
This is the **accepted version** of the journal article:

Pumarega, José Antonio [et al.]. «Timing of Toenail Collection and Concentrations of Metals in Pancreatic Cancer : Evidence Against Disease Progression Bias». *Exposure and health*, Vol. 14, Num. 3 (2022), p. 581-593 DOI 10.1007/s12403-021-00436-2

This version is available at <https://ddd.uab.cat/record/322982>

under the terms of the license.

1 **Timing of toenail collection and concentrations of metals**
2 **in pancreatic cancer**

3 **Evidence against disease progression bias**

5 José Pumarega,¹⁻³ Judit Camargo,^{1,3,†} Magda Gasull,^{1-4,†}

6 Andrew F. Olshan,⁵ Amr Soliman,⁶ Yu Chen,⁷ David Richardson,⁵

7 Juan Alguacil,^{2,8} Charles Poole,⁵ Leonardo Trasande,^{7,9,10} Miquel Porta,^{1-3,5,9*}

8 for the PANKRAS II Study Group**

11 ¹ *Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain*

12 ² *CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain*

13 ³ *School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain*

14 ⁴ *Universitat Pompeu Fabra, Barcelona, Spain*

15 ⁵ *Department of Epidemiology, Gillings School of Global Public Health, University of
16 North Carolina, Chapel Hill, USA*

17 ⁶ *Medical School of the City University of New York, New York, USA*

18 ⁷ *Departments of Environmental Medicine, and Population Health, New York
19 University School of Medicine, New York, USA*

20 ⁸ *Universidad de Huelva, Huelva, Spain*

21 ⁹ *Department of Pediatrics, New York University School of Medicine, New York, USA*

22 ¹⁰ *New York University College of Global Public Health, New York, USA*

23 [†] These authors contributed equally.

27 *Correspondence: Miquel Porta, Hospital del Mar Medical Research Institute (IMIM)
28 Universitat Autònoma de Barcelona, Carrer del Dr. Aiguader 88, E-08003 Barcelona, Catalonia,
29 Spain. Tel: +34 93 316 0700 and +34 93 316 0781. E-mail: mporta@imim.es.
30 ORCID ID: <http://orcid.org/0000-0003-1684-7428>.

33 **Members of the Multicentre Prospective Study on the Role of KRAS and other Genetic
34 Alterations in the Diagnosis, Prognosis and Etiology of Pancreatic Cancer (PANKRAS II)
35 Study Group are mentioned in previous publications.

36

1
2
3
4
5
6
7 **Running title:** Concentrations of metals and timing of toenail collection in pancreatic cancer.
8
9

10 **Key words:** pancreatic neoplasms, biomarkers, symptoms, toenails.
11
12

13 **Acknowledgements**

14 The authors gratefully acknowledge scientific advice provided by Núria Malats, Paco Real, and
15 André F. S. Amaral. Technical assistance from Ana Alfaro, Tomàs López, Andrea Sánchez
16 Rodríguez, Natalia Pallarès, Mirari Márquez, Yolanda Rovira, and Meri Corominas is also
17 gratefully acknowledged.
18
19

20 **Abbreviations:** BMI, body mass index; CI, confidence interval; CT, computerized
21 axial tomography; ERCP, endoscopic retrograde cholangiopancreatography; GM,
22 geometric mean; iSB, interval from first symptom of pancreatic cancer to blood
23 extraction; iSD, interval from first symptom of pancreatic cancer to diagnosis of
24 pancreatic cancer; iST, interval from first symptom of pancreatic cancer to toenail
25 collection; OCs, organochlorine compounds; PDAC, pancreatic ductal adenocarcinoma;
26 SD, standard deviation; SRM, standard reference material; TNM, tumor-node-
27 metastasis system.
28

29 **Declarations**

30

31 **Funding**

32 The work was supported in part by research grants from Instituto de Salud Carlos III – FEDER,
33 Ministry of Health, Government of Spain (FIS PI17/0088, FIS PI21/0052, and CIBER de
34 Epidemiología y Salud Pública - CIBERESP); the Hospital del Mar Medical Research Institute
35 (IMIM), Barcelona; Fundació La Marató de TV3 (20132910); the CRUE-Santander Fondo
36 Supera Covid-19 (15072020); the Government of Catalonia (2014 SGR 1012, 2017 SGR 439);
37 the Association for International Cancer Research (AICR09-0780); Fundación Científica de la
38 Asociación Española Contra el Cáncer (AECC); and the Intramural Research Program of the
39 Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA.

