
This is the **accepted version** of the journal article:

Bailón, L.; Llano, A.; Cedeño, Samandhy; [et al.]. «Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection : a randomized, placebo-controlled phase 1 trial». *Nature Medicine*, Vol. 28 Núm. 12 (december 2022), p. 2611-2621. DOI 10.1038/s41591-022-02060-2

This version is available at <https://ddd.uab.cat/record/309412>

under the terms of the IN COPYRIGHT license

1 Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1
2 infection: a randomized, placebo-controlled phase 1 trial

3

4 Lucia Bailon^{1,2}, Anuska Llano³, Samandhy Cedeño³, Tuixent Escribà³, Miriam Rosas-Umbert^{3,4}, Mariona
5 Parera³, Maria Casadellà³, Miriam Lopez¹, Francisco Pérez¹, Bruna Oriol-Tordera³, Marta Ruiz-Riol^{3,5}, Josep
6 Coll^{3,5,6}, Felix Perez⁶, Àngel Rivero⁶, Anne R. Leselbaum⁶, Ian McGowan^{7,8}, Devi Sengupta⁹, Edmund G
7 Wee¹⁰ Tomáš Hanke^{10,11}, Roger Paredes^{3,5,12,13}, Yovaninna Alarcón-Soto^{1,14}, Bonaventura Clotet^{1,3,5,12}, Marc
8 Noguera-Julian^{3,5,12}, Christian Brander^{3,5,7,12,15#}, José Moltó^{1,5,13*#}, Beatriz Mothe^{1,3,5,12,13#} and the AELIX002
9 Study Group[†].

10 1 Fundació Lluita Contra La Sida, Infectious Diseases Department, Hospital Universitari Germans Trias I
11 Pujol, Badalona, Barcelona, Spain.

12 2 Department of Medicine, Autonomous University of Barcelona, Catalonia, Spain.

13 3 IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.

14 4 Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark

15 5 CIBERINFEC, ISCIII

16 6 Projecte Dels Noms-Hispanosida, Bcn Checkpoint, Barcelona, Spain,

17 7 AELIX Therapeutics S.L., Barcelona, Spain,

18 8 University of Pittsburgh, Pittsburgh, PA, USA,

19 9 Gilead Sciences, Inc, Foster City, CA, USA

20 10 The Jenner Institute, The Nuffield Department of Medicine, University of Oxford, UK

21 11 Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan

22 12 Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic – Central
23 University of Catalonia (UVic – UCC), Vic, Barcelona, Spain

24 13 Germans Trias I Pujol Research Institute, Badalona, Spain.

25 14 Departament d'Estadística I Investigació Operativa, Universitat Politècnica de
26 Catalunya/BARCELONATECH, Barcelona, Spain.

27 15 ICREA, Barcelona, Spain.

28

29 *corresponding authors: José Moltó: jmolto@flsida.org,

30 #Contributed equally

31 [†]A list of authors and their affiliations appears at the end of the paper

32

33 ABSTRACT

34 HTI is a novel HIV vaccine immunogen designed to elicit cellular immune responses to HIV targets
35 associated with viral control in humans. The AELIX-002 trial was a randomized, placebo-controlled
36 trial to evaluate as a primary objective the safety of a combination of DNA.HTI (D), MVA.HTI (M) and
37 ChAdOx1.HTI (C) vaccines in 45 early-antiretroviral (ART) treated individuals (44 men, 1 woman;
38 NCT03204617). Secondary objectives included T cell immunogenicity, effect on viral rebound and
39 safety of an antiretroviral treatment interruption (ATI). Adverse events were mostly mild and
40 transient. No related SAEs were observed. We show here that HTI vaccines were able to induce
41 strong, polyfunctional and broad CD4 and CD8 T cell responses. All participants experienced
42 detectable viral rebound during ATI, and resumed ART when plasma HIV-1 viral load reached either
43 >100,000 copies/ml, >10,000 copies/ml for 8 consecutive weeks, or after 24 weeks of ATI. In post-
44 hoc analyses, HTI vaccines were associated with a prolonged time off ART in vaccinees without
45 beneficial HLA class I alleles. Plasma viral load at the end of ATI and time off ART positively correlated
46 with vaccine-induced HTI-specific T cell responses at ART cessation. Despite limited efficacy of the
47 vaccines in preventing viral rebound, their ability to elicit robust T cell responses towards HTI may
48 be beneficial in combination cure strategies, which are currently being tested in clinical trials.

49 1.1 INTRODUCTION

50

51 Therapeutic vaccines designed to enhance HIV-specific T cell immunity have been postulated to be a
52 key component of any HIV cure strategy¹. Different therapeutic vaccine candidates have been shown
53 to be safe, immunogenic, and able to induce broad and functional T and B cell immune responses²⁻⁵.
54 However, no reduction in HIV-1 viral reservoirs, prevention of viral rebound, or suppressed viremia off
55 ART have been reported in randomized, placebo-controlled trials of vaccines, given alone or in
56 combination with latency reversing agents⁵⁻⁷.

57

58 One potential reason for these suboptimal trial outcomes may have been T cell immunogen designs
59 and the induction of virus-specific T cell responses with ineffective or insufficient antiviral activity. To
60 overcome this, HTI (*HIVACAT T-cell Immunogen*)-based vaccines were designed to induce functional
61 HIV-1-specific T cell responses that were associated with better viral control in more than 1,000 HIV-1
62 clade B and C infected individuals within a broad HLA class I and class II allele coverage⁸ targeting the
63 most vulnerable sites of HIV-1. The HTI immunogen includes 16 HIV-1 regions from Gag, Pol, Nef and
64 Vif that induce T cell responses of high functional avidity and cross-reactivity and target regions of
65 overall low diversity/entropy, even though these regions were not predicted by stringent conservation

66 algorithms but were based on human trial data ^{9,10}. Importantly, in independent cohorts of viremic
67 controllers and individuals with break-through infection after being vaccinated with full-length
68 proteins, recognition of viral protein segments covered by HTI were found to be generally subdominant
69 but, when detected, were associated with better viral control and viral inhibition of clade-matched HIV
70 isolates ¹¹. The 16 identified HIV-1 regions were assembled in a 529aa immunogen sequence (HTI) and
71 expressed both in a plasmid DNA (DNA.HTI, D)¹² and two viral-vectored vaccines based on a modified
72 vaccinia virus Ankara (MVA.HTI, M)¹³ and a chimpanzee adenovirus (ChAdOx1.HTI, C)¹⁴.

73

74 AELIX-002 was a Phase I, first-in-human, randomized, double-blind, placebo-controlled study, to
75 evaluate the safety, immunogenicity and effect on viral rebound of DNA.HTI, MVA.HTI and
76 ChAdOx1.HTI HIV-1 vaccines administered in a heterologous prime-boost regimen to 45 virally
77 suppressed, early-treated individuals with HIV-1 infection .

78

79 1.2 RESULTS

80

81 A total of 45 participants (44 men and 1 one woman), virologically-suppressed for at least 1 year, were
82 recruited from an existing Early-ART cohort¹⁵. Acute/recent infection at ART initiation was confirmed
83 based on any of the following criteria: i) positive plasma HIV-1 RNA with negative serology, ii) positive
84 Gag p24 antigen; iii) indeterminate Western blot; iv) absence of the p31 band in a positive Western
85 blot in the context of a known exposure/reported acute retroviral syndrome and/or v) negative HIV
86 antibody test <24 weeks from the 1st positive test and before starting ART. Participants were
87 randomized 2:1 to receive vaccines or placebo. DNA.HTI or placebo were given at weeks 0, 4 and 8 and
88 MVA.HTI or placebo were given at weeks 12 and 20. All participants completed the 1st vaccination
89 regimen (DDDDMM (n=30) or Placebo (n=15). Out of them, 42 reconsented to start a 2nd vaccination
90 regimen after a favorable report from the safety monitoring comitte (SMC) once the last participant
91 had reached week 32 of the follow-up. Second vaccination regimen started after a minimum of 24
92 weeks from last MVA.HTI or placebo vaccination. Participants received ChadOx.HTI or placebo at
93 weeks 0, 12 and MVA.HTI or placebo at week 24. Finally, 41 participants (CCM (n=26)/Placebo (n=15))
94 entered an analytical treatment interruption (ATI) eight weeks after completing the last series of
95 vaccination (CCM or placebo) (**Fig. 1**).

96

97 **Demographics:** **Table 1** shows baseline characteristics. ART was initiated after a median (range) of 55
98 (12-125) and 64 (6-140) days after the estimated date of HIV-1 acquisition in placebo and vaccine
99 recipients, respectively. All participants were receiving an integrase strand transfer inhibitor (INSTI)-

100 based ART regimen at inclusion. Median (range) time with undetectable viral load at enrollment was
101 18 (13-56) and 27 (12-55) months, and median CD4⁺ T cell counts (range) were 826 (549-2,156) and
102 727 (553-1,336) cells/mm³ in the placebo and in the vaccine group, respectively (not significant for all
103 parameters). Three placebo (20%) and 7 (23%) vaccine recipients expressed any HLA class I allele
104 associated with spontaneous control of HIV replication, respectively (i.e. HLA-B*27:05, -B*57:01, -
105 B*15:17 and/or -B*15:03). In addition, 6 (40%) placebo recipients and 9 (30%) vaccinees expressed
106 HLA class I alleles associated with HIV disease progression (i.e. HLA-B*07:02, -B*08:01, -
107 B*35:01/02/03, -B*53:01 and/or -B*54/55/56)¹⁶.

108

109 **Pre-ART HIV-1 viral sequencing:** Full-genome deep sequencing was performed on HIV-1 viral
110 sequences isolated within the first 4 weeks of ART initiation from 41 participants. 32/41(75%)
111 participants had subtype B viruses. Phylogenetic distance to a reference sequence (HXB2) and the
112 coverage by the HTI immunogen were comparable between placebo and vaccine recipients for any of
113 the HIV-1 proteins included in the HTI immunogen (**Extended data Fig.1a-c**). Median (range) number
114 of pre-ART CTL escape mutants within sequences included in the HTI immunogen was 7 (2 to 11) and
115 5 (2 to 8) in the placebo and vaccine recipients, respectively (Mann-Whitney, $p=0.0364$, **Extended data**
116 **Fig.1d**). The degree of pre-ART CTL escape in HTI-covered regions was not associated with replication
117 fitness of the participants' autologous virus (**Extended data Fig.1e**).

