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Abstract: A widespread increase in intense phytoplankton blooms has been noted in lakes
worldwide since the 1980s, with the summertime peak intensity amplifying in most lakes.
Such blooms cause annual economic losses of multi-billion USD and present a major
challenge, affecting eleven out of the seventeen Sustainable Development Goals. Here, we
evaluate recent scientific evidence for hormetic effects of emerging contaminants and
regulated pollutants on Microcystis sp., the most notorious cyanobacteria forming harmful
algal blooms and releasing phycotoxins in eutrophic freshwater systems. This new evidence
leads to the conclusion that pollution is linked to algal bloom intensification. Concentrations
of contaminants that are considerably smaller than the threshold for toxicity enhance the

formation of harmful colonies, increase the production of phycotoxins and their release into
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the environment, and lower the efficacy of algaecides to control algal blooms. The low-dose
enhancement of microcystins is attributed to the up-regulation of a protein controlling
microcystin release (McyH) and various microcystin synthetases in tandem with the global
nitrogen regulator Ycf28, nonribosomal peptide synthetases, and several ATP-binding
cassette transport proteins. Given that colony formation and phycotoxin production and
release are enhanced by contaminant concentrations smaller than the toxicological threshold
and widely occurring in the environment, the effect of contaminants on harmful algal blooms
is more prevalent than previously thought. Climate change and nutrient enrichment, known
mechanisms underpinning algal blooms, are thus joined by low-level pollutants as another

causal mechanism.

Keywords: biphasic response; cyanobacteria; dose-response relationship; emerging

contaminants; harmful microalgal bloom; hormetic effect
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Introduction
Aquatic harmful algal blooms (HABSs) are considered a climate change co-stressor in freshwater

and marine ecosystems [1] as well as a major environmental issue that can severely affect
aquatic ecosystems, human health, and economy [2] (see also

https://www.epa.gov/nutrientpollution/harmful-algal-blooms). HABSs can result in acute human

illness, primarily due to phycotoxins ingested through contaminated seafood, direct skin contact,
or inhalation [3-5]. Blooms of harmful cyanobacteria also enter water supply systems in all
major continents but Antarctica [5-7]. The toxic effects of HABs are often similar to infectious
diseases, such as norovirus, thus making their diagnosis difficult or impossible [4]. Health risks
due to toxic HABs are linked with socioeconomic impacts, especially for human sub-populations
whose wellbeing depends on aquacultures and shellfish cultivation [4]. Lethal harmful blooms
might also be responsible for still mysterious species extinctions, e.g. dinosaurs [8]. They may
even delay ecosystem recovery following extinction events, as was the case after the end-
Permian extinction [9].

Algal blooms are linked with economic losses exceeding US$4 billion per year in the US
alone [10]. The dimension of the issue of HABs is gigantic considering that it affects 11 of the
17 UN Sustainable Development Goals set forth to be achieved by 2030, namely no poverty,
zero hunger, good health and wellbeing, clean water and sanitation, affordable and clean energy,
decent work and economic growth, sustainable cities and communities, sustainable consumption
and production, life below water, life on land, and partnerships for the goals

(https://www.unep.org/news-and-stories/press-release/tackling-harmful-algal-blooms) [10].

Hence, control and management of HABs [11] is of utmost importance for human welfare and
wellbeing, ecosystems health, and biosphere sustainability.

A widespread increase in intense freshwater blooms of phytoplankton has been noted
worldwide since the 1980s, with the summertime peak intensity increasing in most lakes [10, 12,

