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C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ
SEMIGROUPS

RAMON ANTOINE, FRANCESC PERERA, LEONEL ROBERT, AND HANNES THIEL

ABSTRACT. The uncovering of new structure on the Cuntz semigroup of a C*-algebra of stable
rank one leads to several applications: We answer affirmatively, for the class of stable rank one
C*-algebras, a conjecture by Blackadar and Handelman on dimension functions, the Global
Glimm Halving problem, and the problem of realizing functions on the cone of 2-quasitraces
as ranks of Cuntz semigroup elements. We also gain new insights into the comparability
properties of positive elements in C*-algebras of stable rank one.

1. INTRODUCTION

The Murray-von Neumann equivalence of projections is one of the fundamental concepts in
operator algebra theory. It serves as the basis for the type classification of von Neumann algebra
factors. Further, it leads to the construction of the Murray-von Neumann monoid of projections
and of its enveloping group, the Ky-group, both important invariants associated to a C*-algebra.
While the abundance of projections in a von Neumann algebra makes the Murray-von Neumann
monoid of projections a very appropriate invariant, this is less so for arbitrary C*-algebras, which
may lack any nontrivial projections. A general recipe to remedy this problem is to substitute
projections by positive elements. The Cuntz comparison relation among the positive elements of
a C*-algebra is a natural analogue of the Murray-von Neumann comparison of projections (with
some caveats). From this relation, the Cuntz semigroup is built in very much the same way that
the Murray-von Neumann monoid is constructed from Murray-von Neumann equivalence classes
of projections.

The Cuntz semigroup is a very sensitive device since it captures a great deal of the structure
of the C*-algebra it is attached to. In the early work of Cuntz, Blackadar, and Handelman
([Cun78, BHK2]), it was used as a tool to study the traces and quasitraces on a C*-algebra (which
induce functionals on the Cuntz semigroup). More recently, the Cuntz semigroup has been used
to formulate numerous “regularity properties" of the sort that appear in the classification program
for simple nuclear C*-algebras. Notably, almost unperforation in the Cuntz semigroup features
prominently in the classification program and in the work on the Toms-Winter conjecture; see
[Win12, Rer04, (CET ™19, [KR14| [Sat12l [TWWT5]. Yet another use of the Cuntz semigroup, and
of the functor associated to it, is as a classification invariant for nonsimple C*-algebras; see
[CE08, [Rob12].

We now briefly recall the definition of the Cuntz semigroup. Given a C*-algebra A and positive
elements a,b € A, we say that a is Cuntz subequivalent to b, and write a = b, if there is a
sequence (dyp,), in A such that d}bd,, — a in norm. We say that a is Cuntz equivalent to b, and
write a ~ b, if both @ < b and b X a occur. Let us consider these relations applied to the positive
elements of A ® K, where K denotes the C*-algebra of compact operators on a separable Hilbert
space. The Cuntz semigroup Cu(A) is the set of Cuntz equivalence classes of positive elements of
A ® K endowed with the order induced by Cuntz subequivalence and with the addition operation
induced by orthogonal sums. If instead of positive elements in A® K we consider positive elements
in matrix algebras over A, we arrive at the non-complete Cuntz semigroup W (A), which is the
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object originally defined by Cuntz in [Cun78]. We always have W (A) embedded in Cu(A), and
also that Cu(A) = W (A ® K) (see [CEIOg]). Our focus here will be largely on Cu(A).

A module picture of Cu(A) was made available by Coward, Elliott and Ivanescu in [CEI08]. In
this picture, one defines suitable notions of equivalence and subequivalence among the countably
generated Hilbert C*-modules over A. The set of such equivalence classes becomes an ordered
semigroup with the addition operation induced by direct sums and with the order induced by
the subequivalence relation. It was proved in [CEIO8] that the resulting object is isomorphic to
Cu(A), as defined above.

Recall that a unital C*-algebra has stable rank one if its set of invertible elements is dense,
while a nonunital C*-algebra has stable rank one if its unitization does. The class of C*-algebras
of stable rank one is closed under natural constructions such as matrix formation, corners, and
inductive limits. If A is a simple, unital, stably finite C*-algebra that absorbs the Jiang-Su
algebra Z, then A has stable rank one; see [Rpr04, Theorem 6.7]. Stable rank one in itself does
not constitute a regularity property of the kind encountered in the Elliott classification program,
such as Z-stability or finite nuclear dimension. For example, Toms’ examples of non-regular
C*-algebras in [Tom06, [Tom08b|] have stable rank one.

The Hilbert C*-modules picture of the Cuntz semigroup simplifies considerably for C*-algebras
of stable rank one: Cu(A) consists of the set of isomorphism classes of countably generated
Hilbert C*-modules over A with addition induced by direct sums and order by Hilbert C*-module
embeddings (see [CEIO8]). Also under the stable rank one assumption, the Cuntz subequivalence
relation on positive elements adopts a form closely resembling Murray-von Neumann equivalence:
a 3 b if and only if there is € A such that a = z*x and xz* € bAD (see [CES11], Proposition
2.5]).

In this paper we investigate the Cuntz semigroups of C*-algebras of stable rank one. By
unraveling fine structural properties of these objects, we are able to resolve relevant questions
on dimension functions and on divisibility and comparability properties of C*-algebras of stable
rank one. These results represent an advance in the theory of C*-algebras and push further the
work by the fourth author in [Thil7], as we detail below. One of our key results is as follows:

Theorem (3.5, B.8). Let A be a C*-algebra of stable rank one. Then Cu(A) has the Riesz
interpolation property. If A is also separable, then every pair of elements in Cu(A) has an
infimum, and addition in Cu(A) is distributive over the infimum operation.

This theorem proves especially useful when combined with the properties encapsulated in the
abstract axioms of Cu-semigroups. Equipped with these tools, we tackle a number of questions
which we describe next.

1.1. A conjecture by Blackadar and Handelman. Let A be a unital C*-algebra. A map d: W(A4) —
[0,00) is called a dimension function if it is additive, order-preserving and maps the class of
the unit to 1. In other words, a dimension function is a state on W(A). Denote by DF(A) the
set of all dimension functions endowed with the topology of pointwise convergence. Blackadar
and Handelman conjectured in [BHS82] that DF(A) is a Choquet simplex for all C*-algebras
A. This conjecture has been confirmed in a number of instances, but remains open in general;
see [Per97, BPTOS, [ABPP14. [dS16]. The Riesz Interpolation Property in the Cuntz semigroup
readily implies that DF(A) is a Choquet simplex. We thus confirm the Blackadar-Handelman
conjecture for all unital C*-algebras of stable rank one:

Theorem ({.1)). Let A be a unital C*-algebra of stable rank one. Then DF(A) is a Choquet
simplez.

1.2. The Global Glimm Halving Problem. A result of Glimm says that if a C*-algebra A
has an irreducible representation of dimension at least & € N, then there exists a non-zero *-
homomorphism from M} (Cy((0,1])) into A. The Global Glimm Halving Problem was formulated
for the first time by Kirchberg and Rgrdam in [KR02l Definition 4.12], while studying nonsimple
purely infinite C*-algebras (where it was termed the Global Glimm Halving Property). For a
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unital C*-algebra A, the problem asks to prove the existence for all k € N of a *-homomorphism
M (Co((0,1])) — A whose range generates A as a closed two-sided ideal, provided that A has
no nonzero, finite dimensional representations. Assuming an affirmative answer to this problem,
Kirchberg and Rgrdam show that the notions of pure infiniteness and weak pure infiniteness agree;
see [KR02, Theorem 9.1]. The Global Glimm Halving Problem has been answered affirmatively
whenever A has Hausdorff, finite dimensional, primitive ideal space (see [BK04al Theorem 4.3]),
and whenever A is a C*-algebra with real rank zero ([ER06]). The problem remains open in
general.

In [RR13], the Global Glimm Halving Problem is translated into an equivalence of divisibility
properties on the Cuntz semigroup of the C*-algebra. We rely on this alternative formulation in
order to solve the problem affirmatively for C*-algebras of stable rank one. In the unital case,
this reads as follows:

Theorem . Let A be a unital C*-algebra of stable rank one, and let k € N. Then A has
no nonzero representations of dimension less than k if and only if there exists a *-homomorphism
w: M (Co((0,1])) — A with full range.

We note that the theorem above does not require A to have no nonzero finite dimensional
representations. One does not expect that this strong solution of the Global Glimm Halving
Problem holds for general C*-algebras.

We also remark that the solution of the Global Glimm Halving Problem for stable rank one
C*-algebras is a significant step forward from the real rank zero case. Indeed, while the primitive
ideal space of a real rank zero C*-algebra has a basis of compact, open sets (hence, it is zero
dimensional if it is also Hausdorff), there is no dimensional restriction on the primitive ideal
space of a stable rank one C*-algebra. For example, if X is any compact, Hausdorff space and R
is the Jacelon-Razak algebra, then C'(X,R) has stable rank one by [Sanl2, Corollary 3.8], while
its primitive ideal space is homeomorphic to X. Thus, one cannot just think of C*-algebras of
stable rank one as generalized bundles over one dimensional spaces.

1.3. Realizing functions on QT(A) as ranks of Cuntz semigroup elements. As mentioned above,
the Cuntz semigroup was introduced in [Cun78] as a tool to study quasitraces on C*-algebras.
The seminal paper of Blackadar and Handelman [BH82|] continued the study of quasitraces and
states on the Cuntz semigroup. This work was extended further in [BK04b] and [ERST1I], in
order to allow for [0, co]-valued quasitraces and functionals. It follows from these works that
a lower semicontinuous [0, oo]-valued 2-quasitrace 7 on a C*-algebra A gives rise to a function
d,: Cu(A) — [0, 0] that preserves addition, order and suprema of increasing sequences. More
precisely, given a positive element a € A ® K, we set

d-([a]) = nlggof(al/n).

Let QT(A) denote the set of lower semicontinuous [0, co]-valued 2-quasitraces. Fix an element
[a] € Cu(A) and consider the map QT(A) — [0, 00] given by 7 — d-([a]). This is called the
rank induced by [a]. (Observe that if A = M,,(C) and 7 is the normalized trace on M,,(C), then
d-([a]) is the rank of a.)

The rank problem asks to describe the functions on QT(A) that arise as ranks of elements
of Cu(A). Ranks of Cuntz semigroup elements are linear, lower semicontinuous, and satisfy
a technical approximation property whose definition we defer to The collection of all
functions with these properties is denoted by L(QT(A)). One can then ask, more concretely,
whether all functions in L(QT(A)) can be realized as ranks of Cuntz semigroup elements.

If A is simple, then nonzero functions in L(QT(A)) are in natural bijection with the lower
semicontinuous, affine functions defined on the simplex of normalized quasitraces QT(A); and
with values in (0, 00]. In this setting, the rank problem was first raised by N. Brown, and has
been solved in a number of instances: For simple C*-algebras that tensorially absorb the Jiang-Su
algebra Z, the problem is solved in [BPTO08, Theorem 5.5] in the exact, unital case, and in
[ERS11) Corollary 6.8] dropping both exactness and existence of a unit. Assuming simplicity,
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exactness, strict comparison of positive elements, and that QT(A); is a Bauer simplex with finite
dimensional extreme boundary, a solution is obtained in [DT10].

The fourth author obtained in [Thil7, Theorem 8.11] a solution to the rank problem for every
separable, simple, non-elementary, unital C*-algebra A of stable rank one. More concretely, given
a lower semicontinuous, affine function f: QT(A); — (0,00], there exists a positive element
a € A® K such that d,([a]) = f(7) for all 7.

In this paper we extend the techniques developed in [Thil7] and obtain solutions to the rank
problem in different settings. By removing the assumptions of simplicity and existence of a unit
we obtain:

Theorem . Let A be a separable C*-algebra of stable rank one that has no nonzero,
elementary ideal-quotients (that is, there are no closed, two-sided ideals J C I of A such that
1/J is a nonzero elementary C*-algebra). Then every function in L(QT(A)) can be realized as
the rank of a Cuntz semigroup element.

In the unital case the previous result translates into the following theorem. (We show in
Theorem 9.3| that separability can be dropped in the theorem below.)

Theorem ([7.14). Let A be a separable, unital C*-algebra of stable rank one that has no finite
dimensional representations. Then every lower semicontinuous, affine function on QT(A)1 with
values in (0,00] can be realized as the rank of a Cuntz semigroup element.

These realization results are key ingredients in establishing the results regarding comparability
properties in the next section.

1.4. Comparability properties. Comparability properties in the Cuntz semigroup, such as strict
comparison (equivalently, almost unperforation), m-comparison, and finite radius of comparison,
measure degrees of regularity of the C*-algebra; see, for example, [Robl1l [Tom06, [Tom08al
BRT™12|. For simple nuclear C*-algebras, the Toms-Winter conjecture asserts the equivalence
of the properties of Z-stability, finite nuclear dimension, and strict comparison (in the Cuntz
semigroup). Regularity in the Cuntz semigroup, however, may be encountered in C*-algebras
that are both non-nuclear and tensorially prime. For example, the reduced C*-algebra of the free
group on infinitely many generators has strict comparison.

The additional structure in the Cuntz semigroup brought about by the stable rank one property
entails that seemingly different comparability properties are in fact equivalent. Although our
results do not require the assumption of simplicity, we highlight here the simple unital case (see

for the relevant definitions):

Theorem (8.11} [8.12). Let A be a simple, unital, separable C*-algebra of stable rank one.

(i) A has finite radius of comparison in the sense of Toms ([Tom0Q6]) if and only if the
subsemigroup W (A) consists precisely of the elements in Cu(A) whose rank is a bounded
function on the set of 2-quasitracial states.

(ii) If A has either m-comparison for some m € N (in the sense defined by Winter in [Winl2])
or local weak comparison (in the sense defined by Kirchberg and Rordam in [KR14]) then
A has strict comparison.

In Section [9] we show that some of the results established in Sections [5] and [7] continue to hold
removing the assumption of separability. This is accomplished using results of model theory for
C*-algebras. For background on this theory, we refer the reader to [FHL™16].
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2. PRELIMINARIES

In this section we recall basic notions concerning the Cuntz semigroup of a C*-algebra and
the category Cu it belongs to. For a fuller account, we refer the reader to [APT11], [ORTII],
[APT18], and the references therein.

2.1. The Cuntz semigroup. Let A be a C*-algebra. Denote by A, the positive elements in A.
Let us recall the definition of the Cuntz semigroup of A in terms of positive elements: Given
a,b € Ay, one says that a is Cuntz subequivalent to b, denoted a 3 b, if there exists a sequence
(dn)n in A such that d}bd, — a in norm. The elements a and b are Cuntz equivalent, denoted
a~b,if a3 band b3 a. This is an equivalence relation. Let [a] denote the equivalence class of
a. The Cuntz semigroup of A is defined as

Cu(A)={[a] :a € (A®RK)}.

That is, Cu(A) is the set of Cuntz equivalence classes of positive elements in the C*-algebra
A® K. (Here, and in the sequel, K denotes the C*-algebra of compact operators on the Hilbert
space 2(N).) The Cuntz semigroup Cu(A) is endowed with the order [a] < [b] if @ X b and
the addition operation [a] + [b] = [@’ + b], where o/, € (A ® K)4 are chosen in such a way
that a ~ a’, b ~ b and a’b’ = 0 (such elements always exist). In this way, Cu(A) is an abelian,
partially ordered semigroup.

Given € > 0 and a € A, we denote by (a — )y the element f.(a), where fc(t) = max(t —¢,0).
An important technical tool in Cuntz subequivalence is proved in [KR02, Lemma 2.2]: Given
a,b € Ay such that |ja — b|| < €, then there exists a contraction d € A such that (a —¢)y = d*bd
(and, in particular, (a — )4 3 b). It is also known, and commonly used, that if (a — ), 2 b for
all € > 0, then a 3 b.

Recall that a C*-algebra A is termed elementary if it is isomorphic to the C*-algebra of
compact operators on some Hilbert space. In this case, the map that assigns to each operator its
rank induces an isomorphism Cu(A) 2 N, where N = {0,1,...,00}.

We will focus largely on Cuntz semigroups of C*-algebras of stable rank one. As pointed out in
the introduction, in this case the Cuntz semigroup is isomorphic to the set of isomorphism classes
of countably generated Hilbert C*-modules over the C*-algebra. The Hilbert C*-modules picture
of Cu(A) is developed in [CEIO8]. In the case that A has stable rank one, this picture adopts the
following simpler form: given Hilbert C*-modules H; and Hs over A, we have [Hy] < [Ho| if Hy
embeds in Hy as a Hilbert C*-submodule, and [H1] + [Ha] = [H1 & Hs); see [CEIO8, Theorem 3].

2.2. The category Cu. Some of the properties of the Cuntz semigroup of a C*-algebra can be
abstracted into a category termed Cu, whose objects are called abstract Cuntz semigroups, or
simply Cu-semigroups. We recall the main definitions.

Throughout this paper all semigroups will be abelian, written additively, and with a zero
element denoted by 0. We will assume that our ordered semigroups are positively ordered. In
particular, if x + z = y for elements z,y, z in such a semigroup, then x < y.

Let S be an ordered semigroup. Given z,y € S, let us write z < y if whenever (y,,)n is
an increasing sequence in S such that the supremum sup,, y, exists and satisfies y < sup,, Yn,
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then there exists ng such that x < y,,. This is a transitive relation on .S, sometimes called the
way-below relation or also the compact containment relation; see |GHK™ 03l Definition I-1.1, p.49]
and [APTI8| Paragraph 2.1.1, p.11] for details. If x € S satisfies * < z, then we say that z is a
compact element.

The semigroup S is called a Cu-semigroup if it satisfies the following axioms:

(O1) Every increasing sequence in S has a supremum.

(O2) For each = € S there exists a sequence (z,), such that =, < z,41 for every n, and
T = sup,, Tn.

(03) If o' < z and ¥ <y, then 2/ + ¢/ <z +y.

(04) If (zn)n and (yn), are increasing sequences in S, then sup,,(z, + yn) = sup,, n, +Sup,, Yn.

