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 25 

Abstract: A widespread increase in intense phytoplankton blooms has been noted in lakes 26 

worldwide since the 1980s, with the summertime peak intensity amplifying in most lakes. 27 

Such blooms cause annual economic losses of multi-billion USD and present a major 28 

challenge, affecting eleven out of the seventeen Sustainable Development Goals. Here, we 29 

evaluate recent scientific evidence for hormetic effects of emerging contaminants and 30 

regulated pollutants on Microcystis sp., the most notorious cyanobacteria forming harmful 31 

algal blooms and releasing phycotoxins in eutrophic freshwater systems. This new evidence 32 

leads to the conclusion that pollution is linked to algal bloom intensification. Concentrations 33 

of contaminants that are considerably smaller than the threshold for toxicity enhance the 34 

formation of harmful colonies, increase the production of phycotoxins and their release into 35 
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the environment, and lower the efficacy of algaecides to control algal blooms. The low-dose 36 

enhancement of microcystins is attributed to the up-regulation of a protein controlling 37 

microcystin release (McyH) and various microcystin synthetases in tandem with the global 38 

nitrogen regulator Ycf28, nonribosomal peptide synthetases, and several ATP-binding 39 

cassette transport proteins. Given that colony formation and phycotoxin production and 40 

release are enhanced by contaminant concentrations smaller than the toxicological threshold 41 

and widely occurring in the environment, the effect of contaminants on harmful algal blooms 42 

is more prevalent than previously thought. Climate change and nutrient enrichment, known 43 

mechanisms underpinning algal blooms, are thus joined by low-level pollutants as another 44 

causal mechanism.  45 

 46 
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Introduction 70 
Aquatic harmful algal blooms (HABs) are considered a climate change co-stressor in freshwater 71 

and marine ecosystems [1] as well as a major environmental issue that can severely affect 72 

aquatic ecosystems, human health, and economy [2] (see also 73 

https://www.epa.gov/nutrientpollution/harmful-algal-blooms). HABs can result in acute human 74 

illness, primarily due to phycotoxins ingested through contaminated seafood, direct skin contact, 75 

or inhalation [3–5]. Blooms of harmful cyanobacteria also enter water supply systems in all 76 

major continents but Antarctica [5–7]. The toxic effects of HABs are often similar to infectious 77 

diseases, such as norovirus, thus making their diagnosis difficult or impossible [4]. Health risks 78 

due to toxic HABs are linked with socioeconomic impacts, especially for human sub-populations 79 

whose wellbeing depends on aquacultures and shellfish cultivation [4]. Lethal harmful blooms 80 

might also be responsible for still mysterious species extinctions, e.g. dinosaurs [8]. They may 81 

even delay ecosystem recovery following extinction events, as was the case after the end-82 

Permian extinction [9].  83 

 Algal blooms are linked with economic losses exceeding US$4 billion per year in the US 84 

alone [10]. The dimension of the issue of HABs is gigantic considering that it affects 11 of the 85 

17 UN Sustainable Development Goals set forth to be achieved by 2030, namely no poverty, 86 

zero hunger, good health and wellbeing, clean water and sanitation, affordable and clean energy, 87 

decent work and economic growth, sustainable cities and communities, sustainable consumption 88 

and production, life below water, life on land, and partnerships for the goals 89 

(https://www.unep.org/news-and-stories/press-release/tackling-harmful-algal-blooms) [10]. 90 

Hence, control and management of HABs [11] is of utmost importance for human welfare and 91 

wellbeing, ecosystems health, and biosphere sustainability. 92 

 A widespread increase in intense freshwater blooms of phytoplankton has been noted 93 

worldwide since the 1980s, with the summertime peak intensity increasing in most lakes [10, 12, 94 

13]. Importantly, lake algal blooms exhibited a pronounced increase in the 2010s (except in 95 

https://www.epa.gov/nutrientpollution/harmful-algal-blooms
https://www.unep.org/news-and-stories/press-release/tackling-harmful-algal-blooms
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Oceania) [14]. Climate change affects HABs in various ways, and climate simulations suggest 96 

species-specific changes in the abundance of harmful algae in the next decades [4, 10, 15, 16]. 97 

However, the reasons of the global increase in intense blooms since the 1980s remain unclear 98 

[17]. The phenomenon cannot be fully explained only by previously hypothesized environmental 99 

drivers, such as fertilizer use, precipitation, and temperature, because of the absence of consistent 100 

temporal matching [10, 12]. An analysis of about 9,500 events of HABs also suggests that the 101 

intensification of HABs may be linked to increased aquaculture industry and marine exploitation 102 