13]. Importantly, lake algal blooms exhibited a pronounced increase in the 2010s (except in
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Oceania) [14]. Climate change affects HABs in various ways, and climate simulations suggest
species-specific changes in the abundance of harmful algae in the next decades [4, 10, 15, 16].
However, the reasons of the global increase in intense blooms since the 1980s remain unclear
[17]. The phenomenon cannot be fully explained only by previously hypothesized environmental
drivers, such as fertilizer use, precipitation, and temperature, because of the absence of consistent
temporal matching [10, 12]. An analysis of about 9,500 events of HABs also suggests that the
intensification of HABs may be linked to increased aquaculture industry and marine exploitation
[17]. Moreover, anthropogenic factors (e.g. fertilizer, gross domestic product, and population)
may be stronger drivers of global algal bloom intensification than climatic factors (e.g.
temperature, wind speed, pressure, and rainfall) [12]. Stronger intensification of lake algal
blooms occurs in Asia, South America and Africa than in other regions, and is linked to the
persistent reliance of developing countries on agricultural fertilizers [12, 14]. However, these
regions are also often hot spots of contamination, including pharmaceutical pollution [18-20], a
factor hitherto unaccounted for in the evaluations of potential HABs driving mechanisms.
Hormesis is a biphasic dose response that is increasingly revealed in a vast array of plants
and other aquatic and terrestrial organisms exposed to a plethora of contaminants applied
individually or in mixtures [21-28]. That is, the responses to contaminants are opposite between
low sub-toxic doses and high toxic doses, with low doses commonly inducing positive effects on
individual organisms (Fig. 1). Such low doses are considerably below what was previously
thought to be a toxicological threshold below which no effects occur, and are now widely shown
to enhance the defense capacity of organisms, protect them against harmful drugs and other
stresses, and promote the development of resistance [21-28]. Such effects of low doses of
contaminants would be profoundly important for the control and management of HABs [11], e.g.

due to higher doses of algaecides that would be needed to counteract low-dose contaminant
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enhancement and prevent stimulation by low-dose algaecides. However, low-dose effects are
not accounted for in current HAB control strategies.

In this article we review evidence pertaining to the potential of contaminants to induce
hormesis in HABs-forming organisms. We discuss how this could affect HABs and control and
management programs, thus offering a novel perspective to address the HAB problem (Fig. 2).
We focus on Microcystis sp., which produce peptide hepatotoxins and neurotoxins, and which
are the most notorious HAB-forming cyanobacteria in eutrophic fresh water systems [5, 10, 29].
Microcystis sp. also dominated about one third of 76 lakes studied worldwide and are commonly
linked to exacerbation of bloom conditions [10]. While changes in harmful algae abundance and
HAB intensification are largely linked to climate change and eutrophication [4, 14-16], this
review suggests the possibility that pollution contributes to the intensification of HAB problem,
enhancing algal colony formation and boosting synthesis and release of harmful toxins, even at

pollutant concentrations hundreds-fold smaller than those considered toxic.

Occurrence of hormesis in harmful algae
This review revealed numerous studies showing that various chemicals often induce

hormesis in HAB-forming and toxin-producing cyanobacteria (blue-green algae) [30], in
particular in different strains of Microcystis aeruginosa [31-59] and in M. wesenbergii [60, 61].
However, hormetic responses were also revealed in the neurotoxin-producing Anabaena flos-
aquae [62] and the bloom-forming haptophyte Prymnesium parvum, which produces the
phycotoxin prymnesi [63]. Such hormetic responses were further identified in Synechocystis sp.
[51], which may also contribute to blooms formation [64]. These data indicate that contaminants
widely induce hormesis in some of the most abundant bloom-forming and toxin-producing
cyanobacteria (Fig. 1).

Hormetic responses of HAB-forming and toxin-producing cyanobacteria are induced by

many chemicals, such as arsenate [44, 45], environmental estrogens [65], chlorinated
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organophosphorus flame retardants (CI-OPFRs) [52], halogenated organic compounds [50],
heavy metals [37], hydrogen peroxide (algaecide) [30], and the principal compound of yellow
dye luteolin [32] and other allelopathic chemicals/algaecides [42, 58, 59, 62]. They were also
induced by various antibiotics [31, 34, 36, 39, 40, 43, 46-48, 51, 53, 54, 66, 67], nanomaterials
[56], polycyclic aromatic hydrocarbons [49], rare earths [33, 35], and several pesticides and
disinfectants [34, 38, 41, 57, 60, 63]. Hence, hormetic responses represent a universal
phenomenon across chemically diverse contaminants. The studies providing such evidence
commonly apply environmentally-relevant concentrations, demonstrating that realistic
concentrations widely enhance harmful algae and the production of microcystins. The occurrence
of contaminants (e.g. hydrophobic organic compounds) in the surface layers of some lakes with
frequent Microcystis blooms in the last decades provides support for this hypothesis [19].
Furthermore, concentrations of such contaminants (polycyclic aromatic hydrocarbons) are
positively associated with phytoplankton biomass in lakes, with biomagnification of these
contaminants during phytoplankton blooms [20].