118

119 **Safety:** Severity and intensity of AEs were assessed by the investigator according to the Division of
120 DAIDS table for grading the severity of adult and pediatric adverse events, Version 2.1. [March 2017].
121 Overall, vaccines were safe and well tolerated (**Extended data Table 1**). All participants reported
122 solicited adverse events (AEs) related to vaccinations, which were mostly mild (Grade 1-2) and
123 transient, except 1 participant who reported Grade 3 asthenia lasting <72h after the third MVA.HTI
124 vaccination. A total of 440 related AEs were recorded during the entire vaccination phase (111 in
125 placebo and 329 in vaccine recipients), out of which 76 and 229 occurred after placebo or DDDMM
126 administrations and, 35 and 100 after placebo or CCM (**Supplementary Tables 1-4**). The most frequent
127 AEs related to vaccinations were pain at the injection site and a flu-like syndrome. There were only
128 two serious adverse events (SAEs) during the study - an episode of acute infectious gastroenteritis due
129 to *Campylobacter jejuni* and an acute appendicitis that required hospitalization, both in vaccine
130 recipients (**Extended data Table 2**). No laboratory abnormalities related to vaccinations were reported.

131

132 **Immunogenicity:** Total HIV-1 and HTI-specific T cells were assessed by an *ex vivo* IFN- γ -detecting
133 enzyme-linked immunosorbent spot (ELISPOT) assay. Both vaccination regimens (DDDMM and CCM)
134 were immunogenic. Median (range) increase in the total frequencies of HTI-specific T cells from

135 baseline to the peak immunogenicity timepoint after the overall vaccination regimen was 100 (0 to
136 498) in the placebo group and 1,499 (120 to 3,150) SFC/million PBMC in the vaccine group (Mann-
137 Whitney t test, $p<0.0001$, **Fig. 2a** and **Extended data Table 3**). This corresponded to an increase in HTI
138 magnitude >2-fold in 10 (67%) and >3-fold in 1 (7%) of placebo recipients compared to 29 (97%) and
139 24 (80%) of vaccine recipients (Fisher Exact test, $p=0.0117$ and $p<0.0001$ respectively, **Extended data**
140 **Table 3**). To determine the breadth of vaccine-induced T cell responses, PBMC obtained at study entry
141 and after DDDMM and CCM or placebo were expanded *in vitro* and tested against individual 15mer
142 overlapping peptides (OLP) covering the HTI immunogen (n=147). A cumulative breadth over the
143 entire vaccination period of a median (range) of 5 (1-13) IFN- γ -producing responses to individual HTI-
144 covered OLPs was detected in vaccinees without any specific pattern of immunodominance across the
145 HIV subproteins covered by the HTI immunogen in contrast to 3 (1-8) and predominantly gag-specific
146 responses in placebo recipients (Mann-Whitney t test, $p=0.0125$, **Fig 2b-c**). Responses to HTI were
147 already present in 31 participants (20 vaccine and 11 placebo recipients) before ART was initiated. The
148 maximal magnitude of HTI-specific responses achieved during the intervention phase positively
149 correlated with the magnitude of pre-ART HTI specific T cell responses (Spearman Rho=0.5343,
150 $p=0.0024$ and Rho=0.4632, $p=0.0147$ for vaccine recipients at their peak immunogenicity timepoints
151 after DDDMM or CCM respectively, **Extended data Fig. 2a**). Although HTI magnitude at peak
152 immunogenicity timepoint was higher after DDDMM in vaccinees with pre-ART HTI-specific responses
153 compared to those without any HTI detectable responses before ART initiation (median (range) of
154 2,203 (460 to 3,200) vs 808 (60 to 1,595) SFC/million PBMC, Mann-Whitney t test, $p=0.0380$), these
155 differences were no longer statistically significant at ATI initiation (median (range) of 795 (165 to 2,705)
156 vs 595 (50 to 980) SFC/million PBMC, Mann-Whitney t test, $p=0.1012$, **Extended data Fig. 2b**). To
157 determine whether HTI vaccination was able to shift the focus of the virus-specific T cells, the
158 percentage of HTI-specific T-cell frequencies divided by the total HIV-1 proteome-specific T-cell
159 frequencies was calculated at each time point. At time of ATI start, median (range) of 14% (0 to 50)
160 versus 67% (0 to 100) of the total anti-HIV-1 T-cell response was HTI-specific in placebo and vaccine
161 recipients, respectively (Mann-Whitney T test $p<0.001$, **Fig. 2d**).
162

163 To further characterize the vaccine-induced T cells, intracellular cytokine staining for IFN- γ , GranzymeB
164 (GzmB), IL-2 and TNF- α was performed in samples obtained 4 weeks after the last CCM or placebo
165 vaccination (week 28) with or without *in vitro* stimulation with 4 different peptide pools covering the
166 HTI immunogen. T cell lineage, phenotype, activation and exhaustion surface markers were included
167 in the panel. The results showed that HTI-specific responses, defined as the sum of the HTI-IFN- γ ⁺
168 populations for each of the four HTI peptide pool stimulations, were both CD4 and CD8 T cell-mediated
169 (**Fig. 2e**). Polyfunctionality analyses showed that, compared to placebo recipients, vaccinees had a

170 higher frequency of bi and three-function CD8 T cells expressing IFN- γ /GzmB or IFN- γ /GzmB/TNF- α ,
171 while CD4 T cells predominantly expressed combinations of IL-2, IFN- γ and TNF- α (**Fig. 2f**). Importantly
172 and, despite such an intense vaccination regimen used in the study (DDDMMM-CCM), T cell exhaustion
173 markers were not increased in HTI-specific T cells in vaccinees compared to placebo recipients after
174 completing the last series of vaccination (**Supplementary Data Table 5**).

175

176 Finally, we measured the *in vitro* antiviral capacity of CD8 $^{+}$ T cells by a standard viral inhibition assay
177 (VIA)¹⁷ using autologous CD4 $^{+}$ T cells infected with two laboratory-adapted HIV-1 strains (BaL (R5 tropic
178 virus) and IIIB (X4 tropic virus)) as well as with the autologous HIV virus. Median (IQR) percentages of
179 inhibition of BaL-isolate increased in the vaccine group from 46 (17; 75) at baseline to 75 (9; 88) % at
180 the end of the intervention (Wilcoxon t test, $p=0.0805$), while it remained unchanged in the placebo
181 group (34 (17; 60) % at baseline and 37 (14; 63) % at the end of the intervention, Wilcoxon t test,
182 $p=0.9153$). When using IIIB viruses and participant's autologous viruses, significant changes in VIA were
183 detected as well (Wilcoxon t test, $p=0.0014$ and 0.0176) in vaccinees in contrast to placebo recipients.
184 However, absolute increases in viral inhibition capacity were of minor magnitude probably due to the
185 high inhibition capacity against the autologous virus already present at study entry, and consistent
186 with early treatment initiation (**Fig. 2g**).

187

188 **Effect on viral rebound during an ATI:** Forty-one participants (15 placebo and 26 vaccine recipients)
189 interrupted ART and were monitored weekly for a maximum of 24 weeks. Criteria for ART resumption
190 included a single HIV-1 plasma viral load (pVL) $> 100,000$ copies/ml, 8 consecutive determinations
191 $>10,000$ copies/ml, two repeated CD4 $^{+}$ cell counts <350 cells/mm 3 and/or development of a grade 3 or
192 higher severity clinical symptoms suggestive of an acute retroviral syndrome (ARS), whichever
193 appeared first. The ATI period partially overlapped with the first COVID-19 outbreak in Spain with a
194 State of Alarm declared from 03/16/2020 to 06/20/2020. Risk mitigation strategies were quickly
195 implemented during the pandemic to reduce premature withdrawals while reassuring participant's
196 safety. ATI was overall well tolerated (**Supplementary Data Table 6**). Frequency of sexually transmitted
197 infections (STI) in the study population was similar to those previously reported in MSM¹⁸, but
198 importantly was relatively lower during the ATI period than during the intervention phase of the study
199 (7 vs 17 cases of STI/100 person/year, respectively). Viral suppression to undetectable levels was
200 achieved by the 12th week after ART resumption in all 35 participants assessed at the end of study visit.

201

202 As shown in **Fig. 3a-b**, pVL rebound (defined as pVL >50 copies/ml) was detected in all 41 participants
203 after ART discontinuation at a median (range) time of 2 (1-6) and 3 (1-9) weeks in placebo and vaccine
204 recipients, respectively (Mann-Whitney t test, $p=0.1942$). Time to pVL rebound, peak viremia, time to

205 peak viremia, slope of increase pVL or AUC pVL during the ATI were comparable between placebo and
206 vaccine recipients (**Extended data Table 4**). Twenty-five (61%) participants resumed ART after 1
207 determination of pVL >100,000 copies/ml, and 1 (2%) participant after 8 consecutive determinations
208 >10,000 copies/ml. Three participants (1 in the placebo and 2 in the vaccine group) showed symptoms
209 compatible with ARS, but they were Grade 1-2 and did not lead to ART resumption. Four (9%)
210 participants resumed ART at weeks 9, 12, 22 and 23 of ATI without reaching any pre-specified ART
211 resumption criteria in the context of the COVID-19 pandemic (details provided in **Supplementary Data**
212 **Table 7**). Eleven (27%) participants completed 24 weeks of ATI, 7 of them with sustained pVL<2000
213 copies/mL. Five participants resumed ART at week 24, and the remaining 6 participants (2 placebo and
214 4 vaccine recipients) opted to remain off ART and entered an ATI extension protocol with monthly
215 monitoring for up to a total of 72 weeks of ATI (NCT04385875). Four participants (1 placebo and 3
216 vaccine recipients) completed the ATI-extension with sustained pVL<2,000 copies/ml after 72 weeks
217 off ART (**Extended data Fig. 3**), and then resumed ART. Reasons for starting ART included worries about
218 HIV transmission, previous good tolerability to ART and the burden of additional HIV prevention tools
219 required for viremic individuals. In a post-hoc survival analysis for time off ART during the ATI,
220 participants without any beneficial HLA class I alleles (32 of the 41 participants that entered the ATI
221 period), 1 (8%) of the placebo and 8 (40%) of the vaccine recipients were able to remain off ART for 22
222 weeks (Δ 32%, 80%CI [7.6; 55.7] and 95%CI [-1.6; 64.9]; log-rank test $p=0.1834$ for all ATI), with pVL
223 <2,000 copies/mL being observed in 1 placebo and 5 vaccine recipients, respectively (**Fig. 3c**)

224

225 **Exploratory objectives.**

226 **Reservoir:** Amplicon signal issues occurred for 6 (14%) participants (3 placebo and 3 vaccine recipients)
227 for whom intact proviral DNA assay (IPDA) determinations were not available. Intact HIV-1 DNA
228 represented a median (IQR) of 23 % (9;42) of the total HIV-1 DNA. Total and intact proviral HIV-1 DNA
229 were highly correlated (Spearman Rho = 0.6673, $p <0.0001$ at study entry and Rho = 0.8716, $p <0.0001$
230 at ATI start). No differences in the reservoir decay were found between groups, either measured by
231 total proviral HIV-1 DNA (21% vs 16% decay in the placebo and vaccine groups respectively, Wilcoxon
232 t test, $p=0.4291$) or by IPDA (68% vs 66% decay in the placebo and vaccine groups respectively,
233 Wilcoxon t test, $p=0.7892$) (**Extended data Fig.4**).

