethal doses can also increase the release of microcystins in the environment, and
283 total or extracellular microcystins decrease at lethal doses due to decreased cell density [31, 32,
284 36, 43, 44, 46–49, 54–56, 58, 65, 67, 86].

285 We estimated the average stimulation of the production ability or concentration of
286 microcystins by low, sub-NOAEL doses of contaminants at 57.9 % of the control value (95% CI
287 estimated at 53.7–62.1%, $n = 203$ dose responses) [30–36, 43–47, 53, 54, 56, 65–67]. This
288 stimulation was induced by concentrations on average $280.9 \mu\text{g L}^{-1}$ (95% CI estimated at 146.9–
289 $414.8 \mu\text{g L}^{-1}$, $n = 203$ dose responses) [30, 31, 46, 47, 53, 54, 56, 65–67, 32–36, 43–45]. Low
290 doses enhancing production of microcystins are even 100–20,000 times smaller than the lowest
291 toxic concentrations inhibiting algal growth and production of microcystins [34, 36, 44, 45, 56].
292 Among the 203 dose responses analyzed, 93.6% were induced by concentrations $\leq 100 \mu\text{g L}^{-1}$,

293 while the majority (67.5%) of the dose responses were induced by concentrations $\leq 10 \mu\text{g L}^{-1}$. As
294 many as 60.6% of the dose responses were induced by concentrations as little as $\leq 0.6 \mu\text{g L}^{-1}$.
295 Such concentrations occur widely in the environment. The majority of dose-response entries
296 concerned antibiotics (65.0%), followed by rare earth elements (22.7%), glyphosate (4.9%),
297 forms of arsenic (3.9%), and other stressors (hydrogen peroxide, luteolin, nanomaterials,
298 nonylphenol; 3.4%). The concentrations of antibiotics that enhanced microcystins ranged from
299 0.1 to 2000 $\mu\text{g L}^{-1}$ (average: 71.1 $\mu\text{g L}^{-1}$), and 87.1% of these antibiotic stimulations were
300 induced by concentrations $\leq 0.6 \mu\text{g L}^{-1}$. The only concentration used for rare earth elements to
301 produce significant stimulation was 30 $\mu\text{g L}^{-1}$. For glyphosate, the concentrations significantly
302 enhancing microcystins ranged between 0.5 and 5 $\mu\text{g L}^{-1}$, a 10-fold range. However, a 10,000-
303 fold concentration range was used for arsenic forms (0.01-100 $\mu\text{g L}^{-1}$). For the limited number of
304 entries concerning hydrogen peroxide, luteolin, nanomaterials, and nonylphenol, the stimulatory
305 concentrations were 200, 6,500, 10, and 200 $\mu\text{g L}^{-1}$, respectively. These results indicate that
306 highly variable concentrations of contaminants can enhance microcystins. Recalculation of the
307 doses after excluding the 13 dose-response entries with inducing concentrations $\geq 100 \mu\text{g L}^{-1}$, the
308 average concentration was 9.9 $\mu\text{g L}^{-1}$ (95% CI estimated at 8.6-11.1 $\mu\text{g L}^{-1}$, $n = 190$ dose
309 responses) and the stimulation similar with the analysis including all dose responses
310 (average=59.2%; 95% CI estimated at 54.7-63.7%, $n = 190$ dose responses).

311 Microcystins are also enhanced by high sub-lethal doses that are inhibitory at the level of
312 individual organisms. We found this stimulation to be on average 6.5 (95% CI estimated at 5.4-
313 7.5 times; $n = 25$ dose-response assays) and often about 10-22 fold higher than the control value.
314 These are induced by very high or extreme concentrations of contaminants, for example
315 concentrations that can be 10^6 higher than those occurring in the environment increased the early
316 microcystin production 5.7 times [55]. Such stimulation is well beyond the known common
317 range of hormetic low-dose stimulation and may indicate a failure to keep microcystin

318 production below the ranges of biological plasticity, indicating a forthcoming damage to the
319 organism. Increased release of microcystins in the environment due to very high, toxic doses can
320 be explained by such doses causing cell rupture and release of microcystins from the cells into
321 the extracellular space [49, 56]. Thus, we show here that sub-lethal doses of contaminants, both
322 low sub-NOAEL and high super-NOAEL, enhance microcystins.

323 The general increase of microcystins by low, sub-NOAEL (and often sub-lethal)
324 concentrations of contaminants suggests that contaminants can intensify not only HABs but also
325 phycotoxins. This effect of contaminant on microcystins may be more consistent and universal
326 than what is currently known for other HABs-forming organisms and toxins in response to
327 climate change factors and nutrients; a hypothesis requiring experimental validation. For
328 example, overall toxin content in marine harmful algae does not show a significant response to
329 elevated $p\text{CO}_2$ or warming across studies, while some toxins (e.g. brevetoxins and paralytic
330 shellfish poisoning) produced by specific species or strains (e.g. *Alexandrium* spp. and *Karenia*
331 *brevis*) even decrease [75]. Cellular microcystin and paralytic shellfish poisoning toxins also
332 show an overall non-significant response to N and are increased by P limitation by 88 and 100%
333 respectively, across studies and species [87]. Across taxa, N-rich phycotoxins decrease by 60%
334 under N limitation and increase by 71% under P limitation [87], suggesting a potential
335 antagonistic effect between N and P on phycotoxins. However, the response to N and P
336 limitation varies across strains, species, and genera [87]. Especially cyanobacteria, and some
337 species or strains, including *Microcystis* strains, exhibit no significant or opposite responses than
338 the majority of species or strains [87]. Hence, an emerging hypothesis is that the effects of
339 contaminants at low sub-NOAEL and sub-lethal concentrations on phycotoxins deserve equal
340 consideration.

341 The molecular mechanisms controlling the hormetic responses of microcystins to
342 contaminants are now revealed (Fig. 3). The enhanced synthesis and concentrations of

343 microcystins are due to the up-regulation of microcystin synthetases and McyH, the protein
344 regulating microcystin release, in tandem with nonribosomal peptide synthetases, the global
345 nitrogen regulator Ycf28 binding the mcyA/D initiation codon of the microcystin synthetase
346 gene cluster, and several ATP-binding cassette transport proteins [34, 43, 46–48, 53, 54, 56, 66,
347 67]. These molecular mechanisms now provide the opportunity to develop relevant chemicals
348 blocking the expression of these proteins and genes to inhibit the synthesis and release of
349 microcystins into the environment.