[17]. Moreover, anthropogenic factors (e.g. fertilizer, gross domestic product, and population) 103 

may be stronger drivers of global algal bloom intensification than climatic factors (e.g. 104 

temperature, wind speed, pressure, and rainfall) [12]. Stronger intensification of lake algal 105 

blooms occurs in Asia, South America and Africa than in other regions, and is linked to the 106 

persistent reliance of developing countries on agricultural fertilizers [12, 14]. However, these 107 

regions are also often hot spots of contamination, including pharmaceutical pollution [18–20], a 108 

factor hitherto unaccounted for in the evaluations of potential HABs driving mechanisms. 109 

 Hormesis is a biphasic dose response that is increasingly revealed in a vast array of plants 110 

and other aquatic and terrestrial organisms exposed to a plethora of contaminants applied 111 

individually or in mixtures [21–28]. That is, the responses to contaminants are opposite between 112 

low sub-toxic doses and high toxic doses, with low doses commonly inducing positive effects on 113 

individual organisms (Fig. 1). Such low doses are considerably below what was previously 114 

thought to be a toxicological threshold below which no effects occur, and are now widely shown 115 

to enhance the defense capacity of organisms, protect them against harmful drugs and other 116 

stresses, and promote the development of resistance [21–28]. Such effects of low doses of 117 

contaminants would be profoundly important for the control and management of HABs [11], e.g. 118 

due to higher doses of algaecides that would be needed to counteract low-dose contaminant 119 
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enhancement and prevent stimulation by low-dose algaecides.  However, low-dose effects are 120 

not accounted for in current HAB control strategies.  121 

 In this article we review evidence pertaining to the potential of contaminants to induce 122 

hormesis in HABs-forming organisms. We discuss how this could affect HABs and control and 123 

management programs, thus offering a novel perspective to address the HAB problem (Fig. 2). 124 

We focus on Microcystis sp., which produce peptide hepatotoxins and neurotoxins, and which 125 

are the most notorious HAB-forming cyanobacteria in eutrophic fresh water systems [5, 10, 29]. 126 

Microcystis sp. also dominated about one third of 76 lakes studied worldwide and are commonly 127 

linked to exacerbation of bloom conditions [10]. While changes in harmful algae abundance and 128 

HAB intensification are largely linked to climate change and eutrophication [4, 14–16], this 129 

review suggests the possibility that pollution contributes to the intensification of HAB problem, 130 

enhancing algal colony formation and boosting synthesis and release of harmful toxins, even at 131 

pollutant concentrations hundreds-fold smaller than those considered toxic. 132 

Occurrence of hormesis in harmful algae 133 
 This review revealed numerous studies showing that various chemicals often induce 134 

hormesis in HAB-forming and toxin-producing cyanobacteria (blue-green algae) [30], in 135 

particular in different strains of Microcystis aeruginosa [31–59] and in M. wesenbergii [60, 61]. 136 

However, hormetic responses were also revealed in the neurotoxin-producing Anabaena flos-137 

aquae [62] and the bloom-forming haptophyte Prymnesium parvum, which produces the 138 

phycotoxin prymnesi [63]. Such hormetic responses were further identified in Synechocystis sp. 139 

[51], which may also contribute to blooms formation [64]. These data indicate that contaminants 140 

widely induce hormesis in some of the most abundant bloom-forming and toxin-producing 141 

cyanobacteria (Fig. 1). 142 

 Hormetic responses of HAB-forming and toxin-producing cyanobacteria are induced by 143 

many chemicals, such as arsenate [44, 45], environmental estrogens [65], chlorinated 144 
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organophosphorus flame retardants (Cl-OPFRs) [52], halogenated organic compounds [50], 145 

heavy metals [37], hydrogen peroxide (algaecide) [30], and the principal compound of yellow 146 

dye luteolin [32] and other allelopathic chemicals/algaecides [42, 58, 59, 62]. They were also 147 

induced by various antibiotics [31, 34, 36, 39, 40, 43, 46–48, 51, 53, 54, 66, 67], nanomaterials 148 

[56], polycyclic aromatic hydrocarbons [49], rare earths [33, 35], and several pesticides and 149 

disinfectants [34, 38, 41, 57, 60, 63]. Hence, hormetic responses represent a universal 150 

phenomenon across chemically diverse contaminants. The studies providing such evidence 151 

commonly apply environmentally-relevant concentrations, demonstrating that realistic 152 

concentrations widely enhance harmful algae and the production of microcystins. The occurrence 153 

of contaminants (e.g. hydrophobic organic compounds) in the surface layers of some lakes with 154 

frequent Microcystis blooms in the last decades provides support for this hypothesis [19]. 155 