The hormesis-inducing contaminants include regulated pollutants (e.g. heavy metals) but
also many unregulated global contaminants of emerging concern (not subject to regulation
limiting their concentrations in the environment), such as various agrochemicals, nanomaterials,
and pharmaceuticals [31-48, 50, 51, 53, 54, 56-60, 62, 63, 65-67]. This is of profound
importance since sub-NOAEL stimulation of such HABs-forming and toxin-producing
organisms cannot be captured by the traditional dose-response models. Importantly, multi-
component mixtures of same or different (e.g. herbicide-antibiotics) types of contaminants
widely induce hormesis in these cyanobacteria, which can persist in the presence of other co-
stressors too [31, 34, 66, 67, 35, 43, 48-51, 53, 54]. The presence of multiple contaminants can
change the concentrations at which low-dose stimulation occurs. For example, cell density of M.

aeruginosa significantly increased by the singular antibiotics ciprofloxacin and sulfamethoxazole
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and their combination at 0.05-0.2, 0.1-0.2, and 0.02-0.1 pg L, respectively, after 8 days of
exposure [48]. In another example, one-week-long singular exposures of M. aeruginosa to the
polycyclic aromatic hydrocarbons phenanthrene and benzo[«]pyrene and their mixture revealed
growth hormesis at <1000 pg L™ phenanthrene and at <279 ug L™ mixture, whereas singular
benzo[a]pyrene significantly inhibited growth at all tested concentrations (>200 pg L) [49].
Concurrent contaminants may even produce additive or synergistic effects on the low-dose
hormetic stimulation of microcystins and growth, indicating magnified hazard and risks [34, 48,
50]. Thus, the issue of contaminant-induced hormesis in such cyanobacteria becomes more

pressing because mixture effects are commonly neglected in ecological risk assessments.

Biological mechanisms of hormesis: driving harmful algal blooms
Hormetic responses of HAB-forming and toxin-producing cyanobacteria appear in electron

transport rate, fluorescence intensity, and photochemical quantum yield of PSII [31, 33, 54, 56,
57, 60, 61, 66, 67, 34-36, 41, 43, 48, 51, 53]. Chlorophylls and less frequently carotenoids also
respond in a hormetic fashion [33, 35, 38, 41, 43, 45-48, 52, 53, 61, 62, 65, 67]. For example,
tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a CI-OPFR, significantly increased chlorophyll
a and carotenoid concentrations in M. aeruginosa by ~27-32 % at 0.1 and 1 mg L™, whereas the
response returned to levels similar to the control or below [52]. Increasing concentrations of
reactive oxygen species (ROS) and decreasing ratio of high-potential to low-potential form of
cytochrome bssg also occur, suggesting thermodynamic transformation of cytochrome bsso,
whose states are modulated by nitric oxide, to yield mild ROS and enhance stimulation [31, 50,
52, 56-58]. ROS such as hydrogen peroxide are key molecules and essential in cell signalling
[68]. This mild increase in ROS contributes to overcompensation response of photosynthesis,
while cytochrome P450 is also an important component of the stress response and contaminant

biodegradation [31, 48]. Low doses of contaminants can also activate clathrin-mediated
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endocytosis to facilitate a swift absorption of macro- (C, N, P) and micro-nutrients (Ca, K, Mg)
to enhance chlorophylls, photosynthesis, growth, and microcystins production [33, 35].

As a result of the physiological hormetic controls (Fig. 3), cell density and proliferation,
growth rate, as well as biomass exhibit hormetic responses to contaminants [30, 31, 42, 43, 46—
53, 33, 54, 56-59, 66, 67, 34—37, 39-41]. These hormetic responses appear generally across
different stresses, highlighting that low, sub-NOAEL doses of contaminants can act in promoting
the growth of the population of harmful algae, forming more robust, dense, and competitive
colonies. The broad hormesis literature, including algae, demonstrates that the low-dose
enhancement is restricted by the limits of biological plasticity [21, 69—73]. Thus, the stimulation
is modest in amplitude, typically 30-60%, and rarely exceeding 100%, independently from the
organisms, biological mechanisms, and stressors [21, 69—73]. Similarly modest, but significant,
are also the responses of chlorophylls, photosynthesis, and harmful algal growth/densities or
proliferation to low doses of contaminants [31-47, 49-54, 5663, 65-67, 74]. For instance, the
stimulation of M. aeruginosa growth (cell density) by antibiotics was commonly less than 60%
and as a rule smaller than 100% [31, 34, 36, 43, 46-48, 53, 54, 66, 67]. These suggest a lower
effect amplitude of low, sub-NOAEL doses of contaminants to enhance HABs compared to
fertilization effect of N and P, which are essential nutrients providing substance for physiological
functioning and growth. However, regarding effect amplitude range, the contaminants
enhancement is similar to that of atmospheric partial pressure of CO, (pCO>) and warming effect
on marine harmful algae, mostly consisted of dinoflagellates [75], suggesting that contaminants
enhancement is equally important. Elevated pCO> overall increases HABs growth rate by 20%,
but the effect varies among species and strains, often being null or negative [75]. The growth
response of harmful algae to warming (+3-5 °C) is also highly variable and inconsistent across
species, strains, and latitude, including not only positive effect but often null or negative effect