234

235 **Correlate analyses:** Potential immune and viral correlates associated with longer time off ART (i.e. less
236 risk to reach ART resumption criteria of HIV-1 pVL >100,000 or consecutive HIV-1 pVL >10,000 for more
237 than 8 weeks) were assessed in the subgroup of individuals that did not harbor any HLA class I allele
238 associated with spontaneous HIV control. The magnitude of the HTI specific T cell response at ATI start
239 was significantly associated with both prolonged time off ART and with lower pVL at the end of ATI in

240 vaccinees (Spearman Rho 0.6469, $p=0.0021$ and Rho -0.6837, $p=0.0009$ respectively, **Fig. 4a and 4b**)
241 but not in placebo recipients. Similarly, albeit not statistically significant, the cumulative breadth of
242 HTI-specific responses at ATI start was associated with longer time off ART (Spearman Rho 0.4235,
243 $p=0.0628$, **Supplementary Fig.1**). In terms of specificities within HTI, for those vaccinees remaining off
244 ART longer than 12 weeks (n=8), we did not observe differences in the pattern of responses induced
245 across the different HIV protein segments covered by HTI (**Supplementary Fig.1**).
246

247 As for T cell functionality, the frequency of CD8 $^{+}$ -and to a lesser extent CD4 $^{+}$ - T cells expressing GzmB $^{+}$
248 was positively correlated with time off ART and with lower HIV-1 pVL at the end of ATI in vaccine, but
249 not in placebo recipients (**Fig. 4c-f**). Although vaccinees showed an increased in *in vitro* viral inhibition
250 capacity, this was not associated with any of the ATI outcomes. As for viral factors, we ruled out the
251 possibility that pre-existing CTL escape in sequences covered by HTI immunogen and/or replication
252 fitness of the participants' autologous virus could have influenced the ability of vaccine-induced
253 responses to control virus replication during ATI. Vaccine recipients that remained off ART for longer
254 periods of time did not show any significant correlation with the number of HLA-adapted footprints in
255 pre-ART sequences (Spearman Rho -0.0160, $p=0.9467$, **Extended data Fig. 5a**) and were able to control
256 viruses not only with low but also with medium and high replicative capacity (**Extended data Fig. 5b**).
257 Levels of total or intact proviral HIV-1 DNA at ATI start were not associated with time to viral rebound
258 or with longer time off ART (**Extended data Fig 5c-d**); however, the majority of participants that
259 remained off ART for >12 weeks were amongst the ones with lower reservoir levels.
260

261 Finally, as distribution of time off ART was quite binary rather than continuous (≤ 12 or > 12 weeks),
262 univariate logistic regression models were used to identify factors that could influence length of time
263 to ART resumption. In addition to the pre-ART pVL, most of the immune parameters measured at ATI
264 start increased the odds of time off ART > 12 weeks (e.g. HTI magnitude \widehat{OR} 1.46, 95% CI [1.16; 1.99],
265 $p= 0.0052$; frequency of HTI-specific CD8 $^{+}$ GzmB $^{+}$ T cells at ATI start \widehat{OR} 1.07, 95% CI [1.01; 1.14], $p=$
266 0.0240; **Fig. 5**). Conversely, reservoir levels were not associated with higher chances of remaining off
267 ART in the regression model. Importantly, in a multivariate logistic regression model including most
268 critical demographic covariates, such as pre-ART pVL and CD4/CD8 ratio at AELIX-002 entry, there was
269 an increased probability for being off ART after 12 weeks of ATI for the vaccinees compared to placebo
270 recipients (\widehat{OR} 8.25, 95% CI [1.05; 140.36] (**Extended data Table 5**)).
271

272 1.3 DISCUSSION

273 The double-blind, placebo-controlled, randomized AELIX-002 study demonstrated that HTI vaccines
274 were safe, well tolerated, and able to induce strong, polyfunctional and broad CD4 and CD8 T cell
275 responses focused on the HTI immunogen sequence. In agreement with preclinical data in NHP¹⁹ and
276 clinical trials in similar populations using other T-cell vaccines only^{5,6}, all participants showed
277 detectable viral rebound during the ATI. However, in exploratory analyses we observed a positive
278 efficacy signal on the ability to remain off ART during a 24-weeks ATI (i.e. to avoid reaching HIV-1 pVL
279 of >100,000 cop/ml or >10,000 cop/ml for 8 consecutive weeks as per the protocol-defined ART
280 resumption criteria) in vaccinees without beneficial HLA genetics compared to placebo recipients. The
281 AELIX-002 trial is, to our knowledge, the first randomized, placebo-controlled trial testing therapeutic
282 T cell vaccines in an early ART-treated population that shows a correlation between vaccine-induced
283 immune responses and both, lower post rebound viremia and extended time off ART, providing an
284 opportunity to identifying correlates of improved viral control.

285

286 The AELIX-002 trial results support the idea that induction of HIV-specific T cells is a key factor in
287 improving post-rebound viral suppression during an ATI, while validating the design of the HTI
288 immunogen to induce functional T cell responses to vulnerable sites of the virus. Indeed, the HTI
289 vaccines used in AELIX-002 showed good coverage of the autologous viral sequences, despite some
290 evidence of pre-existing CTL escape²⁰. Importantly, HTI vaccination induced strong, long-lasting GzMB-
291 secreting CD8⁺T cells along with improved ability to inhibit replication of CCR5-tropic, CXCR4-tropic,
292 and importantly, autologous HIV virus with a broad range of viral replicative fitness. Additionally,
293 vaccine-induced responses targeted different HTI subunits, confirming that the HTI immunogen design
294 does contain multiple T cell targets that can mediate effective HIV control ex vivo.

295

296 Studies testing a combination of TLR7 agonists and bNAbs in NHP have observed a correlation between
297 lower pre-ART pVL in acute infection and time to viral rebound during an ATI²¹. In contrast, in AELIX-
298 002, lower pre-ART pVL was not associated with longer time to first detectable pVL during the ATI but
299 it was positively correlated with time off ART. Importantly, in exploratory multivariate models the
300 association of vaccination with extended time off ART remained statistically significant, even after
301 accounting for participant's levels of pre-ART viremia and CD4/CD8 ratio.

302

303 Different approaches have been developed to establish high-throughput assays to quantify the
304 replication-competent viral reservoir relevant for cure-related trials, including the IPDA assay which
305 allows measurement of genetically intact proviruses and excludes the majority of defective

306 proviruses^{22,23}. In AELIX-002, although the intact proviral HIV-1 DNA declined preferentially over time
307 relative to total proviruses, we did not detect differences in the reservoir decay from baseline to ATI
308 associated with therapeutic vaccination, suggesting that such a reduction reflected natural decay
309 curves due to early-treatment¹⁵. In contrast to others that have reported an association between a
310 delay in viral rebound and lower intact proviral DNA levels after vesatolimod treatment in viremic
311 controllers²⁴, we did not detect any correlation between levels of intact proviral DNA and time to viral
312 rebound in our early-treated population. Of note, 7 (17%) participants that entered the ATI period had
313 no detectable levels of intact HIV-1 proviruses at the time of ART cessation and yet experienced viral
314 rebound during the ATI.

315

316 Despite the extended vaccination regimen used in AELIX-002, vaccinations were safe and well
317 tolerated, and safety profiles were comparable to other HIV vaccines using same vector platforms both
318 in HIV negative²⁵ or HIV positive individuals². No serious related adverse events or laboratory
319 abnormalities were observed after either DDDMM or CCM vaccinations, including any suspected
320 vaccine-induced immune thrombotic thrombocytopenia (VITT) as described for ChAdOx1-vectored
321 COVID19 vaccines²⁶; although our sample size was limited to detect such rare events. Notewohty, T
322 cell exhaustion markers were not increased in vaccinees compared to placebo recipients.

323

324 Similar to the ATI viral kinetics in the AELIX-002 trial in which all participants experienced a fast viral
325 rebound, Okoye et al have recently shown in the NHP model that CD8+ T cells contribute to reduce
326 the viral set point, although they were not able to prevent viral recrudescence²⁷. These data suggest
327 that HIV antigenic stimulation might be necessary to trigger an effective immune response during the
328 ATI. This, in return has important implications on the design of ATI trials where ART resumption
329 criteria may need to be permissive enough to allow for such a transient viremia²⁸⁻³⁰. Initial peak viremia
330 may however also be associated with risks for onward virus transmission, mutational T cell escape,
331 reseeding of the viral reservoir, and/or excessive inflammatory responses giving rise to ARS. Therefore,
332 it is critical to balance research objectives and the well-being of participants while considering, in
333 collaboration with community advisory boards, effective transmission risk-reduction strategies³¹. In
334 AELIX-002, ART resumption criteria during the ATI were well accepted among participants, as well as
335 all transmission-risk reduction strategies implemented, which included PrEP provision to sexual
336 partners, psychological support, and active surveillance for asymptomatic STI. Of note, the AELIX-002
337 study and, in particular the ATI phase, was ongoing when the first COVID-19 outbreak in Spain
338 occurred. This severely impacted many clinical trial sites as most non-COVID-related hospital activities,
339 including clinical research, had to be paused. Rapid establishment of a risk-mitigation plan overseen

340 by an external SMC during the emergency outbreak was critical to minimize the impact of the COVID-
341 19 pandemic on the conduct of AELIX-002 , as some investigators have recommended recently^{32,33}.

342

343 The main limitations of our trial include the sample size that did not allow for a powered subgroup
344 analysis in individuals without beneficial HLA genetics as well as the selected study population that
345 limits extrapolation of our results to HIV populations other than those treated early during
346 acute/recent HIV infection and in which, both cis-gender and transgender women are usually
347 underrepresented. In addition, the regimen used in AELIX-002 consisted of two different vaccination
348 regimens of DDDMM, further boosted by CCM vaccines, which overall, does not represent a clinically
349 feasible vaccination regimen but did serve to set up an efficacy proof of concept of the HTI immunogen
350 design. In fact, we acknowledge that the efficacy endpoint of time off ART in our study is a function of
351 the ART resumption criteria used in the protocol and, importantly, not yet translatable into clinical
352 practice.