Furthermore, concentrations of such contaminants (polycyclic aromatic hydrocarbons) are 156 

positively associated with phytoplankton biomass in lakes, with biomagnification of these 157 

contaminants during phytoplankton blooms [20].  158 

 The hormesis-inducing contaminants include regulated pollutants (e.g. heavy metals) but 159 

also many unregulated global contaminants of emerging concern (not subject to regulation 160 

limiting their concentrations in the environment), such as various agrochemicals, nanomaterials, 161 

and pharmaceuticals [31–48, 50, 51, 53, 54, 56–60, 62, 63, 65–67]. This is of profound 162 

importance since sub-NOAEL stimulation of such HABs-forming and toxin-producing 163 

organisms cannot be captured by the traditional dose-response models. Importantly, multi-164 

component mixtures of same or different (e.g. herbicide-antibiotics) types of contaminants 165 

widely induce hormesis in these cyanobacteria, which can persist in the presence of other co-166 

stressors too [31, 34, 66, 67, 35, 43, 48–51, 53, 54]. The presence of multiple contaminants can 167 

change the concentrations at which low-dose stimulation occurs. For example, cell density of M. 168 

aeruginosa significantly increased by the singular antibiotics ciprofloxacin and sulfamethoxazole 169 
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and their combination at 0.05-0.2, 0.1-0.2, and 0.02-0.1 μg L-1, respectively, after 8 days of 170 

exposure [48]. In another example, one-week-long singular exposures of M. aeruginosa to the 171 

polycyclic aromatic hydrocarbons phenanthrene and benzo[α]pyrene and their mixture revealed 172 

growth hormesis at ≤1000 μg L-1 phenanthrene and at ≤279 μg L-1 mixture, whereas singular 173 

benzo[α]pyrene significantly inhibited growth at all tested concentrations (≥200 μg L-1) [49]. 174 

Concurrent contaminants may even produce additive or synergistic effects on the low-dose 175 

hormetic stimulation of microcystins and growth, indicating magnified hazard and risks [34, 48, 176 

50]. Thus, the issue of contaminant-induced hormesis in such cyanobacteria becomes more 177 

pressing because mixture effects are commonly neglected in ecological risk assessments. 178 

Biological mechanisms of hormesis: driving harmful algal blooms 179 
 Hormetic responses of HAB-forming and toxin-producing cyanobacteria appear in electron 180 

transport rate, fluorescence intensity, and photochemical quantum yield of PSII [31, 33, 54, 56, 181 

57, 60, 61, 66, 67, 34–36, 41, 43, 48, 51, 53]. Chlorophylls and less frequently carotenoids also 182 

respond in a hormetic fashion [33, 35, 38, 41, 43, 45–48, 52, 53, 61, 62, 65, 67]. For example, 183 

tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a Cl-OPFR, significantly increased chlorophyll 184 

a and carotenoid concentrations in M. aeruginosa by ≈27-32 % at 0.1 and 1 mg L-1, whereas the 185 

response returned to levels similar to the control or below [52]. Increasing concentrations of 186 

reactive oxygen species (ROS) and decreasing ratio of high-potential to low-potential form of 187 

cytochrome b559 also occur, suggesting thermodynamic transformation of cytochrome b559, 188 

whose states are modulated by nitric oxide, to yield mild ROS and enhance stimulation [31, 50, 189 

52, 56–58]. ROS such as hydrogen peroxide are key molecules and essential in cell signalling 190 

[68]. This mild increase in ROS contributes to overcompensation response of photosynthesis, 191 

while cytochrome P450 is also an important component of the stress response and contaminant 192 

biodegradation [31, 48]. Low doses of contaminants can also activate clathrin-mediated 193 
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endocytosis to facilitate a swift absorption of macro- (C, N, P) and micro-nutrients (Ca, K, Mg) 194 

to enhance chlorophylls, photosynthesis, growth, and microcystins production [33, 35].  195 

 As a result of the physiological hormetic controls (Fig. 3), cell density and proliferation, 196 

growth rate, as well as biomass exhibit hormetic responses to contaminants [30, 31, 42, 43, 46–197 

53, 33, 54, 56–59, 66, 67, 34–37, 39–41]. These hormetic responses appear generally across 198 

different stresses, highlighting that low, sub-NOAEL doses of contaminants can act in promoting 199 

the growth of the population of harmful algae, forming more robust, dense, and competitive 200 

colonies. The broad hormesis literature, including algae, demonstrates that the low-dose 201 

enhancement is restricted by the limits of biological plasticity [21, 69–73]. Thus, the stimulation 202 

is modest in amplitude, typically 30-60%, and rarely exceeding 100%, independently from the 203 

organisms, biological mechanisms, and stressors [21, 69–73]. Similarly modest, but significant, 204 

are also the responses of chlorophylls, photosynthesis, and harmful algal growth/densities or 205 