[75]. Hence, regarding effect direction, it emerges that sub-NOAEL doses of contaminants have
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a similar potential to enhance harmful algal growth with the two major global change factors,
pCO:2 and temperature. Similar to the inconsistency and variability of N and P inputs, pCO> and
temperature effects [76], the contaminant effects, and thus the NOAELSs, the sub-NOAEL
concentrations stimulating growth, toxicities, and algaecide resistance, would vary
spatiotemporally and with chemical mode of action. However, except antibiotics, the number of
studies is limited for each of the many contaminants reported to induce hormesis, not permitting
a scientifically sound comparison among contaminants at this point of time. It is also possible but
not irrefutable that sub-NOAEL doses of contaminants may induce a more consistent and
universal enhancement of harmful algal growth than the two global change factors, pCO2 and
temperature, a hypothesis that remains to be tested.

Recent studies now shed light on the molecular mechanisms explaining the hormetic
responses of these cyanobacteria to antibiotics, widely applied as multi-component mixtures
(Fig. 3). The enhanced cell density or proliferation, growth rate, and photochemical quantum
yield of PSII by different multi-component mixtures of antibiotics alone or with herbicides in M.
aeruginosa is linked with increased energy generation by excitation of carbon metabolism and
photosynthesis, as indicated by several transcriptomic/proteomic alterations, as well as promoted
replication of DNA [31, 34, 43, 48, 54, 66, 67]. There are many genes involved in these hormetic
responses, and numerous proteins are up- or down-regulated to modify ATP, biosynthesis,
carbohydrate metabolism, carbon fixation/utilization, cell division, cell redox homeostasis,
chlorophyll synthesis, circadian rhythms, pentose phosphate, photosynthesis, gene/protein
transcription and expression, oxidation-reduction, quorum sensing, ribosome, translation, and
DNA and its repair [31, 34, 43, 46-48, 51, 53, 66, 67]. These genetic changes also modulate
transport proteins, ion homeostasis, cell division inhibitors, N compound metabolism, P

metabolism, and stress response [31, 34, 43, 46-48, 51, 53, 66, 67].
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This review revealed lack of studies reporting underlying molecular mechanisms of
hormesis induced by contaminant types other than antibiotics. Nevertheless, a limited number of
studies suggest similar molecular mechanisms for different contaminants. Specifically, low-dose
graphene oxide nanomaterials improved photosynthetic performance of M. aeruginosa and
enhanced the production of microcystins while increasing the abundance of sull, sul2, tetW, and
tetM in wastewater and the gene copy numbers of mcyA-J [56]. The hormetic stimulation of M.
aeruginosa by sub-NOAEL doses of CI-OPFRs also occurred in tandem with upregulation of the
type | NADH dehydrogenase (NDH-1) complex (ndhD1, ndhG, ndhH, ndhl, ndhJ, ndhL, ndhM)
and its mediated cyclic electron transfer pathway [52]. More studies are needed to unravel the
underlying molecular mechanisms of sub-NOAEL stimulation by various kinds of contaminants
as well as to understand how the composition of complex chemical mixtures affects the

underlying molecular mechanisms.