353

354 Our findings strongly support the further use of HTI vaccines in simpler regimens, given alone or in
355 combination with other immunomodulatory agents to improve their efficacy, to achieve more clinically
356 relevant virological outcomes and to be better aligned with the most current target product profile for
357 an HIV cure indication³⁴. For instance, to avoid viral rebound, or partially curtail fast and severe viral
358 recrudescence, and to improve the level of virus control, we and others have proposed strategies
359 combining therapeutic vaccines with bNAbs, which at the same time may enhance suppressive
360 capacity of vaccine-induced responses through a vaccinal effect³⁵⁻³⁷. In this sense, BCN03 and AELIX-
361 003 clinical trials (NCT05208125 and NCT04364035, respectively) are currently exploring the safety
362 and immunogenicity of a ChAdOx1.HTI/MVA.HTI vaccine regimen with a recombinant HIV-1 envelope
363 SOSIP protein (ConM SOSIP.v7 gp140) or with a TLR7 agonist (Vesatolimod) . including an ATI with the
364 same ART resumption criteria as in AELIX-002.

365

366 In conclusion, this first administration of a heterologous prime-boost regimen of HTI vaccines in early
367 ART-treated individuals with HIV infection was safe and immunogenic. In exploratory analyses, AELIX-
368 002 showed a potential signal for improved post-rebound viral control after ART discontinuation in a
369 subset of individuals who did not already possess a beneficial HLA genotype, which requires validation
370 in future studies. These data provide support the use of HTI vaccines as a T-cell-stimulating backbone
371 for future combination cure strategies, with the addition of immunomodulators, bNAbs, or alternative
372 vaccine vectors to boost their efficacy.

373

374

375 **Acknowledgements.** Special thanks to all the volunteers participating in this study for their
376 perseverance and dedication. We especially thank the SMC members Eugenia Negredo, Magi Farré
377 and Felipe Garcia for their commitment to oversee the risk-mitigation plan during the challenging
378 COVID-19 pandemic. We thank Rafaela Ayen, Lucía Gómez, Cristina Ramírez and Eulalia Grau from the
379 sample processing laboratory at IrsiCaixa, Badalona, Spain for their technical assistance throughout
380 the study. We thank Barbara K. Felber and George N. Pavlakis from the NCI-Frederick, Maryland, US
381 and Alison Crook from the Jenner Institute, The Nuffield Department of Medicine, University of Oxford,
382 UK for their assistance in the construction and provision of pre-GMP starting materials of DNA.HTI,
383 MVA.HTI and ChAdOx1.HTI under MTA contracts.

384

385 **Author contributions.** CB, IMG, JM and BM conceived and designed the study. LB and AL additionally
386 contributed to the study design in further study amendments. LB, JC, CL, ML, JM, BM, FP and AR
387 contributed with clinical development of the study. AL, ML, BO-T, FP, FPE and DS contributed with the
388 data management and overall study coordination. TH and EW helped with IMP production. MC, SC, TE,
389 ALL, MP and MR-U performed the experiments. YA-S, ALL, JM, BM, MRR and MN-J undertook the
390 statistical analysis. LB, CB, JM and BM drafted the manuscript. LB, AL, IMG, DS, BC, CB, JM, BM and RP
391 revised the manuscript critically for important intellectual content. All authors reviewed and approved
392 the final version of the manuscript.

393

394 **Competing interests.** CB, BM and ALL are co-inventors of the HTI immunogen (patent application
395 PCT/EP2013/051596). CB, BM and IMG are co-inventors of US patent Application No. 62/935,519 and
396 US Appl. No. 62/851,546 which have relevance to the vaccine regimen used in this study. BM reports
397 consultancy personal fees from AELIX THERAPEUTICS, S.L, as well as speakers fees from Gilead,
398 Janssen, ViiV Healthcare, outside the submitted work. CB is co-founder, CSO and shareholder of AELIX
399 THERAPEUTICS, S.L and serves as an advisor for Tendel Therapies, OmniScope, outside of the
400 submitted work. MN-J is co-founder and shareholder of Nano1Health S.L, outside the scope of
401 submitted work. IMG is a shareholder of, and acts as a consultant to, AELIX THERAPEUTICS, S.L. He is
402 also the CMO of Orion Biotechnology, outside the scope of submitted work. JM has received research
403 funding, consultancy fees and lecture sponsorships from and have served on advisory boards for
404 various laboratories (MSD, Abbvie, Boehringer Ingelheim, Gilead Sciences, ViiV Healthcare, Janssen-
405 Cilag and Bristol-Myers-Squibb). The remaining authors declare that the research was conducted in
406 the absence of any commercial or financial relationships that could be construed as a potential conflict
407 of interest.

408

409 **Funding:** This work was supported by AELIX Therapeutics S.L, and partly by grants from the Spanish
410 Research Agency and the European Regional Development Fund under contract nr. RTC-2017-6473-1
411 [(AEI/FEDER, UE) / (MINECO/FEDER, UE)], the European Union's Horizon 2020 research and innovation
412 program under grant agreement 681137-EAVI2020, NIH grant P01-AI131568 and by ISCIII PI20/01039.
413 LB held a PhD grant from ISCIII (RH CM20/00097) during the conduct of the study.

414

415 Role of the sponsor: this study was funded by AELIX Therapeutics, SL, who participated in the design
416 of the study, provided the IMP of the study, oversaw all safety monitoring activities, data analysis,
417 interpretation and reviewed the manuscript.

418

419

420 **Table 1. Study population.** Demographic, clinical, and treatment characteristics of study participants
 421 at study entry (n = 45).
 422

Demographics	Placebo n=15	Vaccine n=30	ITT Population n=45
Age, years	34 (20 - 51)	37 (23 - 57)	36 (20 - 57)
Sex at birth, male, n (%)	15 (100%)	29 (96.7%)	44 (97.8%)
BMI (kg/m ²)	22.5 (19.1 – 31.7)	22.8 (19.1 – 32.2)	22.8 (19.1 – 32.2)
Time from estimated HIV transmission to ART initiation (days)	55 (12 - 125)	64 (6 - 140)	63 (6 - 140)
Fiebig stage at ART initiation, n (%) [*]			
I	1 (6.7%)	1 (3.3%)	2 (4.4%)
II	0 (0%)	2 (6.7%)	2 (4.4%)
III	2 (13.3%)	0 (0%)	2 (4.4%)
IV	0 (0%)	2 (6.7%)	2 (4.4%)
V	5 (33.3%)	19 (63.3%)	24 (53.3%)
VI	7 (46.7%)	6 (20%)	13 (28.9%)
pVL at ART initiation, log ₁₀ copies/mL	4.9 (3.7 – 7)	4.7 (2.9 – 7)	4.7 (2.9 – 7)
Current ART, n (%)			
DTG/ABC/3TC	7 (46.7%)	9 (30%)	16 (35.6%)
EVG/c/ (TAF or TDF)/FTC	4 (26.7%)	13 (43.3%)	17 (37.8%)
RAL + ABC/3TC	1 (6.7%)	2 (6.7%)	3 (6.7%)
RAL + TDF/FTC	3 (20%)	6 (20%)	9 (20%)
Time with undetectable pVL (months)	18 (13 - 56)	27 (12 - 55)	24 (11 - 56)
Absolute CD4 (cells/mm ³)	826 (549 – 2,156)	727 (457 – 1,333)	745 (365 – 2,156)
Percentage CD4 (%)	39.2 (19 – 53.9)	35.4 (17.8 – 63.4)	36.3 (17.8 – 63.4)
CD4/CD8 ratio	1.1 (0.5 – 2.66)	1.02 (0.5 – 3.3)	1 (0.5 – 3.3)
Beneficial HLA alleles			
Any	3 (20%)	7 (23.3%)	10 (22.2%)
B2705	1 (6.7%)	4 (13.3%)	5 (11.1%)
B5701	2 (13.3%)	1 (3.3%)	3 (6.7%)
B1517	0 (0%)	1 (3.3%)	1 (2.2%)
B1503	0 (0%)	1 (3.3%)	1 (2.2%)
Past small-pox vaccination [‡]	1 (6.7%)	6 (20%)	7 (15.6%)
CCR5-Δ32 heterozygosity [^]	2 (13.3%)	3 (10%)	5 (11.1%)

423 Median (Min - Max) except where is specified.

424 *According to Fiebig, AIDS 2003.

425 [‡] Signs of scarification or history of vaccination reported by the volunteer.

426 [^]CCR5-Δ32 genotype was available for 15 placebo and 26 vaccine recipients (those entering the ATI).

427 Comparisons between study groups by two-sample t-Test or Chi-squared test when corresponding (non-
 428 significant for all variables).

429 BMI, body mass index; cART: combination antiretroviral therapy; pVL, HIV-1 plasma viral load; DTG, dolutegravir;
 430 ABC, abacavir; 3TC, lamivudine; EVG/c, elvitegravir/cobicistat; TAF, tenofovir alafenamide fumarate; TDF,
 431 tenofovir disoproxil fumarate.

432

433 **Figure Legends**

434

435 **Fig 1. Trial design.** **a**, Schematic trial design and study visits. **b**, Consolidated Standards of Reporting
436 Trials (CONSORT) flow diagram for the trial. *HIV*: Human immunodeficiency virus, *ARV*: antiretroviral
437 therapy, *ATI*: analytical treatment interruption, *D*: DNA.HTI, *M*: MVA.HTI, *C*: ChAdOx1.HTI, *P*: placebo.

438

439 **Fig 2. Vaccine immunogenicity.** **a**, Magnitude (sum of SFC/10⁶ PBMC to HTI pools P1-P10) over the
440 AELIX-002 study in placebo (blue) and vaccine (red) recipients over the two vaccination regimens
441 (DDDMM/PPPPP and CCM/PPP) up to the start of the ATI period. **b**, Breadth of vaccine-elicited
442 responses towards individual OLP spanning the entire HTI sequence in the 15 placebo and 30 vaccine
443 recipients. Horizontal and error bars represent median and IQR, respectively and p-values correspond
444 to comparisons between the indicated time points using the Wilcoxon signed-rank test. **c**, the
445 distribution of HTI-specific responses within the different HIV-1 subproteins included in the HTI
446 immunogen of the cumulative breadth at AELIX-002 study entry (above) and after the completion of
447 last series of vaccinations (down) for each placebo (P1 to P15) and vaccine (V1 to V26) recipients. **d**,
448 Average distribution of total HIV-1 T-cells according to their specificity at the indicated time points,
449 HTI-specific responses are shown for placebo (blue) and vaccine (red) recipients, while the rest of non-
450 HTI HIV-1 specific responses are shown in grey, and p-values correspond to comparison between the
451 proportion of HTI-specific responses at each timepoint. Fisher's exact test is used for comparisons
452 between groups. **e**, Proportion of HTI-specific CD4+ and CD8+ T cells secreting IFN- γ (left) or both IFN- γ
453 and GzmB (right) after completion of last series of HTI vaccinations (DDDMM-CCM/PPPP-PPP).
454 Median with interquartile range for the sum of IFN- γ ⁺ and IFN- γ ⁺/GzmB⁺ for each of the four HTI
455 peptide pool stimulations is shown. Wilcoxon-Mann-Whitney is used for comparison between placebo
456 (n=12) and vaccine (n=20) groups. **f**, Polyfunctionality of HTI-specific CD4⁺ and CD8⁺ T cells was
457 analyzed by Boolean gating. Pie charts and boxplots per treatment group (placebo n=15, vaccine n=26)
458 illustrate relative and absolute proportion of each of the different subsets (cells producing 2, 3, or 4
459 cytokines), respectively. On each boxplot, the central line indicates the median, and the bottom and
460 top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to 1.5
461 times the interquartile range. Q-values correspond to Mann-Whitney test per row, adjusted for
462 multiple comparisons. **g**, Changes in viral inhibition capacity to laboratory-adapted HIV-1 strains
463 (placebo n=15, vaccine n=26) and autologous HIV-1 (placebo n=14, vaccine n=23) at study entry, after
464 DDDMM/PPPPP and after CCM/PPP regimens for placebo (blue) and vaccine (red) recipients.
465 Horizontal and error bars represent median and IQR, respectively and p-values correspond to
466 comparisons between the indicated time points using the Wilcoxon signed-rank test. *SCR*: screening,
467 *BSL*: baseline, *D*: DNA.HTI, *M*: MVA.HTI, *C*: ChAdOx1.HTI, *P*: placebo