40

41 **Conflicts of interest / Competing interests**

42 The authors have no conflicts of interest in connection with the paper, and declare no competing
43 financial interests.

44

45 **Availability of data and material** (data transparency)

46 Not applicable.

47

48 **Code availability** (software application or custom code)

49 Not applicable.

50

51 **Ethics approval** (include appropriate approvals or waivers)

52 The Ethics Committees of participating hospitals approved the study protocol.

53

54 **Consent to participate** (include appropriate statements)

55 Patients gave informed consent to be included in the study.

56

57

58

1 **Abstract**

2

3 Trace elements such as cadmium, arsenic, zinc or selenium increase or decrease risk of
4 a wide range of human diseases. Their levels in toenails may provide a measure of mid-
5 term intake of trace elements for studies in humans. However, in biologically and
6 clinically aggressive diseases as pancreatic cancer, the progression of the disease could
7 modify such concentrations and produce reverse causation bias. The aim was to analyze
8 the influence of specific time intervals between several clinical events and the collection
9 of toenails upon concentrations of trace elements in patients with pancreatic cancer.

10 Subjects were 118 incident cases of pancreatic adenocarcinoma prospectively recruited
11 in eastern Spain. Toenails were collected at cancer diagnosis, and soon thereafter
12 interviews were conducted. Information on cancer signs and symptoms was obtained
13 from medical records and patient interviews. Levels of 12 trace elements were
14 determined in toenail samples by inductively coupled plasma mass spectrometry.
15 General linear models adjusting for potential confounders were applied to analyze
16 relations between log-concentrations of trace elements and the time intervals, including
17 the interval from first symptom of cancer to toenail collection (iST). Toenail
18 concentrations of the 12 trace elements were weakly or not influenced by the
19 progression of the disease or the diagnostic procedures. Concentrations of aluminum
20 were slightly higher in subjects with a longer iST (age, sex and stage adjusted geometric
21 means: 11.44 vs. 7.75 $\mu\text{g/g}$ for iST >120 days vs. ≤ 40 days). There was a weak inverse
22 relation of iST with concentrations of zinc and selenium (maximum differences of about
23 20 and 0.08 $\mu\text{g/g}$, respectively). Conclusions: concentrations of the trace elements were
24 weakly or not influenced by the development of the disease before toenail collection.

25 Only concentrations of aluminum increased slightly with increasing iST, whereas levels
26 of zinc and selenium decreased weakly. Even in an aggressive disease as pancreatic
27 cancer, toenail concentrations of trace elements may provide a valid measure of mid-
28 term intake of trace elements, unaffected by clinical events and disease progression.

29

30

1 **Introduction**

2

3 Trace elements (in particular chromate, nickel, cadmium and arsenic compounds) are well-
4 known carcinogens, and dietary contaminants [1]. They act by diverse mechanisms, including
5 oxidative stress, they inhibit zinc-finger DNA repair machinery, and induce polyadenylation
6 of canonical histones [2-4]. While these metals are best known for induction of lung, liver,
7 colon and prostate cancer, their contribution to other cancers is under scrutiny.

8

9 Increases in pancreatic cancer incidence have raised substantial concern about environmental
10 contributions, and suggest opportunities for prevention [5-7]. While multiple studies have
11 examined occupational exposures as risks, particularly for cadmium [8], few have examined
12 exposures in general populations, which are subject to chronic, low-level exposure due to
13 ubiquitous contamination.

14

15 Previous studies suggest an association between pancreatic cancer risk and concentrations of
16 trace metals such as cadmium, lead, arsenic, and selenium measured in toenails [9-11].
17 However, the influence of clinical events (signs and symptoms, time until diagnosis,
18 diagnostic tests, tumor stage) on body concentrations of trace elements has not been
19 evaluated in pancreatic cancer, other neoplasms, or other diseases.