350 **Unanswered questions and the path forward**

351 Our research synthesis now suggests that emerging contaminants and regulated pollutants
352 can contribute to intensification of HABs and enrichment of phycotoxins. While the prediction of
353 the time and place of the occurrence of HABs is advancing, such hormetic effects are not
354 considered, presenting a challenge for the monitoring and early warning systems of (harmful)
355 algal blooms [88–90]. These hormetic effects also limit the effectiveness of climate change
356 simulations, indicating the need for their representation in climate-HABs models as well as
357 climate change impact predictions [88, 91]. The enhancement of harmful algal growth by
358 contaminants is of similar magnitude and importance with that of $p\text{CO}_2$ and temperature, thus
359 contaminants effects should be given at least the same weight as for $p\text{CO}_2$ and temperature in
360 climate-HABs models.

361 The hormetic enhancement of harmful algae by low, sub-NOAEL doses of contaminants
362 suggests potential changes in the disease burden epidemiology, with likely effects beyond areas
363 that are currently known to be at risk [3]. This becomes of even greater concern in the light of
364 unknown interactive effects between climate change (e.g. documented changes due to global
365 warming [2, 4]) and environmental pollution, which could lead to antagonistic, additive, or
366 synergistic effects at low doses.

367 Algal growth is restricted in nutrient-limited conditions [41], and hormetic responses
368 (including microcystins) depend on nutrient conditions. For example, elevated or limited
369 phosphate and nitrogen can accordingly enhance or limit the biodegradation of contaminants and
370 the low-dose stimulation [40, 44, 46, 47, 61]. Hence, integrated management is needed within the
371 framework of which nutrients will be optimized considering local levels of contamination, but
372 this requires further research. Nitrogen loading also promotes the abundance of microcystins-
373 synthesizing strains in particular (e.g. *Microcystis* and *Planktothrix*) [92], suggesting that HABs
374 may be promoted by atmospheric N deposition [93]. These also suggest interactive effects
375 between air pollutants and water contaminants, complicating the programs targeting the control
376 of HABs. Such interactive effects require further studies, considering also that the ratio of
377 concentrations between nitrogen and phosphorus may be more important in driving microcystins
378 responses to contaminants than the concentration of each nutrient separately [94–96]. The level
379 of phycotoxins depends on the cellular N:P ratio, and the importance of this becomes greater in
380 the light of the global N-P imbalance [87, 97].

381 Global warming can also extend the growing season, impacting the life cycle of HABs [98].
382 Harmful blooms might have intensified in the last decades due to eutrophication, elevated CO₂
383 concentrations, and global warming, and further increases in atmospheric CO₂ and global
384 warming may signify the problem of intensified HABs [11, 14, 98, 99] (but see also [17]).
385 Nutrient limitation can also reduce the response of the growth of HABs to elevated CO₂ and
386 climate warming [98], suggesting that nutrient management can offer double benefits, i.e.
387 reducing the effects of both water contaminants and climate change. Since HABs may be more
388 influenced by climate change in eutrophic and hypertrophic lakes, these systems may be more
389 vulnerable in the presence of low levels of contaminants [98].

390 Contaminant-induced hormesis of HABs-forming algae impedes the efficacy of treatments
391 against HABs, since hormetic stimulation of such algae has various positive effects, promoting

392 the recovery from and reducing the efficacy of anti-algae treatments such as H₂O₂, UVB-, UV-C,
393 and CuSO₄ and KMnO₄ algaecides [43, 53, 54, 66, 67]. These findings suggest that higher
394 amounts of algaecides would be needed to control HABs in contaminated environments.
395 Especially, algaecides also cause hormesis with significant enhancement of intra- and extra-
396 cellular microcystins at sub-NOAEL doses, as opposed to inhibitory effects of super-NOAEL
397 doses [30]. However, this would lead to further contamination with unknown implications for
398 non-target organisms and the ecosystem. In the race to discover novel classes of algaecides with
399 improved algaecidal properties [11, 100], hormetic effects should be considered in the effect
400 testing and selection to avoid undesirable effects that may be opposite to the desired ones.

401 Our study leads us to the novel conclusion that contaminants produce equally important
402 enhancement of phycotoxin with nutrient and climate change factors, indicating a potentially
403 higher risk of contaminants for ecological and human health and adding a new dimension to the
404 issue of HABs. The responses can be microcystin-specific, e.g. among microcystins LR, LW,
405 and YR [35, 45]. Hence, further studies are needed to identify which microcystins are affected
406 most by low, sub-NOAEL doses of contaminants and which pose the highest risk for toxicity to
407 humans and other organisms via the food chain or direct interaction in contaminated
408 environments. Effects of mixtures of biotoxins are under-investigated [4], and how low-dose
409 effects modify mixtures of biotoxins and their effects on organisms directly interacting with the
410 biotoxins or indirectly ingesting them via the food chain is currently unknown. Initially toxic
411 effects of contaminants can change into stimulation (and vice versa) over time, and 1-3 weeks
412 may be needed to reach the maximum stimulatory response [31, 36, 37, 39, 41, 45, 46, 48, 51,
413 52, 60–62, 65–67]. Even if the stimulation is short-term or transient in the absence of renewed or
414 continued exposure, this might translate to acute expansion of HABs that could further
415 contaminate environment and pose risks to humans and other creatures.

416 Low, sub-NOAEL concentrations of contaminants may also lead to changes in the species
417 composition of algal assemblages [30, 51, 101]. They may even impair the chemosensory system
418 of organisms depending on dissolved chemical cues for their survival by depleting inorganic
419 carbon and highly elevating pH due to increased photosynthesis [102, 103]. For example, low,
420 environmentally-relevant, stimulatory doses of a mixture of ciprofloxacin, sulfamethoxazole, and
421 tetracycline antibiotics can enhance the competitiveness and increase the proportion of the
422 ‘harmful’ *M. aeruginosa* in a mixed culture of four phytoplankton species [51]. Similarly,
423 algaecidal hydrogen peroxide at 0.2 mg L⁻¹ increased and at 0.5-1.5 mg L⁻¹ decreased the relative
424 abundance of *Anabeana*, *Microcystis*, and *Oscillatoria* within a community of cyanobacteria and
425 the relative abundance of Cyanobacteria within the prokaryotic community [30]. Considering
426 also the toxic or even lethal effect of phycotoxins on interacting organisms, potential threats of
427 such low concentrations of emerging contaminants and regulated pollutants to biodiversity and
428 ecosystem services should also be considered in the agendas for protecting biodiversity and
429 ecosystems.