Microcystins
There are several toxins produced by HABs, which are a chemically diverse group of

secondary metabolites, posing a threat of aquatic resources and human health [77-80]. Species of
the genus Microcystis produce the hepatotoxins microcystins [5]. Such toxins can cause
profound effects on wildlife. For example, long-term studies recently suggest that neurotoxins
produced by the cyanobacterium Aetokthonos hydrillicola cause a neurological disease (vacuolar
myelinopathy) and lead to mass eagle deaths [81]. Not only do cyanotoxins affect other toxigenic
cyanobacteria [5], but microcystins are also found in drinking water, often at levels raising
concerns for human health [7]. Microcystis blooms occur in at least 108 countries, in 73% of
which microcystin is also detected [29]. Microcystins at concentrations found in the environment
during blooms (e.g. <1 to 300 pg L) dysregulate proteins, impair metabolism, modify DNA
repair, inhibit photosynthesis, and negatively affect the growth and reproduction of various

organisms [80, 82—85]. For example, concentrations of microcystins inhibiting photosynthesis of

10



268  aquatic plants ranged from as little as < 1 ug L™ to < 100 pg Lt after short- (<1 d) to long-term
269  (>7 d) exposures [80]. They can even be lethal and reduce population density, albeit low doses of
270  microcystins may initially produce positive effects, such as increased population density and
271  longevity, before turning into adverse [80, 82—84]. For instance, the LC50 values (dose killing 50%
272 of the population) for Ceriodaphnia dubia and Daphnia magna were 5.5 and 58.7 pg L™ [82].
273 In recognition of the profound effects of microcystins on ingesting organisms, we

274  evaluated how contaminants affect microcystins. We found that various contaminants induce
275  hormesis, promoting microcystins synthesis and elevating intracellular microcystins

276  concentrations [31-34, 43-48, 53-56, 65-67]. Microcystins are typically enhanced within 1-4
277  days and increase further and often remain elevated for nearly four weeks from exposure to

278  protect against stress in early stages and enhance the survival odds of alive cells in the algal

279  population [31, 32, 34-36, 43, 48, 53, 54, 56]. Even growth-inhibitory high doses of

280  contaminants such as antibiotics and microplastics can enhance microcystin production and

281  concentrations and release in the environment before suppressing it [36, 55, 59, 74]. Hence, low
282  or high sub-lethal doses can also increase the release of microcystins in the environment, and
283  total or extracellular microcystins decrease at lethal doses due to decreased cell density [31, 32,
284 36, 43, 44, 46-49, 54-56, 58, 65, 67, 86].

285 We estimated the average stimulation of the production ability or concentration of

286  microcystins by low, sub-NOAEL doses of contaminants at 57.9 % of the control value (95% CI
287  estimated at 53.7-62.1%, n = 203 dose responses) [30-36, 43-47, 53, 54, 56, 65-67]. This

288  stimulation was induced by concentrations on average 280.9 pg L™ (95% CI estimated at 146.9-
289  414.8 ug L, n =203 dose responses) [30, 31, 46, 47, 53, 54, 56, 65-67, 32—36, 43-45]. Low
290  doses enhancing production of microcystins are even 100-20,000 times smaller than the lowest
291  toxic concentrations inhibiting algal growth and production of microcystins [34, 36, 44, 45, 56].

292  Among the 203 dose responses analyzed, 93.6% were induced by concentrations <100 ug L™,

11
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while the majority (67.5%) of the dose responses were induced by concentrations <10 pg L. As
many as 60.6% of the dose responses were induced by concentrations as little as <0.6 pg L™.
Such concentrations occur widely in the environment. The majority of dose-response entries
concerned antibiotics (65.0%), followed by rare earth elements (22.7%), glyphosate (4.9%),
forms of arsenic (3.9%), and other stressors (hydrogen peroxide, luteolin, nanomaterials,
nonylphenol; 3.4%). The concentrations of antibiotics that enhanced microcystins ranged from
0.1 to 2000 ug L (average: 71.1 ug L), and 87.1% of these antibiotic stimulations were
induced by concentrations <0.6 pg L. The only concentration used for rare earth elements to
produce significant stimulation was 30 pg L. For glyphosate, the concentrations significantly
enhancing microcystins ranged between 0.5 and 5 pg L, a 10-fold range. However, a 10,000-
fold concentration range was used for arsenic forms (0.01-100 pg L™). For the limited number of
entries concerning hydrogen peroxide, luteolin, nanomaterials, and nonylphenol, the stimulatory
concentrations were 200, 6,500, 10, and 200 pg L, respectively. These results indicate that
highly variable concentrations of contaminants can enhance microcystins. Recalculation of the
doses after excluding the 13 dose-response entries with inducing concentrations >100 pg L™, the
average concentration was 9.9 pg L™ (95% CI estimated at 8.6-11.1 pug L™, n = 190 dose
responses) and the stimulation similar with the analysis including all dose responses
(average=59.2%; 95% CI estimated at 54.7-63.7%, n = 190 dose responses).