We call a sequence (x,), satisfying z,, < x,4; for all n a <-increasing sequence. It is
sometimes also called a rapidly increasing sequence.

Given Cu-semigroups S and T, a Cu-morphism from S to T is a map S — T that preserves 0,
addition, order, the relation < and suprema of increasing sequences. The category Cu has as
objects the Cu-semigroups, and as morphisms the Cu-morphisms.

2.3. Tt was proved in [CEI08] that the Cuntz semigroup Cu(A) of a C*-algebra A is a Cu-semi-
group. Further, every *-homomorphism ¢: A — B between C*-algebras induces a Cu-morphism
Cu(y): Cu(A) — Cu(B) by sending the class of a € (A ® K)4 to the class of p(a) € (B® K).
This defines a functor from the category of C*-algebras to the category Cu. By [APTIS]|
Corollary 3.2.9.], this functor preserves arbitrary inductive limits (sequential inductive limits are
covered by [CEIO8| Theorem 2]).

2.4. Almost algebraic order. The Cuntz semigroup of a C*-algebra is known to satisfy an
additional axiom which we now describe. Let S be a Cu-semigroup. We say that S has almost
algebraic order, or that S satisfies axiom (O5), if given o/, x, z € S such that 2’ < x < z, there
exists w € S such that 2’ + w < z < o+ w. A consequence of (0O5) that we use frequently below
is that if < z and = is compact (that is, z < ), then  + w = z for some w € S.

If A is a C*-algebra, then Cu(A) satisfies (O5); see [RW10, Lemma 7.1]. In fact, a strengthening
of (05), defined in [APTI18| Definition 4.1], also holds for the Cuntz semigroups of all C*-algebras
(see [APT18| Proposition 4.6]). However, we will not make use of this stronger form of (O5) in
this paper.

2.5. A Cu-semigroup S is said to have weak cancellation if x + z < y + z implies x < y for all
x,y,z € S. This condition can be rephrased in a number of ways, which we include below for
completeness.

Lemma. Let S be a Cu-semigroup. Then the following conditions are equivalent:

(i) S has weak cancellation;
(ii) If x,y,z € S are such that x + 2 < y + z, then x < y.
(iii) If x,y,2,2' € S are such that t + z < y+ 2’ and 2’ < z, then x < y.

Proof. 1t is clear that (i) implies (ii). Assume (ii) and that z + z < y + 2’ for z,y, 2,2’ € S with
7' <« z. Let 2/ <« x. Then

P <+ <y+7.

By (ii), 2’ < y. Since 2’ is arbitrary, we get by (02) that z < y. Therefore (iii) is proved. Finally,
suppose that (iii) holds, and let z,y,z € S be such that x + 2 < y + 2. Choose ¢y <« y and
2! < z such that = + z <y’ + 2’. By (iii), # < ¥’ < y, and thus (i) holds. O

In the coming sections we make frequent use of the fact that if S has weak cancellation, then
it has cancellation of compact elements, that is, if x + 2 < y + z and z < z, then z < y. Indeed,
this follows at once from (iii) of the lemma above.

If A is a C*-algebra with stable rank one, then Cu(A) has weak cancellation. This is proven in
[RW10, Theorem 4.3] for the ‘non-complete’ version of the Cuntz semigroup W(A). The result
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can also be applied to Cu(A), since A ® K has stable rank one when A does, and, as mentioned
in the introduction, Cu(A) = W(A ® K) (see [CEIO8, Appendix]).

2.6. Let S be a Cu-semigroup. Recall that S is said to be countably based if there exists a
countable subset B C S such that every element in S is the supremum of a <-increasing sequence
with elements in B. If A is a separable C*-algebra, then Cu(A) is countably based; see for example
[APS11], or [Rob13, Proposition 5.1.1]. One important consequence of having a countably based
semigroup is recorded in the following basic result:

Lemma. FEvery upward directed set in a countably based Cu-semigroup has a supremum.

2.7. Let S be a Cu-semigroup. An ideal of S is an order-hereditary submonoid I of S that is
closed under suprema of increasing sequences. We define x < y to mean that = < y + z for some
z € I, and write  ~y y if both  <; y and y <; « happen. The quotient Cu-semigroup S/T is
defined as S/ ~j. We refer to [APT18, Section 5.1] for details.

If A is a C*-algebra and I is a closed, two-sided ideal of A, then the inclusion map I — A
induces a Cu-morphism Cu(I) — Cu(A) that identifies Cu(I) with an ideal in Cu(A). Further, it
was proved in [CRS10] that the quotient map A — A/I induces an isomorphism Cu(A4)/Cu(I) =
Cu(A/I). Moreover, the assignment I — Cu(/) defines a natural bijection between closed,
two-sided ideals of A and ideals of Cu(A); see [APTI18| Proposition 5.1.10].

The following proposition is a crucial ingredient in the proofs of Theorems 3.5 [3-8] and [7.2]
By embedding the Cuntz semigroup of a C*-algebra as an ideal of a larger Cuntz semigroup, it
introduces suitable compact elements associated to elements of the original Cuntz semigroup.

2.8. Proposition. Let A be a stable C*-algebra, and let a € A,. Then there exists a C*-algebra
B and a projection p, € B such that:

(i) A is a closed, two-sided ideal of B.
(ii) For x € Cu(A), we have x < [a] in Cu(A) if and only if x < [pa] in Cu(B).
(iii) If A has stable rank one, then so does B.

Proof. In order to construct B, we first consider the (right) Hilbert C*-module H = aA. Since
H is singly generated, it follows from Kasparov’s stabilization theorem ([JT91, Theorem 1.1.24])
that H is a direct summand of ¢2(A). That is, there is a Hilbert C*-module H’ such that
aA @ H' = (2(A). On the other hand, since A is a stable C*-algebra, (2(A) = A as Hilbert
C*-modules ([JT91, Lemma 1.3.2]). Thus, aA is isomorphic to a complemented Hilbert C*-
submodule of A. Denote by M(A) the multiplier algebra of A, which is isomorphic to the
algebra of adjointable operators on A (see, for example, [JT91l p.5]). Then the projection
onto the said submodule yields a projection p, € M(A) such that aA = p,A. We define
B = C*(p, 4) C M(A).

(i): By construction, A is a closed, two-sided ideal of B.

(ii): Let x € Cu(A). Since A is stable, there exists b € A1 such that = [b]. Suppose that
2 < [pg] in Cu(B). Then b 3 p, in B, and thus for every € > 0 there exists w € B such that
Ib — w*pw]|| < e. This implies that there is a contraction d € B such that (b —¢) = d*w*p,wd
(see[§ 2.1). Set v = p,wd € p,B. Then we have (b —¢); = v*v. As v*v € A and A is a closed,
two-sided ideal of B by (i), we also have v € A. Therefore v € p,BN A = p,A = aA. Now we
have that, as Hilbert C*-modules over A,

b—e) L A=v"vA2vw*ACp,AXaA.
(b—e)t

Thus, (b —¢); A embeds in aA. Hence (b — )4 = a, by [CEIOS| Section 6] (see also the proof of
[APTT11l Theorem 4.33], or [ORT11l, Proposition 4.6]). Since ¢ > 0 is arbitrary, we conclude that
x < [a] in Cu(A).

Conversely, suppose that z < [a] in Cu(A). To show that = < [p,] in Cu(B), it suffices to
prove that [a] < [pe] in Cu(B). The latter follows since

aB = ad = p,A C p,B,




C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ SEMIGROUPS 8

that is, aB embeds in p, B as Hilbert C*-modules over B.

(iii): Assume that A has stable rank one. By construction, B/A = C. Thus, B is an extension
of A and C, which both have stable rank one. Using [Rie83, Theorem 4.11], it follows that B has
stable rank one. O

3. RIESZ INTERPOLATION AND INFIMA

In this section, we prove that the Cuntz semigroup Cu(A) of any C*-algebra A of stable rank
one has the Riesz Interpolation Property. If A is also separable, then it follows that every pair
of elements in Cu(A) has an infimum. Further, this semilattice structure is compatible with

addition; see

In the sequel, we write z1,22 < y1,¥y2 to mean x; < y; for 4,5 =1,2.

3.1. The following axiom was introduced in [Thil7]. A Cu-semigroup S is said to satisfy axiom
(O6+) if for every a,b,c,z’,x,y',y € S satisfying

a<b+c, 2’<zx<ab, and v <y<a,c,
there exist e, f € S such that
a<e+f, <e<ab, and ¥y < f<a,c

Note that (O6+) is equivalent to the following property: for every a,b,c,z’,z € S satisfying
a < b+cwith 2/ < < a,b, there exists e € S such that a < e+ cand 2’ < e < a,b. The
equivalence between these two formulations is implicit in [Thil7, Lemma 6.3], and many times
we will use the latter.

Axiom (O6+) is a strengthening of the axiom (O6) of almost Riesz decomposition introduced
in [Rob13]. Unlike (O6), which is known to hold for the Cuntz semigroup of any C*-algebra,
there are C*-algebras whose Cuntz semigroup does not satisfy (O6+). However, it was shown in
[Thil7, Theorem 6.4] that the Cuntz semigroup of any C*-algebra of stable rank one satisfies
(06+).

3.2. Lemma. Let S be a Cu-semigroup, and let B C S be an order-hereditary subset of S that is
closed under suprema of increasing sequences. Define
B¢ = {x € S : there is y € B such that ¢ < y}

If B« is an upward directed set, then this is also the case for B.

Proof. Let xz,y € B. Choose <-increasing sequences (Zy ), and (¥, )n in S such that x = sup,, x,
and y = sup,, yn. Then x,,y, € B« for each n. Since B« is upward directed, there exists
21 € B¢ such that 1,91 < z1. Suppose that, for n > 1, there are z; < 29 < ... < z, in B¢
such that x,,y, < z,. Using again that B« is upward directed, we may choose z,,+1 € B« such
that Tp+1, Yn+1, 2n < 2nt+1. Now let z = sup,, z,. By construction x,y < z. Further z belongs to
B since by assumption this set is closed under suprema of increasing sequences. O

The lemma below is contained in [Thil7], though not explicitly stated. We reproduce the
proof here for convenience.

3.3. Lemma. Let S be a weakly cancellative Cu-semigroup satisfying (05) and (O6+), and let
e,x € S. Assume that e is compact. Then the set

{z €S:z<e, m}
s upward directed.

Proof. Since the set {z € S : z < e, x} is order-hereditary and closed under suprema of increasing

sequences, it suffices to show by that the set
{z/ € S : there is z € S such that 2/ < z < 6,1’}

is upward directed.
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Let 21, 2, € S be such that there are z1, 20 € S with
2y <z <ew, and 2h < 2z <e, .

By (05) applied to 2] < z1 < e, there exists w € S such that z{ +w < e < 21 +w. Since z; < z,
we obtain e < x + w. We now apply (O6+) to this inequality and 2} < 25 < e, 2. Thus, we find
y € S such that e < y + w and 25 < y < e, x. Hence

Zt+w<e<e<y+w,

where we have used that e is compact. By weak cancellation in S, we obtain 2] < y. Hence,
21,25 < y < e,x. Choose y' € S with 21,25 < ¢y < y. Then y has the desired properties. [

3.4. Recall that an ordered semigroup S has the Riesz Interpolation Property if given u,v,x,y € S
such that u,v < x,y, then there exists z € S with u,v < z < z,y.

3.5. Theorem. Let A be a C*-algebra of stable rank one. Then Cu(A) has the Riesz Interpolation
Property.

Proof. Let x,y € Cu(A). We must show that the set {z € Cu(A) : z < z,y} is upward directed.
If = is compact, this follows from We next reduce the general case to this case relying
on

We may assume that A is stable. Choose a € A, such that = = [a]. Applying [Proposition 2.§]
for A and a, we obtain a C*-algebra B with stable rank one that contains A as a closed, two-sided
ideal, and a projection p, € B such that z € Cu(A) satisfies z < z if and only if z < [p,]. Since
[pa] is compact in Cu(B), and since B has stable rank one, it follows from that the
set {z € Cu(B) : z < [pa],y} is upward directed. The inclusion A C B identifies Cu(A4) with an
ideal in Cu(B). We claim that

{zeCu(A):2<z,y} ={z€CuB):z<|p vy},

from which the result will follow.
Indeed, the inclusion ‘C’ follows using that z < [p,]. To prove the converse inclusion, take
z € Cu(B) such that z < [p,],y. Since Cu(A) is an ideal of Cu(B) and y € Cu(A), we have

z € Cu(A). Now, since also z < [pg], we may use [Proposition 2.8 (ii) to conclude that z < z. O

3.6. Inf-semilattice ordered semigroups. Recall that a partially ordered set S is called an inf-
semilattice, or also a meet-semilattice, if for every pair of elements x and y of S, the greatest
lower bound of the set {z,y} exists in S. We shall follow the usual notation and denote such
infimum by = A y.

We say that an ordered semigroup S is inf-semilattice ordered if S is an inf-semilattice and
addition is distributive over the meet operation, that is,

(3.1) (x+2)AN(y+2)=(xAy)+ 2,
for all z,y,z € S.

3.7. Lemma. Let A be a stable C*-algebra and let a € Ay. Let the C*-algebra B and the

projection p, € B be as in|Proposition 2.8 Let x € Cu(A) be such that [ps] A z exists in Cu(B).
Then [a] A x exists in Cu(A) and

[a] Az = [pa] Nz

Proof. Let w = [py] Ax. Since w < z and since Cu(A) is an ideal of Cu(B), we obtain w € Cu(A).
Now, we also have that w < [p,]. Hence, w < [a] by ii). Thus, w is a lower bound

for [a] and x.
To show that w is the largest lower bound, let y € Cu(A) satisfy y < [a] and y < =z.

Then y < [p,] in Cu(B), again by [Proposition 2.8(ii). Therefore y < [ps] A * = w. Hence,

[a] A x = [pa] Az, as desired. O

3.8. Theorem. Let A be a separable C*-algebra of stable rank one. Then Cu(A) is an inf-
semilattice ordered semigroup.
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Proof. Without loss of generality, we may assume that A is stable. By Cu(A) has
the Riesz Interpolation Property. Thus, given z,y € Cu(A) the set {z € Cu(A) : z < z,y} is
upward directed. Since A is separable, Cu(A) is countably based. Applying we conclude
that {z € Cu(A) : z < z,y} has a supremum, which is precisely = A y. Thus, Cu(A4) is an
inf-semilattice.

Claim: Given a,b,c € Cu(A), we have:

(3.2) a<b+c=a<(aNb)+ (aNc).

Indeed, applying (O6+) in a < b+ ¢ with x =2’ =y =y’ = 0, we obtain a < e + f for some
e < a,band f < a,c. The existence of infima proves the claim.
In order to prove the distributivity of A over addition, we only need to show that

(3.3) (x+2)AN(y+2) < (zAy)+ 2

for all x,y, z € Cu(A), as the opposite inequality is straightforward.

We will first prove in the case that both = and z are compact elements and then, through
successive generalizations, extend this to the general case.

Step 1: We show that the inequality is valid when x and z are compact. Let w =
(x+ 2) A (y+ 2z). Choose w' € Cu(A) such that w’ < w. Applying (O5) for the inequality
w < w < x4z, we find v € Cu(A) such that w'+v < z+2z <w+v. Weget z+2 <y+z+wv. As
A has stable rank one, Cu(A) has cancellation of compact elements (see and the comments
afterwards), and since z is compact by assumption, we obtain x < y+v. , x < (xAy)+o.
Adding z on both sides we get z + z < (z A y) + v + z. Hence, using that = + z is compact,

wrv<rtz<r+z< (T Ay) +2+0.

It now follows from weak cancellation that w’ < (z A y) + 2. Since w’ is arbitrary satisfying
w’ < w, the inequality holds.

Step 2: We show that the inequality is valid when = is compact. Write x 4+ z = [b], with
be A,. Let B and p, € B be the C*-algebra of stable rank one and the projection, respectively,
obtained in Let f = [py] € Cu(B), which is compact. Then = + z < f and
fAw=(z+2)Aw for all w € Cu(A), by [Lemma 3.7} Since z < f and x is compact, there

exists z’ € Cu(B) such that x 4+ 2’ = f (see[§ 2.4)). Let us show that 2’ is also compact. Since
x + 2/ = f is compact, there exists z”/ € Cu(B) such that 2" < 2’ and = + 2z = f. Hence
f=z+2 =xz+ 2", and by cancellation of compact elements in Cu(B), 2’ = 2" < 2. Thus 2’ is
compact.

Now =+ z < f = . + 2/, and by cancellation of compact elements in Cu(B), we have that
z < 2. Since z and 2’ are compact in Cu(B), we may apply Step 1 to conclude that

(@+2)Ay+2) <(zny) +2.

Since z < 2/, we get
(x+2)A(y+2) < (xAy)+ 2.
Using (3.2), we deduce that
@+2)Ay+2) < @ny) + (A (@+2) Ay +2)
(xAy)+ (2 A (z+2)).
The proof of Step 2 will be complete once we show 2z’ A (x + z) = 2. By cancellation of
compact elements, and since x is compact by assumption, this is equivalent to showing that
FA(x+2)+x=2+z.
Since x and z’ are compact elements in Cu(B), we may use Step 1 to obtain
(FA@@+2)+z=E+z)A(z+2+2).
Now, we apply at the second step and conclude
FHr)AN(z+z+a)=fA(z+z+2)=F+2)A(z+2z+2) =2+
Therefore (2/ A (z + 2)) + ¢ = z + x, as desired.

<
<
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Step 3: We show that the inequality (3.3|) holds in general. Choose a € A, such that © = [a].
Let B and p, € B be the C*-algebra of stable rank one and the projection, respectively, obtained

in Let e = [p,] € Cu(B). By Step 2, (3.3) holds in Cu(B) with e in place of x.
This means that

(et2)A(y+2)<(eny)+2z
Now, by we have e Ay = x A y. Therefore, the right hand side of the above
inequality is precisely (z Ay)+z. On the other hand, the left hand side dominates (z+2) A (y+ 2).