430 The contaminant-induced hormesis in HAB-forming organisms creates a new challenge for
431 traditional risk assessment to include effects below the traditional toxicological threshold. It also
432 suggests that standard approaches cannot capture these effects of low and widely occurring
433 concentrations of contaminants, urging for scientifically flexible approaches to permit more
434 holistic evaluations of ecological risks.

435
436 **Acknowledgements** The authors are grateful to numerous research groups around the world
437 whose researches provided the primary substance upon which to develop these novel insights
438 and provide a perspective for tackling one of the major environmental issues.

439
440 **Funding:** E.A. acknowledges multi-year support from The Startup Foundation for Introducing
441 Talent (No. 003080) of Nanjing University of Information Science & Technology (NUIST),
442 Nanjing, China, and the Jiangsu Distinguished Professor program of the People's Government of

443 Jiangsu Province. H.S. acknowledges funding from the National Natural Science Foundation of
444 China (No. 22006116). JP acknowledges funding from the Catalan Government grants SGR
445 2017-1005 and AGAUR-2020PANDE00117.

446

447 **Authors contributions:** E.A. designed the study, reviewed the literature, drafted the manuscript,
448 had a leading role, served as the hub of communication among the authors, and supervised the
449 production of the manuscript. E.A. and H.S. created figures. J.P., R.A.A., M.C.R., H.S., and
450 E.J.C. reviewed the manuscript and contributed intellectual input. All authors approved the final
451 version for publication.

452

453 **Conflict of interest statement.** None declared.

454

455 **References**

- 456 1. Griffith AW, Gobler CJ. Harmful algal blooms: A climate change co-stressor in marine
457 and freshwater ecosystems. *Harmful Algae* 2020; **91**: 101590.
- 458 2. Anderson DM, Fachon E, Pickart RS, Lin P, Fischer AD, Richlen ML, et al. Evidence for
459 massive and recurrent toxic blooms of *Alexandrium catenella* in the Alaskan Arctic. *Proc
460 Natl Acad Sci U S A* 2021; **118**: e2107387118.
- 461 3. Young N, Sharpe RA, Barciela R, Nichols G, Davidson K, Berdalet E, et al. Marine
462 harmful algal blooms and human health: A systematic scoping review. *Harmful Algae*
463 2020; **98**: 101901.
- 464 4. Berdalet E, Fleming LE, Gowen R, Davidson K, Hess P, Backer LC, et al. Marine harmful
465 algal blooms, human health and wellbeing: challenges and opportunities in the 21st
466 century. *J Mar Biol Assoc United Kingdom* 2016; **96**: 61–91.
- 467 5. Carmichael WW, Boyer GL. Health impacts from cyanobacteria harmful algae blooms:
468 Implications for the North American Great Lakes. *Harmful Algae* 2016; **54**: 194–212.
- 469 6. He X, Liu YL, Conklin A, Westrick J, Weavers LK, Dionysiou DD, et al. Toxic

470 cyanobacteria and drinking water: Impacts, detection, and treatment. *Harmful Algae* 2016;
471 **54**: 174–193.

472 7. Bullerjahn GS, McKay RM, Davis TW, Baker DB, Boyer GL, D'Anglada L V., et al.
473 Global solutions to regional problems: Collecting global expertise to address the problem
474 of harmful cyanobacterial blooms. A Lake Erie case study. *Harmful Algae* 2016; **54**: 223–
475 238.

476 8. Gramling C. Toxic algae may be culprit in mysterious dinosaur deaths. *Science* 2017; **357**:
477 857.

478 9. Mays C, McLoughlin S, Frank TD, Fielding CR, Slater SM, Vajda V. Lethal microbial
479 blooms delayed freshwater ecosystem recovery following the end-Permian extinction. *Nat
480 Commun* 2021; **12**: 5511.

481 10. Ho JC, Michalak AM, Pahlevan N. Widespread global increase in intense lake
482 phytoplankton blooms since the 1980s. *Nature* 2019; **574**: 667–670.

483 11. Sha J, Xiong H, Li C, Lu Z, Zhang J, Zhong H, et al. Harmful algal blooms and their eco-
484 environmental indication. *Chemosphere* 2021; **274**: 129912.

485 12. Fang C, Song K, Paerl HW, Jacinthe PA, Wen Z, Liu G, et al. Global divergent trends of
486 algal blooms detected by satellite during 1982–2018. *Glob Chang Biol* 2022; **28**: 2327–
487 2340.

488 13. Anderson DM, Fensin E, Gobler CJ, Hoeglund AE, Hubbard KA, Kulis DM, et al. Marine
489 harmful algal blooms (HABs) in the United States: History, current status and future
490 trends. *Harmful Algae* 2021; **102**: 101975.

491 14. Hou X, Feng L, Dai Y, Hu C, Gibson L, Tang J, et al. Global mapping reveals increase in
492 lacustrine algal blooms over the past decade. *Nat Geosci* 2022; **15**: 130–134.

493 15. Boivin-Rioux A, Starr M, Chassé J, Scarratt M, Perrie W, Long Z, et al. Harmful algae
494 and climate change on the Canadian East Coast: Exploring occurrence predictions of

520 2021; **207**: 111225.

521 25. Duke SO. Glyphosate: Uses other than in glyphosate-resistant crops, mode of action,
522 degradation in plants, and effects on non-target plants and agricultural microbes. *Rev*
523 *Environ Contam Toxicol* 2021; **255**: 1–65.

524 26. Tang L, Zhou Y, Zhang Y, Sun H. The role of energy/substrate in microbial hormesis.
525 *Curr Opin Toxicol* 2022; **29**: 10–18.