proliferation to low doses of contaminants [31–47, 49–54, 56–63, 65–67, 74]. For instance, the 206 

stimulation of M. aeruginosa growth (cell density) by antibiotics was commonly less than 60% 207 

and as a rule smaller than 100% [31, 34, 36, 43, 46–48, 53, 54, 66, 67]. These suggest a lower 208 

effect amplitude of low, sub-NOAEL doses of contaminants to enhance HABs compared to 209 

fertilization effect of N and P, which are essential nutrients providing substance for physiological 210 

functioning and growth. However, regarding effect amplitude range, the contaminants 211 

enhancement is similar to that of atmospheric partial pressure of CO2 (pCO2) and warming effect 212 

on marine harmful algae, mostly consisted of dinoflagellates [75], suggesting that contaminants 213 

enhancement is equally important. Elevated pCO2 overall increases HABs growth rate by 20%, 214 

but the effect varies among species and strains, often being null or negative [75]. The growth 215 

response of harmful algae to warming (+3-5 oC) is also highly variable and inconsistent across 216 

species, strains, and latitude, including not only positive effect but often null or negative effect 217 

[75]. Hence, regarding effect direction, it emerges that sub-NOAEL doses of contaminants have 218 
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a similar potential to enhance harmful algal growth with the two major global change factors, 219 

pCO2 and temperature. Similar to the inconsistency and variability of N and P inputs, pCO2 and 220 

temperature effects [76], the contaminant effects, and thus the NOAELs, the sub-NOAEL 221 

concentrations stimulating growth, toxicities, and algaecide resistance, would vary 222 

spatiotemporally and with chemical mode of action. However, except antibiotics, the number of 223 

studies is limited for each of the many contaminants reported to induce hormesis, not permitting 224 

a scientifically sound comparison among contaminants at this point of time. It is also possible but 225 

not irrefutable that sub-NOAEL doses of contaminants may induce a more consistent and 226 

universal enhancement of harmful algal growth than the two global change factors, pCO2 and 227 

temperature, a hypothesis that remains to be tested. 228 

 Recent studies now shed light on the molecular mechanisms explaining the hormetic 229 

responses of these cyanobacteria to antibiotics, widely applied as multi-component mixtures 230 

(Fig. 3). The enhanced cell density or proliferation, growth rate, and photochemical quantum 231 

yield of PSII by different multi-component mixtures of antibiotics alone or with herbicides in M. 232 

aeruginosa is linked with increased energy generation by excitation of carbon metabolism and 233 

photosynthesis, as indicated by several transcriptomic/proteomic alterations, as well as promoted 234 

replication of DNA [31, 34, 43, 48, 54, 66, 67]. There are many genes involved in these hormetic 235 

responses, and numerous proteins are up- or down-regulated to modify ATP, biosynthesis, 236 

carbohydrate metabolism, carbon fixation/utilization, cell division, cell redox homeostasis, 237 

chlorophyll synthesis, circadian rhythms, pentose phosphate, photosynthesis, gene/protein 238 

transcription and expression, oxidation-reduction, quorum sensing, ribosome, translation, and 239 

DNA and its repair [31, 34, 43, 46–48, 51, 53, 66, 67]. These genetic changes also modulate 240 

transport proteins, ion homeostasis, cell division inhibitors, N compound metabolism, P 241 

metabolism, and stress response [31, 34, 43, 46–48, 51, 53, 66, 67].  242 
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 This review revealed lack of studies reporting underlying molecular mechanisms of 243 

hormesis induced by contaminant types other than antibiotics. Nevertheless, a limited number of 244 

studies suggest similar molecular mechanisms for different contaminants. Specifically, low-dose 245 

graphene oxide nanomaterials improved photosynthetic performance of M. aeruginosa and 246 

enhanced the production of microcystins while increasing the abundance of sul1, sul2, tetW, and 247 

tetM in wastewater and the gene copy numbers of mcyA-J [56]. The hormetic stimulation of M. 248 

aeruginosa by sub-NOAEL doses of Cl-OPFRs also occurred in tandem with upregulation of the 249 

type I NADH dehydrogenase (NDH-1) complex (ndhD1, ndhG, ndhH, ndhI, ndhJ, ndhL, ndhM) 250 

and its mediated cyclic electron transfer pathway [52]. More studies are needed to unravel the 251 

underlying molecular mechanisms of sub-NOAEL stimulation by various kinds of contaminants 252 

as well as to understand how the composition of complex chemical mixtures affects the 253 

underlying molecular mechanisms. 254 

Microcystins 255 
There are several toxins produced by HABs, which are a chemically diverse group of 256 

secondary metabolites, posing a threat of aquatic resources and human health [77–80]. Species of 257 