This proves the inequality in general. O
3.9. Remark. Let S be an inf-semilattice ordered semigroup, and let xgk) eSfork=1,...,n
and i =1,..., Ng. It follows from (3.1)) and induction that
n N n
(k)Y _ (k)
S (A= A ().
k=1 i=1 (61,rin) k=1

where (i1,...,4,) on the right hand side runs through {1,..., Ny} x --- x {1,..., N,}.

3.10. Remark. If S is an inf-semilattice ordered Cu-semigroup, then S satisfies (O6+). Indeed,
if we are given elements a, b, c,z’, z,vy’,y € S such that

a<b+tc, 2’<zr<ab, and v <y<a,c,

then let e = aAband f =aAc. We clearly have 2’ < z < e and 3y < y < f. On the other
hand, applying the formula obtained in at the second step, we obtain

a<(2a)AN(a+c)AN(a+b)A(b+c)=(anb)+(ahc)=e+ f.

3.11. Remark. Let S be an inf-semilattice ordered Cu-semigroup. Given z € S and an increasing
sequence (yn), in S, we have

sup(z A yn) = & A sup Y.
n n

Indeed, the inequality ‘<’ follows since for each & € N we have z Ay, < z A sup,, yn. To show
the converse inequality, let 2z’ € S be such that 2/ < x A sup,, y,. Since 2’ < sup,, yn, there
exists k£ € N such that 2z’ < yg. Since also 2’ < z, we obtain 2’ < z Ay, < sup,,(z A yp). Finally,
passing to the supremum over all z’ < A sup,, yn, the desired inequality follows.

Next, we note some consequences of [[heorem 3.8

3.12. Corollary. Let A be a separable C*-algebra of stable rank one, let I be a closed, two-sided
ideal of A, and let mr: A — AJI denote the quotient map. Then Cu(wy): Cu(A) — Cu(A/I)
preserves infima.

Proof. We view Cu(I) as an ideal of Cu(A) as in Since I is separable, Cu([/) has a largest
element that we denote by w;. Notice that 2wy = wy, and thus w; + Cu(A) is an ordered
subsemigroup of Cu(A). By [CRSI10, Theorem 1.1], Cu(ny) is an ordered semigroup isomorphism
from wy + Cu(A) to Cu(A/I). It thus suffices to show that the map z — 2 + wy from Cu(A)
to the subsemigroup wr + Cu(A) preserves infima. Indeed, for z,y € Cu(A) it follows from
Mheorem 3.8 that

(x+wr) A (y+wr)=(xAy) +wr. O

Another application of allows us to compute the Cuntz semigroup of a particular
case of pullbacks (see also [APS11l Theorem 3.3]).

3.13. Corollary. Let A be a separable C*-algebra of stable rank one, and let I,J C A be closed,
two-sided ideals of A. Then

Cu(A/(INJ)) = Cu(A/I) cu(ay(r+.0)) Cu(A/]),

where the right hand side denotes the pullback semigroup of pairs (5,t) € Cu(A/I) ® Cu(A/J)
such that s and t agree when mapped to Cu(A/(I + J)).
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Proof. As in the proof of given an ideal K of a separable C*-algebra B, we denote
by wg the largest element in Cu(K), and we identify Cu(B/K) with Cu(B) + wg. Thus Cu(rg)
is identified with the map Cu(B) — Cu(B) + wg given by z — z + wi.

Observe that wryj; = wr + wy. Therefore, the map Cu(A/I) — Cu(A/(I + J)) is identified
with the map Cu(4) + w;y — Cu(A) + wy + wy given by z — 2z + wy. Likewise, the map
Cu(A/J) — Cu(A/(I + J)) is identified with the map Cu(A) +wy — Cu(4) + w; + wy given by
2= z+wy.

Now, denote by S the algebraic pullback of the diagram

Cu(A) + wy

’

Cu(A) +wy — Cu(A) +wy +wy

We clearly have a map Cu(A4)4+wrns — S, given by z — (2 4wy, 24+ wy). Given z; € Cu(A)+wy
and zo € Cu(4) + wy with (z1,22) € S, we need to show that there exists a unique element
z € Cu(A) + wyns such that z +w; = 21 and 2z + wy = 29.

Existence: We show that z = 21 A 23 is as required. Since (z1,22) € S, we have

Ztwr=2twrtwy=2t+wrtwy=2z2+ws.
Using this equality at the second step, and at the first step, we obtain
(z1 ANze)+wr=(z1+wr) A(ze+wr) =21 A (21 +wy) = 21.
Symmetrically, (21 Az2)+wy = z9. Observe also that z € wrny+Cu(A). Indeed, since z; = 21 4wy
and wyny + wy = wy, we get
21+ Wing = 21 + Wi Fwing = 21 +wr = 21.

Similarly, zo + wrn; = z2. Applying again, we get

z+wing = (21 A 22) +wing = (21 +wing) A (22 twing) = 21 A 22 = 2.

Uniqueness: Suppose that 2’ € Cu(A) + wrny satisfies 2z’ + w; = 21 and 2’ + wy = z2. Notice

that wrny = wr A wy. Then, using [Theorem 3.8| at the third step, we obtain

= 4w =24+ (wrAwy) =G +wr) A Fwyg) =21 A2 = 2. O
3.14. Remark. fails to hold if we drop the stable rank one hypothesis. For
example, set A = M(C(S?)) and take I = M>(Co(U)) and J = M>(Co(V')), where U and V are
disjoint open caps of the sphere. Let p,q € M2(C(S?)) be rank one projections with different

classes in Ko(C(5?)). (For instance, p is 11 ® 1 and ¢ is the Bott projection.) Then the images
of p and ¢ are Cuntz equivalent in A/I and A/J, but [p] # [q].

4. A CONJECTURE OF BLACKADAR AND HANDELMAN

Let A be a unital C*-algebra. Using upper-left corner embeddings M, (A) — M,,;1(A), set
My (A) =, M, (A), which has the structure of a local C*-algebra. Recall that the classical
(non-complete) Cuntz semigroup W (A) of A is defined as

W(A) = Moo (A) 1/~
see [Cun78]. It can also be described as the subsemigroup of Cu(A) of those classes [a] with
a representative a € Moo (A)+. If A has stable rank one, then W(A) is a hereditary subset of

Cu(A) by [ABP11, Lemma 3.4], that is, whenever z,y € Cu(A) satisfy < y with y € W(A),
then z € W(A). Then W(A) may alternatively be described as
W (A) = {z € Cu(A) : x < n[d] for some a € Ay ,n € N}.
Following [Cun’8], we denote the Grothendieck group of W(A) by K§(A). It is a partially
ordered group with positive cone K(A);r = {Z -7 : y < z in W(A)}, where we denote by
T the image of x € W(A) in Kj(A). A state on KF(A) is an additive, order-preserving map

A: Kg(A) — R with A([La]) = 1.
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In [Cun78, Section 3|, Cuntz defined a (normalized) dimension function on A as a map
d: My(A); — [0,00) that satisfies d(a @ b) = d(a) + d(b) for all a,b € My.(A4)+, d(a) < d(b)
whenever a 2 b, and d(14) = 1. Each dimension function d induces a state Aq on KJ(A)
by setting Aq([a] — [b]) = d(a) — d(b), for a,b € My (A);. This defines a bijection between
the set DF(A) of dimension functions on A and the set St(KF(A)) of states on Kj(A) (see
[CunT8| Proposition 4.3], which is formulated for the case that A is simple, but works in general).
Moreover, it is straightforward to verify that this bijection identifies the natural structures of
DF(A) and St(Kj(A)) as compact convex sets.

In [BH82|, Blackadar and Handelman conjectured that DF(A) is always a Choquet simplex.
This has been confirmed for various classes of C*-algebras: in [Per97, Corollary 4.4] for C*-algebras
with real rank zero and stable rank one; in [ABPP14 Theorem 4.1] for certain C*-algebras with
stable rank two; in [dS16, Theorem 3.4] for C*-algebras with finite radius of comparison and
finitely many extreme quasitraces.

In view of results obtained in [ABPP14], it was asked in [ABPP14, Problem 3.13] for which C*-
algebras A is K} (A) an interpolation group. We answer this question affirmatively for C*-algebras
of stable rank one, thereby also confirming Blackadar and Handelman’s conjecture for these
C*-algebras. Recall that an interpolation group is a partially ordered abelian group G such that,
whenever x1,x2,y1,y2 € G satisfy x1,xo < y1,y2, then there is z € G with z1, 22 < z < y1, Y.

4.1. Theorem. Let A be a unital C*-algebra of stable rank one. Then K§(A) is an interpolation
group and DF(A) is a Choquet simplex.

Proof. By we know that Cu(A) has the Riesz Interpolation Property. This property
passes to W (A) since W(A) is hereditary in Cu(A4). Indeed, if u,v < z,y in W(A), then there
is w € Cu(A) such that u,v < w < z,y and, since W(A) is hereditary in Cu(A), we have
w € W(A). Now, the Grothendieck group of a semigroup with the Riesz interpolation property
is an interpolation group (see [Per97, Lemma 4.2]). Therefore K (A) is an interpolation group.
Finally, using for example [Goo86, Theorem 10.17], we obtain that St(Kj(A)) is a Choquet
simplex, and thus so is DF(A). O

5. THE GLOBAL GLIMM HALVING PROBLEM

The Global Glimm Halving Problem has been posed in various forms; see, for example, [BK04al,
Definition 1.2] and [ER06, Question 1.2]. We recall that one formulation is as follows: If A
is a unital C*-algebra without finite dimensional representations, is there a *-homomorphism
©: M2(Co((0,1])) — A with full range? (Recall that a subset of a C*-algebra is called full if it
generates the C*-algebra as a closed, two-sided ideal.) As mentioned in the introduction, this
question was first considered, implicitly, in [KR02) Section 4], where it was shown that if it has an
affirmative answer for a weakly purely infinite C*-algebra A, then A is in fact purely infinite. The
Global Glimm Halving Problem is solved affirmatively in [BK04a] for C*-algebras with Hausdorft
primitive spectrum of finite dimension, and in [ER06] for all C*-algebras of real rank zero.

In below we solve the Global Glimm Halving Problem affirmatively for separable
C*-algebras of stable rank one, by using an equivalence obtained in [RR13] between this problem
and certain divisibility properties in the Cuntz semigroup. We use and improve some of these
tools for the stable rank one case, and we even obtain a sharper result that characterizes when
a C*-algebra of stable rank one has irreducible representations of a given finite dimension.
Further, in [Theorem 9.1] we remove the separability assumption. Our line of attack consists of
first establishing results on divisibility of elements of Cu-semigroups, which are subsequently
translated into a solution of the Global Glimm Halving Problem.

5.1. Divisibility in Cuntz semigroups. Let S be a Cu-semigroup, x € S and k£ € N. Let us recall
the divisibility properties introduced in [RR13| Definitions 3.1, 5.1].

(i) Given n € N, we say that = is (k, n)-divisible if for each 2’ € S satisfying 2’ < = there
exists y € S such that ky < z and 2’ < ny.
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(ii) We say that x is (k,w)-divisible if for each o’ € S satisfying ' < x there exist y € S and
n € N such that ky < x and 2’ < ny.

(iii) Given n € N, we say that x is weakly (k,n)-divisible if for each =’ € S with «’ <« x there
exist y1,...,yn € S such that ky; < « for all j and 2’ < Z}l:l Yj-

(iv) We say that x is weakly (k,w)-divisible if for each 2’ € S with «’ < x there exist n € N
and y1,...,y, € S such that ky; < z for all j and 2’ < Z;;l Yj.

Observe that in (i) and (ii) we can always arrange for y to satisfy ky < = and 2’ < ny (rather
than ky < x and 2’ < ny), by first choosing z” € S such that z’ < z” < =z, then choosing § such
that kg < x and 2” < ng, and then choosing y such that y < § and 2’ < ny. Similarly, in (iii)
and (iv) y1,...,yn can be chosen such that ky; < x and 2’ < Z?Zl y; at no cost.

5.2. Given a Cu-semigroup S, and x € S. We set cox = sup,, nz, and we say that x is full
provided that y < ocox for any y € S. Let A be a C*-algebra and a € Ay. Then a is full in A if
and only if [a] is full in Cu(A). This follows for instance from the natural correspondence between
closed, two-sided ideals in A and ideals in Cu(A); see[§ 2.7l In [Lemma 6.6, we characterize
fullness of z in terms of the rank of x.

Given z and y in a partially ordered semigroup S, we say that y dominates x, and write = o y,
if there exists n € N such that z < ny.

5.3. Lemma. Let S be an inf-semilattice ordered Cu-semigroup, and let x,y1,...,yn be elements
in S such that v o<y, for k=1,...,n. Then x < A\, yx. In fact, if v < My, for all k, then
z < N(Aj_yyr) where N =n(M —1) + 1.

Proof. 1t is enough to prove the last assertion. Assume M € N is such that x < My for

k=1,...,n. Set N =n(M —1)+ 1. By Remark 3.9 we have
n N n N
S Au=3 Aw=A (L)
k=1 j=1k=1 k=1

where the infimum on the right hand side runs through all sums with N terms taken from the
set {y1,...,Yn}. Since N = n(M — 1) + 1, each of these sums contains at least one of the yy
repeated M times, whence it is greater than or equal to z. Thus, N(A!_, yx) is greater than or
equal to x, as desired. O

5.4. Lemma. Let S be an inf-semilattice ordered Cu-semigroup satisfying (05) and weak can-
cellation. Let k € N and 2, 2,91, ...,yn € S be such that ' < z, 2/ < 27:1 yj, and ky; < x

for each j. Then there exist z1, ...,z € S such that Zle zj <z and ¢’ « z; for each j. More
precisely, we have &' < Mz; where

M =max{n"(k—7r)+n""t:r=1,...,k}

Proof. We will prove the result by induction over k. The case k = 1 is trivial taking z; = x. Let
us assume k > 1 and that the result holds for k& — 1.

Let o/, z,y1,...,yn be as in the statement of the lemma. Choose yi,...,y,, € S such that
y; < y; for each j, and such that 2’ < E?Zl y;. For each j, choose y; € S such that
vy <y < y;. Apply (05) to (k —1)y; < (k — 1)y} <z to obtain w; € S such that

(k—=1Dy; +w; <z < (k—1)y] +w;.
Multiplying by & in 2 < (k — 1)y} + w; we get

kx < (k= 1)ky] + kw; .

Since (k — 1)ky} < (k — 1)z, we get by weak cancellation that x < kw; (see .
Set w = /\?=1 w;. Note that, since w; < x for all j, we have w < z. By [Lemma 5.3| we have
z < (n(k—1) + Dw. Choose w',w” € S such that w' < w” < wand =’ < (n(k—1) + 1)w'.
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Using (O5) in the inequality w’ < w” < x, we obtain & € S such that w' + Z < < w” + &. For

each j, we have
12

(k=1y; +w; <z <z+w".

Since w” <« wj, we get by weak cancellation that (k — 1)y’

i < Z. Hence, ) 7, ¢} < ni. Observe

also that, by [Remark 3.9
n (Zy;)/\i :/\ (n—l)(Zyﬁ—l—li
j=1 1=0 j=1

Further, any of the terms of the infimum on the right hand side is greater than Z?:l yg Since
x' < 3Ny, we have o’ < n((307-, yj) A #). Choose &’ such that 2’ < (3°7_, y;) A Z and
' < n&'. By construction, we can apply induction on &', Z,v},...,y, to find z1,...,2x_1 such
that Zf:_ll zi <Tand ' < Mgz fori=1,...,k— 1, where
My =max{n®(k—1—-s)4+n""t:s5=1,...,k—1}.

Set z;, = w’. We have

k

z; <T+uw <.
j=1

Moreover, ' < nz’ < nMyz; for j = 1,...,k —1 and 2/ < (n(k — 1) + 1)z,. Since M >
max{Myn,n(k — 1) + 1}, this completes the proof of the induction step. O

5.5. Theorem. Let S be an inf-semilattice ordered Cu-semigroup satisfying (0O5) and weak
cancellation. Let k € N and let x € S. Then x is weakly (k,n)-divisible for some n € N (weakly
(k,w)-divisible) if and only if x is (k, N)-divisible for some N € N ((k,w)-divisible). Moreover,
given n € N, the corresponding N may be chosen to depend only on k and n (and not on S or x).

Proof. The backward implications are clear. To show their converses, let 2’ € S satisfy »’ < x.
By assumption, there exist yi,...,y, € S such that ky; < z for all j, and 2’ < Z?Zl y;. Apply
to obtain M € N and z1,..., 2, € S such that 25:1 zj <z and ' < Mz, for each j.
Set N=FkK(M —1)+1and z = A z;. Then kz < z and 2/ < Nz by [Lemma 5.3 O

The following result is an improved version of [RRI13l Lemma 2.5] that is available for C*-
algebras with stable rank one.

5.6. Lemma. Let A be a C*-algebra with stable rank one. Let k € N, x € Cu(A), and b € Ay
satisfy kx < [b]. Then there exists a *homomorphism ¢: My(Co((0,1])) — bAb such that
[p(e11 ® ¢)] = x. (Here, we have identified My (Co((0,1])) with My @ Co((0,1]), and e11 @ ¢

denotes the elementary tensor of the diagonal matriz unit with the identity function.)

Proof. Since Cu(A) = Cu(A ® K), we may assume that A is stable and that  # 0. Given
¢,d € Ay, we write ¢ = d if there exists r € A with ¢ = r*r and rr* = d. Since A has stable rank
one, we have ¢ 3 d (Cuntz subequivalence) if and only if ¢ ~ d’ € dAd for some d’. The forward
implication is recorded in [CES11l Proposition 2.5] (see also [ORT11], 6.2]) and only requires the
assumption that dAd has stable rank one. The converse direction holds in general: if ¢ = 7*r
and r7* = d' € dAd, then c ~d' X d.