468

469 **Fig 3. Analytical treatment interruption (ATI) period.** **a**, Individual HIV-1 pVL during the 24 weeks of
470 ATI is shown for all placebo (blue) or vaccine (red) recipients and **b**, in those without any beneficial HLA
471 associated with spontaneous viral control in the lower panel. Lines are interrupted on week of ART
472 resumption. Dotted lines represent detection limit and the two different virologic threshold for ART
473 resumption (10,000 and 100,000 HIV-1 RNA copies/ml, respectively). **c**, Proportion of participants
474 without any beneficial HLA allele associated with spontaneous viral control in the placebo and vaccine
475 arms remaining off ART following treatment interruption. Log-rank test is used for comparison
476 between groups over the entire ATI period. Proportion of participants, delta and 80% Confidence
477 Interval is shown for week 22 of ATI, before last two vaccine recipients resumed ART due to COVID-19
478 related reasons without fulfilling any per-protocol virological criteria. *pVL*: plasma viral load, *ART*:
479 antiretroviral treatment.

480

481 **Fig 4. Immune correlates with ATI outcomes in participants without any beneficial HLA allele.**
482 Correlation between time off ART (left panels) and HIV-1 pVL at the end of ATI at ART resumption
483 timepoint (right panels) with HTI magnitude at ATI start (**a,b**), proportion of CD8⁺ (**c,d**) and CD4⁺ (**e,f**)
484 GzmB-secreting T cells in placebo (blue) and vaccine (red) recipients. *Spearman's correlation is used.*
485 *ART*: antiretroviral treatment, *pVL*: plasma viral load, *ATI*: analytical treatment interruption.

486

487 **Fig 5. Univariate correlate analysis.** Odds ratio and its 95%CI of time to ART resumption > 12 weeks in
488 univariate logistic regression models (n=32 participants without beneficial alleles).

489

490

491 **References**

492

493 1. Shan, L. *et al.* Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of
494 latent viral reservoir after virus reactivation. *Immunity* **36**, 491–501 (2012).

495 2. Mothe, B. *et al.* Therapeutic Vaccination Refocuses T-cell Responses Towards Conserved
496 Regions of HIV-1 in Early Treated Individuals (BCN 01 study). *EClinicalMedicine* **11**, 65–80
497 (2019).

498 3. Mothe, B. *et al.* HIVconsV Vaccines and Romidepsin in Early-Treated HIV-1-Infected
499 Individuals: Safety, Immunogenicity and Effect on the Viral Reservoir (Study BCN02). *Front.*
500 *Immunol.* **11**, (2020).

501 4. Fidler, S. *et al.* Antiretroviral therapy alone versus antiretroviral therapy with a kick and kill
502 approach, on measures of the HIV reservoir in participants with recent HIV infection (the
503 RIVER trial): a phase 2, randomised trial. *Lancet (London, England)* **395**, 888–898 (2020).

504 5. Colby, D. J. *et al.* Safety and immunogenicity of Ad26 and MVA vaccines in acutely treated HIV
505 and effect on viral rebound after antiretroviral therapy interruption. *Nat. Med.* **26**, 498–501
506 (2020).

507 6. Sneller, M. C. *et al.* A randomized controlled safety/efficacy trial of therapeutic vaccination in
508 HIV-infected individuals who initiated antiretroviral therapy early in infection. *Sci. Transl.*
509 *Med.* **9**, eaan8848 (2017).

510 7. Søgaard, O. S. *et al.* The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo. *PLOS*
511 *Pathog.* **11**, e1005142 (2015).

512 8. Mothe, B. *et al.* Definition of the viral targets of protective HIV-1-specific T cell responses. *J.*
513 *Transl. Med.* **9**, 208 (2011).

514 9. Mothe, B. *et al.* A human immune data-informed vaccine concept elicits strong and broad T-
515 cell specificities associated with HIV-1 control in mice and macaques. *J. Transl. Med.* **13**,
516 (2015).

517 10. Mothe, B. *et al.* CTL responses of high functional avidity and broad variant cross-reactivity are
518 associated with HIV control. *PLoS One* **7**, e29717 (2012).

519 11. Hancock, G. *et al.* Identification of Effective Subdominant Anti-HIV-1 CD8+ T Cells Within
520 Entire Post-infection and Post-vaccination Immune Responses. *PLoS Pathog.* **11**, (2015).

521 12. Kulkarni, V. *et al.* Comparison of immune responses generated by optimized DNA vaccination
522 against SIV antigens in mice and macaques. *Vaccine* **29**, 6742–54 (2011).

523 13. Létourneau, S. *et al.* Design and pre-clinical evaluation of a universal HIV-1 vaccine. *PLoS One*
524 **2**, e984 (2007).

525 14. Dicks, M. D. J. *et al.* A novel chimpanzee adenovirus vector with low human seroprevalence:

526 Improved systems for vector derivation and comparative immunogenicity. *PLoS One* **7**,
527 e40385 (2012).

528 15. Bayón-Gil, Á. *et al.* HIV-1 DNA decay dynamics in early treated individuals: practical
529 considerations for clinical trial design. *J. Antimicrob. Chemother.* **75**, 2258–2263 (2020).

530 16. Goulder, P. J. R. & Walker, B. D. HIV and HLA Class I: an evolving relationship. (2012).
531 doi:10.1016/j.immuni.2012.09.005

532 17. Yang, H. *et al.* Antiviral inhibitory capacity of CD8+ T cells predicts the rate of CD4+ T-cell
533 decline in HIV-1 infection. *J. Infect. Dis.* **206**, 552–61 (2012).

534 18. Werner, R. N., Gaskins, M., Nast, A. & Dressler, C. Incidence of sexually transmitted infections
535 in men who have sex with men and who are at substantial risk of HIV infection – A meta-
536 analysis of data from trials and observational studies of HIV pre-exposure prophylaxis. *PLoS*
537 *One* **13**, e0208107 (2018).

538 19. Okoye, A. A. *et al.* CD8+ T cells fail to limit SIV reactivation following ART withdrawal until
539 after viral amplification. *J. Clin. Invest.* **131**, (2021).

540 20. Deng, K. *et al.* Broad CTL response is required to clear latent HIV-1 due to dominance of
541 escape mutations. *Nature* **517**, 381–5 (2015).

542 21. Borducchi, E. N. *et al.* Antibody and TLR7 agonist delay viral rebound in SHIV-infected
543 monkeys. *Nature* **563**, 360–364 (2018).

544 22. Gaebler, C. *et al.* Sequence Evaluation and Comparative Analysis of Novel Assays for Intact
545 Proviral HIV-1 DNA. *J. Virol.* **95**, (2021).

546 23. M, A.-M. *et al.* Recommendations for measuring HIV reservoir size in cure-directed clinical
547 trials. *Nat. Med.* **26**, 1339–1350 (2020).

548 24. SenGupta, D. *et al.* The TLR7 agonist vesatolimod induced a modest delay in viral rebound in
549 HIV controllers after cessation of antiretroviral therapy. *Sci. Transl. Med.* **13**, eabg3071 (2021).

550 25. Hayton, E.-J. *et al.* Safety and tolerability of conserved region vaccines vectored by plasmid
551 DNA, simian adenovirus and modified vaccinia virus ankara administered to human
552 immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.
553 *PLoS One* **9**, e101591 (2014).

554 26. Greinacher, A. *et al.* Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. *N.*
555 *Engl. J. Med.* **384**, 2092–2101 (2021).

556 27. Okoye, A. A. *et al.* CD8+ T cells fail to limit SIV reactivation following ART withdrawal until
557 after viral amplification. *J. Clin. Invest.* (2021). doi:10.1172/JCI141677

558 28. Namazi, G. *et al.* The Control of HIV after Antiretroviral Medication Pause (CHAMP) study:
559 post-treatment controllers identified from 14 clinical studies. *J. Infect. Dis.* (2018).
560 doi:10.1093/infdis/jiy479

561 29. Julg, B. *et al.* Recommendations for analytical antiretroviral treatment interruptions in HIV
562 research trials—report of a consensus meeting. *Lancet HIV* **6**, e259–e268 (2019).

563 30. Fajnzylber, J. M. *et al.* Frequency of Post Treatment Control Varies by ART Restart and Viral
564 Load Criteria. *AIDS* **June 14**, (2021).

565 31. Dubé, K. *et al.* Ethical and practical considerations for mitigating risks to sexual partners
566 during analytical treatment interruptions in HIV cure-related research. *HIV Res. Clin. Pract.* **22**,
567 14–30 (2021).

568 32. Peluso, M. J. *et al.* Operationalizing HIV cure-related trials with analytic treatment
569 interruptions during the SARS-CoV-2 pandemic: A collaborative approach. *Clin. Infect. Dis. An*
570 *Off. Publ. Infect. Dis. Soc. Am.* **72**, 1843–1849 (2021).

571 33. Fidler, S. *et al.* HIV cure research in the time of COVID-19 - Antiretroviral therapy treatment
572 interruption trials: A discussion paper. *J. Virus Erad.* **7**, 100025 (2021).

573 34. Lewin, S. R. *et al.* Multi-stakeholder consensus on a target product profile for an HIV cure. *The*
574 *Lancet HIV* **8**, e42–e50 (2021).

575 35. Nishimura, Y. *et al.* Early antibody therapy can induce long-lasting immunity to SHIV. *Nature*
576 **543**, 559–563 (2017).