526 27. Sun T, Zhan J, Li F, Ji C, H. W. Effect of microplastics on aquatic biota: A hormetic
527 perspective. *Environ Pollut* 2021; **285**: 117206.

528 28. Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis
529 induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals:
530 Implications for agroforestry ecosystems health. *Sci Total Environ* 2022; **820**: 153116.

531 29. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, et al. A review of
532 the global ecology, genomics, and biogeography of the toxic cyanobacterium, *Microcystis*
533 spp. *Harmful Algae* 2016; **54**: 4–20.

534 30. Jiang Y, Fang Y, Liu Y, Liu B, Zhang J. Community succession during the preventive
535 control of cyanobacterial bloom by hydrogen peroxide in an aquatic microcosm.
536 *Ecotoxicol Environ Saf* 2022; **237**: 113546.

537 31. Jiang Y, Liu Y, Zhang J. Mechanisms for the stimulatory effects of a five-component
538 mixture of antibiotics in *Microcystis aeruginosa* at transcriptomic and proteomic levels. *J*
539 *Hazard Mater* 2021; **406**: 124722.

540 32. Li J, Hu J, Cao L, Yuan Y. Growth, physiological responses and microcystin-production/-
541 release dynamics of *Microcystis aeruginosa* exposed to various luteolin doses. *Ecotoxicol*
542 *Environ Saf* 2020; **196**: 110540.

543 33. Liu Y, Yang Q, Zhu M, Wang L, Zhou Q, Yang Z, et al. Endocytosis in *Microcystis*
544 aeruginosa accelerates the synthesis of microcystins in the presence of lanthanum(III).

545 *Harmful Algae* 2020; **93**: 101791.

546 34. Xu S, Liu Y, Zhang J, Gao B. Proteomic mechanisms for the combined stimulatory effects
547 of glyphosate and antibiotic contaminants on *Microcystis aeruginosa*. *Chemosphere* 2021;
548 **267**: 129244.

549 35. Yang Q, Liu Y, Wang L, Zhou Q, Cheng M, Zhou J, et al. Cerium exposure in Lake Taihu
550 water aggravates microcystin pollution via enhancing endocytosis of *Microcystis*
551 *aeruginosa*. *Environ Pollut* 2022; **292**: 118308.

552 36. Zhang M, Steinman AD, Xue Q, Zhao Y, Xu Y, Xie L. Effects of erythromycin and
553 sulfamethoxazole on *Microcystis aeruginosa*: Cytotoxic endpoints, production and release
554 of microcystin-LR. *J Hazard Mater* 2020; **399**: 123021.

555 37. Bi X, Yan R, Li F, Dai W, Jiao K, Zhou Q, et al. Sequestration and distribution
556 characteristics of Cd(II) by *Microcystis aeruginosa* and its role in colony formation.
557 *Biomed Res Int* 2016; **2016**: 9837598.

558 38. de Moraes P, Stoichev T, Basto MCP, Ramos V, Vasconcelos VM, Vasconcelos MTSD.
559 Cyanobacterium *Microcystis aeruginosa* response to pentachlorophenol and comparison
560 with that of the microalga *Chlorella vulgaris*. *Water Res* 2014; **52**: 63–72.

561 39. Guo RX, Chen JQ. Phytoplankton toxicity of the antibiotic chlortetracycline and its UV
562 light degradation products. *Chemosphere* 2012; **87**: 1254–1259.

563 40. Liu Y, Wang F, Chen X, Zhang J, Gao B. Cellular responses and biodegradation of
564 amoxicillin in *Microcystis aeruginosa* at different nitrogen levels. *Ecotoxicol Environ Saf*
565 2015; **111**: 138–145.

566 41. Qiu H, Geng J, Ren H, Xia X, Wang X, Yu Y. Physiological and biochemical responses of
567 *Microcystis aeruginosa* to glyphosate and its Roundup® formulation. *J Hazard Mater*
568 2013; **248–249**: 172–176.

569 42. Sun H, Zheng M, Song J, Huang S, Pan Y, Gong R, et al. Multiple-species hormetic

570 phenomena induced by indole: A case study on the toxicity of indole to bacteria, algae and
571 human cells. *Sci Total Environ* 2019; **657**: 46–55.

572 43. Jiang Y, Liu Y, Zhang J. Antibiotic contaminants reduced the treatment efficiency of UV-
573 C on *Microcystis aeruginosa* through hormesis. *Environ Pollut* 2020; **261**: 114193.

574 44. Gong Y, Chou HN, Tu CD, Liu X, Liu J, Song L. Effects of arsenate on the growth and
575 microcystin production of *Microcystis aeruginosa* isolated from Taiwan as influenced by
576 extracellular phosphate. *J Appl Phycol* 2008; **21**: 225–231.

577 45. Gong Y, Ao HY, Liu BB, Wen S, Wang Z, Hu DJ, et al. Effects of inorganic arsenic on
578 growth and microcystin production of a *Microcystis* strain isolated from an algal bloom in
579 Dianchi Lake, China. *Chinese Sci Bull* 2011; **56**: 2337–2342.

580 46. Liu Y, Chen X, Zhang J, Gao B. Hormesis effects of amoxicillin on growth and cellular
581 biosynthesis of *Microcystis aeruginosa* at different nitrogen levels. *Microb Ecol* 2014; **69**:
582 608–617.

583 47. Liu Y, Chen S, Chen X, Zhang J, Gao B. Interactions between *Microcystis aeruginosa* and
584 coexisting amoxicillin contaminant at different phosphorus levels. *J Hazard Mater* 2015;
585 **297**: 83–91.

586 48. Liu Y, Chen S, Zhang J, Li X, Gao B. Stimulation effects of ciprofloxacin and
587 sulphamethoxazole in *Microcystis aeruginosa* and isobaric tag for relative and absolute
588 quantitation-based screening of antibiotic targets. *Mol Ecol* 2017; **26**: 689–701.

589 49. Wan X, Guo Q, Li X, Wang G, Zhao Y. Synergistic toxicity to the toxigenic *Microcystis*
590 and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures.
591 *Toxicon* 2022; **210**: 49–57.