Choose pairwise orthogonal elements as,...,a;r € A; with [a;] = z for each j. Then
S laj] = [S5_1a;] = kx < [B]. Choose r € A with 3-5_ a; = r*r and rr* € bAb. Let

Jj=1

r = v|r| be the polar decomposition of r in A**. Set b; = v*a;v for each j. Then by,..., by
are pairwise orthogonal elements in bAb satisfying [b;] = [a;] = « for each j. Set ¢; = by /[|b1]|.
For j =2,...,k, we use that ¢; 3 b; to choose ¢; € bjAb; with ¢1 = ¢;. Then ¢y, c¢a,..., ¢ are

pairwise orthogonal, pairwise equivalent (in the sense of =) elements in bAb. As noted in [RR13)
Remark 2.3], we obtain a *-homomorphism ¢: My (Cy((0,1])) — bAb satisfying [p(ej; @ ¢)] = ¢;
for all j. In particular, [p(e11 ® )] = [c1] = [a1] = . O
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5.7. Theorem. Let A be a unital separable C*-algebra of stable rank one, and let k € N.
Then A has mo nonzero representations of dimension less than k if and only if there exists a
*-homomorphism ¢: My (Co((0,1])) — A with full range.

Proof. If m: A — M;(C) is a representation with j < k and ¢: My(Co((0,1])) — A is any
*_homomorphism, then m o ¢ = 0. Thus, ker(7) contains the ideal generated by the range of
any such ¢. If there exists ¢: My(Co((0,1])) — A with full range then 7 must be the zero
representation. This proves the easy direction.

Suppose now that A has no nonzero representations of dimension less than k. Let 1 € A be
the unit of A. We have by [RR13, Theorem 5.3] that [1] is weakly (k,n)-divisible in Cu(A) for
some n € N. Since A is separable and of stable rank one, Cu(A) is an inf-semilattice ordered
Cu-semigroup satisfying (O5) and weak cancellation. We thus obtain from that
[1] is (k, N)-divisible for some N € N. Hence, we can choose x € Cu(A) such that kx < [1] and
[1] < Nz. By there exists a *-homomorphism ¢: M (Co((0,1])) — A such that
[p(e11 ® 1)] = x. Since x is full, so is (e1; @ ¢) (see[§ 5.2) and ¢ has full range. O

5.8. Remark. It is possible to adapt the previous proof to nonunital C*-algebras. In this case,
however, rather than a *-homomorphism with full range, we obtain for each a € A in the Pedersen
ideal of A a *~homomorphism ¢: My (Cy((0,1])) — A such that the ideal generated by the range
of ¢ contains a (assuming that A has no nonzero representations of dimension less than k). This
can be improved if we start with the assumption that A has no elementary quotients. In this
case we can get ¢: My (Co((0,1])) = A with full range for each k € N, even in the nonunital case.
We prove this in [Theorem 5.12] below. We first establish an improved form of divisibility of full

elements (Theorem 5.11]) which will also be used in

5.9. Let S be a Cu-semigroup. Recall that 2z € S is said to be soft if for all 2’ € S with 2’ < x we
have (k4 1)a’ < kx for some k € N (see [APT18| Definition 5.3.1].) Recall that a subsemigroup
T of S is said to be absorbing provided that t + s € T for any t € T and s € S such that
s < oot. By [APT18| Theorem 5.3.11 (2)], the subsemigroup of soft elements in a Cu-semigroup
is absorbing. The following result is essentially [ERS11 Proposition 6.4], but we include a proof
for completeness.

Lemma. Let S be a Cu-semigroup. Let (x;); be a sequence in S such that x; o< x 41 for each j.
Then x = Y 72 x; is soft.

Proof. Let o’ € S satisfy 2’ < 3_7° ;. Then there exists n such that 2’ < 377, z;. We can
now find k£ € N such that 2;21 2; < krp4q and hence

n n+1 o)
(k+1)$/<kx,+zxj<k$/+k$n+1<k2$]‘<k z; = k. O
J=1 j=1 j=1

5.10. Lemma. Let S be a Cu-semigroup satisfying (O5) and weak cancellation, let y € S be full
and (3,w)-divisible, and let ¢1,co € S satisfy ¢1,co < 00. (Here, oo = ooy is the largest element
in S.) Then there exist z,w € S such that w is full, and

2z+w<y, c¢1,60X2z<KO00.
Proof. Choose 3’ € S such that 3’ < y and c1,co o< 3’. Then choose y” € S such that
y <y’ < y. Since y is (3,w)-divisible, we obtain Z € S such that 32 < y and y”  Z, as noted
at the end of [§ 5.1} Choose z € S such that z < Z and y’ « z. Applying (05) to 2z < 2z < v,

we obtain w € S such that
224w <y <224 w.

Then c1,c0 x Yy x z < Z < oo. Further, we have
y+2y =3y <6Z+3w, and 62 <K 2y,
whence we get y < 3w by weak cancellation (see§ 2.5). Thus, w is full. O
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5.11. Theorem. Let A be a separable C*-algebra of stable rank one that has no elementary
quotients. Then for every full element z € Cu(A) and every n € N there exists a soft full element
z € Cu(A) such that nz < x.

Proof. We first establish the following claim: Every full element in Cu(A) is (3,w)-divisible. To
prove the claim, let w € Cu(A) be full. Choose a € (A ® K) such that w = [a]. Set B = aAa,
which is a full hereditary sub-C*-algebra of AQK (see . Since A has no elementary quotients,
neither does A ® K. By Brown’s stabilization theorem, we have B @ K = A ® K. It follows that
B has no elementary quotients, and in particular no finite dimensional representations. Then w
is weakly (3,w)-divisible by [RR13, Theorem 5.3 (iii)]. Applying this implies that
w is (3, w)-divisible.

Now, to prove the theorem, it suffices to consider the case n = 2. Let « € Cu(A) be full.
Choose a <-increasing sequence (x;); with supremum . Set wy = « and zg = 0. We inductively
find z;,w; € Cu(A) such that

2zj+wj <’w]’,1, Tj,25—1 X 25 < 00

for j > 1, and such that w; is full for j > 0.

To find z;,w; for j > 1, assume that z;_; and w;_; have been chosen. Since w;_; is full,
it is (3,w)-divisible by the above claim. Applying |[Lemma 5.10| (with y = w;_1, ¢1 = z; and
¢y = zj_1), we obtain z;,w; € S with the claimed properties.

Set z = Z;‘;l z;. For each k > 1, we have

2z14+ .+ zp) <221+ o zp—1) Fwp—1 < 2(21 .-+ 2p—2) Fwg—2 < ... < wy,

and thus 2z < wo = x. Further, we deduce from z; o z;41 for all j and the lemma in that
z is soft. For each j, we have x; o z;41 < z and thus z; < ooz. Hence, x < ooz, and so z is
full. O

5.12. Theorem. Let A be a separable C*-algebra of stable rank one that has no elementary
quotients. Then for each k € N there exists a *-homomorphism ¢: My(Cy((0,1])) — A with full
range.

Proof. Let a € A4 be full, and let £ € N. Then x = [a] is full in Cu(A) (see [§ 5.2)). Using
Theorem 5.11} we obtain a full element z € Cu(A) with £z < . By |[Lemma 5.6} there exists a

*_homomorphism ¢: My (Cy((0,1])) = aAa C A such that [p(e11 ®¢)] = z. This *~homomorphism

has full range (see(§ 5.2]). O

6. THE CONE OF FUNCTIONALS AND ITS DUAL

In this section we provide basic results on the cone F(S) of functionals on a Cu-semigroup S
and its dual L(F'(S)). We formulate the problem of realizing functions in L(F'(S)) as ranks of
elements in S, which will be tackled in The main result of this section is [Theorem 6.12]
which shows that the natural map S — L(F(S)) preserves infima. This is used repeatedly in the
following sections.

6.1. Functionals. Let S be a Cu-semigroup. A map A: S — [0, 00] is called a functional if X is
additive, order-preserving, A(0) = 0, and it also preserves the suprema of increasing sequences.
Let us denote as customary the set of all functionals on S by F(S).

A functional X in F'(S) is said to be densely finite if every element of S can be written as a
supremum of an increasing sequence in {z € S : A(x) < oco}. This is equivalent to saying that
A(z) < oo whenever there exists & € S with z < Z. We denote by Fy(.S) the set of densely finite
functionals.

The set F(S) is endowed with operations of addition and scalar multiplication by nonzero,
positive real numbers (both defined pointwise). Further, F'(S) is equipped with a topology that,
in terms of convergence, is described as follows: Given A € F(S) and a net (\;);es in F(S), we
have \; — X\ if

limsup \;(z") < A(z) < liminf \;(z) for all ', € S such that 2’ < z.
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With this topology, F'(S) is a compact Hausdorff space; see [ERS11] Theorem 4.8].

Given a C*-algebra A, there is a natural bijection between F(Cu(A)) and the set QT(A) of
[0, oo]-valued, lower semicontinuous 2-quasitraces on A; see [ERSI1I, Theorem 4.4]. This bijection
sends A € F(Cu(A)) to 7x: A4 — [0, 00], given by

lla]l
ma(a) = / Al(a — 1) ])dt,

for a € A;. Given 7 € QT(A), the corresponding functional A\, € F(Cu(A)) is given by
M- ([a]) = lim,, T(a/™), for a € A,.
The following statements are equivalent:
(1) Ar € Fp(Cu(A)), that is, A, is densely finite;
(2) 7 is densely finite;
(3) 7 is finite on Ped(A)4, the positive part of the Pedersen ideal of A.
To prove this, set D, = {a € A} : 7(a) < oo}. Since 7 is order-preserving and satisfies
T(a+b) < 27(a)+27(b) for all a,b € A4 ([BK04DL Section 2.9]; see also [BH82], Corollary 11.1.11]),
we deduce that D, is a unitarily invariant, hereditary cone. It follows that span(D.) is an ideal
of A with D, = span(D. )N A,. Using that the Pedersen ideal Ped(A) is the smallest dense ideal
of A, we deduce that (2) and (3) are equivalent.
To show that (1) implies (3), let a € Ped(A)4. By properties of the Pedersen ideal, it follows
that @ < (a1 —€)4 + ... + (an, — €)4 for some ay,...,a, € A and € > 0. Then

7(a) <A ([a]) < Ax([(ar —e)4]) + - + Ar([(an — €)4]) < oo

To show that (3) implies (1), let z, & € Cu(A) with <« Z. Choose by,...,b, € Ay such that
x L [b1] + ...+ [bm]. Then choose € > 0 such that = < Z;n:l[(bj —¢)+]. Now it follows that

Ar () < o0, since for every b € A, and € > 0, we have (b — 5)3_/" < 2(b— %)+ and thus

Ar([(b=€)4]) = Hmr((b - 9)}") < T(2(b— §)4) < oc.

6.2. Extreme functionals and chisels. Let S be a Cu-semigroup. A densely finite functional
A € Fy(S) is said to be extreme if whenever p € F(S) and C € (0, 00) satisfy u < CA, then 1 =0
(the zero functional) or there exists ¢ € (0, 00) such that u = cA. Notice that the zero functional
is extreme.

Let A € Fy(S) be an extreme functional. If A is not the zero functional, we define the chisel
o at A as the function oy : F(S) — [0, 00] such that

0, if p=0;
ox(p) =q¢, ifp=cAandce (0,00);
o0, otherwise,
for p € F(S). We define op—the chisel at the zero functional—as the function that is zero at 0
and oo otherwise. It is straightforward to check that o is both linear (with respect to the cone

structure in F'(S)) and lower semicontinuous. The notion of chisel was first introduced in [Thil7].
Note that we are using a slight generalization of that definition.

6.3. Edwards’ condition. Let S be a Cu-semigroup and let A € F(S). We say that S satisfies
Edwards’ condition for \ if

(6.1) 1nf{)\1 )+ Aa(y) : A:/\1+)\2} :sup{)\(z) :zgx,y},

for all 2,y € S; see [APRT19] Definition 4.1]. By [APRT19, Theorem 5.3], if A is a C*-algebra,
then Cu(A) satisfies Edwards’ condition for all functionals on Cu(A4).

If X is extreme and densely finite, and A = A; 4+ Ao, then each of A\; and Ag is the zero
functional or a scalar multiple of A. Using this, one can show that the left hand side of is
min{A(z), A(y)}. Thus, S satisfies Edward’s condition for an extreme A\ € Fy(S) if and only if

min {\(z),A(y)} =sup {A(2) : z < z,y}
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for all 2,y € S. This form of Edwards’ condition appears in [Thil7, Definition 4.1].

If S is an inf-semilattice, then the right hand side of is A(x A y). Hence, in this case, S
satisfies Edward’s condition for an extreme, densely finite A if and only if min {\(z),A(y)} =
Az Ay) for all z,y € S.

6.4. Dual of F(S). Let S be a Cu-semigroup satisfying (O5). We now describe the appropriate
notion of dual for the cone F(S). Denote by Lsc(F(S)) the set of functions f: F(S) — [0, o0]
that are additive, order-preserving, homogeneous (with respect to nonzero, positive scalars),
lower semicontinuous, and satisfy f(0) = 0. We endow Lsc(F'(S)) with pointwise order, pointwise
addition, and pointwise scalar multiplication by nonzero positive scalars. Given z € S, we define
the function Z: F(S) — [0, oc] by evaluation, namely:

Z(A) = A(z), for A e F(5).

Then Z belongs to Lsc(F(S)). We call  the rank of x. Further, the map S — Lsc(F(S)) defined
by x — T preserves addition, order, and suprema of increasing sequences.

The realification of S, denoted by Sg, was introduced in [Rob13] as the smallest subsemigroup
of Lsc(F'(S)) that is closed under suprema of increasing sequences and contains all elements
of the form %/x\ for z € S and n > 1. It was proved in [Robl13| Proposition 3.1.1] that Sg is a
Cu-semigroup satisfying (O5); see also [APT18| Proposition 7.5.6]. We remark that Sg can be
identified with the tensor product of Cu-semigroups S ® [0, co] as defined and studied in [APT1S].

Given f,g € Lsc(F(S5)), we write f < g if f < (1 —¢€)g for some € > 0 and if f is continuous
at each A € F(S) satisfying g(A\) < oo. We denote by L(F(S)) the subsemigroup of Lsc(F(S))
consisting of those f € Lsc(F(S)) that can be written as the pointwise supremum of a sequence
(fn)nen in Lsc(F(S)) such that f, <0 fr41 for all n € N.

6.5. Lemma. Let S be a Cu-semigroup, let I C S be an ideal, and let \: I — [0,00] be a
functional. Define A: S — [0, 00] by

() = {)\(x), ifc el

00, otherwise.

Then X is a functional on S.

Proof. To show that A is order-preserving, let # < y in S. If y ¢ I, then A(y) = oo, and clearly
E\(x) < A(y). If on the other hand y € I, then x € I as well, since [ is an ideal of S, and thus
A(z) = M) < M) = Aly).

To prove additivity, let z,y € S. Observe that x+y € I if and only if both z,y € I. If x,y € I,
then 5 5 3

Az +y) =AMz +y) = AMx) + Ay) = A=) + Ay)-

On the other hand, if either 2 ¢ I or y ¢ I, then = +y ¢ I, and so A(z + ) = oo = A(x) + A(y).
Similarly, one proves that A preserves suprema of increasing sequences. O

The result below is known. We highlight it here for future reference as it will be used frequently.
Recall from that an element z in a Cu-semigroup S is said to be full if y < cox for all
yes.

6.6. Lemma. Let S be a Cu-semigroup satisfying (05).
(i) We have Sg = L(F(S)). Thus L(F(S)) is a Cu-semigroup and T € L(F(S)) for every
res.
(ii) Ifz,y € S and s,t € (0,00] satisfy v < y and s < t, then sT < ty.
(iii) For z,y € S, we have that x < ooy if and only if T < coy. In particular, x is full in S if
and only if T is full in L(F(S)).
Proof. (i) is a consequence of [Rob13, Theorem 3.2.1], and (ii) is exactly [Rob13 Lemma 2.2.5].
Let us prove (iii). Suppose that & < coy. Define A: S — [0,00] by A(z) = 0 if z < ooy

and A(z) = oo otherwise. Then A € F(S) (by , and Z(A) < ooy(A) = 0. Hence,
T < o0y. O
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The remarks above apply to Cuntz semigroups of C*-algebras. Given a C*-algebra A, we have
a natural map

Cu(A) = Cu(A)g = L(F(Cu(A))),

given by [a] — [a], for a € (A ® K)4, where [a](A) = A([a]) for all A € F(Cu(A)).

6.7. The problem of realizing functions as ranks. Let S be a Cu-semigroup satisfying (O5). Recall
that the function € L(F(S)) is called the rank of x € S. The problem of realizing functions on
F(S) as ranks of elements in S consists of finding necessary and sufficient conditions for the map

x + T to be a surjection from S to L(F(S)). In[Theorem 7.13| we solve this problem when S is
the Cuntz semigroup of a separable C*-algebra of stable rank one.

6.8. The problem of realizing full functions as ranks. Let S be a Cu-semigroup satisfying (O5)
and let f € L(F(95)).

Let us see that f is full if and only if f(A) = 0 implies A = 0 for A € F(S), that is, if f
is strictly positive on the nonzero functionals. Indeed, if f is strictly positive on the nonzero
functionals, then for any g € L(F(S)) we have g < ocof, and thus f is full. Conversely, suppose
that f is full and let A € F(S) be nonzero. Then there are x,y € S with 2 < y and such that
Z(A) # 0. Since f is full and T < 27 (see (ii)) we have T < nf for some n € N and
thus f(A\) # 0.

A variation on the problem of realizing functions on F'(S) as ranks is as follows: Under what
conditions is the map z — ¥ a surjection from the subsemigroup of full elements of S to the
subsemigroup of full elements of L(F(S))? In Theorems and we address this problem
when S is the Cuntz semigroup of a separable C*-algebra of stable rank one.

Assume that S contains a full, compact element u. In this case, the subsemigroup of full
elements of L(F(S)) admits a somewhat more concrete description, which we now give. Let Fy,(.S)
denote the set of functionals normalized at u, that is, the set of A € F'(S) such that A(u) = 1.
Then F,(S) is a compact, convex set. Let LAff(F,(S5))7 . denote the set of affine functions
f: Fu(S) — (0,00] such that f=1((¢,00]) is open and o-compact for all ¢ € R.