577 36. Mendoza, P. *et al.* Combination therapy with anti-HIV-1 antibodies maintains viral
578 suppression. *Nature* **561**, 479–484 (2018).

579 37. Caskey, M. Broadly neutralizing antibodies for the treatment and prevention of HIV infection.
580 *Current Opinion in HIV and AIDS* **15**, 49–55 (2020).

581

582

583

584

585 **METHODS**

586 **Study design.** AELIX-002 (clinicaltrials.gov NCT03204617) enrolled 45 HIV-positive early-treated
587 individuals at the Infectious Diseases Department of the Hospital Germans Trias i Pujol (HUGTIP),
588 Badalona, Spain. First and last participants were recruited on July 20th 2017 and June 5th 2018 ,
589 respectively. The last study visit was conducted on March 10th 2021. AELIX-002 was a Phase I, proof of
590 concept, first in human, randomized, double-blind, placebo-controlled study, to evaluate safety,
591 immunogenicity and effect on viral rebound during an ATI of three novel HIV-1 vaccines (DNA.HTI (D),
592 MVA.HTI (M) and ChAdOx1.HTI (C)) administered in a heterologous prime-boost regimen consisting of
593 DDDMM and CCM vs placebo .

594

595 Participants had to be aged 18-65 years and have a history of triple-drug ART initiated within 6 months
596 after estimated HIV-1 acquisition with HIV-1 viral load < 50 HIV-1 RNA copies/ml and CD4⁺ T cells >400
597 cells/mm³ for at least 12 and 6 months before inclusion, respectively. An in-house algorithm based on
598 the Fiebig classification of HIV infection^{43,44} and each participant's available HIV-1 diagnostic tests were
599 used to calculate the estimated date of HIV-1 acquisition for each individual.

600 Before inclusion, all participants signed an informed consent previously reviewed by a local Community
601 Advisory Board. The study was approved by the institutional ethical review board of HUGTIP
602 (Reference Nr AC-15- 108-R) and by the Spanish Regulatory Authorities, and was conducted in
603 accordance to the principles of the Helsinki Declaration and local personal data protection law (LOPD
604 15/1999).

605 For safety purposes, participants were randomized (2:1) in three sequential recruitment blocks after
606 blinded safety reports were approved by an external SMC. A sentinel group of three participants (2
607 vaccine and 1 placebo recipients) was first enrolled, one participant was randomized per day and was
608 monitored 24h after each vaccination (Group 1) to allow for the next sentinel participant to be
609 vaccinated. The rest of the participants were part of the non-sentinel groups: Group 2 (n=12) and
610 Group 3 (n=30). After completion of first vaccination regimen (DDDM/placeholder), all 45 participants
611 were offered to participate into a second phase of the study, which included a booster vaccination
612 regimen with CCM or placebo (while maintaining the same treatment allocation from the initial
613 regimen) and into an ATI period of 24 weeks. Between DDDMM/placeholder and CCM/placeholder phases of
614 the study, participants were kept on suppressive ART and performed clinical follow-ups every 12 weeks
615 (Roll-Over period).

616 **Criteria to proceed to ATI and resume ART:** Eight weeks after the last vaccination (DDDDMM-CCM or
617 placebo) participants underwent an ATI of up to 24 weeks of duration if they had: i) received all
618 vaccinations, ii) maintained pVL <50 copies/ml and CD4⁺ T cells >400 cells/mm³, and iii) there was no
619 evidence of active syphilis, hepatitis B or hepatitis C infections. Before the ATI start, HIV seronegative
620 participant's sexual partners were offered PrEP through a trial-specific PrEP-provision program. During
621 the ATI, weekly visits were performed at HUGTIP, Badalona or at BCN-Checkpoint, Barcelona following
622 participant's convenience. During the COVID19 pandemic, remote visits and home-based blood draws
623 were implemented. Criteria to resume ART included: a single pVL > 100,000 copies/mL, pVL >10,000
624 and ≤ 100,000 copies/mL for 8 consecutive weeks, CD4⁺ T cells <350 cells/mm³ in two consecutive
625 determinations, development of a ≥ Grade 3 ARS, at participant's request or investigator criteria. As
626 part of investigator criteria, active surveillance for STI was performed during the ATI and, if suggestive
627 of unprotected sex with partners with unknown HIV status and/or HIV negative partners not taking
628 PrEP, ART was recommended to prevent HIV transmission. All participants off ART after 24 weeks of
629 ATI were offered to resume ART except if pVL <2,000 copies/ml. These participants were invited to
630 participate in an ATI-extension protocol (NCT04385875). Criteria for ART resumption during the ATI-
631 extension phase included one determination of pVL >100,000 copies/ml or pVL>2,000 copies/ml for 8
632 consecutive weeks. Psychological assessments of the impact of the ATI on emotional and sexual sphere
633 were evaluated using trial-specific questionnaires by clinical psychologists at the HIV unit before
634 entering the ATI, 12 weeks after the ATI, 4 weeks after ART was resumed and at participant's request.
635 Participants were followed 4 and 12 weeks after ART was resumed. The Protocol and a list of
636 amendments to the protocol are available as Supplementary files S1 and S2.

637 **Study vaccines.** HTI immunogen is a chimeric protein sequence (total length of 529 aa) that was
638 designed based on human immune reactivity⁴⁵ that includes 26 regions in HIV-1 Gag (45%), Pol (44%),
639 Vif (8%), and Nef (3%) proteins identified in these analyses that (i) were preferentially targeted by
640 participants with low viral loads and largely independent of beneficial HLA class I genotypes, (ii) turned
641 out to be more conserved than the rest of the proteome, and (iii) elicited responses of higher functional
642 avidity and broader variant cross-reactivity than responses to other regions⁴⁶.

643

644 DNA.HTI vaccine (D) is a circular and double stranded deoxyribonucleic acid (DNA) plasmid vector of
645 5,676 base pairs derived from the pCMVkan expression vector backbone expressing the codon-
646 optimized HTI gene, preceded by the human Granulocyte-macrophage colony-stimulating factor (GM-
647 CSF) signal peptide for better secretion⁴⁷. The DNA.HTI DS is manufactured, quality-control tested and
648 released in accordance with the requirements of good manufacturing practice (cGMP) by the Clinical
649 Biotechnology Centre (CBC), Bristol Institute for Transfusion Sciences, University of Bristol, UK.

650

651 MVA.HTI vaccine (M, Modified Vaccinia Virus Ankara) is a live, attenuated recombinant vaccinia (pox)
652 virus attenuated by serial passages in cultured chicken embryo fibroblasts (CEF) that contains six large
653 deletions from the parental virus genome⁴⁸. The size of MVA.HTI after the insertion of a transgene
654 coding for the HTI insert is estimated to be approximately 179.6 kbp. The production is carried out by
655 the German company IDT Biologika an all the preparation, verification of the genetic stability and MSV
656 and WSV storage is done at IDT under cGMP conditions and according to EU regulations.

657

658 ChAdOx1.HTI vaccine (C)- is a replication-defective recombinant chimpanzee adenovirus (ChAd) vector
659 based on a chimpanzee adenoviral isolate Y25⁴⁹ that encodes the HTI sequence. ChAdOx1.HTI was
660 derived by sub-cloning the HTI antigen sequence into the generic ChAdOx1 BAC. The plasmid resulting
661 from this sub-cloning (pC255; 40,483 bp) was linearized and transfected into commercial HEX293A T-
662 REx® cells to produce the vectored vaccine ChAdOx1.HTI.ChAdOx1.HTI batch for non-clinical use have
663 been performed at the University of Oxford (UK), whereas large scale amplification and purification of
664 ChAdOx1.HTI have been performed at ReiThera/Advent (Italy) according to cGMP.

665

666 **Objectives:** The primary objective of the study was to evaluate the safety and tolerability of HIV-1
667 vaccines DNA.HTI, MVA.HTI and ChAdOx1.HTI administered intramuscularly as part of heterologous
668 prime-boost regimen (DDDM - CCM) in early treated HIV-1 positive individuals. Secondary objectives
669 included i) to evaluate the immunogenicity of DDDMM and CCM, ii) to evaluate whether vaccination
670 was able to prevent or delay viral rebound, induce post-rebound viral control, and/or prevent or delay
671 the need for resumption of antiretroviral therapy during an ATI and iii) to assess the safety of the ATI
672 period. Further immune (Flow cytometry, viral inhibition assay) and viral evaluations (viral reservoir,
673 autologous HIV-1 sequence and replicative fitness) were conducted as exploratory analysis. Post-hoc
674 univariate and multivariate regression models were performed to explore potential correlates of virus
675 control during ATI.

676 **Safety.** Safety was assessed by an analysis of local and systemic reactogenicity and laboratory data. All
677 solicited local and systemic adverse events (AEs) were recorded during 7 days after administration of
678 each investigational medicinal product using a “Participant reactogenicity diary card”. Unsolicited AEs
679 and SAEs were recorded at any point during the study. AEs were graded according the Division of
680 DAIDS table for grading the severity of adult and paediatric adverse events, Version 2.1. [March 2017].
681 Throughout the study, AEs were analyzed by period: from screening to ATI start and by DDDMM/CCM
682 or placebo; during ATI and after ART resumption. The primary safety endpoint of the study was the
683 proportion of participants who develop a Grade ≥ 3 AEs (including SAE) related to the IMP

684 administration. AEs were specified as related or unrelated to the IMPs by the investigator. Per the
685 Manual for Expedited Reporting of Adverse Events to DAIDS (Version 2.0, January 2010), AEs were
686 reported as related if there was reasonable possibility that the AE may be related to the study agent(s)
687 suggested by a plausible, reasonable time sequence existed in relation to administration of the drug,
688 the observed manifestation coincided with the known adverse reactions profile of the implicated drug,
689 the event could not be or unlikely be explained by a concurrent disease or by other drugs or chemical
690 substances. If there was not a reasonable possibility that the AE was related to the study agent(s), the
691 AE was reported as unrelated.

692 **Safety Monitoring Committee and Risk-Mitigation plan during COVID-19 pandemic.** An SMC formed
693 by three external experts in pharmacovigilance and HIV vaccine trials plus four non-voting sponsor
694 representatives reviewed all blinded safety data from the study at pre-specified time points (i.e. before
695 progressing recruitment groups and every 3 months thereafter). The SMC also reviewed and approved
696 a risk-mitigation plan established to minimize the impact of the COVID-19 pandemic on the conduct of
697 the trial. This plan included: weekly ATI assessments with home-based blood draws by PPE-protected
698 personnel and remote visits via phone; taxi service for on-site visits; 24h/7d phone availability for
699 reporting any COVID-19 symptoms; SARS-CoV-2 PCR testing before any IMP dosing; and provision of
700 ART by courier. The SMC virtually met weekly from 16th March 2020 to 28th May 2020 to review all
701 blinded safety and laboratory data, and decisions on whether continuing with the trial were based on
702 the evolving situation of the local epidemic, site capacity, and a case-by-case discussion. New ICF
703 versions with emerging information on COVID-19 were also developed and reviewed by the
704 institutional ethical review board of HUGTIP.