the genus Microcystis produce the hepatotoxins microcystins [5]. Such toxins can cause 258 

profound effects on wildlife. For example, long-term studies recently suggest that neurotoxins 259 

produced by the cyanobacterium Aetokthonos hydrillicola cause a neurological disease (vacuolar 260 

myelinopathy) and lead to mass eagle deaths [81]. Not only do cyanotoxins affect other toxigenic 261 

cyanobacteria [5], but microcystins are also found in drinking water, often at levels raising 262 

concerns for human health [7]. Microcystis blooms occur in at least 108 countries, in 73% of 263 

which microcystin is also detected [29]. Microcystins at concentrations found in the environment 264 

during blooms (e.g. <1 to 300 μg L-1) dysregulate proteins, impair metabolism, modify DNA 265 

repair, inhibit photosynthesis, and negatively affect the growth and reproduction of various 266 

organisms [80, 82–85]. For example, concentrations of microcystins inhibiting photosynthesis of 267 
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aquatic plants ranged from as little as ≤ 1 μg L-1 to < 100 μg L-1 after short- (≤1 d) to long-term 268 

(>7 d) exposures [80]. They can even be lethal and reduce population density, albeit low doses of 269 

microcystins may initially produce positive effects, such as increased population density and 270 

longevity, before turning into adverse [80, 82–84]. For instance, the LC50 values (dose killing 50% 271 

of the population) for Ceriodaphnia dubia and Daphnia magna were 5.5 and 58.7 μg L-1 [82]. 272 

 In recognition of the profound effects of microcystins on ingesting organisms, we 273 

evaluated how contaminants affect microcystins. We found that various contaminants induce 274 

hormesis, promoting microcystins synthesis and elevating intracellular microcystins 275 

concentrations [31–34, 43–48, 53–56, 65–67]. Microcystins are typically enhanced within 1-4 276 

days and increase further and often remain elevated for nearly four weeks from exposure to 277 

protect against stress in early stages and enhance the survival odds of alive cells in the algal 278 

population [31, 32, 34–36, 43, 48, 53, 54, 56]. Even growth-inhibitory high doses of 279 

contaminants such as antibiotics and microplastics can enhance microcystin production and 280 

concentrations and release in the environment before suppressing it [36, 55, 59, 74]. Hence, low 281 

or high sub-lethal doses can also increase the release of microcystins in the environment, and 282 

total or extracellular microcystins decrease at lethal doses due to decreased cell density [31, 32, 283 

36, 43, 44, 46–49, 54–56, 58, 65, 67, 86]. 284 

 We estimated the average stimulation of the production ability or concentration of 285 

microcystins by low, sub-NOAEL doses of contaminants at 57.9 % of the control value (95% CI 286 

estimated at 53.7-62.1%, n = 203 dose responses) [30–36, 43–47, 53, 54, 56, 65–67]. This 287 

stimulation was induced by concentrations on average 280.9 μg L-1 (95% CI estimated at 146.9-288 

414.8 μg L-1, n = 203 dose responses) [30, 31, 46, 47, 53, 54, 56, 65–67, 32–36, 43–45]. Low 289 

doses enhancing production of microcystins are even 100-20,000 times smaller than the lowest 290 

toxic concentrations inhibiting algal growth and production of microcystins  [34, 36, 44, 45, 56]. 291 

Among the 203 dose responses analyzed, 93.6% were induced by concentrations ≤100 μg L-1, 292 
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while the majority (67.5%) of the dose responses were induced by concentrations ≤10 μg L-1. As 293 

many as 60.6% of the dose responses were induced by concentrations as little as ≤0.6 μg L-1. 294 

Such concentrations occur widely in the environment. The majority of dose-response entries 295 

concerned antibiotics (65.0%), followed by rare earth elements (22.7%), glyphosate (4.9%), 296 

forms of arsenic (3.9%), and other stressors (hydrogen peroxide, luteolin, nanomaterials, 297 

nonylphenol; 3.4%). The concentrations of antibiotics that enhanced microcystins ranged from 298 

0.1 to 2000 μg L-1 (average: 71.1 μg L-1), and 87.1% of these antibiotic stimulations were 299 

induced by concentrations ≤0.6 μg L-1. The only concentration used for rare earth elements to 300 

produce significant stimulation was 30 μg L-1. For glyphosate, the concentrations significantly 301 

enhancing microcystins ranged between 0.5 and 5 μg L-1, a 10-fold range. However, a 10,000-302 

fold concentration range was used for arsenic forms (0.01-100 μg L-1). For the limited number of 303 

entries concerning hydrogen peroxide, luteolin, nanomaterials, and nonylphenol, the stimulatory 304 

concentrations were 200, 6,500, 10, and 200 μg L-1, respectively. These results indicate that 305 

highly variable concentrations of contaminants can enhance microcystins. Recalculation of the 306 

doses after excluding the 13 dose-response entries with inducing concentrations ≥100 μg L-1, the 307 

average concentration was 9.9 μg L-1 (95% CI estimated at 8.6-11.1 μg L-1, n = 190 dose 308 

responses) and the stimulation similar with the analysis including all dose responses 309 