6.9. Proposition. Let S be a Cu-semigroup satisfying (05) and let u € S be a full, compact
element. Then the restriction map f — f|p,(s) is a bijection from the set of full functions in
L(F(S)) to LAfF(F,(S))7 .-

Proof. Well-definedness: Let f € L(F(S)) be full. As pointed out in[§ 6.8 f is nonzero on F,(95).
Hence, the range of f|r, (s is contained in (0, 0c]. Let ¢ € (0,00). By the lower semicontinuity
of f, we get that f=1((¢,00]) N F,,(9) is open in F,(S). To see that this set is also o-compact,
choose a <-increasing sequence (fy,), in L(F(S)) with f = sup,, f. Given n, we have f,, < fni1
in L(F(S)) by [ERS11, Proposition 5.1}, and since oou is the largest element of L(F(S)), we
conclude that f, ocu. As Ulp,(g) = 1, we get that f, is finite on F,(S). Then f,; is also finite
on F,(95), and since f, is continuous at functionals where f, 1 is finite, f,, is continuous on
F,(S). Hence, the sets on the right hand side of

Pl N FS) = | U (4 00 N Fu(S)),
n,m=1
are compact. It follows that the restriction f|g, sy belongs to LAff(F,(S5))% -

Injectivity: Let f, g € L(F'(S)) be full such that f|r, sy = g|p,(s). Given A € F(S), we need to
verify f(A) = g(\). This is clear if A(u) = 0 (since then A is the zero functional) or A(u) € (0, 00)
(since then ﬁ € F,(S)). So assume A(u) = co. The fullness of f implies that oof is the largest
element in L(F(S)). Since u is compact, we have U < 24 in L(F(S)) by [Lemma 6.6] (ii). Hence,
u < Mf for some M € N, and so f(\) = co. Analogously, we have g(\) = oc.

Surjectivity: Let g € LAff(F,(5))7 . By [AIf71, Corollary 1.1.4], there exists an increasing
net of affine, continuous functions g¢;: F,(S) — (0,00] with supremum g. Exploiting the o-
compactness of the sets g~1((¢,00]), we can choose from this net an increasing sequence (g, )»
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with supremum g; see [T'T15] Lemma 4.2]. Next, multiplying if necessary the functions g, by
scalars, we can arrange for g, < (1 — €,,)gn+1 for some €, > 0 and all n, while maintaining that
g = sup,, gn. For each n define g, : F(S) — [0, 0] by
Au)gn(A(u)7IN), if 0 < A(u) <
gn(A) =<0, ifA=0
00, otherwise.

Then g, < gn+1 for all n. Hence, § = sup,, g, belongs to L(F'(S)). We have g
the desired surjectivity.

F.(S) = g, proving

6.10. Lemma. Let S be an inf-semilattice ordered Cu-semigroup, let x,y € S, and let n € N.
Then (n(z Ay))"™ = (nx Any)” in L(F(S)).
Proof. We first establish the case n = 2. Using we have
3z Ay)=Bz) A2z +y) ARy +2z)A (3y).
Similarly,
2z A2y)+ (xAy) = Bx) A2z +y) A2y + ) A (3y).
This proves that 3(x A y) = (22 A 2y) + (x A y). Hence,
Q2 Ay)" + (@ Ay)" =2z A2)" + (z Ay)"

Since (z Ay)” is dominated both by (2(z Ay))" and by (2z A2y)”", we can cancel it in the equality
above to obtain (2(z A y))" = (2z A 2y)".

Applying the case n = 2 repeatedly, we arrive at (2F(z A y))" = (2kz A 2Fy)” for all k € N.

To complete the proof of the lemma, it now suffices to show that if the desired equality is true
for some n + 1 > 2, then it is also true for n. We have

(nzAny)+(xzAy)=n+DzAnz+y)A(ny+z)A(n+ 1)y
<(n+DzA(n+1y.
Hence, using that the desired equality is true for n 4+ 1, we get

(nz Any)" +(x Ay)" < ((n+ Dz A+ 1Dy)" = (n+1)(zAy)".

As before, we can cancel (z A y)" to conclude that (nz A ny) < (n(z Ay))". The converse

inequality is clear. O

6.11. Tt is not always the case that (2x) A (2y) = 2(x A y) for all x,y in the Cuntz semigroup
of a separable C*-algebra of stable rank one. Take for example a separable, unital C*-algebra
A of stable rank one and with 2-torsion in Ky (A), that is, such that 2¢g = 0 for some nonzero
g € Ko(A). Say g = [p] — [q] for projections p,q € My (A). Then e = [p] and f = [g] are compact
elements in Cu(A) such that 2e = 2f but e # f. We have (2e) A (2f) # 2(e A f). Indeed, suppose
for a contradiction that (2e) A (2f) = 2(e A f). Then

2e=(2e) AN 2f)=2(eNf)=(enf)+(enf)<e+ [

By cancellation of compact elements, we obtain e < f, and a symmetrical argument proves f < e,
which is impossible.

Let S be a countably based, inf-semilattice ordered Cu-semigroup satisfying (O5). By
S satisfies (O6+) and hence the weaker axiom (O6) introduced in [RobI3]. Thus
L(F(S)) is an inf-semilattice ordered Cu-semigroup, by [Rob13, Theorem 4.2.2]. In the proof
below we use [Rob13, Proposition 2.2.6], which asserts that x,y € S satisfy z < 7 if and only if
for every 2’ € S with 2/ < x and every £ > 0 there exist M, N € N such that 4 > 1 — ¢ and
Mzx' < Ny.

6.12. Theorem. Let S be a countably based, inf-semilattice ordered Cu-semigroup satisfying
(0O5). Then the map S — L(F(S)), given by x — T, preserves infima.
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Proof. Let x,y € S. The inequality Z A g > 7 A y is straightforward.
Claim: Let z € S and n > 1 satisfy %2 < Z,y. Then %3 < z Ay. To prove the claim, let
2" € S satisfy 2’ < z, and let € > 0. Since z < 7z, we can apply [Rob13, Proposition 2.2.6] to
obtain M7, N; € N such that %11 > 1—¢ and M2 < Nynz. Similarly, there exist Ms, N € N
such that % > 1—¢and Myz' < Nony. Then M;Noz' < NyNonx and My Nz’ < N1Nany, and
we get

min{M;j Ny, Mo N1 }2" < (N1 Nonz) A (N1 Nany).
Passing to L(F'(S)) and using [Lemma 6.10, we obtain that
min{M; Ny, Mo Ny }2' < (N1 Nanz) A (NyNany))" = Ny Non(z A ),

and since
min{MlNg, MQN]}
N1 N> ’

(1-e)<

we get (1—¢)% < Z Ay. The claim follows using that 2 = SUP,/, SUP. (1 — £)z.
To prove the theorem, we use that L(F(S)) = Sr as noted in (i), which allows

us to choose a sequence (zx) in S and a sequence (ny)x of positive integers such that (Z&)y
is increasing with supremum Z A 3. For each k, we have Z—’: < 7,7 and thus Z—’; < Ay by the

~
—

claim. Hence, T A § = supy, Z—’; <z Ay. O

7. REALIZING FUNCTIONS AS RANKS

In this section we solve the problems of realizing (full) functions on the cone F(Cu(A)) as
ranks of Cuntz semigroup elements when A is a C*-algebra of stable rank one. These results are
inspired by the ideas in [Thil7, Section 8], and in particular, some of the sets and maps defined
here generalize similar ones in [Thil7] to the non simple and non unital case.

By an ideal-quotient of a C*-algebra A we mean a quotient of the form I/J, where J C I
are closed-two sided ideals of A. Ideal-quotients thus arise as ideals of the quotients of A or as
quotients of its ideals.

7.1. Proposition. Let A be a C*-algebra. Then the following statements hold:
(i) If A has a nonzero, elementary ideal-quotient, then there exists A € F(Cu(A)) with

{Z(\) 1z € Cu(A)} ={0,1,...,00}.

(ii) If A is separable and has a nonzero, elementary quotient, then there exists a densely

finite A € F(Cu(A)) such that
{Z(\) : 2 € Cu(A) and x is fulll = {1,...,00}.

Proof. (i): Assume that I and J are closed, two-sided ideals such that J C I and I/J is
elementary. Then Cu(I/J) = N and thus the quotient map I = I/.J induces a surjective Cu-mor-
phism Cu(7): Cu(I) — Cu(I/J) = N. Now let A\: Cu(A) — [0, 0] be given by \(z) = Cu(n)(z)
if z € Cu(I) and A\(z) = oo otherwise. Since the range of Cu(r) is N, it is clear from the definition
of A that {Z(\): # € Cu(A)} = A(Cu(I)) = N. Further, X is a functional by

(ii): Let I be a closed, two-sided ideal such that A/I is elementary. Let A € F(Cu(A)) be
the functional obtained in (i), that is, A = Cu(w), where 7: A — A/I. If x € Cu(A) is full then
Z(A\) # 0, so that Z(\) € {1,2,...,00}. To complete the proof it suffices to show that there exists
a full = such that A\(z) = 1. Since A is onto, there exists zy € Cu(A) such that A(zg) = 1. Let
wr € Cu(I) be the largest element of Cu([l), which exists since I is separable. Set x = z¢ + wj.
Clearly, A(z) = A(zg) = 1. Moreover, z is full, for if y € Cu(A), then A(y) < oo € N, from which
we deduce that y < ooz + wy = cox. O
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In view of the previous proposition, it is clear that in order to realize every element of
L(F(Cu(A))) in the form Z, with € Cu(A), we must assume that A has no nonzero, elementary
ideal-quotients. Similarly, if A is unital, and F},(Cu(A)) is the set of functionals normalized
at [14], then in order to realize elements of LAff(F,(Cu(A)))4 in the form Z|p, (cuca)) with
x € Cu(A4) full, we must assume that A has no nonzero, finite dimensional representations. As
we show below, if A has stable rank one, then these are the only obstructions.

In the proof of the following theorem we borrow ideas from the closely related [Thil7l
Lemma 8.3].

7.2. Theorem. Let A be a separable C*-algebra of stable rank one, and let f € L(F(Cu(A))).
Then the set

Iy ={zeCu(d):2' < f foralz <z}

has a supremum.

Proof. Since A is separable, Cu(A) is countably based. Thus, as noted in it suffices to show
that I is upward directed. Clearly I¢ is order-hereditary. It is also closed under the suprema of
increasing sequences. For suppose that x = sup,, z,,, where (z,,), is an increasing sequence in
I;. Let 2/ < x. Then 2/ < x,, for some n, and so < f by the definition of Iy. This shows
that z € Iy. By in order to show that Iy is upward directed it suffices to show that
the set Gy = {2’ € Cu(A): there is x € Iy with 2’ < z} is upward directed. We prove this first
below. We remark that Gy can be alternatively described as follows:

Gy = {x € Cu(4A) : there exists y € Cu(A) such that z < y and § < f}.

In order to see this, let € G. Then there exist ¢,y such that 2 < ' < y and y € Iy. Then

zj’ < f, and thus z belongs to the right hand side of the equality above. Conversely, if  is such
that © < y and y < f for some y, then clearly y € Iy and therefore € Gy.

We now prove that G is upward directed. Let 1,22 € Gf. Choose elements y1,y],y2, Y5 €
Cu(A) such that

T LYy LYy, To<KLyy Lye, and 1,7 < f.

Choose f”, f" € L(F(Cu(A))) with 91,72 < f” < f' < f. Since L(F(Cu(4))) = Cu(A)r by
Lemma 6.6| (i), we can choose a sequence (dy,),, in Cu(A) and a sequence (k) of positive integers

~

such that (Z—)n is increasing with supremum f’. Then there is ng such that f” < Zﬂ. Set

n )

d =d,, and k = k,,. Then

o d
Y1, 2 < T < f.
Let us construct w € Cu(A) such that 1,z < w and @ < %. (We will afterwards arrange for
a w € Gy.) Observe that y;,y2 < ood, by [Lemma 6.6] (iii). Hence, there exists n € N such that
Y1, vy < nd. We apply the construction from [Proposition 2.8/ to A and d € Cu(A) to obtain a
C*-algebra B of stable rank one and a projection pg € B such that A is an ideal of B, and such
that for any « € Cu(A) we have = < d precisely when x < [pg] in Cu(B). Set e = [pg4], which is a
compact element in Cu(B).
Then y1,vy5 < nd < n[pg] = ne. By (O5) applied to x; < y; < ne for i = 1,2, we obtain
21, #2 € Cu(B) such that

o~

Set z = z1 A zo. Note that z < ne. Let ¢g > 0 be such that 91,72 < :L_%(jand set g = %d.

Next, choose 0 < & < gg such that €z < (g9 — ). (Such an ¢ exists since z < ne.) Then

<

> o)
| o)

+ (g0 —€)

| o)

(14+e)g+ez< (1+¢)(1—eo)



C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ SEMIGROUPS 24

We have ne < yAi + Zz1 < g+ z1 and similarly ne < g + %3. Using at the first step that
L(F(Cu(B))) is an inf-semilattice ordered Cu-semigroup (by [Rob13| Theorem 4.2.2]) and using
at the second step, we obtain

ne<g+(AaNz:)=g+z
Next, since e < e, it follows from (ii) that
ne< (1+e)g+ (1+¢)z.

~

Choose 2’ € Cu(B) with 2/ < z and ne < (1 +¢)g+ (1 +¢)z’. Applying (O5) to 2’ < z < ne,
find w’ € Cu(B) such that 2/ + w’ < ne < z 4+ w’. Then

r1+z<o+21<ne<kKne<z+w.

Recall that B has stable rank one, and thus Cu(B) has weak cancellation. Therefore, we have
1 < w', and similarly, zo < w’. On the other hand,

4w <ne< (1+e)g+ (1+¢e)7.

Therefore w' < (1+e)g+ez < fe.
Let wa € Cu(A) be the largest element of Cu(A). Set w = w’ A wa, which belongs to Cu(A)
since the inclusion A — B identifies Cu(A) with an ideal in Cu(B). Using that z1,z2 < w', we

get x1, 29 < w. Applying [Theorem 6.12|at the first step and last step, and using that %@ =wa
at the third step, we obtain

— e 1 1, _—

W=w ANoa< -ANoa=—(€Nwa)=—(eANwa).
A< T AGI= L (EATE) = L (ERwA)
But e Awa = d, by [Lemma 3.7] Thus, w is as desired.
Finally, let us explain how to arrange for a w € Gy: Start by choosing z; < 2} < y} and

29 K xh < yi. Apply the argument above to obtain wy such that 2}, 24 < w; and Wy < %. Next,
choose w < w; such that 1,22 < w. Then w € Gy and z1,x2 < w, thus showing that G is
upward directed. O

7.3. Definition. Let A be a separable C*-algebra of stable rank one. In view of [Theorem 7.2
we define a: L(F(Cu(A))) — Cu(A4) by a(f) = sup Iy, where

Iy = {z € Cu(4) L1 < f forall o’ < z},
for f € L(F(Cu(A))).

7.4. Proposition. Let A be a separable C*-algebra of stable rank one. The following hold:

—

(i) For all f € L(F(Cu(A))) we have a(f) < f.
(ii) For all f € L(F(Cu(A))) we have
a(f) =sup{z € Cu(d) :z <y and § < f for some y}
=sup{z € Cu(Ad):2< (1 —¢)f for somee >0}
=sup {z € Cu(4): 2 < f}.
(iii) The map « preserves the order, the suprema of increasing sequences, and the infima of

pairs of elements.
(iv) The map « is superadditive, that is, a(f) + a(g) < a(f +g) for all f,g € L(F(Cu(A))).

Proof. (i): We have a/(f\) < f, since a(f) = sup Iy and each element x in I satisfies T < f.
(ii): Set

Gy = {x € Cu(A) : there exists y € Cu(A) such that z < y and § < f}.
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In the course of the proof of we have shown that sup Iy = sup G, which proves the
first displayed equality. The other displayed equalities follow from the following implications,
which we show to hold for every x € Cu(A):

o~

reGy = ZXf = T<(l—-¢)fforsomee>0 = ze&lj.

The first and second implications are clear. To see the third implication, suppose that = satisfies
Z < (1—¢)f for some € > 0. Then < f for every 2’ < z, by (ii), and thus x € Iy.

(iii): Preserving the order: Let f,g € L(F(Cu(A))) satisfy f < ¢g. Then Iy C I, and thus
a(f) < alg).

Preserving suprema of increasing sequences: Let (f,), be an increasing sequence of elements
in L(F(Cu(A))), and set f = sup,, fn. Since « is order-preserving, the sequence (a(fy))n is
increasing in Cu(A). Set x = sup,, a(f,). Since a(f,) < a(f) for all n, we have z < a(f). To
prove the converse inequality, let z € Cu(A) satisfy z < f. Since a(f) is the supremum of all
such z, it suffices to show that z < z. Since z < f, there is n € N with Z < f,,. This means that
z € Iy, and thus z < a(f,) < z.

Preserving infima: Given f,g € L(F(Cu(A))), let us show that a(f A g) = a(f) A a(g). From
the fact that « is order preserving we deduce at once that a(f A g) < a(f) Aa(g). Let 0 <e <1
and suppose that z < a((1 —¢e)f) Aa((1 —¢€)g). Then

z<(l-e)f n(l-g)g=1=¢e)(fAg)

Hence, z < a(f A g). Tt follows that a((1 —&)f) Aa((1 —¢)g) < a(f A g). Letting e — 0 and
using that « preserves suprema of increasing sequences, we get that a(f) A a(g) < a( fAg).
(iv): Let f,g € L(F(Cu(A))). If z,y € Cu(A) and £ > 0 satisfy T < (1 —¢)f and y < (1 —¢€)g,
then 2+y =247 < (1 =¢e)(f + g), which implies that « + y < «a(f + g). Passing to the
supremum of all such x and y, the desired inequality follows. O

In we will study the question of when « is additive.