705

706 **High-resolution HLA-A, -B and -C typing.** The QIAAsymphony DNA kit (Qiagen) was used for genomic
707 DNA extraction. Genomic DNA was genotyped at screening for HLA class I molecules (HLA-A, HLA-B,
708 and HLA-C genes) at high resolution at the Histocompatibility and Immunogenetics Laboratory
709 (www.bancsang.net). Briefly, three loci were genotyped simultaneously by an in-house multiplex long-
710 range PCR (LRPCR). The library was prepared (enzymatic fragmentation, adapter ligation, and
711 barcoding) from the PCR pools using the NGSgo kit (GenDx) according to the manufacturer's
712 instructions. The final denatured library was sequenced using a NextSeq or MiSeq sequencer (Illumina,
713 San Diego, California, USA). HLA class I genotype determination was performed with NGSengine 2.9.1
714 software (GenDx) using the IMGT database as a reference.

715

716 **CCR5-Δ32 genotyping.** DNA was extracted from cryopreserved PBMCs stored from Roll-over phase
717 timepoints from participants entering the ATI (n=41). DNA samples were amplified using fluorescent

718 PCR in a 9 700 Gene Amp® PCR System or 2 720 Thermal Cycler (Applied Biosystems) as described ⁵⁰.
719 The forward (TTCATTACACCTGCAGCTCT) and reverse (FAM™- CCTGTTAGAGCTACTGCAATTAT)
720 primers used produced a 270-bp product for the CCR5-Δ32 allele and a 302-bp PCR product for the
721 CCR5-WT allele. After amplification, 0.5 µL of PCR products were mixed in a 1:10 dilution with 24 µL of
722 Hi-Di™ Formamide (Applied Biosystems) and 0.7 µL of Gene Scan™-500 ROX™ Size Standard (Applied
723 Biosystems) and denatured at 94 °C for 5 min. The capillary electrophoresis was carried out in a
724 3130xlGenetic Analyzer (Applied Biosystems) and samples were analyzed with GeneMapper software
725 (Applied Biosystems).

726

727 **Sequencing.** Whole genome deep sequencing of the HIV-1 genome, including *gag*, *pol*, *vif* and *nef*
728 genes was performed using Illumina® NexteraXT protocol and MiSeq platform with 300 bp paired-end
729 sequencing length. Raw sequencing data were analysed through PASeq v 1.14 (www.paseq.org⁵¹). In
730 brief, quality filter and adapter trimming was performed using trimmomatic⁵². High quality sequences
731 were aligned against HXB2R reference using Bowtie2⁵³. Consensus sequence at 20% frequency
732 threshold was called using samtools⁵⁴ and a multiple alignment including all sequences was generated
733 using MAFFT⁵⁵. For each sample-specific consensus nucleotide sequence, subtyping was performed
734 using COMET online tool⁵⁶, and Tamura-Nei nucleotide and Jones-Taylor-Thornton (JTT) amino acid
735 distances vs HXB2R and HTI sequences, respectively, were calculated using R::phangorn package⁵⁷. The
736 number of mismatches (hamming) vs HTI sequence was also calculated for all segmented and
737 aggregated at the protein level. The percentage difference (%AA.mm vs HTI) was calculated over the
738 total length of the segment correcting for uncovered position in each samples. Group comparisons
739 were performed using Mann-Whitney t-test.

740 **IFN-γ- ELISpot assay.** Total HTI and HIV-1-specific T cells were assessed ex vivo using freshly isolated
741 PBMC with an IFN-γ-detecting enzyme-linked immunoabsorbent spot assay (ELISPOT IFN-γ Mabtech
742 kit) as previously described⁵⁸. 15-mer peptides overlapping by 11 amino acid were combined into 10
743 pools spanning different HIV-1 proteins/subproteins of 7-22 peptides per pool corresponding to the
744 HTI vaccine insert (P1-P10, total n = 111 peptides, ThermoFisher) and 8 pools of 62–105 peptides per
745 pool spanning the rest of the HIV-1 viral protein sequences (OUT P1-P8, total n = 637 peptides,
746 obtained through the NIH AIDS Reagent Program). All peptides pools used in fresh ELISPOTS were
747 tested in duplicates with a final concentration of individual peptide of 1.55 µg/ml. Medium only was
748 used as no-peptide negative control in quadruplicate wells. Positive controls included two peptide
749 pools covering lytic (n=16) and latent (n=36) Epstein- Barr viral proteins (1.55 µg/ml, ThermoFisher),
750 PHA (50µg/ml, Sigma) and a CEF peptide pool (2 µg/ml) consisting of 32 previously defined human
751 CD8+ T-cell epitopes from cytomegalovirus, Epstein- Barr virus and influenza virus (Pantec). Spots were

752 counted using an automated Cellular Technology Limited (C.T.L., OH, USA) ELISPOT Reader Unit. The
753 threshold for positive responses was set at ≥ 50 SFC/ 10^6 PBMC (5 spots per well), $>$ the mean number
754 of SFC in negative control wells plus 3 SD of the negative control wells, or $> 3\times$ the mean of negative
755 control wells, whichever was higher.

756 **Mapping of HTI-specific responses.** IFN- γ ELISPOT assays using 147 individual overlapping peptides
757 covering the entire HTI sequence were performed in *in-vitro* expanded T cells. Participants'
758 cryopreserved PBMCs obtained at baseline (Week 0) and after DDDMM (Week 24) and CCM or placebo
759 vaccinations (Week 28) were expanded using an anti-CD3 mAb (12F6) and kept in culture until
760 sufficient cell numbers were reached for each timepoint⁵⁹. Two consecutive overlapping peptides were
761 considered one individual HTI response and the highest magnitude of the sequential responses was
762 taken as the magnitude for each identified response. The results were expressed as the number of
763 positive responses to individual peptides as well as distribution among the different 8 HIV subprotein
764 regions covered by HTI: Vif-Nef, Pol-Int, Pol-RT, Pol-Prot, Gag-p2p7p1p7, Gag-p24 and Gag p17.

765

766 **Intracellular Cytokine Staining (ICS) Assay.** Cryopreserved PBMCs from week 28 (4 weeks after
767 completion of last series of vaccinations, DDDMM-CCM) were used for the stimulation with 4 pools of
768 9-43 peptides per pool spanning p17, p24/p15, Pol and Vif/Nef regions included in the HTI vaccine
769 insert. Peptides were added at a final concentration of 5 μ g/ml of each peptide in the presence of both,
770 1.4 μ g/ml of anti-CD28 (BD Bioscience) and 1.4 μ g/ml anti-CD49d (BD Bioscience). As positive controls
771 for the assay, cells were cultured alone in the presence of 1) anti-CD3/28 Dynabeads (Thermo Fisher
772 Scientific) according to manufacturer's instructions or 2) 10ng/ml PMA (SIGMA) and 1 μ M Ionomycin
773 (SIGMA). Cells stimulated with only anti-CD28 and anti-CD49d antibodies or with DMSO were used as
774 the negative controls. Stimulated cells were incubated for 6 h at 37°C in 5% CO₂, in the presence of
775 4 μ l of monensin (GolgiStop, BD Bioscience). After 6 hours of stimulation, cells were incubated with
776 Live/Dead fixable Violet Dead cell stain kit (Invitrogen), for exclusion of dead cells, along with the
777 exclusion of monocytes and B cells by including in the dump channel anti-CD14 and anti-CD19
778 antibodies. Surface markers of T cell lineage (CD3, CD4 and CD8), follicular T cells (CXCR5 and PD1), T
779 cell phenotype (CD45RA and CCR7), T cell activation (CD69 and HLADR) and T cell exhaustion (TIGIT,
780 PD1) were included as well. Cells were fixed and permeabilized using the Cell Fixation and Cell
781 Permeabilization Kit (Invitrogen) and intracellularly stained for INF- γ , GranzymeB, IL-2 and TNF- α .
782 Details on antibodies used can be found in Reporting Summary. Cells were resuspended in PBS
783 supplemented with 1%FBS and acquired on a LSR Fortessa flow cytometer (BD, Unidad de Citometria,
784 IGTP) and analyzed using FlowJo. Gating strategy is shown in Extended data Fig. 7. When needed for
785 variably expressed antigens, fluorescence minus one (FMO) was included to define boundaries

786 between positive and negative populations. At least 100,000 total events were recorded. The
787 frequencies of cells that produce all possible combinations of intracellular cytokines were calculated
788 using Boolean gating function of the FlowJo software. Data were reported after background
789 subtraction (from the unstimulated negative control), and HTI-specific responses were defined as the
790 as the sum of the specific population for each of the four HTI peptide pool stimulations.

791

792 **In vitro viral suppressive capacity (VIA assay).** CD8+ T-cell mediated viral inhibition capacity was
793 measured at 1:1 and 1:10 CD8-effector to CD4-target ratios as previously described^{60,61}. Autologous
794 CD4⁺ cells were obtained as targets from samples before vaccination where CD8⁺ cells were depleted
795 by magnetic bead separation (MACS Milteny Biotec). CD8⁺-depleted cells (CD4⁺-enriched fraction)
796 were stimulated with PHA for 3 days and then infected by spinoculation with HIV-1 BAL and IIIB
797 laboratory-adapted strains and autologous HIV-1 viruses at a multiplicity of infection (MOI) of 0.001.
798 HIV-infected cells were cultured in triplicates in R10 medium with 20 U/ml of IL-2 in 96-well round-
799 bottomed plates, alone or together with effector CD8⁺ T cells obtained by positive magnetic bead
800 separation the same day from an additional vial of cryopreserved PBMCs from baseline and after
801 DDDMM (Week 24) and CCM or placebo vaccinations (Week 28). Viral replication was measured as the
802 production of HIV-1 antigen p24 in culture supernatants (pg p24/mL) at day 5 of co-culture using
803 Innogenetics p24 Elisa kit, and inhibition was expressed as a percentage with respect to the positive
804 control of each virus (i.e., infection in the absence of CD8⁺ T cells).

805

806 **Total and Intact proviral HIV-1 DNA.** To distinguish deleted and/or hypermutated proviruses from
807 intact proviruses, total and intact proviral (IPDA) HIV-1 DNA copies in CD4⁺ T cells were measured at
808 screening and ATI start in extracts of lysed CD4⁺ T cells by digital droplet PCR (ddPCR) as previously
809 described⁶². Samples from 41 participants that entered into the ATI period were processed at Accelevir
810 Diagnostics, Baltimore, US. The DNA Shearing Index (DSI) was calculated and values for intact and
811 defective proviruses were normalized to copies per 10⁶ input cells (determined by RPP30, the gene
812 encoding Ribonuclease P protein subunit p30) and adjusted for shearing using the DSI. Results were
813 expressed as HIV-1 DNA copies (counts)/10⁶ CD4⁺ T cells.