20

21 Information on concentrations of trace elements in nails has long been used in humans to
22 cost-effectively measure exposure and internal dose. In healthy and physically stable
23 individuals, and compared to blood, urine, or hair samples, levels in toenails of mercury,
24 manganese, and arsenic appear to reflect better the corresponding concentrations in the
25 organism for a time frame from a few months to a year preceding sample collection [11-22].

26

27 Little is known about the toxicokinetic and toxicodynamic profiles of trace elements during
28 tumor formation and progression, particularly about the methodological implications for
29 research on their possible etiologic roles in cancer [23,24].

30

31 Studies that employ biomarkers of exposure in individuals who already have (asymptomatic
32 or symptomatic) cancer may be biased by metabolic processes inherent to the disease. This
33 has been demonstrated for organochlorine compounds (OCs) in blood samples of individuals
34 diagnosed with pancreatic cancer, in whom the time interval between the first symptom of the

35 disease and blood extraction (iSB) was associated with serum concentrations of total lipids
36 and OCs [25-27]. Concentrations of the highly lipophilic OCs were also associated with signs
37 and symptoms of the disease and with tumor's stage at diagnosis. Hence, during the
38 progression of pancreatic cancer and other diseases, patients experience weight loss,
39 cholestasis, and other clinical and pathophysiological changes that alter concentrations of
40 lipids, lipophilic nutrients, and lipophilic environmental compounds. Disease progression bias
41 is thus a form of reverse causation. It results in a lack of etiologic significance of the disease-
42 altered exposure biomarkers [25-32]. This conceptual and empirical framework provides the
43 rationale to hypothesize that pancreatic cancer progression might also modify concentrations
44 of trace elements in toenails [9-11,33].

45

46 Therefore, the aim of the present study was to analyze the influence of specific time intervals
47 between several clinical events and the collection of toenails upon concentrations of trace
48 elements in patients with pancreatic cancer.

49

1 **Materials and methods**

2

3 **Study population**

4

5 Methods of the PANKRAS II study have been previously described [9-11,25-27,30,33-37].
6 Briefly, subject recruitment took place between 1992 and 1995 at five general hospitals in the
7 Mediterranean part of Spain, where 185 incident cases of PDAC were prospectively
8 identified. The present report is based on 118 incident cases of PDAC with toenail samples
9 obtained and metal concentrations analyzed [11]. There were no significant differences
10 between the 118 patients with and the 67 patients without available trace elements
11 concentrations for a broad range of sociodemographic and clinical variables, including age,
12 sex, social class, education, occupation, smoking, coffee consumption, duration of interview,
13 interval from first symptom of pancreatic cancer to diagnosis, and interval from first
14 symptom to blood extraction [9,10,34] (Supplementary Table 1). The Ethics Committees of
15 participating hospitals approved the study protocol, and patients gave informed consent to be
16 included in the study.

17

18

19 **Personal interviews and information on symptoms**

20

21 A structured form was used to collect clinicopathological information from medical records,
22 including details on semiology, diagnostic procedures, laboratory results and follow-up [36,
23 37]. Follow-up extended for 17.5 years [34]. Hospital discharge diagnoses and the tumor
24 clinical stage were also recorded. The tumor's clinical stage at diagnosis was classified
25 according to the tumor-node-metastasis (TNM) system. Diagnostic tests included ultrasound
26 scan, computerized axial tomography (CT), fibrogastroscopy, endoscopic retrograde
27 cholangiopancreatography (ERCP), gammagraphy, laparoscopy, and exploratory laparotomy
28 [25]. When a diagnostic procedure was performed more than once, the physician who
29 abstracted the data chose the more informative result. Over 88% of the PDAC patients were
30 interviewed face-to-face by trained monitors during their hospital stay, close to the time of
31 diagnosis [10,11,34].

32

33 Detailed information on the first symptom of cancer, including the date, and signs and
34 symptoms of the disease was obtained from two sources: medical records (where they were

35 registered by the attending physician at hospital admission), and interviews with patients
36 [30,33,36]. The information was reviewed by two experienced oncologists and checked for
37 consistency. If data elicited from the interview contradicted data abstracted from the medical
38 record, the latter was taken as the consensus data [30]. Pathology of all cases was
39 independently reviewed by the study reference pathologists, who were unaware of the
40 original diagnosis. A panel of clinical and surgical experts in gastrointestinal diseases
41 reviewed hospital discharge diagnoses of all patients and, based on all clinical and
42 pathological information available, including follow up, reached a consensual
43 clinicopathological diagnosis [37].