We use the map « to solve the problem of realizing elements of L(F(Cu(A))) as ranks of
Cuntz semigroup elements when A is separable and of stable rank one. We show that, under
suitable hypotheses, f = Z for z = a(f). We first prove that this is the case when f is the chisel
of an extreme densely finite functional (see[§ 6.2| and [Lemma 7.8 below), and then extend this to
either arbitrary or full functions, depending on the hypotheses assumed.

7.5. Proposition. Let A be a separable C*-algebra of stable rank one. Let A € Fy(Cu(A)) be an
extreme densely finite functional. Then the chisel ox at X\ belongs to L(F(Cu(A))).

Proof. If A = 0 the proposition holds trivially, as oo = 0, with co denoting the largest element
of Cu(A). Assume thus that A # 0.

Claim: Let f1, fo € L(F(Cu(A4))). Then (f1 A fg)( ) = min(f1(A), f2(A)). To prove the claim,
let x,3 € Cu(A) and m,n € N satisfy = < f; and £ < fy. Using [Theorem 6.12|at the first step,
and using at the second step that that Cu(A) Satlsﬁes Edwards’ condition for A (see [APRT19)
Theorem 5.3], and the characterization of the Edwards’ condition given at the end of , we
get

(nZ Am@)(\) = (nz Amy)"(A) = min{nZ(\), my(A\)}.
Then

(fiNf)N) = %(mnfl Amnfy)(N) > %(ni/\m@()\) = mm{%7 @}

n
Since L(F(Cu(A))) = Cu(A)g by |Lemma 6.6 (i), both f; and f; are suprema of increasing

sequences whose terms take the form & and . Therefore,

(fi A f2)(A) 2 min{fi(A), f2(A)}-

The opposite inequality is straightforward. This proves the claim.
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Let us now show that the set

(7.1) {f € L(F(Cu(A))) : F)) <1}

is upward directed. Let f1, fo € L(F(Cu(A))) satisfy f1(A), f2(A) < 1. Assume without loss of
generality that fi(A) < f2(A). By the claim established above, (f1 A f2)(A) = fi(A). Choose
e > 0 such that fa(\) + & < 1. Next, choose ¢, g € L(F(Cu(A))) such that g <1 g < f1 A f2 and
gA) > fi(A) —e.

By [Robl13l Lemma 3.3.2], if c<id’ < d in L(F(Cu(A))), then there exists e such that c+e = d
and ¢ e, and thus also d o< e. Applied to g <1 g < f1 + fo, we obtain h such that g+ h = f1 + fo
and f; 4+ fo o h. We have

fithzg+h=fi+ fa

Hence, since f; o< h, we may use cancellation in L(F(Cu(A))) to conclude that h > fo. Symmet-
rically, h > f1. On the other hand,

fr(d) —e+h(A) <gA) +h(N) = [L(N) + f2(),

from which we deduce that h(A) < fo(A) +e < 1.

Since L(F(Cu(A))) is a countably based Cu-semigroup, the upward directed set in has a
supremum, which we now proceed to prove is precisely o). To this end, it suffices to show that for
any nonzero p € F(Cu(A)) such that p ¢ (0,00)\ and any C' > 0 there exists f € L(F(Cu(A)))
such that f(A) < 1 and f(u) > C. To show this, choose z € Cu(A) such that 0 < A(z) < oo,
which is possible as A # 0 by assumption. Since p is not a scalar multiple of A and the latter
is extreme by assumption, we have p £ 4CX. Let y € Cu(A4) be such that 4CA(y) < p(y). If
A(y) =0, then f = %ﬂ is as desired. Suppose that A(y) > 0. Set

1 1
T+ ——7.

F= M=) ANy

Clearly then f(A) =1/441/4 < 1. Also,

Hence, f is as desired. O

7.6. Lemma (Cf. [Thil7, Lemma 5.2]). Let A be a C*-algebra. Let A, € Fp(Cu(A)) be densely
finite functionals, with A extreme, p nonzero, and u ¢ (0,00)A. Then for every € > 0 there exists
w € Cu(A) such that A(w) < € and p(w) > 1.

Proof. If A = 0 the lemma follows easily. Let us thus assume that A # 0. Observe that u # 0 by
assumption. We claim that there exists € Cu(A) such that 0 < A(z) < o0 and 0 < p(z) < 0.
Indeed, since A and p are nonzero, there exist z1, 22 € Cu(A) with 0 < A(z1) and 0 < p(z2).
Choose 2}, 25 € Cu(A) with 2] < z1 and 2} < 25 such that 0 < A(z}) and 0 < p(z}). Since A
and p are densely finite, they are finite on 2 and %, and so = 2] 4 2 is as desired.

Let us now normalize A and p so that A(z) = u(x) = 1. The normalized functionals are
multiples of the original functionals by fixed scalars not depending on €. Thus, the proof of the
lemma may be reduced to the normalized functionals.

Case 1: Suppose that X £ p. Let y € Cu(A) be such that u(y) < A(y) < co. Set § = A(y)—p(y).
Choose numbers m,n € N such that

1
5 <mé and |A(na) = A(my)| = [n — mA(y)] < -

Since Cu(A) satisfies Edwards’ condition for A, and since X is extreme and densely finite, there
exists z < na, my such that min{n,mA(y)} — § < A(2) (seef§ 6.3). Since also |n —mA(y)| < §,
we have that n — A(z) < e. Choose z’ € Cu(A) such that 2’ < z and n — A(2') < . Now,
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by (O5) applied to 2z’ <« z < nz, there is w € S such that 2/ + w < nx < z+ w. Then
AMw) < A(nz) — A(Z') < e. Also,

() + p(w) > p(na) = n = n — Amy) + Amy)
> —g +md + p(my)
> =2 4 md+ plz).

Therefore p(w) > —5 +mé > 1, as desired.

Case 2: Suppose that A < p. Since F(Cu(A)) is algebraically ordered ([Robl3l Proposi-
tion 2.2.3]), we can choose a functional u' such that A + p/ = u. Observe that u/(z) = 0. We
cannot have that /' = 0, since X\ # u. Thus, as argued at the beginning of the proof, there exists
21 € Cu(A) such 0 < A(z1) < oo and 0 < p/(x1) < co. Let X and g be the normalizations of A
and g/, respectively, such that A (x1) = p”(z1) = 1. Observe that X £ p”, as p/’(x) = 0 while
N(z) # 0. Thus, we can apply Case 1 to the functionals A’ and p”, normalized at x1, to find the
desired w. Since the normalizing factors do not depend on €, we can arrange for A(w) < ¢ and

1/ (w) > L, which in turn implies that p(w) > 1. O

7.7. Lemma. Let A be a separable C*-algebra of stable rank one that has no nonzero type I
quotients, and let A € Fo(Cu(A)) be a nonzero, densely finite functional.

(i) For each & > 0 the set {x € Cu(A) : AM(z) < e} is a full subset of Cu(A).
(ii) The range of A is [0, cq].

Proof. (i): Let W C Cu(A) be the ideal generated by {x € Cu(A) : A(z) < }. Using the natural
correspondence between closed, two-sided ideals of A and ideals of Cu(A) (see[§ 2.7), we let I C A
be the closed, two-sided ideal of A such that Cu(I) = W. Suppose for the sake of contradiction
that I is proper. Let z € Cu(A4) with A(z) < co. Find " < 2’ < z such that A\(z) — A\(z”) < e.
By (05), there exists w € Cu(A) such that ”/ +w < # < 2’ + w. Evaluating on A we get
AMw) < e, whence w € W. Thus, the images of z and 2’ in Cu(A/I) agree. It follows that the
image of 2 in Cu(A4/I) is compact.

Next, we show that A/I contains a positive element with spectrum [0,1]. Since A/I is not
type I, it follows from Glimm’s theorem that there exists a sub-C*-algebra B C A/I that has
a UHF-algebra as a quotient. In a UHF-algebra it is easy to find a positive element b with
spectrum [0, 1]. Lift b to a positive, contractive element b in B. Then b has spectrum [0, 1] in B,
and consequently also in A/I. By [BC09, Theorem 3.5], if C' is a stably finite C*-algebra and
¢ € Cy, then [¢] is compact if and only if 0 is an isolated point of the spectrum of ¢. Since A/T
has stable rank one, it is stably finite, and it follows that [(b —t);] € Cu(A/I) is not compact
for every t € (0,1). Let a € Ay be a lift of b. Then A([(a —1/2)4]) < oo and [(a — 1/2)4] is
mapped to [(b—1/2)4] in Cu(A/I), which is not compact. This contradicts what was proved in
the previous paragraph.

(ii): Let us first show that A attains arbitrarily small nonzero values. Fix € > 0. By part (i),
{z € Cu(A) : A\(z) < £} is a full subset of Cu(A4). So if A does not attain nonzero values less than
¢ then it is the zero functional, contradicting our assumption. Thus, there exists € Cu(A) such
that 0 < A(z) < e.

It is now clear that the range of A is dense in [0, c0]. Both 0 and oo are in the range of . Let
t € (0,00). Choose xy € Cu(A) such that A\(zg) < t. Having chosen zp < x1 < -+ < -1 such
that A(x,—1) < t, choose z such that

t— Map_
——Jg—iz<A@)<t—A@w4L
and set x,, = x,—1 + 2. Then X attains the value t at x = sup,, z,,. O

7.8. Lemma. Let A be a separable C*-algebra of stable rank one that has no nonzero type I
quotients. Let A € Fy(Cu(A)) be an extreme, densely finite functional, and let oy denote its

chisel. Then o =Z for z = a(oy), where « is the map from|Definition 7.3
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Proof. If A =0, then o) is the function that is 0 at 0 (the zero functional) and co otherwise. In
this case, z = oo (the largest element of Cu(A)), and the lemma holds trivially. Assume thus
that A # 0.

By (i), we have z < o). We first show that z is full. Let z € Cu(A)
satisfy A(x) < 1. Then Z < (1 — €)oy for a sufficiently small ¢, and thus < a(oy) = z by
[Proposition 7.4] (ii). Hence, by (i), z is full.

Let 0 < e < 1. By [Lemma 7.7 (ii), there exists x € Cu(A4) such that A(x) =1 —e. Then
Z < (1 —¢)oy, whence x < z by [Proposition 7.4| (ii). Evaluating at A we get 1 — e < A(z). Since
e can be arbitrarily small, we obtain A\(z) = 1, that is, Z(\) = 1.

Let u be a nonzero, densely finite functional that is not a scalar multiple of A, and let ¢ > 0.
By there exists w € Cu(A) such that A(w) < 1 and p(w) > 1. As in the second
paragraph of the proof, we get w < z, from which we obtain that u(z) > % Since ¢ can be
arbitrarily small, we deduce pu(z) = oo, that is, zZ(u) = cc.

We have shown that z(u) = oy (u) for all u densely finite. Further, since z is full, this equality
holds also for all functionals that are not densely finite, as in this case both sides equal co. The
lemma is thus proved. U

7.9. Lemma. Let A be a separable C*-algebra of stable rank one. Let f,g € L(F(Cu(A))) satisfy
g < f. Then there exists h € L(F(Cu(A))) such that ¢ < h < f and h is continuous on
Fy(Cu(A)).

Proof. Since f is the supremum of a <-increasing sequence in L(F(Cu(A))) (see[§ 6.4), we can
choose h,h' € L(F(Cu(A))) such that g < h<<h’ < f. Since b’ < f implies A’ < f, and since
L(F(Cu(A))) agrees with Cu(A) g (by [Lemma 6.6] (1)), there exist y € Cu(A) and k € N such that
h' < 4 < f. Now choose 3 < y such that b’ < ‘% Then 7/ is finite on densely finite functionals.

Hence, I’ is finite on densely finite functionals, from which we get that h is continuous on every
densely finite functional, as desired. O

7.10. Theorem. Let A be a separable C*-algebra of stable rank one that has no nonzero type I
quotients, and let f € L(F(Cu(A))) be a full function. Then f =7Z for z = a(f), where « is the
mayp from [Defiiion T3

Proof. By (i), we have z < f. Our goal is then to prove that f < Z. Let
g € L(F(Cu(A))) satisfy g < f. Since f is the supremum of all such g, it suffices to show that
g< 7z

Choose go such that g < go < f, and then choose £ > 0 such that gy < (1 — 3¢)f. Below
we will find € Cu(A4) such that ¢ < T < (1 —¢)f. By (ii), such z satisfies
z < a(f) = z, which then shows that g < Z.

To find z € Cu(A) such that ¢ <7 < (1 —¢)f, we set

K ={Xe F(Cu(4)): f(\) <1}.

Claim 1: We have K C Fy(Cu(A)). To prove the claim, let A € K, and let 3,y € Cu(A)
be such that ¢y < y. Then ¢/ < 27 in L(F(Cu(A4))) by (ii). Since 2y < oof (by
the fullness of f), y’ o f. It follows that A\(y’) < oo. This holds for all ¢,y with ¢y’ < y, thus
showing that )\ is densely finite, completing the proof of the claim.

It now follows from [Phe01, Proposition 13.2] that K is a cap of Fy(Cu(A)), that is, a compact
convex set whose complement is also convex. Since K is a cap of Fy(Cu(A)), every extreme point
of K is also an extreme functional in Fy(Cu(A)), by Proposition 13.1].

Using that g < go, choose g1 € L(F(Cu(A))) with ¢ < g1 < go. Then inductively choose
92,93, ... in L(F(Cu(A))) such that

9. < 3K g K< < go-

Let Aff(K) denote the set of continuous, affine functions K — R, and set

1
D={heAff(K):g, <ZTand (1+ ﬁ)ﬂK < h for some z € Cu(A4),n > 1}.
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Claim 2: D is downward directed. To prove the claim, let hy, hy € D. Choose z1,22 € Cu(A)
and ni,ny € N such that

— 1, - 1.
Gn, < T1, (l—i-nf)zl\thl, Gny < T2, and (1—|—nf)x2|K<h2.
1 2
Set n = max{ni,ns} and x = 21 A x5 € Cu(A). Using [Theorem 6.12} we get

o~ o~

~ 1.
gn ST1ANT2 =2, and (14 =)Z|x < hy, ho.
n

Using that gni1 < gn, choose 2’ € Cu(A) such that z’ < z and gp11 < 2. Set B = ((Zfl));‘

Since 8 < 1, we have 82/ < & by [Lemma 6.6| (ii). Using we obtain h € L(F(Cu(A4)))
with 82’ < h < 7 and such that h|g € Aff(K). Then (1 + 2)h|k is a lower bound for hy and hs
in D, since g,41 < 2’ and

1

< (1
)’ S+

1+

1 1 1 1.
)7h:<1+g>h7 and (1+E>h|K<(1+E).’E|K<h1,h2,

n+1 B

which proves the claim.

Define hg: K — R as the pointwise infimum of the functions in D. Then hg is upper
semicontinuous and affine.

Claim 3: We have g|x < hg < (1—2¢)f|x. The first inequality follows since g|x < h for every
h € D. Let 0. K denote the set of extreme points of K. We first show that hglg, x < (1—2¢)f|s. k-
Let A € 0.K. If A = 0 (the zero functional), then hg(A) =0 = (1 —2¢) f(A). We may thus assume
that A # 0. Since A is densely finite and f is full, we obtain f(\) > 0. Set z) = a((1—3¢)f(N)oy).

We know by that Zy = (1 — 3¢) f(A\)ox. Hence
g0 < (1-3e)f <(1—3e)f(N)or =Ty.
Choose z, € Cu(A) such tIEt zh < xx and gy < :;i By [Proposition 7.4] (ii) and the fact

that x = a(zy), we have 2} < z). Using [Lemma 7.9L we obtain hy € L(F(Cu(A))) with

z), < hy < ) and such that hy is continuous on K. Let n > 1 such that (1—}—%)(1—35) < (1-2¢).
Then

gn < go <y, and (14 =)z} < (1+ —)hy,
n n
which shows that (14 2)hy|x belongs to D. It follows that

Bo(N) < (14 1)) < (14 DT = (14 (1 =39 F(N) < (1~ 22)F ().

We have shown that ho(A) < (1 — 2¢)f(\) for every A € 9. K. To extend this inequality to
all of K, note that hg takes values in [0, 00), which allows us to consider d = hg — (1 — 2¢) f| k.
Then d: K — [—00,00) is upper semicontinuous and affine with d(A) < 0 for every A € 9. K. By
Bauer’s maximum principle ([Phe01] Proposition 16.6]) we get d < 0 and thus ho < (1 — 2¢) f|k,
which proves the claim.

For each h € D, define

Uy={AeK:h(A) <(1-¢e)f(A\)} and V,={AeK:h(\)<1-¢},

which are open subsets of K as h is continuous and f|x — h is lower semicontinuous. Using the
inequality ho < (1 — 2¢) f|k we see that

K = U (Uh U Vh).
heD
By compactness of K, there is a finite subset F' C D such that K = J,,c(Up U V). Since D
is downward directed, we can choose h € D that is a lower bound for F. Then K = U, U V},.
By definition of D, we obtain « € Cu(A) such that ¢ < ¥ and Z|x < h. The verification of the
following claim finishes the proof.
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Claim 4: We have T < (1 —e)f. Let A € F(Cu(A)). If f(\) = oo the claim holds trivially, so
assume that f(A\) < oco. If f(A) =0, then as argued in the fullness of f implieb that A =0,
and again the claim holds trivially. Suppose that 0 < f(\) < co and let t = ﬁ Clearly, tA is
an element of K. If tA € Uy, then Z(t\) < h(tA) < (1 —¢€)f(tA), and hence Z(A) < (1 — &) f(A).
If, on the other hand, tA € V},, then

T(tAN) < h(tA) <1 —e=(1—¢e)f(tN),
and again we obtain that Z(A) < (1 —¢)f(N). O

7.11. Remark. We use this opportunity to amend the proof of [Thil7, Lemma 8.1]. Given a
compact, convex set K, it was claimed there that the infimum of finitely many continuous, affine
functions on K is again continuous, but in general it is only lower semicontinuous. The argument
in [Thil7, Lemma 8.1] can be fixed along the lines of the proof of by considering a
downward directed family of continuous, affine functions analogous to the set D defined there.