(average=59.2%; 95% CI estimated at 54.7-63.7%, n = 190 dose responses).  310 

 Microcystins are also enhanced by high sub-lethal doses that are inhibitory at the level of 311 

individual organisms. We found this stimulation to be on average 6.5 (95% CI estimated at 5.4-312 

7.5 times; n = 25 dose-response assays) and often about 10-22 fold higher than the control value. 313 

These are induced by very high or extreme concentrations of contaminants, for example 314 

concentrations that can be 106 higher than those occurring in the environment increased the early 315 

microcystin production 5.7 times [55]. Such stimulation is well beyond the known common 316 

range of hormetic low-dose stimulation and may indicate a failure to keep microcystin 317 
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production below the ranges of biological plasticity, indicating a forthcoming damage to the 318 

organism. Increased release of microcystins in the environment due to very high, toxic doses can 319 

be explained by such doses causing cell rupture and release of microcystins from the cells into 320 

the extracellular  space [49, 56]. Thus, we show here that sub-lethal doses of contaminants, both 321 

low sub-NOAEL and high super-NOAEL, enhance microcystins.  322 

 The general increase of microcystins by low, sub-NOAEL (and often sub-lethal) 323 

concentrations of contaminants suggests that contaminants can intensify not only HABs but also 324 

phycotoxins. This effect of contaminant on microcystins may be more consistent and universal 325 

than what is currently known for other HABs-forming organisms and toxins in response to 326 

climate change factors and nutrients; a hypothesis requiring experimental validation. For 327 

example, overall toxin content in marine harmful algae does not show a significant response to 328 

elevated pCO2 or warming across studies, while some toxins (e.g. brevetoxins and paralytic 329 

shellfish poisoning) produced by specific species or strains (e.g. Alexandrium spp. and Karenia 330 

brevis) even decrease [75]. Cellular microcystin and paralytic shellfish poisoning toxins also 331 

show an overall non-significant response to N and are increased by P limitation by 88 and 100% 332 

respectively, across studies and species [87]. Across taxa, N-rich phycotoxins decrease by 60% 333 

under N limitation and increase by 71% under P limitation [87], suggesting a potential 334 

antagonistic effect between N and P on phycotoxins. However, the response to N and P 335 

limitation varies across strains, species, and genera [87]. Especially cyanobacteria, and some 336 

species or strains, including Microcystis strains, exhibit no significant or opposite responses than 337 

the majority of species or strains [87]. Hence, an emerging hypothesis is that the effects of 338 

contaminants at low sub-NOAEL and sub-lethal concentrations on phycotoxins deserve equal 339 

consideration.   340 

 The molecular mechanisms controlling the hormetic responses of microcystins to 341 

contaminants are now revealed (Fig. 3). The enhanced synthesis and concentrations of 342 
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microcystins are due to the up-regulation of microcystin synthetases  and McyH, the protein 343 

regulating microcystin release, in tandem with nonribosomal peptide synthetases, the global 344 

nitrogen regulator Ycf28 binding the mcyA/D initiation codon of the microcystin synthetase 345 

gene cluster, and several ATP-binding cassette transport proteins [34, 43, 46–48, 53, 54, 56, 66, 346 

67]. These molecular mechanisms now provide the opportunity to develop relevant chemicals 347 

blocking the expression of these proteins and genes to inhibit the synthesis and release of 348 

microcystins into the environment. 349 

Unanswered questions and the path forward 350 
 Our research synthesis now suggests that emerging contaminants and regulated pollutants 351 

can contribute to intensification of HABs and enrichment of phycotoxins. While the prediction of 352 

the time and place of the occurrence of HABs is advancing, such hormetic effects are not 353 

considered, presenting a challenge for the monitoring and early warning systems of (harmful) 354 

algal blooms [88–90]. These hormetic effects also limit the effectiveness of climate change 355 

simulations, indicating the need for their representation in climate-HABs models as well as 356 

climate change impact predictions [88, 91]. The enhancement of harmful algal growth by 357 

contaminants is of similar magnitude and importance with that of pCO2 and temperature, thus 358 

contaminants effects should be given at least the same weight as for pCO2 and temperature in 359 

climate-HABs models. 360 

 The hormetic enhancement of harmful algae by low, sub-NOAEL doses of contaminants 361 

suggests potential changes in the disease burden epidemiology, with likely effects beyond areas 362 

that are currently known to be at risk [3]. This becomes of even greater concern in the light of 363 

unknown interactive effects between climate change (e.g. documented changes due to global 364 

warming [2, 4]) and environmental pollution, which could lead to antagonistic, additive, or 365 

synergistic effects at low doses. 366 
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 Algal growth is restricted in nutrient-limited conditions [41], and hormetic responses 367 