Microcystins are also enhanced by high sub-lethal doses that are inhibitory at the level of
individual organisms. We found this stimulation to be on average 6.5 (95% CI estimated at 5.4-
7.5 times; n = 25 dose-response assays) and often about 10-22 fold higher than the control value.
These are induced by very high or extreme concentrations of contaminants, for example
concentrations that can be 10° higher than those occurring in the environment increased the early
microcystin production 5.7 times [55]. Such stimulation is well beyond the known common

range of hormetic low-dose stimulation and may indicate a failure to keep microcystin
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production below the ranges of biological plasticity, indicating a forthcoming damage to the
organism. Increased release of microcystins in the environment due to very high, toxic doses can
be explained by such doses causing cell rupture and release of microcystins from the cells into
the extracellular space [49, 56]. Thus, we show here that sub-lethal doses of contaminants, both
low sub-NOAEL and high super-NOAEL, enhance microcystins.

The general increase of microcystins by low, sub-NOAEL (and often sub-lethal)
concentrations of contaminants suggests that contaminants can intensify not only HABs but also
phycotoxins. This effect of contaminant on microcystins may be more consistent and universal
than what is currently known for other HABs-forming organisms and toxins in response to
climate change factors and nutrients; a hypothesis requiring experimental validation. For
example, overall toxin content in marine harmful algae does not show a significant response to
elevated pCO> or warming across studies, while some toxins (e.g. brevetoxins and paralytic
shellfish poisoning) produced by specific species or strains (e.g. Alexandrium spp. and Karenia
brevis) even decrease [75]. Cellular microcystin and paralytic shellfish poisoning toxins also
show an overall non-significant response to N and are increased by P limitation by 88 and 100%
respectively, across studies and species [87]. Across taxa, N-rich phycotoxins decrease by 60%
under N limitation and increase by 71% under P limitation [87], suggesting a potential
antagonistic effect between N and P on phycotoxins. However, the response to N and P
limitation varies across strains, species, and genera [87]. Especially cyanobacteria, and some
species or strains, including Microcystis strains, exhibit no significant or opposite responses than
the majority of species or strains [87]. Hence, an emerging hypothesis is that the effects of
contaminants at low sub-NOAEL and sub-lethal concentrations on phycotoxins deserve equal
consideration.

The molecular mechanisms controlling the hormetic responses of microcystins to

contaminants are now revealed (Fig. 3). The enhanced synthesis and concentrations of

13



343  microcystins are due to the up-regulation of microcystin synthetases and McyH, the protein
344 regulating microcystin release, in tandem with nonribosomal peptide synthetases, the global
345  nitrogen regulator Ycf28 binding the mcyA/D initiation codon of the microcystin synthetase
346  gene cluster, and several ATP-binding cassette transport proteins [34, 43, 46-48, 53, 54, 56, 66,
347  67]. These molecular mechanisms now provide the opportunity to develop relevant chemicals
348  blocking the expression of these proteins and genes to inhibit the synthesis and release of

349  microcystins into the environment.

350 Unanswered questions and the path forward
351 Our research synthesis now suggests that emerging contaminants and regulated pollutants

352  can contribute to intensification of HABs and enrichment of phycotoxins. While the prediction of
353  the time and place of the occurrence of HABs is advancing, such hormetic effects are not

354  considered, presenting a challenge for the monitoring and early warning systems of (harmful)
355 algal blooms [88-90]. These hormetic effects also limit the effectiveness of climate change

356  simulations, indicating the need for their representation in climate-HABs models as well as
357  climate change impact predictions [88, 91]. The enhancement of harmful algal growth by

358  contaminants is of similar magnitude and importance with that of pCO; and temperature, thus
359  contaminants effects should be given at least the same weight as for pCO; and temperature in
360  climate-HABs models.