592 50. Zhang Y, Gao Q, Liu S, Tang L, Li X-G, Sun H. Hormetic dose-response of halogenated
593 organic pollutants on *Microcystis aeruginosa*: Joint toxic action and mechanism. *Sci Total
594 Environ* 2022; **829**: 154581.

595 51. Xu S, Liu Y, Zhang J. Transcriptomic mechanisms for the promotion of cyanobacterial
596 growth against eukaryotic microalgae by a ternary antibiotic mixture. *Environ Sci Pollut
597 Res* 2022; **In Press**.

598 52. Zhang X, Ai S, Wei J, Yang X, Huang Y, Hu J, et al. Biphasic effects of typical
599 chlorinated organophosphorus flame retardants on *Microcystis aeruginosa*. *Ecotoxicol
600 Environ Saf* 2022; **241**: 113813.

601 53. Jiang Y, Liu Y, Zhang J. Antibiotics induced alterations in cell density, photosynthesis,
602 microcystin synthesis and proteomic expression of *Microcystis aeruginosa* during CuSO₄
603 treatment. *Aquat Toxicol* 2020; **222**: 105473.

604 54. Liu Y, Cui M, Zhang J, Gao B. Impacts of antibiotic contaminants on *Microcystis
605 aeruginosa* during potassium permanganate treatment. *Harmful Algae* 2020; **92**: 101741.

606 55. Pan M, Lyu T, Zhan L, Matamoros V, Angelidaki I, Cooper M, et al. Mitigating antibiotic
607 pollution using cyanobacteria: Removal efficiency, pathways and metabolism. *Water Res
608* 2021; **190**: 116735.

609 56. Wu S, Ji X, Li X, Ye J, Xu W, Wang R, et al. Mutual impacts and interactions of
610 antibiotic resistance genes, microcystin synthetase genes, graphene oxide, and *Microcystis
611 aeruginosa* in synthetic wastewater. *Environ Sci Pollut Res* 2021; **29**: 3994–4007.

612 57. Zhang Y, Calabrese EJ, Zhang J, Gao D, Qin M, Lin Z. A trigger mechanism of herbicides
613 to phytoplankton blooms: From the standpoint of hormesis involving cytochrome b559,
614 reactive oxygen species and nitric oxide. *Water Res* 2020; **173**: 115584.

615 58. Zuo S, Yang H, Jiang X, Ma Y. Magnetic Fe₃O₄ nanoparticles enhance cyanobactericidal
616 effect of allelopathic p-hydroxybenzoic acid on *Microcystis aeruginosa* by enhancing
617 hydroxyl radical production. *Sci Total Environ* 2021; **770**: 145201.

618 59. Li J, Cao L, Guo Z, An G, Li B, Li J. Time- and dose-dependent allelopathic effects and
619 mechanisms of kaempferol on toxigenic *Microcystis* growth. *Ecotoxicol Environ Saf*

620 2021; **222**: 112508.

621 60. Sun K, Liu W, Liu L, Wang N, Duan S. Ecological risks assessment of organophosphorus
622 pesticides on bloom of *Microcystis wesenbergii*. *Int Biodeterior Biodegradation* 2013; **77**:
623 98–105.

624 61. Sun KF, Xu XR, Duan SS, Wang YS, Cheng H, Zhang ZW, et al. Ecotoxicity of two
625 organophosphate pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria
626 *Microcystis wesenbergii*. *Ecotoxicology* 2015; **24**: 1498–1507.

627 62. Zhao S, Pan W bin, Ma C. Stimulation and inhibition effects of algae-lytic products from
628 *Bacillus cereus* strain L7 on *Anabaena flos-aquae*. *J Appl Phycol* 2011; **24**: 1015–1021.

629 63. Dabney BL, Patiño R. Low-dose stimulation of growth of the harmful alga, *Prymnesium*
630 *parvum*, by glyphosate and glyphosate-based herbicides. *Harmful Algae* 2018; **80**: 130–
631 139.

632 64. Maeda K, Okuda Y, Enomoto G, Watanabe S, Ikeuchi M. Biosynthesis of a sulfated
633 exopolysaccharide, synechan, and bloom formation in the model cyanobacterium
634 *Synechocystis* sp. strain PCC 6803. *Elife* 2021; **10**: e66538.

635 65. Wang J, Xie P, Guo N. Effects of nonylphenol on the growth and microcystin production
636 of *Microcystis* strains. *Environ Res* 2007; **103**: 70–78.

637 66. Jiang Y, Liu Y, Zhang J, Gao B. Antibiotics promoted the recovery of *Microcystis*
638 *aeruginosa* after UV-B radiation at cellular and proteomic levels. *Ecotoxicol Environ Saf*
639 2020; **190**: 110080.

640 67. Liu Y, Zhang J, Gao B. Proteomic mechanisms for the stimulatory effects of antibiotics on
641 *Microcystis aeruginosa* during hydrogen peroxide treatment. *Chemosphere* 2020; **247**:
642 125837.

643 68. Soares C, Carvalho MEA, Azevedo RA, Fidalgo F. Plants facing oxidative challenges—A
644 little help from the antioxidant networks. *Environ Exp Bot* 2019; **161**: 4–25.

645 69. Calabrese EJ, Agathokleous E, Kozumbo WJ, Stanek EJ, Leonard D. Estimating the range
646 of the maximum hormetic stimulatory response. *Environ Res* 2019; **170**: 337–343.

647 70. Agathokleous E, Kitao M, Calabrese EJ. Hormesis: Highly generalizable and beyond
648 laboratory. *Trends Plant Sci* 2020; **25**: 1076–1086.

649 71. Agathokleous E, Feng Z, Iavicoli I, Calabrese EJ. The two faces of nanomaterials: A
650 quantification of hormesis in algae and plants. *Environ Int* 2019; **131**: 105044.

651 72. Agathokleous E. The rise and fall of photosynthesis: Hormetic dose response in plants. *J
652 For Res* 2021; **32**: 789–803.

653 73. Cedergreen N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO. The occurrence of
654 hormesis in plants and algae. *Dose Response* 2007; **5**: 150–62.

655 74. Wan Q, Li J, Chen Y. Comparative growth and cellular responses of toxicogenic *Microcystis*
656 exposed to different types of microplastics at various doses. *Environ Pollut* 2021; **290**:
657 117950.