44

45

46 **Analyses of trace element concentrations**

47

48 Nail clippings from the larger toe were collected once per patient during the hospital stay
49 when the cancer was diagnosed, and were stored at room temperature until the time of the
50 analyses. Trace elements analyzed were cadmium, arsenic, selenium, nickel, lead, chromium,
51 manganese, aluminum, iron, vanadium, copper, and zinc [9-11,34]. After careful cleaning and
52 washing to remove external contaminants, trace elements were quantified at the Trace
53 Element Analysis Core (Dartmouth College, Hanover, New Hampshire, USA), using
54 inductively coupled plasma mass spectrometry. Toenails were acid digested with Optima
55 nitric acid (Fisher Scientific, St Louis, Missouri, USA) at 105°C followed by the addition of
56 hydrogen peroxide and further heating of the dilution with deionized water. All sample
57 preparation steps were recorded gravimetrically. As a quality control, each batch of analyses
58 included six standard reference material (SRM) samples with known trace element content
59 (GBW 07601, powdered human hair) and six analytical blanks, along with the study samples
60 [9-11,34].

61

62 The within-assay coefficients of variation for SRM replicates were <15% for aluminum,
63 arsenic, copper, lead, manganese, selenium, and zinc; and 15-40% for cadmium, chromium,
64 iron, nickel, and vanadium. The between-assay coefficients of variation for SRM replicates
65 were <15% for arsenic, lead, manganese, selenium, and zinc; 15-30% for aluminum,
66 cadmium, copper, and nickel; and >30% for chromium, iron, and vanadium (Supplementary
67 Table 2). The amount of SRM used ranged from less than 10 to 50 mg to mimic the mass of

68 toenails. This small SRM sample mass may be the cause of some of the variability seen in the
69 within- and between-batch SRM results.

70

71 Eight of the 12 trace elements were detected in *all* 118 subjects (i.e., the percentage of
72 detection was 100%), whereas the other four elements were detected in 99.2%, 98.3%,
73 98.3%, and 92.4% of subjects (Supplementary Table 2). Therefore, the corresponding
74 percentage of participants *below* the detection limit was 0% for eight of the 12 trace elements,
75 and 0.8%, 1.7%, 1.7%, and 7.6% for the other four.

76

77 The lowest concentration of each element detected in a given subject is also shown in
78 Supplementary Table 2. Given the very high percentages of detection, such concentration is
79 the most meaningful information; it reflects the limit of detection of the instrumental
80 technique for the individual metals.

81

82

83 **Statistical analysis**

84

85 Univariate statistics were computed as customary to describe key patient and trace metal
86 variables [38,39]. All time intervals were calculated using the date of the clinical or
87 diagnostic event as reference. As an example, the interval between the first symptom of
88 pancreatic cancer and the date of toenail collection is the time elapsed from the first symptom
89 to toenail collection (iST). We analyzed the time intervals between toenail collection and:
90 hospital admission, performance of diagnostic tests, blood extraction, diagnosis, treatment
91 onset, and interview (Supplementary Tables 3 and 4).

92

93 Among patients with an iST \leq 40 days 48% of patients were in tumor stage I and 21% in
94 tumor stage IV, while among patients with iST $>$ 120 days there were 16% of patients in
95 tumor stage I and 37% of patients in stage IV. The median time of the interval from hospital
96 admission to toenail collection was 15 days, and to diagnosis and blood extraction 0 days.
97 The median iST was 70.5 days, with a range from one week to more than two years (11 to
98 763 days) (Figure 1), and is similar to the median time interval between the first symptom of
99 the disease and blood extraction (iSB), 72 days (167 patients); the distribution of these two
100 intervals (iST and iSB) is virtually identical (Figure 1). When only patients with both
101 samples, blood and toenails, were considered (N=117), the median iST and iSB were 71 and

102 70 days, respectively; in 84 such patients (72%) the blood and toenails were collected on the
103 same day.