7.12. Let A be a C*-algebra and let I C A be a closed, two-sided ideal of A. ~Recaull that we may
regard Cu(7) as an ideal of Cu(A) (see . Given A € F(Cu(I)), define A € F(Cu(A)) as in

that is,

0, otherwise.

Aw) = {)\(x), if x € Cu(l)

The assignment A — X\ defines an order-embedding F(Cu(I)) — F(Cu(A)) which is a right
inverse to the restriction map A — A|cy(r) from F'(Cu(A)) to F( u(l)). Thus the restriction
map is surjective. It follows that given z,y € Cu(I), we have T < § in L(F(Cu(l ))) if and only if
T <7y in L(F(Cu(4))).

Consider now the natural map ¢: L(F(Cu(I))) — Lsc(F(Cu(A))) such that «(f)(N\) =
J(Mcueny) for f € L(F(Cu(l))) and A € F(Cu(A)). Using the description of L(F(Cu([l)))
and L(F(Cu(A))) as suprema of increasing sequences with elements of the form (see
(i)) we obtain that ¢ in fact ranges in L(F(Cu(A))).

7.13. Theorem. Let A be a separable C*-algebra of stable rank one that has no nonzero, elemen-
tary ideal-quotients, and let f € L(F(Cu(A))). Then f = Z for z = a(f), where « is the map
Jrom |[Definition 7.5
Proof. The set {x € Cu(A4) : T < cof} is an ideal of Cu(A). Using the bijection between closed,
two-sided ideals of A and ideals of Cu(A) (§ 2.7)), we let I C A be the closed, two-sided ideal of
A such that Cu(l) = {z € Cu(4) : ¥ < cof}. (Here we identify Cu(I) with its image in Cu(A)
induced by the inclusion of I in A.) Note that I is a separable C*-algebra of stable rank one
that has no nonzero, elementary ideal-quotients, and in particular no nonzero type I quotients.
Since L(F(Cu(A4))) = A) g by [Lemma 6.6] (i) , we can choose a sequence (n)n in Cu(A)
and a sequence (ky), of posmve integers such that (7= )n is increasing with supremum f in
L(F(Cu(A))). For each n, we have Z,, < cof and thus Ty € Cu(I). As noted in[§ 7.12] it follows

that (), is an increasing sequence in L(F(Cu([))), and we let fy denote its supremum in
L(F (Cu( ))). Given A € F(Cu(A)), we have f(\) = fo(Acur))-

Claim 1: fo is full in L(F(Cu(I))). To prove the claim, let g € L(F (Cu( ))). Choose a
sequence (yn)n in Cu(l) and a sequence (I,,), of positive integers such that (*), is increasing
in L(F(Cu(I))) with supremum g. For each n, since y,, belongs to Cu(I), we have Un < 0of in
L(F(Cu(A))), and it follows that y, < oofy in L(F(Cu(I))). Thus, g = sup,, {* < oo fy, which
proves the claim.

Let ay: L(F(Cu(I))) — Cu(l) be the map from [Definition 7.3|for I. Set zo = a;(fo). B
Theorem 7.10} we have fy = Zy in L(F(Cu([))).

Claim 2: We have z = zg. Set

L={zeCu(Ad):2<(1—¢)f in L(F(Cu(A))) for some ¢ > 0}.
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By (ii), z is the supremum of L in Cu(A4). If z € Cu( ) and € > 0 satisfy
Z < (1—e¢)f in L(F(Cu(A))), then x belongs to Cu(I) and we have Z < (1 —¢) fo in L(F(Cu(]))).
It follows that L C Cu(I) and that zg is the supremum of L in Cu(I). Since Cu(I) C Cu(A) is
downward hereditary, the supremum of L in Cu(J) and in Cu(A) agree, and thus z = 2, which

proves the claim.
Given A € F(Cu(A)), we deduce that

Z(A) = M2) = Meun) (20) = fo(Meur)) = f(A),
and thus z = f in L(F(Cu(A))). O

7.14. Theorem. Let A be a separable, unital C*-algebra of stable rank one that has no nonzero,
finite dimensional quotients. Set u = [14]. Let F,,(Cu(A)) denote the set of functionals A €
F(Cu(A)) normalized at w. Then for each f € LAff(F,(Cu(A))) there exists z € Cu(A) such
that Z|p, (cu(a)) = f-

Further, if for some n € N we have that f(X) < n for all X € F,,(Cu(A)), then z may be chosen
such that z < nu, and there is a € (A ® M,)+ such that f(X) = A([a]) for every A € F,(Cu(A)).

Proof. Let I be a closed, two-sided ideal of A such that A/I has type I. Choose a maximal ideal
J containing I. Then A/J is simple, unital and has type I, whence it is finite dimensional. It
follows that A has no nonzero type I quotients.

We can thus apply [Theorem 7.10] to realize full functions in L(F(Cu(A))). Moreover, by
9} given a function f € LAff(F,(Cu(A4 )))JFJr7 there exists a full function f € L(F(Cu(A)))
Whose restriction to F,(Cu(A)) is f. Then f = 2 for z = a(f), and so 2|p, (Cu(ay) = f-

Let us address the last assertion of the theorem. Suppose that f(A) < n for all A € F,(Cu(A)).
Then f < ni. Choose y € Cu(A ) such that f = 7. Set z = y Anu. Then z < nu, and using
| we have 2= f Anti = f. Thus z is as desired. Choose b € (A ® K); with z = [b).
Let 1®1, denote the unit in A® M,,. Then [b] = z < nu = [1® 1,]. Since A has stable rank one,
there exists a positive element a in the hereditary sub-C*-algebra generated by 1 ® 1,, (that is,
a € (A® M,)1) with [a] = [b] = z; see [APT1I] Theorem 4.29] or [ORT11} Paragraph 6.2]. O

8. SUPERSOFT ELEMENTS AND COMPARABILITY

In this section we introduce the notion of supersoft elements in Cuntz semigroups of separable
C*-algebra of stable rank one. We use these elements to advance further the study of comparability
properties in the Cuntz semigroups of these C*-algebras.

Recall from that an element z in a Cu-semigroup is soft if for every 2’ < x there is
k € N with (k4 1)2’ < kz.

8.1. Definition. Let A be a separable C*-algebra of stable rank one, and let z € Cu(A4). We call

z supersoft if a(Z) = z, where « is the map from [Definition 7.3| Thus, z is supersoft precisely
when z = sup{z € Cu(A): T < (1 — ¢)Z for some ¢ > 0}.

8.2. Proposition. Let A be a separable C*-algebra of stable rank one.
(i) If z € Cu(A) is supersoft, then z is soft.

(ii) If x € Cu(A) is soft, z € Cu(A) is supersoft, and T < Z, then x < z.
(iii) If x is soft, then x < a(Z) and a(Z) is supersoft.

Proof. (i): Let z = a(Z) be supersoft. Let 2/ < z. Then 2’ < %, by [Proposition 7.4 (ii). This in

turn implies that z is soft (see [APTI8| Proposition 5.3.3]).

(ii): Let 2/ € Cu(A) satisfy 2/ < z. Since z is soft, 2/ < T < 7 (see (ii)). Thus,
2! <« 7 for every 2’ < z, and hence z € I (see [Definition 7.3). This implies that » < a(z) = 2.

(iii): Let 2’ € Cu(A) satisfy «’ <z Since z is soft, we have as in (ii) that 2/ < Z and
consequently = < a(Z). Hence, ¥ < (A) On the other hand, by |[Proposition 7.4| (i) we have that

a(f) < f for any f. Thus, a( ) < Z. It follows that T = a( Z). Hence, o(Z) is supersoft. O
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8.3. Let A be a separable C*-algebra of stable rank one. Our results on realizing elements of
L(F(Cu(A))) as ranks guarantee the existence of supersoft elements in Cu(A):
(1) By|[Theorem 7.10} if f € L(F(Cu(A))) is a full function then «a(f) is supersoft, provided
that A has no nonzero type I quotients. In particular, this is true if A is unital and has
no nonzero, finite dimensional quotients.

(2) By [Theorem 7.13| the set of supersoft elements agrees with the range of «, provided that
A has no nonzero, elementary ideal-quotients.

Note that, if A is a unital C*-algebra, the set of full elements in Cu(A) is in fact a Cu-semi-
group. Indeed, if one shows that for each full element x € Cu(A), there exists 2’ € Cu(A) with
2’ <« x and such that a’ is also full, then suprema in Cu(A) and in the set of full elements will
coincide and (01)-(04) are easily deduced. Let us find such z’. Since z is full, and A is unital,
[1] < [1] < ooz implies that there exists N € N such that [1] < Nz. Using this inequality, we
can find #’ < z such that [1] < N2/, and since [1] is full, so is 2’. This fact will be used in the
proofs below.

8.4. Theorem. Let A be a separable C*-algebra of stable rank one, let x € Cu(A), and let
f € L(F(Cu(A))) satisfy T < oof. Suppose that we are in one of the following cases:

(i) A is unital, has no nonzero, finite dimensional quotients, and f is full;
(ii) A has no nonzero, elementary ideal-quotients.

Then
alf +7) = alf) + =

Proof. In both cases, we have that o(f) is supersoft. In case (i), this follows using [Theorem 7.10]
and in case (ii) using [Theorem 7.13] Thus a(f) is soft (see [Proposition 8.2| (i)). We have

T < oof = ooa(f), and thus x < ocoa(f) by [Lemma 6.6| (iii). Since the subsemigroup of soft
elements is absorbing (see[§ 5.9)), it follows that a(f) 4+ x is soft. Using this and the fact that
af) = f, we obtain from (iii) that

a(f) + o < alalf) +7) = olf + 7).

Let us prove the opposite inequality. Assume first that & o f (that is, Z < Cf for some constant
C>0). Let h € L(FiCu(A))) be any function such that h < f + Z. In the case (i), assume also

—

that h is full (see , and thus in either case we have a(h) = h. Choose £ > 0 such that
h < (1—¢)f+z. We claim that h <h + §f. Indeed, notice first that h oc f, since Z oc f. It is
then clear that for small enough 0 > 0 we have h < (1 —6)(h + 5f). Further, if f(\) < oo then
f(A) +Z(X) < co and therefore h is continuous at .
Consider the element

y= (L =e)f)+z) Na(h).
Then

y=(1=e)f) +2)ANh=h.
Hence, h <y + 5 f (since h <th + 5 f). Choose 3’ € Cu(A) such that 3y <y and h < 17 +5f.
Then y’ < y < a(h), and thus there exists by (05) a z € Cu(A) such that

vy +z<ah)<y+z
Observe then that

Y +E<h<y+.f

N ™

It follows that z < §f, and so z < a(ef).
Using that « is superadditive (Proposition 7.4| (iv)) at the last step, we obtain
a(h) <y+z<al(l-e)f)+z+alef) <alf) +a

Passing to the supremum over all h < f + Z, and using that « is supremum preserving (Proposi;
(iii)), we get that a(f + ) < a(f) + x, as desired.
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Let us finally deal with the case that 7 < oof. If 2/ < z then 2/ « f. Hence alf + ')
aff) + 2'. Passing to the supremum over all 2’ < x the theorem follows.

Ol

8.5. Corollary. Let A be a separable C*-algebra of stable rank one.

(i) If A is unital and has no nonzero, finite dimensional quotients, then « is additive on the
set of full elements of L(F(Cu(A))) and its range is an absorbing subsemigroup
of Cu(A4).

(ii) If A has no nonzero, elementary ideal-quotients, then « is additive and its range is an
absorbing subsemigroup of Cu(A).

Proof. (i): This is a straightforward consequence of the previous theorem.

(ii): We will use the following claims:

Claim 1: Idempotent elements are supersoft. To prove the claim, let w € Cu(A) satisfy 2w = w.
Then @ < @ = (1 — &)@ for every ¢ € (0,1), and thus w < a(@) by [Proposition 7.4] (ii). For the
converse inequality, note that a/(o/?) < W = oow, and thus (@) < cow = w, by |[Lemma 6.6] (iii).
This proves the claim.

Claim 2: Let f,g € L(F(Cu(A))) with f < cog. Then af + g) = a(f) + a(g). To prove the

claim, set £ = a(f). Then = f < oog, and we may apply [Theorem 8.4 at the second step to
obtain

a(f +9) =a@+g) =z+alg) = a(f) + aly),
which proves the claim.
Let us now show that « is additive. Let f,g € L(F(Cu(A))). Since « is superadditive by

(iv), it remains to show that a(f + g) < a(f) + a(g). Set wy = a(oof) and

wg = a(oog). Then wy + wy is idempotent and thus supersoft by Claim 1. Hence,
a(oof) + afoog) = wy + wy = awy + wy) = a(cof + 0og).

Using at the first and last step that « preserves infima (Proposition 7.4 (iii)), and using Claim 2
at the third step, we get

a(f+g) ANwp = a((f+9) A(oef)) = alf + (g A (0of))) = a(f) +alg A (ccf))
< a(f) + alg).
Similarly,
a(f +9) ANwg < a(f) + alg).
Using the distributivity of addition over infima at the third step, we obtain that
o(f +9) = alf +9) A (g + )
< (20(f +9)) A alf +9) + 1) A ol +9) + ;) A (g +0y)
= (a(f +9) ANwy) + (af + g) Nwg) < 2(a(f) + alg)).

Let 0 < & < 1/2. Then, using Claim 2 twice at the first step, the inequality just established at
the second step, and the fact that « is superadditive at the last step, we obtain

a((l=e)(f +9)) = a((1 = 20)f) +a((1 - 2)9) + a(e(f +29))
a((1—-2¢6)f) + (1 - 2)g) + 2a(ef) + 2a(eg)
a(f) + a(g)-
Letting € — 0 we obtain that a(f + g) < a(f) + a(g). O

<
<

Below, we repeatedly use that an element x € Cu(A) is full if and only if Z € L(F(Cu(A))) is

full (see (ii)).

8.6. Radius of comparison. Let A be a unital C*-algebra. Set u = [14] and recall that we use
F,(Cu(A)) to denote the set of all A € F(Cu(A)) such that A(u) = 1. Recall from [Tom06)



C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ SEMIGROUPS 34

Definition 6.1] that the radius of comparison of A, denoted rc(A), is the infimum of the set of
€ (0, 00] such that

A(@) + 7 < Ay) for all A € Fy(Cu(4)) — =<y

for all z,y € Cu(A). In the case of unital, stable rank one C*-algebras, there is a more convenient
restatement of the definition of rc(A) as the infimum of the set of = € (0, 00] such that

T+ru<y = =<y
for all z,y € Cu(A) (see [BRTT12, Proposition 3.2.3]). Observe that in this reformulation, the
element y is automatically full, since ru < § and r > 0 (see (iii)).

Recall that W(A) denotes the set of Cuntz classes of positive elements in My, (A).

8.7. Theorem. Let A be a separable, unital C*-algebra of stable rank one that has no nonzero,
finite dimensional quotients. Set uw = [14]. Then the following are equivalent:

(i) W(A) = {z € Cu(A4) : ¥ < nu for some n € N}.

(ii) W(A) contains at least one full supersoft element.
(iif) There exists N € N such that T < u implies © < Nu for all z € Cu(A).
(iv) A has finite radius of comparison.

Proof. (i) = (ii): Set y = (), which is a supersoft element. Since ¥ = u, we have by (i) that y
is an element of W(A). It remains to see that y is full, but this follows from the fact that ¥ =u
and wu is full in Cu(A) (see (iii)).

(ii) = (iii): Let z € W(A) be a full supersoft element. Thus, there exist m,n € N such that
u < mz < nu. Now let © € Cu(A) be such that Z < 4. Then T < mz. Using at the third step
that « is order-preserving (iii)), and using at the second and fourth
step, we get

x < x+ a(mz) = a(Z +m2) < a(2mz) = 2mz < 2nu.

(iii) = (iv): Let N be asin (iii). To show that rc(A) < N, let z,y € Cu(A) satisfy T+ Nu < 3.

Set z = a(u). Applying we obtain
x4+ Nu < $+NU+Z—(J¢($+NU+U) af+2)=y+=z.

By (iii), we have z < Nu, and therefore x + Nu < y + Nu. Hence, < y by cancellation of
compact elements.

(iv) = (i): Clearly if z € W(A) then T < nu for some n € N. Suppose conversely that
x € Cu(A) and n € N satisfy ¥ < nu. Let N € N satisfy N > rc(A). From T+ Nu < (N +n)u
we deduce that z < (N + n)u. Hence, x € W(A). O

8.8. Strict comparison and local weak (m,~)-comparison. A C*-algebra A is said to have strict
comparison if whenever x,y € Cu(A) satisfy = < ooy and A(z) < A(y) for every A € F(Cu(A4))
with A(y) = 1, then z < y (see [ERS11, Proposition 6.2] and [APT18| Paragraph 7.6.4]). In
general, if S is a Cu-semigroup, then the following conditions are equivalent:

(1) S has strict comparison, that is, whenever z,y € S satisfy < ooy and A\(z) < A(y) for
every A € F(S) with A(y) =1, then z < y;
(2) Whenever x,y € S satisfy T < (1 — )y for some & > 0, then z < y;
(3) S is almost unperforated, that is, whenever x,y € S satisfy (n+ 1)z < ny for some n € N,
then z < y.
Indeed, (1) easily implies (2). That (2) implies (3) follows, for example, from [APT18| Proposition
5.2.20]. The equivalence between (1) and (3) is proven in [ERS11] Proposition 6.2] (see also[Rgr04,
Corollary 4.7]).

Let us say that A has strict comparison on full elements if whenever z,y € Cu(A), with y full,
satisfy T < (1 — ¢)y for some € > 0, then & < y. Clearly, if A is a simple C*-algebra this property
agrees with strict comparison.

Following [RT17, Definition 2.3], we say that A satisfies m-comparison for some m € N
provided Z < (1 — &)g; for some z,yo, Y1, . . -, ym € Cu(A) and € > 0, implies z < >, ;. Note
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that if A is simple and unital, this definition coincides with [Winl2, Definition 3.1]. Observe also
that A has 0-comparison precisely when A has strict comparison.