(including microcystins) depend on nutrient conditions. For example, elevated or limited 368 

phosphate and nitrogen can accordingly enhance or limit the biodegradation of contaminants and 369 

the low-dose stimulation [40, 44, 46, 47, 61]. Hence, integrated management is needed within the 370 

framework of which nutrients will be optimized considering local levels of contamination, but 371 

this requires further research. Nitrogen loading also promotes the abundance of microcystins-372 

synthesizing strains in particular (e.g. Microcystis and Planktothrix) [92], suggesting that HABs 373 

may be promoted by atmospheric N deposition [93]. These also suggest interactive effects 374 

between air pollutants and water contaminants, complicating the programs targeting the control 375 

of HABs. Such interactive effects require further studies, considering also that the ratio of 376 

concentrations between nitrogen and phosphorus may be more important in driving microcystins 377 

responses to contaminants than the concentration of each nutrient separately [94–96]. The level 378 

of phycotoxins depends on the cellular N:P ratio, and the importance of this becomes greater in 379 

the light of the global N-P imbalance [87, 97]. 380 

 Global warming can also extend the growing season, impacting the life cycle of HABs [98]. 381 

Harmful blooms might have intensified in the last decades due to eutrophication, elevated CO2 382 

concentrations, and global warming, and further increases in atmospheric CO2 and global 383 

warming may signify the problem of intensified HABs [11, 14, 98, 99] (but see also [17]). 384 

Nutrient limitation can also reduce the response of the growth of HABs to elevated CO2 and 385 

climate warming [98], suggesting that nutrient management can offer double benefits, i.e. 386 

reducing the effects of both water contaminants and climate change. Since HABs may be more 387 

influenced by climate change in eutrophic and hypertrophic lakes, these systems may be more 388 

vulnerable in the presence of low levels of contaminants [98]. 389 

 Contaminant-induced hormesis of HABs-forming algae impedes the efficacy of treatments 390 

against HABs, since hormetic stimulation of such algae has various positive effects, promoting 391 
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the recovery from and reducing the efficacy of anti-algae treatments such as H2O2, UVB-, UV-C, 392 

and CuSO4 and KMnO4 algaecides [43, 53, 54, 66, 67]. These findings suggest that higher 393 

amounts of algaecides would be needed to control HABs in contaminated environments. 394 

Especially, algaecides also cause hormesis with significant enhancement of intra- and extra-395 

cellular microcystins at sub-NOAEL doses, as opposed to inhibitory effects of super-NOAEL 396 

doses [30]. However, this would lead to further contamination with unknown implications for 397 

non-target organisms and the ecosystem. In the race to discover novel classes of algaecides with 398 

improved algaecidal properties [11, 100], hormetic effects should be considered in the effect 399 

testing and selection to avoid undesirable effects that may be opposite to the desired ones. 400 

 Our study leads us to the novel conclusion that contaminants produce equally important 401 

enhancement of phycotoxin with nutrient and climate change factors, indicating a potentially 402 

higher risk of contaminants for ecological and human health and adding a new dimension to the 403 

issue of HABs. The responses can be microcystin-specific, e.g. among microcystins LR, LW, 404 

and YR [35, 45]. Hence, further studies are needed to identify which microcystins are affected 405 

most by low, sub-NOAEL doses of contaminants and which pose the highest risk for toxicity to 406 

humans and other organisms via the food chain or direct interaction in contaminated 407 

environments. Effects of mixtures of biotoxins are under-investigated [4], and how low-dose 408 

effects modify mixtures of biotoxins and their effects on organisms directly interacting with the 409 

biotoxins or indirectly ingesting them via the food chain is currently unknown. Initially toxic 410 

effects of contaminants can change into stimulation (and vice versa) over time, and 1-3 weeks 411 

may be needed to reach the maximum stimulatory response [31, 36, 37, 39, 41, 45, 46, 48, 51, 412 

52, 60–62, 65–67]. Even if the stimulation is short-term or transient in the absence of renewed or 413 

continued exposure, this might translate to acute expansion of HABs that could further 414 

contaminate environment and pose risks to humans and other creatures.  415 
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 Low, sub-NOAEL concentrations of contaminants may also lead to changes in the species 416 

composition of algal assemblages [30, 51, 101]. They may even impair the chemosensory system 417 

of organisms depending on dissolved chemical cues for their survival by depleting inorganic 418 

carbon and highly elevating pH due to increased photosynthesis [102, 103]. For example, low, 419 

environmentally-relevant, stimulatory doses of a mixture of ciprofloxacin, sulfamethoxazole, and 420 

tetracycline antibiotics can enhance the competitiveness and increase the proportion of the 421 