658 75. Brandenburg KM, Velthuis M, Van de Waal DB. Meta-analysis reveals enhanced growth
659 of marine harmful algae from temperate regions with warming and elevated CO₂ levels.
660 *Glob Chang Biol* 2019; **25**: 2607–2618.

661 76. Tian D, Xie G, Tian J, Tseng KH, Shum CK, Lee J, et al. Spatiotemporal variability and
662 environmental factors of harmful algal blooms (HABs) over western Lake Erie. *PLoS One*
663 2017; **12**: e0179622.

664 77. Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal
665 blooms: Ecological functions and genetic variability. *Harmful Algae* 2020; **98**: 101850.

666 78. Huang IS, Zimba P V. Cyanobacterial bioactive metabolites—A review of their chemistry
667 and biology. *Harmful Algae* 2019; **83**: 42–94.

668 79. Preece EP, Hardy FJ, Moore BC, Bryan M. A review of microcystin detections in
669 Estuarine and Marine waters: Environmental implications and human health risk. *Harmful*

670 *Algae* 2017; **61**: 31–45.

671 80. Zhang Y, Vo Duy S, Munoz G, Sauvé S. Phytotoxic effects of microcystins, anatoxin-a
672 and cylindrospermopsin to aquatic plants: A meta-analysis. *Sci Total Environ* 2022; **810**:
673 152104.

674 81. Breinlinger S, Phillips TJ, Haram BN, Mareš J, Martínez Yerena JA, Hrouzek P, et al.
675 Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy.
676 *Science (80-)* 2021; **371**.

677 82. Shahmohamadloo RS, Poirier DG, Ortiz Almirall X, Bhavsar SP, Sibley PK. Assessing
678 the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates.
679 *Ecotoxicol Environ Saf* 2020; **188**: 109945.

680 83. Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Lumsden JS, Bhavsar SP,
681 Watson-Leung T, et al. Cyanotoxins within and outside of *Microcystis aeruginosa* cause
682 adverse effects in rainbow trout (*Oncorhynchus mykiss*). *Environ Sci Technol* 2021; **55**:
683 10422–10431.

684 84. De Senerpont Domis LN, Bartosiewicz M, Davis C, Cerbin S. The effect of small doses of
685 toxic cyanobacterial food on the temperature response of *Daphnia galeata*: is bigger
686 better? *Freshw Biol* 2013; **58**: 560–572.

687 85. He J, Chen J, Chen F, Chen L, Giesy JP, Guo Y, et al. Health Risks of Chronic Exposure
688 to Small Doses of Microcystins: An Integrative Metabolomic and Biochemical Study of
689 Human Serum. *Environ Sci Technol* 2022; **56**: 6548–6559.

690 86. Lin Y, Chen A, He Y, Qing C, Peng L, Luo S, et al. Responses of *Microcystis aeruginosa*
691 (Cyanobacteria) to sanguinarine stress: morphological and physiological characteristics
692 associated with competitive advantage. *Phycologia* 2019; **58**: 260–268.

693 87. Brandenburg K, Siebers L, Keuskamp J, Jephcott TG, van de Waal DB. Effects of nutrient
694 limitation on the synthesis of N-rich phytoplankton toxins: A meta-analysis. *Toxins*

695 (Basel) 2020; **12**: 221.

696 88. Guan W, Bao M, Lou X, Zhou Z, Yin K. Monitoring, modeling and projection of harmful
697 algal blooms in China. *Harmful Algae* 2022; **111**: 102164.

698 89. Durán-Vinet B, Araya-Castro K, Chao TC, Wood SA, Gallardo V, Godoy K, et al.
699 Potential applications of CRISPR/Cas for next-generation biomonitoring of harmful algae
700 blooms: A review. *Harmful Algae* 2021; **103**: 102027.

701 90. Tian R, Chen J, Sun X, Li D, Liu C, Weng H. Algae explosive growth mechanism
702 enabling weather-like forecast of harmful algal blooms. *Sci Rep* 2018; **8**: 1–7.

703 91. Hennon GMM, Dyhrman ST. Progress and promise of omics for predicting the impacts of
704 climate change on harmful algal blooms. *Harmful Algae* 2020; **91**: 101587.

705 92. Gobler CJ, Burkholder JAM, Davis TW, Harke MJ, Johengen T, Stow CA, et al. The dual
706 role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms.
707 *Harmful Algae* 2016; **54**: 87–97.

708 93. de Vries W. Impacts of nitrogen emissions on ecosystems and human health: A mini
709 review. *Curr Opin Environ Sci Heal* 2021; **21**: 100249.

710 94. Orihel DM, Bird DF, Brylinsky M, Chen H, Donald DB, Huang DY, et al. High
711 microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-
712 rich Canadian lakes. *Can J Fish Aquat Sci* 2012; **69**: 1457–1462.

713 95. Brandenburg KM, de Senerpont Domis LN, Wohlrb S, Krock B, John U, van
714 Scheppingen Y, et al. Combined physical, chemical and biological factors shape
715 *Alexandrium ostenfeldii* blooms in The Netherlands. *Harmful Algae* 2017; **63**: 146–153.

716 96. Anderson DM, Glibert PM, Burkholder JM. Harmful algal blooms and eutrophication:
717 Nutrient sources, composition, and consequences. *Estuaries* 2002; **25**: 704–726.

718 97. Peñuelas J, Sardans J. The global nitrogen-phosphorus imbalance. *Science (80-)* 2022;
719 **375**: 266–267.

720 98. Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, Davis TW, et al. How
721 rising CO₂ and global warming may stimulate harmful cyanobacterial blooms. *Harmful*
722 *Algae* 2016; **54**: 145–159.

723 99. Glibert PM, Seitzinger S, Heil CA, Burkholder JM, Parrow MW, Codispoti LA, et al. The
724 role of eutrophication in the global proliferation of harmful algal blooms. *Oceanography*
725 2005; **18**: 198–209.

726 100. Wang Y, Liu Q, Wei Z, Liu N, Li Y, Li D, et al. Thiazole amides, a novel class of
727 algaecides against freshwater harmful algae. *Sci Rep* 2018; **8**: 8555.