814

815 **Viral fitness of participants' autologous HIV-1 viruses.** Viral replication capacity of autologous HIV-1
816 viruses was measured for 38 out of the 41 participants that entered into the ATI period. For isolation
817 of autologous HIV-1 viruses, CD4-enriched fraction of cryopreserved PBMCs stored at HIV-1 diagnosis
818 pre/or within first weeks of ART initiation were thawed and co-cultured with CD8-depleted PBMCs
819 previously activated from 3 different healthy donors until HIV-1 was collected from supernatants. To
820 determine viral replication kinetics, a pool of PBMCs from 3 healthy donors, previously stimulated with

821 20 U/mL of IL-2 and PHA for 3 days, were infected by spinoculation at a multiplicity of infection (MOI)
822 of 0.001. HIV-1 antigen p24 was measured in culture supernatants (pg p24/mL) using a commercial
823 ELISA kit from Innogenetics at days 0, 3, 4, 5, 6, and 7 post-infection and replication capacity was
824 calculated by fitting a linear model to the log-transformed p24 data during the exponential growth
825 phase. Uninfected cells and infected with laboratory-adapted CCR5- and CXCR4-tropic viruses (HIV-
826 1_{NL43}, HIV-1_{BaL}, and HIV-1_{IIB} isolates) in the presence and absence of the antiretroviral AZT, were used
827 as reference values or controls.

828

829 **Statistics.** There was no power calculation for this study. The sample size was proposed to provide
830 preliminary safety information on the vaccine regimen (primary objective). As a means to characterize
831 the statistical properties of this study for the safety primary endpoint, in terms of the chances of
832 observing an AE, 30 participants in the active group provided a high probability (78.5%) that this study
833 would observe at least 1 event if the event occurred in the population with a true rate of 5%.

834

835 Time to viral load detection was calculated from the ATI start date to the date of first occurrence of
836 pVL \geq 50 copies/ml and time off ART was calculated from the ATI start date to the date of ART
837 resumption. Participants who prematurely resumed ART due to COVID-19 related reasons were not
838 censored for the survival analysis. The time-to-event was derived using number of days between ATI
839 start date and date of event expressed in weeks (number of days/7). The Kaplan–Meier estimator was
840 used to describe time to ART resumption and survival functions were compared using log-rank test.
841 Differences of medians between groups were compared using Mann-Whitney test and Fisher test,
842 when corresponding. Spearman rho were used for correlations. All tests were two-sided, unadjusted
843 for multiple comparisons, with 5% error rate. Post hoc univariate logistic regression models (the list of
844 the considered covariates can be seen at Extended data Table 5) were considered to select the
845 covariates with $p < 0.25$ to be included in the multivariate models. All selected covariates were analyzed
846 for possible multicollinearity. Considering the final selected covariates multivariate logistic regression
847 models were adjusted for the binary outcome of time off ART ≥ 12 weeks versus < 12 weeks. Analyses
848 were performed using R project 3.6.2 (<https://www.r-project.org/>) and GraphPad Prism version 9.1.2
849 for Windows (GraphPad Software, <https://www.graphpad.com>). Preprocessing of flow cytometry data
850 was performed using both FlowJo software version 10.6 and imported into Pestle2/ SPICE software
851 v5.35 (Vaccine Research Center, NIAID/NIH, Bethesda, MD, USA) for graphical representation.
852 Polyfunctional bar plots per treatment group were compared using Mann-Whitney test per row, with
853 individual ranks computed for each comparison. Two-stage linear step-up procedure of Benjamini,
854 Krieger and Yekutieli was used to control for false discovery rate. All analyses performed matched the
855 prespecified statistical analysis plan (AELIX002-SAP, version 2, from 10/07/2020).

856 **Reporting Summary.** Further information on research design is available in the Nature Research
857 Reporting Summary linked to this article.

858 **Data availability.** Deep sequencing raw data obtained from sequencing have been deposited in
859 GenBank (accession PRJNA751460). Requests for access to the study data can be submitted through
860 the Yale Open Data Access (YODA) Project site at <http://yoda.yale.edu>.

861

862 **References**

863 43 . Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, et al. Dynamics of HIV
864 viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of
865 primary HIV infection. *AIDS* [Internet]. 2003 Sep 5 [cited 2014 Jul 11];17(13):1871–9.

866 44 . Bayón-Gil Á, Puertas MC, Urrea V, Bailón L, Morón-López S, Cobarsí P, et al. HIV-1 DNA decay
867 dynamics in early treated individuals: practical considerations for clinical trial design. *J Antimicrob
868 Chemother*. 2020 Aug 1;75(8):2258–63.

869 45 . Mothe B, Llano A, Ibarrondo J, Daniels M, Miranda C, Zamarreño J, et al. Definition of the viral
870 targets of protective HIV-1-specific T cell responses. *J Transl Med* [Internet]. 2011 Jan [cited 2014 Apr
871 2];9:208.

872 46 . Mothe B, Hu X, Llano A, Rosati M, Olvera A, Kulkarni V, et al. A human immune data-informed
873 vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and
874 macaques. *J Transl Med*. 2015 Feb 15;13(1).

875 47 . Kulkarni V, Jalal R, Ganneru B, Bergamaschi C, Alicea C, von Gegerfelt A, et al. Comparison of
876 immune responses generated by optimized DNA vaccination against SIV antigens in mice and
877 macaques. *Vaccine* [Internet]. 2011 Sep 9 [cited 2014 Mar 20];29(39):6742–54.

878 48. Létourneau S, Im E-J, Mashishi T, Brereton C, Bridgeman A, Yang H, et al. Design and pre-clinical
879 evaluation of a universal HIV-1 vaccine. *PLoS One* [Internet]. 2007 Jan [cited 2014 Apr 1];2(10):e984

880 49. Dicks MDJ, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, et al. A novel chimpanzee
881 adenovirus vector with low human seroprevalence: Improved systems for vector derivation and
882 comparative immunogenicity. Kremer EJ, editor. *PLoS One*. 2012 Jul;7(7):e40385.

883 50. Enrich E, Vidal F, Sánchez-Gordo F, Gómez-Zumaquero JM, Balas A, Rudilla F, et al. Analysis of the
884 Spanish CCR5-Δ32 inventory of cord blood units: Lower cell counts in homozygous donors. *Bone
885 Marrow Transplant* [Internet]. 2018 Jun 1 [cited 2021 Jul 21];53(6):741–8.

886 51. Noguera-Julian M, Edgil D, Harrigan PR, Sandstrom P, Godfrey C, Paredes R. Next-Generation
887 Human Immunodeficiency Virus Sequencing for Patient Management and Drug Resistance
888 Surveillance. *J Infect Dis*. 2017;216(suppl_9):S829-S833. doi:10.1093/infdis/jix397

889 52. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
890 Bioinformatics. 2014;30(15):2114-2120. doi:10.1093/bioinformatics/btu170

891 53. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-
892 359. Published 2012 Mar 4. doi:10.1038/nmeth.1923

893 54. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools.
894 Bioinformatics. 2009;25(16):2078-2079. doi:10.1093/bioinformatics/btp352

895 55. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in
896 performance and usability. Mol Biol Evol. 2013;30(4):772-780. doi:10.1093/molbev/mst010

897 56. Pineda-Peña AC, Faria NR, Imbrechts S, et al. Automated subtyping of HIV-1 genetic sequences for
898 clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other
899 tools. Infect Genet Evol. 2013;19:337-348. doi:10.1016/j.meegid.2013.04.032

900 57. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592-593.

901 58. Mothe B, Manzardo C, Sanchez-Bernabeu A, Coll P, Morón-López S, Puertas MC, et al. Therapeutic
902 Vaccination Refocuses T-cell Responses Towards Conserved Regions of HIV-1 in Early Treated
903 Individuals (BCN 01 study). EClinicalMedicine. 2019 May 1;11:65-80.

904 59. Kawana-Tachikawa A, Llibre JM, Bravo I, Escrig R, Mothe B, Puig J, et al. Effect of maraviroc
905 intensification on HIV-1-specific T cell immunity in recently HIV-1-infected individuals. PLoS One. 2014
906 Jan 27;9(1).

907 60. Yang H, Wu H, Hancock G, Clutton G, Sande N, Xu X, et al. Antiviral inhibitory capacity of CD8+ T
908 cells predicts the rate of CD4+ T-cell decline in HIV-1 infection. J Infect Dis [Internet]. 2012 Aug 15 [cited
909 2014 Jul 16];206(4):552-61. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22711904>

910 61. Rosás-Umbert M, Ruiz-Riol M, Fernández MA, Marszalek M, Coll P, Manzardo C, et al. In vivo Effects
911 of Romidepsin on T-Cell Activation, Apoptosis and Function in the BCN02 HIV-1 Kick&Kill Clinical Trial.
912 Front Immunol. 2020 Mar 20;11.

913 62. Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S, et al. A quantitative approach
914 for measuring the reservoir of latent HIV-1 proviruses. Nature [Internet]. 2019 Feb 7 [cited 2021 Jul
915 22];566(7742):120-5.

916

917 **List of authors from AELIX-02 Study Group**

918

919 Yovannina Alarcón-Soto^{1,13}, Lucía Bailón^{1,2}, Ana María Barriocanal¹³, Susana Benet¹, Christian
920 Brander^{3,5,7,12,15}, Maria Casadellà³, Samandhy Cedeño³, Bonaventura Clotet^{1,3,5,12}, Patricia Cobarsí¹,
921 Josep Coll^{3,5,6}, Tuixent Escribà³, Romas Geleziunas⁹, Tomáš Hanke^{10,11}, Anne R. Leselbaum⁷, Cora Loste¹,
922 Miriam López¹, Anuska Llano³, Michael Meulbroek⁶, Ian McGowan^{7,8}, Cristina Miranda¹, José
923 Moltó^{1,5,13}, Beatriz Mothe^{1,3,5,12,13}, Jose Muñoz¹, Jordi Naval⁷, Aroa Nieto¹, Marc Noguera-Julian^{3,5,12}
924 Roger Paredes^{3,5,12,13}, Mariona Parera³, Félix Perez⁶, Ferran Pujol⁶, Jordi Puig¹, Angel Rivero⁶, Miriam
925 Rosás-Umbert^{3,4}, Marta Ruiz-Riol^{3,5}, Devi Sengupta⁹, Bruna Oriol-Tordera³, and Edmund G. Wee¹⁰

926 A full list of members of the AELIX-002 Study Group appears in the Supplementary Data S3

927

928

929

930