Suppose now that A is unital. Set u = [14] and recall that F,(Cu(A)) denotes the set of
all A € F(Cu(A)) such that A(u) = 1. Suppose that there exist m € N and v > 1 such that if
a,b € Ay, with b full, satisfy

(b))

sup A([a]) < inf
AEF, (Cu(A)) (laD A€Fy,(Cu(A))

then [a] < m[b]. We then say that A has local weak (m,~)-comparison. The word local here
refers to the fact that we do not choose ¢ and b in A ® IC but in A. The case when A is simple
and m = 1 of this property appears in [KR14, Definition 2.1], where it is called ‘local weak
comparison’. We show below that if A is a separable, unital C*-algebra of stable rank one that
has no nonzero, finite dimensional quotients, then local weak (m,~y)-comparison implies strict
comparison on full elements.

8.9. Lemma. Let A be a separable C*-algebra of stable rank one, let x € Cu(A), and let
f € L(F(Cu(A))) satisfy f < Z. Then there exist y,z € Cu(A) such that f <Yy, y+ 2z <z, and
00z = 00,

Proof. Choose w € Cu(A) satisfying f < W < Z. Set 1 =z Aw. By we have
71 =T Aw = w. Therefore f < 77 and 21 < x. Choose y € Cu(A) such that y < z1 and f < 7.
Finally, apply (O5) to y < x1 < « to obtain z € Cu(A) such that y + z < < x1 + 2. It remains
to show that z satisfies coz > ocoz.

Denote by W the ideal generated by z, that is, W = {2’ € Cu(4) : 2/ < coz}. Using the
natural correspondence between closed, two-sided ideals of A and ideals of Cu(A) (see[§ 2.7), we
let I C A be the closed, two-sided ideal of A such that Cu(I) = W. Passing to Cu(A/I) by the
quotient map, let us denote the images of z, z1, and y by z, 2,, and y. We have y = 2, = z,
and this element is compact. Since 77 < T, we can choose ¢ > 0 with 77 < (1 — ¢)7. Passing
to Cu(A/I) we obtain & = (1 — e)Z. Thus, z is a compact element on which no functional is
finite and nonzero. Since A/I is stably finite, it is well known (for example combining [GH76
Theorem 3.2] and [BR92, Theorem 3.3]) that this implies z = 0. Hence z < coz. O

8.10. Lemma. Let A be a unital, separable C*-algebra of stable rank one that has no nonzero
finite dimensional quotients. Set uw = [14]. Let (2;)$2, be a sequence of full, supersoft elements in
Cu(A) such that z; < @ for all i. Then

o0

Z zi = Z(zZ Au).

i=1

Proof. Using induction over n, let us verify that >, (z; Au) = (3, z) A (nu) for each n > 1.
This is clear for n = 1. Assume that the equality holds for some n > 1. Since z,4; is full

and supersoft, and since nu > Y, Z;, we may apply [Theorem 8.4| at the first and last step to
conclude that

n+1 n+1

Zni1 +nu = a(Z, 11 +na) > O‘(Z zZ) = Z Zi.
i=1 i=1
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Similarly, we get (> i z;) +u > Z?Ill z;. Then, applying the distributivity of addition over A,
we get

©-

n+1
Z(zl Au) = ((

- ((

> () 2) AM(n+1)u).
1

zl) A nu> + (z2n41 Aw)

i=1

NE

zi) + Zn+1> A (( Zzl) + u) A (Zpe1 +nu) A ((n 4 1u)

1 =1

-
Il

+
[u

3

The converse inequality is clear.
Passing to the supremum over all n we get the desired equality. O

8.11. Theorem. Let A be a unital, separable C*-algebra of stable rank one that has no nonzero
finite dimensional quotients. Then the following conditions are equivalent:

(i) A has local weak (m,~y)-comparison for some m € N and v > 1.
(ii) For each full element x € Cu(A) there exists a full, supersoft element z € Cu(A) such
that z < x.
(iii) A has strict comparison on full elements.
(iv) The restriction of o to {f € L(F(Cu(A))) : f is full} is a Cu-morphism into the
subsemigroup of full elements of Cu(A).

Proof. (i) = (ii): Let m € N and v > 1 such that A has local weak (m,y)-comparison. Let
x € Cu(A) be full. As above, set u = [14]. Replacing z by x A u if necessary, we may assume
that © < u. (Note that 2 A u remains full by ) Using we can choose a
sequence (z;); of full elements in Cu(A) such that y .-, mz; < z. Indeed, we first find z; full
such that (m + 1)y < z, and then inductively we find z; full such that (m + 1)x; < z;—;. Now

k k—1 k—2
> ma < (O mai) +ap < O ma) +ag_2 <. <may 42y < @
1=1 =1

i=1

Passing to the supremum over k we get the result.
Since x; is full for each 4, there exists n; € N such that u < n;xz;. Clearly, we may further
assume that ) .o, ni < 1. Set
oo

=y

n;
=1 T

Applying [Theorem 5.11| again, let z € Cu(A) be a full, supersoft element such that z < eu. We
claim that z < z. Set t; = 871 for each i € N, and observe that > > t; = 1. Set z; = a(t;2) for

2
each i. Since z is full, we see that z; is full for each i. Using the additivity of « at the second

step (Theorem 8.4)), that « is supremum preserving at the third step (Proposition 7.4] (iii)), and

that z is supersoft at the last step, we have

o0 n n n
Z z; = sup Z a(t;z) = sup a(z t;z2) = a(sup Ztﬁ) =a(z) = z.
i=1 "oi=1 T =1 "oi=1

Since z < 4, [Lemma 8.10] implies

oo

z= Z(zl Au).

i=1
By the way we picked the sequence (t;);, we have yn;z; < © < n;z;. Since clearly ZAu < Z,
we also have Vnim < U < n;Z;. Since A has local weak (m,~)-comparison we conclude that



C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ SEMIGROUPS 37

zi Nu < ma; for all i. Therefore,

as desired.

(if) == (iii): Suppose that z,y € Cu(A), with y full, satisfy ¥ < (1 — ¢)y for some € > 0. Let
a’ € Cu(A) satisfy 2’ < z. Bythere exist y', w € Cu(A) such that Z < v,y +w <
and w is full. By assumption, there exists a full, supersoft element z € Cu(A) such that z < w.

Then 7+ % < ¢ + 2, whence a(Z +2) < ) +2). Now, since z is full we have 7,3’ < coZ. Using
in the second and fourth step, and that z is supersoft in the fifth step, we obtain

r<r+a@)=a@+2)<ay+2) =y +a@) =y +2<y +w<y.

(iii) = (iv) We have already shown that o preserves order and suprema of increasing sequences
(Proposition 7.4 (iii)), and that o is additive on full functions (Theorem 8.4)). It remains to show
that it preserves the way below relation. Let us show first that if x,y € Cu(A) are such that
7 <7, and x is full and soft, then z < y (cf. Theorem 5.2.18]). Choose a full element
2’ € Cu(A) such that 2’ < = (see . Since x is soft, #' < # < 7. By strict comparison
on full elements, ' < y. Passing to the supremum over all full 2’ < z, we get z < y. Now
let f,g € L(F(Cu(A))) be full and such that f < g. Since a(g) = sup, () T, and z — 2 is
supremum preserving, we can choose x < a(g) such that f < Z. Since a(f) is soft and full, we
deduce that a(f) < z < a(g), as desired.

(iif) = (i): This follows taking m = 1 and any value v > 1.

(iv) = (111) Suppose that =,y € Cu(A), with y full, satisfy < (1 — ¢)y for some € > 0. Let
2’ < z. Then 7/ < 7, and thus U< y + u. Using at the first and last steps,
and that a is <-preserving at the second step, we deduce that

¥+ (@) = a(z’ +0) < a(f +8) = y+ a(@).
By weak cancellation, we get 2’ < y. Passing to the supremum over all 2’ < z, we obtain
r < y. O

8.12. Theorem. Let A be a separable C*-algebra of stable rank one that has no nonzero elementary
ideal-quotients. Then the following conditions are equivalent:
(i) Cu(A) has m-comparison for some m = 0.
(ii) There exist N € N and v > 1 such that vZ < § implies x < Ny for all z,y € Cu(A).
(iii) For each x € Cu(A) there exists y < x that is supersoft and such that ooy = oox.
(iv) Cu(A) has strict comparison.
Moreover, these conditions imply that a is a Cu-morphism.

Proof. (i) = (ii) Taking N =m + 1 and v > 1, this is the particular case of yo =+ = ym =y
in the definition of m-comparison.

(ii) = (iii): Let € Cu(A) and let W = {y € Cu(A): y < ooz} be the ideal generated by x.
Using the natural correspondence between closed, two-sided ideals of A and ideals of Cu(A) (see
[§2.7), we let I C A be the closed, two-sided ideal of A such that Cu(I) = W. Let M € N be such
that M > . Since I satisfies the assumptions of [Theorem 5.11} we can find 2’ € Cu(I) C Cu(A)
such that z’ is soft, M Nz’ < x and ooz’ = oox.

Now set y = a(Mz'). Note that y is supersoft by [Proposition 8.2 (iii), since 2’ (and thus also

Mz') is soft. Then

Hence, by assumption, y < M Nz’ <
ooz’ = ooz (by L 6| (iii)).

iii) = (iv): Let z,y € Cu( Jand € >0 satlsfy T < (1 —¢)7. Let 2/ < x. Then / < jj. By
Lemma 8.9| there exist 4/, z € Cu(A) such that 2 <y, y +2<y, and y < coz. Let w € Cu(A4)
be supersoft, such that w < z and cow = coz.
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We have by construction that 7' < oow. Therefore, using |Theorem 8.4| at the first step, and
that w is supersoft at the second step, we get that

(7 + @) =2 + a(d) =2’ + w.

Thus x’ + w is supersoft. Likewise, 3’ + w is supersoft. Since o w < y’/Jr\w, it follows after
applying « on both sides that z’ +w < vy’ + w. Therefore 2’ < 2’ +w <y’ + w < y. Passing to
the supremum over all 2’ < x, we get that = < y.

(iv) = (i): This follows taking m = 0.

Lastly, let us show that (iv) implies that « is a Cu-morphism. As in the proof of
(iii) = (iv), we only need to check preservation of the way below relation. Let f,g € L(F(Cu(A)))
satisfy f < g. As in the proof of [Theorem 8.11] (iii) = (iv), we obtain z € Cu(A) such that
f <Zand z < a(g). By [APTI1S8, Theorem 5.2.18], if elements y, z in a Cu-semigroup with strict
comparison satisfy that § < Z, and if y is soft, then y < z. Observe now that «(f) is supersoft,
and therefore soft. Indeed, we have from that there exists w € Cu(A) such that

w = f and a(f) = w. Since a(f) = f < &, we get that a(f) < z, and so a(f) < a(g). O

9. NONSEPARABLE C*-ALGEBRAS

Here we show that the hypothesis of separability can be dropped in some of the results from the
previous sections. To this end, we rely on the model theory of C*-algebras and in particular on
the Downward Lowenheim-Skolem Theorem for C*-algebras. For the model theory of C*-algebras
we refer the reader to [FHLT16].

Given a C*-algebra A and a C*-subalgebra B, we write B < A if B is an elementary submodel
of A. This means that for every formula ¢ in the language of C*-algebras and every n-tuple @ in B,
we have (@) = (@) (see [FHLT 16l Definition 2.3.3]). By the Downward Léwenheim-Skolem
Theorem ([FHLT16, Theorem 2.6.2]), every C*-algebra has a separable elementary submodel.
Important to us in what follows is that if B < A then the induced map Cu(B) — Cu(A) is an
order-embedding ([FHLT16, Lemma 8.1.3]). Recall that an order-preserving map ¢: S — T
between partially ordered sets is an order-embedding provided that ¢(z) < ¢(y) implies z < v,
for z,y € S.

The next result removes the separability assumption in

9.1. Theorem. Let A be a unital C*-algebra of stable rank one, and let k € N. Then A has no
nonzero representations of dimension less than k if and only if there exists a *-homomorphism
©: M(Co((0,1])) = A with full range.

Proof. The proof of the easy direction in does not make use of the separability
hypothesis. Hence, it applies here.

Suppose that A is a unital C*-algebra of stable rank one without nonzero representations of
dimension less than k. By [RR13, Corollary 5.4], the element [1] is weakly (k, n)-divisible for some
n (see . Thus, there exist ay,...,a, € A} such that k[a;] < [1] for all ¢ and [1] < D1, [a,].
Apply the Downward Lowenheim-Skolem Theorem to obtain a separable C*-subalgebra B < A
that contains 1,ay,...,a,. Since the inclusion of B in A induces an order-embedding of Cu(B)
in Cu(A) (JFHL'16, Lemma 8.1.3]), the inequalities k[a;] < [1] for all ¢ and [1] < Y} ;[a,] also
hold in Cu(B). By [RR13| Corollary 5.4], B has no representations of dimension less than k. On
the other hand, by [FHL™16, Lemma 3.8.2]), the property of having stable rank one is elementary
and therefore passes to elementary submodels. We can thus apply in B to obtain a
*-homomorphism ¢: M(Cy((0,1])) — B C A whose range is full in B. Since 1 € B, the range of
@ is also full in A. O

Next we extend to the nonseparable case. We start with a preparatory result.

9.2. Lemma. Let A be a C*-algebra, let B < A, and let a,b € By. Then A([a]) < A([b]) for all
X € F(Cu(A)) if and only if M([a]) < A([b]) for all X € F(Cu(B)).
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Proof. The backward implication follows directly using that every functional on Cu(A) restricts to
a functional on Cu(B). To show the converse, suppose that A([a]) < A([b]) for all A € F(Cu(A)).
Let € > 0 and § > 0. By [RobI3 Proposition 2.2.6] there exist M, N € N such that &£ >1—§
and M[(a —€)4+] < N[b] in Cu(A). Since the inclusion B — A induces an order- embeddmg
Cu(B) — Cu(A), this inequality also holds in Cu(B). Fix A € F(Cu(B)). Evaluating both sides
of M[(a—¢€)4] < NJ[b] on A we get

(1= 0)A([(a—e)+]) < A([b).
Since this holds for all §, > 0 we conclude that A([a]) < A([b]), as desired. O

9.3. Theorem. Let A be a unital C*-algebra of stable rank one with no finite dimensional
quotients. Set u = [14] and recall that F,(Cu(A)) C F(Cu(A)) denotes the set of functionals
normalized at u. Then for each f € LAff(F,(Cu(A)))%, there exists z € Cu(A) such that

Z|F, (cu(a)y) = [

Proof. Let us regard A embedded in A ® KC as the ‘upper left corner’. Let 14 € A® K denote

the unit of A. Given f € LAff(F, (Cu( )54, apply [P to obtain f € L(F(Cu(A)))
that extends f. As noted in (i ) we have L(F(Cu(A))) = Cu(A)g, which allows us to

choose a sequence (z;); in Cu(A4) and a sequence of positive integers (m;); such that (;it); is

increasing and sup; ;- = f. Choose a; € (A® K), such that z; = [a;] for all i.

Since A has no finite dimensional representations, by [RR13| Corollary 5.4] there exists for
each k an ny, € N such that [14] is weakly (k, ny)-divisible in Cu(A4). We thus find by, € A4 for
k=1,2,...and | = 1,...,ny such that k[by,;] < [1a] for all k,l and [14] < >, [bk,] for all k.
Apply the Downward Lowenhelm Skolem theorem to obtain a separable elementary submodel
B < A® K that contains all a;, all by, ;, and 14.

As argued in the proof of B has stable rank one. Further, the inclusion of B in
A ® K induces a natural order-embedding Cu(B) — Cu(A4).

We claim that B is stable. To prove this we use the Hjelmborg-Rgrdam criterion for stability
established in [HR98], see also [FHL™16, Proposition 2.7.7]. By the stability of A ® K, for each
b € By we have

Uelﬂf (JIlb — v*v|| + |[bov*|)) = 0.

Since B < A ® IC, the displayed formula also evaluates to 0 in B. That is, for every € > 0 there
exists w € B such that ||b — w*w| < e and ||bww*|| < e. Since B is separable, [HR98, Theorem
2.1 and Proposition 2.2] implies that B is stable.

Let us show that 14 € B is full in B. For every b € B we have [b] < co[l4] in Cu(A), as 14 is
full in A® K (see[§ 5.2). Using that Cu(B) — Cu(A) is an order-embedding, we get [b] < co[14]
in Cu(B), which implies that 14 is full in B.

The inequalities k[bx,;] < [14] and [14] < Y%, [bi,] hold in Cu(B) for all k, I, using again that
Cu(B) — Cu(A) is an order-embedding. Therefore, the element [1 4] is weakly (k, ny)-divisible
in Cu(B) for all k. By [RR13, Corollary 5.4], the hereditary C*-subalgebra 14814 has no finite

dimensional representations.

By | the sequence (£ Z) considered in the first paragraph of the proof is increasing
when regarded as a sequence in L(F(Cu(B))). Let h € L%F%Cu?B? ) be its supremum. The
function h is full, since ’“_ is full for large enough 7. By [Theorem 7.14| applied to the C*-algebra
B, we have h = Z for z = a(h). Since B is stable, there exists ¢ € By such that [¢] = x, and
thus [c] = h.

We claim that [c], regarded as an element in Cu(A), satisfies [E] = f. By the
inequalities -*t < [c], which hold in L(F(Cu(B))), also hold in L(F(Cu(A))) for all i. Passing

to the supremum over i, we get that f < [g] Let [¢'] € Cu(B) be such that [c ] [c]. By
the definition of «(h), we have that [¢/] < h = [¢] in L(F(Cu(B))). Hence [ '] < & for some
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i. By this inequality holds also in L(F(Cu(A4))). Hence, [0/7] < f. This holds for

¢ = (¢ —¢€)4 and arbitrary e > 0. Hence, [c] < f in L(F(Cu(A))), as desired. O
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