104

105 Supplementary Figure 1 shows the iST for each patient (all represented on the 'y' axis), with
106 patients classified from shorter to longer interval. The color of the lines shows the number of
107 diagnostic tests performed before the toenail collection. We collected about 60% of toenail
108 samples during the first three months after symptom onset; at 6 months 80% of the samples
109 had been collected. In >75% of patients the toenail collection was performed during the first
110 month following hospital admission (Supplementary Table 3). This timing is a remarkable
111 logistic achievement for a study of a severe disease as pancreatic cancer, and it may be a
112 benchmark for other studies. A total of 315 diagnostic tests were performed in the hospitals
113 before the collection of toenails (median of 3 diagnostic tests per patient); over 60% of
114 patients with iST ≤ 40 days underwent three diagnostic tests before the collection
115 (Supplementary Figure 1).

116

117 Kruskal-Wallis' test and ANOVA's test were used to assess differences between metal
118 concentrations by iST categorized as ≤ 40 days, 41 to 120 days, and > 120 days [25]; and
119 Mann-Whitney's *U* test and Student's *t*-test to assess differences between participants with
120 and without available toenails by sociodemographic characteristics. When a trend was
121 observed, the Jonckheere-Terpstra test for trend was used. Spearman's rank correlation
122 coefficient (ρ) was used to evaluate the correlations between the concentrations of trace
123 elements and the time intervals. For the correlations we only considered clinical events that
124 happened previous to or on the day of the nail sample collection. Correlations without the
125 time intervals equal to zero were also calculated. To analyze the relative influence of time
126 intervals on trace concentrations, general linear models were used. Values of trace elements
127 were normalized by natural logarithmic transformation [10,39]. Age, gender, tumor stage,
128 and cholestatic syndrome were treated as potential confounding factors. Results were
129 expressed as adjusted geometric means (GMs) with the corresponding 95% confidence
130 intervals (CIs). The level of statistical significance was set at 0.05, and all tests are two-tailed.
131 Statistical significance, the precision of the estimates, and the magnitude of the associations
132 were all taken into consideration to assess the significance of the results [39-41]. Based on
133 previous work and hypotheses [11,25-27,33,34], we analyzed a limited number of predictors
134 and outcomes, many times lower than the millions of SNPs that are analyzed in an agnostic
135 GWAS, for instance. Furthermore, techniques to adjust for the number of comparisons have

136 been shown to have low efficiency or poor accuracy in studies as ours [40]. Thus, adjustment
137 for the number of comparisons was not appropriate. Analyses were conducted using SPSS
138 v22 (IBM SPSS Statistics, Armonk, NY, USA, 2013) and Stata 8.0.

139

1 **Results**

2

3 Median toenail concentrations of the trace elements were weakly or not influenced by iST
4 (Table 1). Crude concentrations of aluminum were slightly higher in subjects with a longer
5 iST: the maximum difference between the medians shown in Table 1 was 5.4 µg/g.
6 Concentrations of zinc and selenium were slightly lower in subjects with a longer iST: the
7 maximum difference between the same medians (Table 1) was 8.2 µg/g and 0.04 µg/g,
8 respectively. The cloud of data points shows how weak the relationship with zinc is (Figure
9 2), and so does the R²: only 1.5% of the variability in concentrations of zinc is statistically
10 explained by the iST.

11

12 After adjustment for age and sex, concentrations of aluminum continued to increase weakly
13 with iST (maximum difference, 3.7 µg/g) (Table 2, Model 1). When models were further
14 adjusted for tumor stage (Model 2) and/or the cholestatic syndrome (Table 3, Models 3 and
15 4), results for aluminum did not materially change.

16

17 For zinc and selenium, the inverse relations observed with iST became slightly stronger after
18 adjustment for age, sex, cholestatic syndrome, and tumor stage (Tables 2 and 3). The
19 difference between the fully adjusted GM of zinc concentrations for iST≤40 days and
20 iST>120 days was of 20.4 µg/g (GMs=127.1 and 106.7 µg/g, respectively) (Table 3, Model
21 4). In the fully adjusted models, zinc concentrations were inversely associated also with the
22 cholestatic syndrome and tumor stage; i.e., patients with partial or complete cholestatic
23 syndrome, and patients in more advanced tumor stages had lower zinc toenail concentrations
24 than patients with no cholestatic syndrome or the tumor at stage I (differences of about 20
25 µg/g or less) (Table 3, Model 4). Cholestatic syndrome and tumor stage were not associated
26 with concentrations of the other elements analyzed.