‘harmful’ M. aeruginosa in a mixed culture of four phytoplankton species [51]. Similarly, 422 

algaecidal hydrogen peroxide at 0.2 mg L-1 increased and at 0.5-1.5 mg L-1 decreased the relative 423 

abundance of Anabeana, Microcystis, and Oscillatoria within a community of cyanobacteria and 424 

the relative abundance of Cyanobacteria within the prokaryotic community [30]. Considering 425 

also the toxic or even lethal effect of phycotoxins on interacting organisms, potential threats of 426 

such low concentrations of emerging contaminants and regulated pollutants to biodiversity and 427 

ecosystem services should also be considered in the agendas for protecting biodiversity and 428 

ecosystems.  429 

 The contaminant-induced hormesis in HAB-forming organisms creates a new challenge for 430 

traditional risk assessment to include effects below the traditional toxicological threshold. It also 431 

suggests that standard approaches cannot capture these effects of low and widely occurring 432 

concentrations of contaminants, urging for scientifically flexible approaches to permit more 433 

holistic evaluations of ecological risks. 434 
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Figure captions 743 

Fig. 1. Response of Microcystis aeruginosa to low, environmentally occurring concentrations of 744 

antibiotics mixtures. At these trace concentrations included in the study, there were no negative 745 

effects on these studied endpoints; however, the concentration-response relationship suggest 746 

negative effects would be expected at antibiotics concentrations larger than 0.5 μg L-1. The 747 

antibiotics were amoxicillin, ciprofloxacin, spiramycin, sulfamethoxazole, and tetracycline, and 748 

the exposure lasted 14 days under aseptic conditions in a constant-temperature illuminating 749 

incubator. Fv/Fm: maximum photochemical quantum yield of photosystem II (PSII). 750 

Microcystins refer to the total concentrations (μg mL-1). The data are based on [31]. Data 751 

extraction and calculation are described in Supporting Materials. 752 
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Fig. 2. Conceptual diagram of stimulation of cyanobacteria forming harmful algal blooms 764 

(HABs) by contaminants. The progressive anthropogenic impact on water bodies and the 765 

subsequent effects on algal ecology are of concern. Nutrient over-supply, leading to 766 

eutrophication and nutrient imbalance in water bodies, has long been known as a major factor 767 

driving algal ecology and thus HABs. However, recent studies now provide substantial evidence 768 

that trace chemicals in the waters exert significant influence on the ecology of major HABs-769 

forming organisms, such as the notorious cyanobacterium Microcystis aeruginosa. Trace 770 

chemicals enhance algal growth, biomass, and proliferation and boost the synthesis of harmful 771 

phycotoxins and their release in the environment. Such effects of low concentrations of 772 

chemicals alter population dynamics and can change algal community structure, containing 773 

toxigenic strains and potentially composed of more toxigenic individuals with more abundant 774 

phycotoxins. The broad hormesis literature indicates a highly generalized stimulation amplitude 775 

across species, suggesting the degree of stimulation of HABs-forming species is not expected to 776 

differ from that of non-HABs-forming plankton species. However, it also suggests that resistant 777 

HABs-forming organisms are expected to have a broader range of stimulatory zone and undergo 778 

stimulation at concentrations not affecting the average population or inhibiting susceptible 779 

subpopulation groups. These would facilitate the dominance of resistant toxigenic individuals 780 

within HABs due to their stimulation and dominance over non-resistant, non-toxigenic 781 

individuals. These indicate the possibility that HABs with enriched toxigenic individuals may 782 

increase by increased concentrations of trace contaminants. Light gray color arrows indicate 783 

causal drivers of human origin, whereas dark gray color arrows indicate major changes in water 784 

quality that are associated with HABs. Black arrows indicate HABs-related effects (bold text) 785 

that are now attributed to trace chemicals in the water bodies. 786 
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 Fig. 3. Underlying mechanisms of Microcystis aeruginosa stimulation by low-level antibiotics 788 

contamination. These responses occur at doses of contaminants that are smaller than the no-789 

observed-adverse-effect-level (NOAEL), i.e. toxicological threshold. The graphic illustrates 790 

major genes and proteins that are up- or down-regulated (oval boxes) and the underlying 791 

mechanisms they control (rectangle boxes). Further details about the molecular mechanisms can 792 

be found in the reviewed literature [31, 34, 66, 67, 43, 46–48, 51, 53, 54, 56].  793 
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