361 The hormetic enhancement of harmful algae by low, sub-NOAEL doses of contaminants
362  suggests potential changes in the disease burden epidemiology, with likely effects beyond areas
363 that are currently known to be at risk [3]. This becomes of even greater concern in the light of
364  unknown interactive effects between climate change (e.g. documented changes due to global
365  warming [2, 4]) and environmental pollution, which could lead to antagonistic, additive, or

366  synergistic effects at low doses.
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Algal growth is restricted in nutrient-limited conditions [41], and hormetic responses
(including microcystins) depend on nutrient conditions. For example, elevated or limited
phosphate and nitrogen can accordingly enhance or limit the biodegradation of contaminants and
the low-dose stimulation [40, 44, 46, 47, 61]. Hence, integrated management is needed within the
framework of which nutrients will be optimized considering local levels of contamination, but
this requires further research. Nitrogen loading also promotes the abundance of microcystins-
synthesizing strains in particular (e.g. Microcystis and Planktothrix) [92], suggesting that HABs
may be promoted by atmospheric N deposition [93]. These also suggest interactive effects
between air pollutants and water contaminants, complicating the programs targeting the control
of HABs. Such interactive effects require further studies, considering also that the ratio of
concentrations between nitrogen and phosphorus may be more important in driving microcystins
responses to contaminants than the concentration of each nutrient separately [94-96]. The level
of phycotoxins depends on the cellular N:P ratio, and the importance of this becomes greater in
the light of the global N-P imbalance [87, 97].

Global warming can also extend the growing season, impacting the life cycle of HABs [98].
Harmful blooms might have intensified in the last decades due to eutrophication, elevated CO>
concentrations, and global warming, and further increases in atmospheric CO> and global
warming may signify the problem of intensified HABs [11, 14, 98, 99] (but see also [17]).
Nutrient limitation can also reduce the response of the growth of HABs to elevated CO2 and
climate warming [98], suggesting that nutrient management can offer double benefits, i.e.
reducing the effects of both water contaminants and climate change. Since HABs may be more
influenced by climate change in eutrophic and hypertrophic lakes, these systems may be more
vulnerable in the presence of low levels of contaminants [98].

Contaminant-induced hormesis of HABs-forming algae impedes the efficacy of treatments

against HABs, since hormetic stimulation of such algae has various positive effects, promoting
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the recovery from and reducing the efficacy of anti-algae treatments such as H.O,, UVB-, UV-C,
and CuSO4 and KMnO4 algaecides [43, 53, 54, 66, 67]. These findings suggest that higher
amounts of algaecides would be needed to control HABSs in contaminated environments.
Especially, algaecides also cause hormesis with significant enhancement of intra- and extra-
cellular microcystins at sub-NOAEL doses, as opposed to inhibitory effects of super-NOAEL
doses [30]. However, this would lead to further contamination with unknown implications for
non-target organisms and the ecosystem. In the race to discover novel classes of algaecides with
improved algaecidal properties [11, 100], hormetic effects should be considered in the effect
testing and selection to avoid undesirable effects that may be opposite to the desired ones.

Our study leads us to the novel conclusion that contaminants produce equally important
enhancement of phycotoxin with nutrient and climate change factors, indicating a potentially
higher risk of contaminants for ecological and human health and adding a new dimension to the
issue of HABs. The responses can be microcystin-specific, e.g. among microcystins LR, LW,
and YR [35, 45]. Hence, further studies are needed to identify which microcystins are affected
most by low, sub-NOAEL doses of contaminants and which pose the highest risk for toxicity to
humans and other organisms via the food chain or direct interaction in contaminated
environments. Effects of mixtures of biotoxins are under-investigated [4], and how low-dose
effects modify mixtures of biotoxins and their effects on organisms directly interacting with the
biotoxins or indirectly ingesting them via the food chain is currently unknown. Initially toxic
effects of contaminants can change into stimulation (and vice versa) over time, and 1-3 weeks
may be needed to reach the maximum stimulatory response [31, 36, 37, 39, 41, 45, 46, 48, 51,
52, 60-62, 65-67]. Even if the stimulation is short-term or transient in the absence of renewed or
continued exposure, this might translate to acute expansion of HABs that could further