27

28 Age and sex-adjusted concentrations of selenium, as well as concentrations of selenium
29 further adjusted for tumor stage, decreased weakly with increasing iST (difference of 0.08
30 µg/g for iST>120 days vs. ≤40 days) (Table 2); selenium concentrations were not influenced
31 by stage nor by cholestatic syndrome (Table 3).

32

33 Virtually all correlations between time intervals and metal concentrations were modest, with
34 all Spearman's ρ <0.35 (from -0.33 to 0.32) (Table 4). Concerning toenail levels of

35 aluminum, future studies may consider their associations with iST ($\rho = 0.19$), with the
36 interval from diagnosis to toenail collection ($\rho = 0.25$), and with the interval from the
37 exploratory laparotomy to toenail collection ($\rho = 0.31$); in the analysis of these correlations
38 we took into account only clinical events that took place before or the same day as toenail
39 collection. Also worth noting were the associations between concentrations of iron and the
40 interval from diagnosis to toenail collection ($\rho = 0.29$), and between cadmium levels and the
41 interval from treatment onset to toenail collection ($\rho = -0.33$) (Table 4).

42

1 **Discussion**

2

3 Toenail concentrations of the 12 trace elements studied were weakly or not influenced by the
4 progression of the disease or the diagnostic process. Levels of aluminum increased slightly
5 with increasing iST, whereas levels of zinc and selenium decreased weakly.

6

7 Adjustment for multiple factors did not materially change the results. Thus, when adjusting
8 for age and sex, concentrations of aluminum continued to increase weakly and statistically
9 non-significantly with iST. Further adjusting for tumor stage or cholestatic syndrome [27,30]
10 did not change these findings. For zinc and selenium, the inverse relation observed with iST
11 became slightly stronger after further adjusting for cholestatic syndrome, and tumor stage.
12 Moreover, mutually adjusted models showed that all iST, cholestatic syndrome, and stage
13 were weakly but statistically significantly related to levels of zinc; the relations with
14 cholestatic syndrome and tumor stage were not observed for selenium or the other trace
15 elements. Thus, for instance, future studies could confirm whether at diagnosis concentrations
16 of zinc are lower in patients with more disseminated than with more localized tumors. It
17 remains to be seen whether the weak magnitude of the changes in concentrations that we
18 observed (about 20 µg/g or less) is applicable to other studies; if it is, it might not be efficient
19 to measure the chronology of symptoms as comprehensively as we did [30], and simpler
20 alternatives could be considered [42-44]. It may be more feasible to measure intervals
21 between other clinical events (such as diagnosis, clinical procedures as laparotomy, treatment
22 onset) and toenail collection. For future studies, our findings warrant checking the possible
23 effects of disease progression on toenail levels of at least aluminum, zinc, and selenium.
24 Findings also suggest that, with the mentioned checks, it may be valid to use toenail samples
25 collected at diagnosis.

26

27 We previously reported that pancreatic cancer patients with cholestatic syndrome had
28 significantly lower serum concentrations of OCs than patients with other signs and symptoms
29 [27]. When symptoms were taken into account, tumor stage had only weak (and inverse)
30 relationships with all OCs. Overall, the prevailing direction was for most signs and symptoms
31 to lower serum OCs concentrations, even when the latter were lipid-corrected [26]. These
32 relationships with symptoms were not observed in the present study with trace elements
33 measured in toenails; most likely, because concentrations of such biomarkers, which are not

34 lipophilic, are not influenced by the pathophysiological processes inherent to the progression
35 of pancreatic cancer [45].

36

37 Variations in concentrations of aluminum according to iST suggest that accumulation of this
38 element in pancreatic cancer patients could be enhanced, maybe due to an increased intestinal
39 absorption and decreased excretion of the metal [46]. Lower toenail concentrations of
40 selenium and zinc during the development of pancreatic cancer could be due to nutritional
41 needs of the tumor itself.