728 101. Park MH, Kim K, Hwang SJ. Differential effects of the allelochemical juglone on growth
729 of harmful and non-target freshwater algae. *Appl Sci* 2020; **10**: 2873.

730 102. Chislock MF, Doster E, Zitomer RA, Wilson AE. Eutrophication: Causes, consequences,
731 and controls in aquatic ecosystems. *Nat Educ Knowl* 2013; **4**: 10.

732 103. Turner AM, Chislock MF. Blinded by the stink: Nutrient enrichment impairs the
733 perception of predation risk by freshwater snails. *Ecol Appl* 2010; **20**: 2089–2095.

734

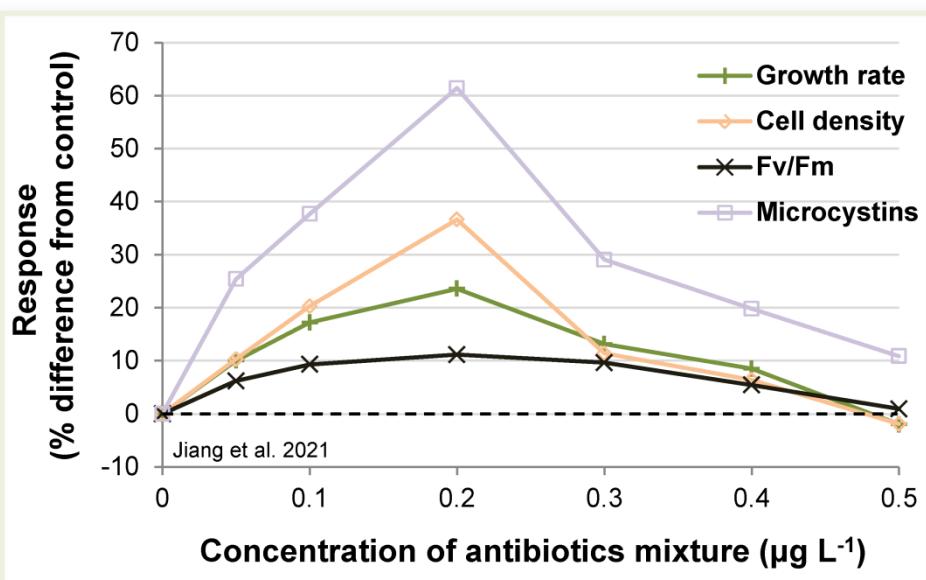
735

736

737

738

739


740

741

742

743 **Figure captions**

744 **Fig. 1.** Response of *Microcystis aeruginosa* to low, environmentally occurring concentrations of
745 antibiotics mixtures. At these trace concentrations included in the study, there were no negative
746 effects on these studied endpoints; however, the concentration-response relationship suggest
747 negative effects would be expected at antibiotics concentrations larger than $0.5 \mu\text{g L}^{-1}$. The
748 antibiotics were amoxicillin, ciprofloxacin, spiramycin, sulfamethoxazole, and tetracycline, and
749 the exposure lasted 14 days under aseptic conditions in a constant-temperature illuminating
750 incubator. F_v/F_m : maximum photochemical quantum yield of photosystem II (PSII).
751 Microcystins refer to the total concentrations ($\mu\text{g mL}^{-1}$). The data are based on [31]. Data
752 extraction and calculation are described in Supporting Materials.