contaminate environment and pose risks to humans and other creatures.
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Low, sub-NOAEL concentrations of contaminants may also lead to changes in the species
composition of algal assemblages [30, 51, 101]. They may even impair the chemosensory system
of organisms depending on dissolved chemical cues for their survival by depleting inorganic
carbon and highly elevating pH due to increased photosynthesis [102, 103]. For example, low,
environmentally-relevant, stimulatory doses of a mixture of ciprofloxacin, sulfamethoxazole, and
tetracycline antibiotics can enhance the competitiveness and increase the proportion of the
‘harmful” M. aeruginosa in a mixed culture of four phytoplankton species [51]. Similarly,
algaecidal hydrogen peroxide at 0.2 mg L* increased and at 0.5-1.5 mg L™ decreased the relative
abundance of Anabeana, Microcystis, and Oscillatoria within a community of cyanobacteria and
the relative abundance of Cyanobacteria within the prokaryotic community [30]. Considering
also the toxic or even lethal effect of phycotoxins on interacting organisms, potential threats of
such low concentrations of emerging contaminants and regulated pollutants to biodiversity and
ecosystem services should also be considered in the agendas for protecting biodiversity and
ecosystems.

The contaminant-induced hormesis in HAB-forming organisms creates a new challenge for
traditional risk assessment to include effects below the traditional toxicological threshold. It also
suggests that standard approaches cannot capture these effects of low and widely occurring
concentrations of contaminants, urging for scientifically flexible approaches to permit more

holistic evaluations of ecological risks.
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Figure captions

Fig. 1. Response of Microcystis aeruginosa to low, environmentally occurring concentrations of
antibiotics mixtures. At these trace concentrations included in the study, there were no negative

effects on these studied endpoints; however, the concentration-response relationship suggest
negative effects would be expected at antibiotics concentrations larger than 0.5 pg L. The

antibiotics were amoxicillin, ciprofloxacin, spiramycin, sulfamethoxazole, and tetracycline, and

the exposure lasted 14 days under aseptic conditions in a constant-temperature illuminating

incubator. Fv/Fm: maximum photochemical quantum yield of photosystem 11 (PSII).

Microcystins refer to the total concentrations (ug mL™). The data are based on [31]. Data

extraction and calculation are described in Supporting Materials.
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Fig. 2. Conceptual diagram of stimulation of cyanobacteria forming harmful algal blooms
(HABS) by contaminants. The progressive anthropogenic impact on water bodies and the
subsequent effects on algal ecology are of concern. Nutrient over-supply, leading to
eutrophication and nutrient imbalance in water bodies, has long been known as a major factor
driving algal ecology and thus HABs. However, recent studies now provide substantial evidence
that trace chemicals in the waters exert significant influence on the ecology of major HABs-
forming organisms, such as the notorious cyanobacterium Microcystis aeruginosa. Trace
chemicals enhance algal growth, biomass, and proliferation and boost the synthesis of harmful
phycotoxins and their release in the environment. Such effects of low concentrations of
chemicals alter population dynamics and can change algal community structure, containing
toxigenic strains and potentially composed of more toxigenic individuals with more abundant
phycotoxins. The broad hormesis literature indicates a highly generalized stimulation amplitude
across species, suggesting the degree of stimulation of HABs-forming species is not expected to
differ from that of non-HABs-forming plankton species. However, it also suggests that resistant
HABs-forming organisms are expected to have a broader range of stimulatory zone and undergo
stimulation at concentrations not affecting the average population or inhibiting susceptible
subpopulation groups. These would facilitate the dominance of resistant toxigenic individuals
within HABs due to their stimulation and dominance over non-resistant, non-toxigenic
individuals. These indicate the possibility that HABs with enriched toxigenic individuals may
increase by increased concentrations of trace contaminants. Light gray color arrows indicate
causal drivers of human origin, whereas dark gray color arrows indicate major changes in water
quality that are associated with HABs. Black arrows indicate HABs-related effects (bold text)
that are now attributed to trace chemicals in the water bodies.
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\Fig. 3. Underlying mechanisms of Microcystis aeruginosa stimulation by low-level antibiotics
contamination. These responses occur at doses of contaminants that are smaller than the no-
observed-adverse-effect-level (NOAEL), i.e. toxicological threshold. The graphic illustrates
major genes and proteins that are up- or down-regulated (oval boxes) and the underlying

mechanisms they control (rectangle boxes). Further details about the molecular mechanisms can
be found in the reviewed literature [31, 34, 66, 67, 43, 46-48, 51, 53, 54, 56].
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