42

43 Disease progression bias [28] may occur when the biological samples where the exposure
44 biomarkers will be analyzed are collected just before or after the diagnosis of the disease, and
45 when disease-related conditions experienced during the development of the disease and
46 around its diagnosis cause a change in the biomarkers. One type of such conditions are the
47 disease-induced pathophysiological processes that we already mentioned in the Introduction
48 and in previous papers [25-32]. Related but different are the metabolic requirements of the
49 tumor [12-20]. A third mechanism can operate as follows: symptoms (such as tiredness, loss
50 of appetite, weight loss, abdominal pain, nausea) caused by the still subclinical disease can
51 cause changes in the diet of the subject that change the intake of some nutrients and
52 subsequently their body concentrations. Naturally, other changes in behaviors promoted by
53 the clinically-emerging but yet undiagnosed disease can affect other lifestyle factors (e.g.,
54 smoking) and the corresponding exposures. The common effect of all these processes is that
55 the disease-altered exposure biomarkers measured around the time of diagnosis lack etiologic
56 significance: they do not reflect the causally-relevant exposures that took place in the more
57 distant past [28].

58

59 In a previous case-control study we found that individuals with the lowest levels of selenium
60 in toenails at diagnosis presented a higher risk of pancreatic cancer [11]. Also, lower levels of
61 zinc were associated with a higher risk of a KRAS mutated pancreatic cancer [9]. In the
62 present study, the inverse associations of the concentrations of zinc and selenium with iST
63 were not explained by tumor stage. Thus, the development of the disease [28] could partly
64 explain the lower levels of selenium observed in the case-control study [11].

65

66 Concentrations of the other trace elements analyzed were not associated with time intervals
67 from clinical events to toenails collection. Such elements include cadmium, lead, and arsenic,

68 the three elements previously found positively associated with pancreatic cancer risk [11].
69 Thus, even in a biologically and clinically aggressive disease as pancreatic cancer, toenail
70 concentrations of trace elements may provide a measure of mid-term intake of trace elements
71 unaffected by clinical events and disease progression.

72

73 In our study participants the toenail concentrations of aluminium, selenium, zinc and the
74 other elements were similar to concentrations in the homogenized published literature in the
75 same matrix [11,13-15].

76

77 Problems in using toenails as a matrix for measurement of biomarkers include variability in
78 growth rate, external contamination, and inconsistent protocols for collection and analysis
79 [12-15,47]. Because in the present study sample collection was conducted in-hospital,
80 collection of toenails was similar for all study patients, and the external contamination of
81 nails was minimized by having toenails collected immediately after bathing and scraping, and
82 by sonicating nails in the laboratory prior to analysis [48]. All nails were analyzed
83 simultaneously in a laboratory with state-of-the art procedures [9-11,49]. In some instances a
84 small SRM sample mass may have been the cause of some of the variability seen in the
85 within- and between-batch SRM results (Supplementary Table 2).

86

87 In our study, patients were screened for eligibility early during the hospital admission, and
88 selected, if eligible [10]. Epidemiological studies of risk factors rarely include information on
89 the health care process that patients undergo before inclusion. In some health care systems,
90 computerized medical records shared by primary health care centers and hospitals include
91 information on the duration of symptoms, clinical procedures, and disease progression [27,
92 42,43,50]. Our approach integrates concepts and methods from clinical, environmental, and
93 molecular epidemiology [51].

94

95 Limitations of our study include its relatively small sample size, and unmeasured factors
96 potentially related to concentrations of trace elements, such as, perhaps, body mass index
97 (BMI) [12], and, likely, size of the toe; however, our clippings were from the larger toe, all
98 sample preparation steps were recorded gravimetrically, and state-of-the-art methods were
99 used in a reference laboratory. Signs and especially symptoms are by nature difficult to
100 measure, although our methods on these aspects are among the most reliable [30,42-44], and

101 this information is unlikely to be available from other studies. The present study did not aim
102 at identifying the dietary or environmental sources of the trace elements found.