753

754

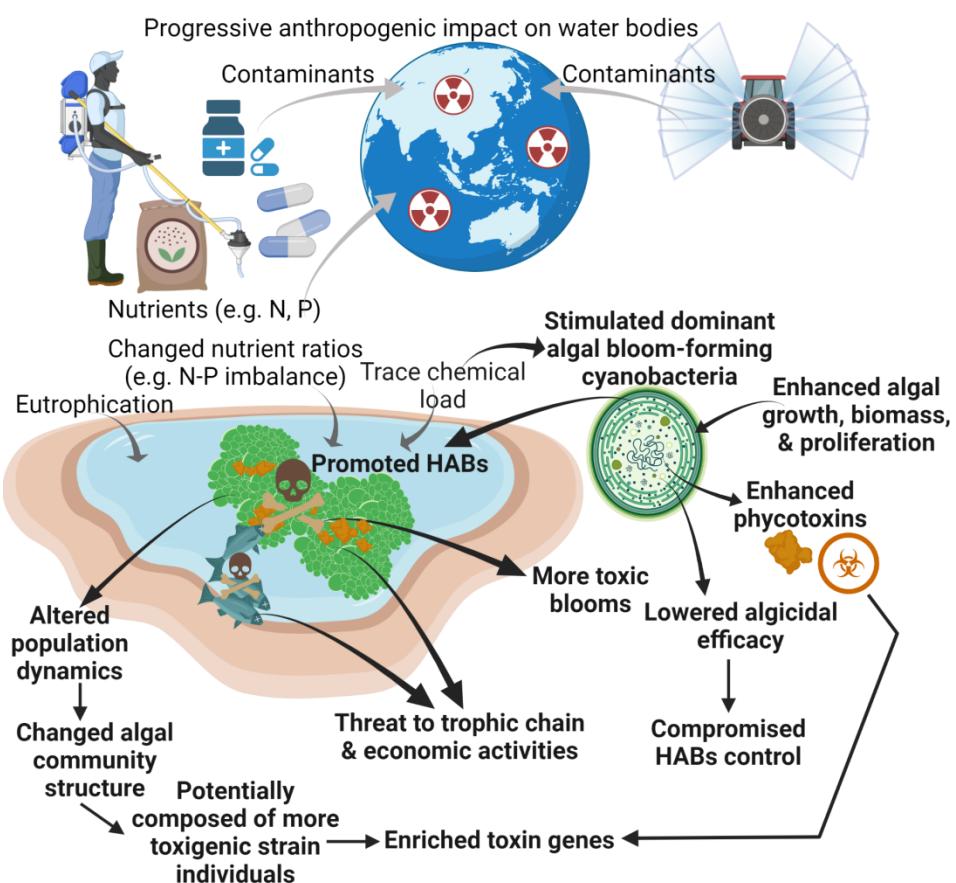
755

756

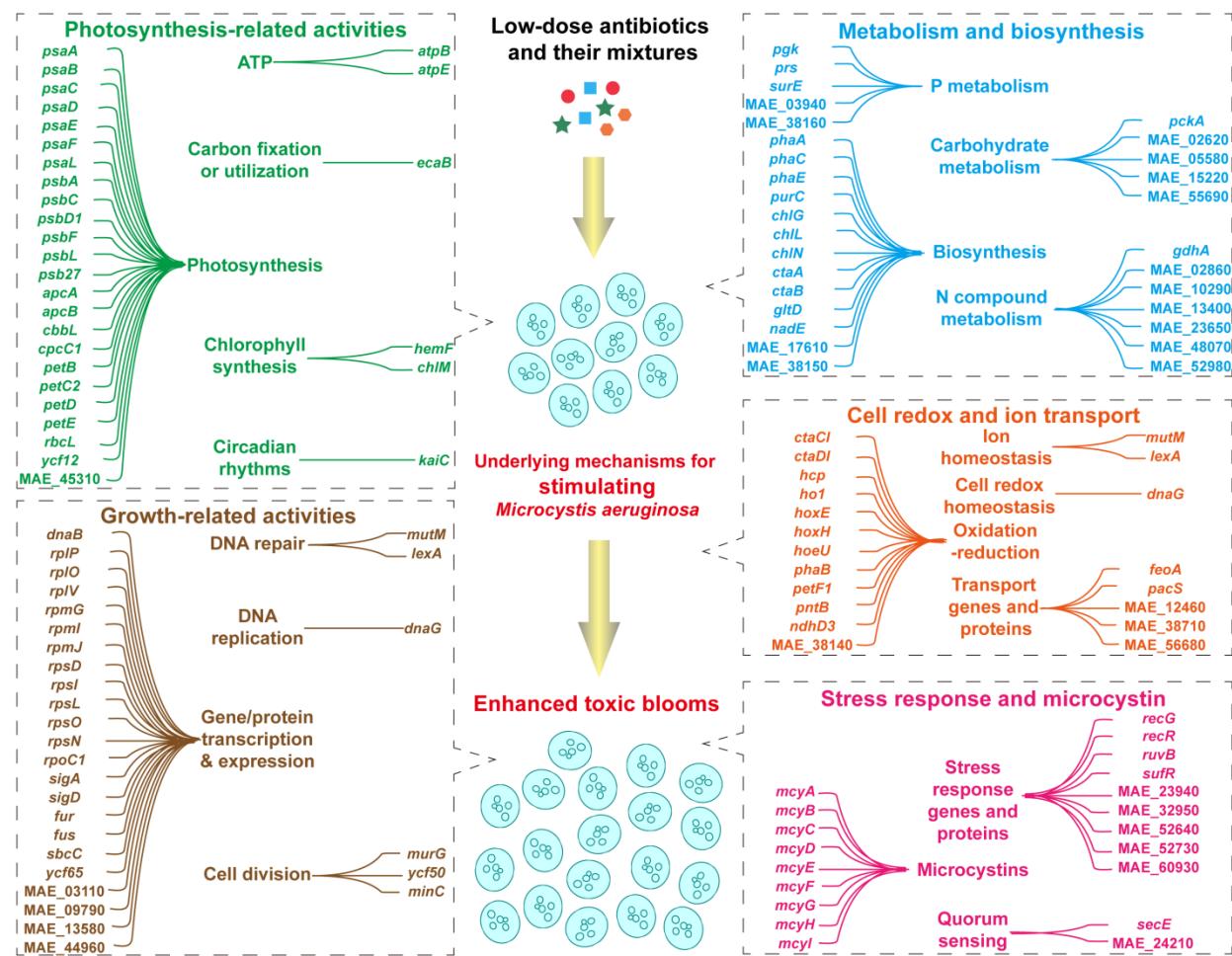
757

758

759


760

761


762

763

764 **Fig. 2.** Conceptual diagram of stimulation of cyanobacteria forming harmful algal blooms
765 (HABs) by contaminants. The progressive anthropogenic impact on water bodies and the
766 subsequent effects on algal ecology are of concern. Nutrient over-supply, leading to
767 eutrophication and nutrient imbalance in water bodies, has long been known as a major factor
768 driving algal ecology and thus HABs. However, recent studies now provide substantial evidence
769 that trace chemicals in the waters exert significant influence on the ecology of major HABs-
770 forming organisms, such as the notorious cyanobacterium *Microcystis aeruginosa*. Trace
771 chemicals enhance algal growth, biomass, and proliferation and boost the synthesis of harmful
772 phycotoxins and their release in the environment. Such effects of low concentrations of
773 chemicals alter population dynamics and can change algal community structure, containing
774 toxigenic strains and potentially composed of more toxigenic individuals with more abundant
775 phycotoxins. The broad hormesis literature indicates a highly generalized stimulation amplitude
776 across species, suggesting the degree of stimulation of HABs-forming species is not expected to
777 differ from that of non-HABs-forming plankton species. However, it also suggests that resistant
778 HABs-forming organisms are expected to have a broader range of stimulatory zone and undergo
779 stimulation at concentrations not affecting the average population or inhibiting susceptible
780 subpopulation groups. These would facilitate the dominance of resistant toxigenic individuals
781 within HABs due to their stimulation and dominance over non-resistant, non-toxigenic
782 individuals. These indicate the possibility that HABs with enriched toxigenic individuals may
783 increase by increased concentrations of trace contaminants. Light gray color arrows indicate
784 causal drivers of human origin, whereas dark gray color arrows indicate major changes in water
785 quality that are associated with HABs. Black arrows indicate HABs-related effects (bold text)
786 that are now attributed to trace chemicals in the water bodies.

788 **Fig. 3.** Underlying mechanisms of *Microcystis aeruginosa* stimulation by low-level antibiotics
 789 contamination. These responses occur at doses of contaminants that are smaller than the no-
 790 observed-adverse-effect-level (NOAEL), i.e. toxicological threshold. The graphic illustrates
 791 major genes and proteins that are up- or down-regulated (oval boxes) and the underlying
 792 mechanisms they control (rectangle boxes). Further details about the molecular mechanisms can
 793 be found in the reviewed literature [31, 34, 66, 67, 43, 46–48, 51, 53, 54, 56].

794