103

104 Repeated toenail samples collected during years from individual cohort members would
105 allow to more directly assess individual longitudinal changes over time (even before the
106 subclinical onset of the disease), and intraindividual variability [12], but such samples are
107 seldom available in large studies. The aims and methodological frameworks that are relevant
108 to assess reproducibility over time of measurements of metals in toenails and other matrixes
109 in healthy and stable individuals [12] are different from ours [25,28,29] (see Introduction);
110 notably, the former rarely consider the influence of the subclinical or clinical disease of
111 interest; they may also lack valid data on other relevant changes (BMI, lifestyles,
112 environmental and social conditions). Nevertheless, there are obvious relationships.

113

114 As expected [27,29], a substantial number of clinical and epidemiological studies continue to
115 be based on diagnosed cases; hence, they collect post-diagnostic biological samples from
116 cases, rather than collecting the samples from the entire cohort at baseline and conducting
117 nested case-control studies after cases are ascertained during follow-up [31,32]. Among other
118 strengths, the latter approach has considerable advantages with regard to timing of the
119 biological sample collection; notably, avoidance of disease progression bias.

120

121 Our original approach and findings may be of use when designing and monitoring the
122 conduct of studies (e.g., intervals between first symptom of the disease, first contact with
123 carers or first hospital admission and collection of toenails, diagnostic procedures performed
124 before nails collection). They also have implications for the analysis and interpretation of
125 future studies of pancreatic cancer and possibly other cancers. The findings warrant checking
126 the possible effects of disease progression on toenail levels of at least aluminum, zinc, and
127 selenium. Findings also suggest that with the mentioned checks it may be valid to measure
128 trace elements in toenail samples collected at diagnosis, not necessarily years before
129 diagnosis.

130

1 **FIGURE LEGENDS**

2

3 **Figure 1** Distributions of the time interval from first symptom of pancreatic cancer to
4 toenails collection, and time interval from first symptom of pancreatic cancer to blood
5 extraction.

6 *Footnote:* Blue broken line indicates the median days of the time interval from first symptom
7 of pancreatic cancer to toenails collection (iST), and red broken line indicates the median
8 days of time interval from first symptom to blood extraction (iSB).

9

10 **Figure 2** Scatterplot of zinc concentrations against the time interval from first symptom of
11 pancreatic cancer to toenails collection.

12 *Footnote:* ρ : Spearman's rho coefficient.

13

14

15 **Supplementary Figure 1** Chronological process from first symptom of pancreatic cancer
16 to toenails collection by the number of diagnostic tests previous to toenails collection.

17 *Footnote:* Each individual pancreatic cancer patient is represented by one line, and patients
18 are sorted from shorter to longer interval from first symptom to toenails collection (iST).
19 Colors indicate the number of diagnostic tests performed to patient previous to toenails
20 collection. Two patients had an iST over 420 days (N = 118).

21

References

- Chervona Y, Arita A, Costa M. Carcinogenic metals and the epigenome: Understanding the effect of nickel, arsenic, and chromium. *Metallomics*. 2012;4:619–27.
- Huang C, Ke Q, Costa M, Shi X. Molecular mechanisms of arsenic carcinogenesis. *Mol Cell Biochem*. 2004;255:57–66.
- Brocato J, Chen D, Liu J, Fang L, Jin C, Costa M. A potential new mechanism of arsenic carcinogenesis: depletion of stem-loop binding protein and increase in polyadenylated canonical histone h3.1 mrna. *Biol Trace Elem Res*. 2015;166:72–81.
- Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF. Cadmium-induced cancers in animals and in humans. *Int J Occup Environ Health*. 2007;13:202–12.
- Fernandez E, La Vecchia C, Porta M, Negri E, Lucchini F, Levi F. Trends in pancreatic cancer mortality in Europe, 1955–1989. *Int J Cancer*. 1994;57:786–92.
- Ojajärvi IA, Partanen TJ, Ahlbom A, Boffetta P, Hakulinen T, Jourenkova N, et al. Occupational exposures and pancreatic cancer: a meta-analysis. *Occup Environ Med*. 2000;57:316–24.
- Porta M, Ayude D, Alguacil J, Jariod M. Exploring environmental causes of altered ras effects: fragmentation plus integration? *Molec Carcinogenesis*. 2003;36:45–52.
- Chen C, Xun P, Nishijo M, Sekikawa A, He K. Cadmium exposure and risk of pancreatic cancer: a meta-analysis of prospective cohort studies and case-control studies among individuals without occupational exposure history. *Environ Sci Pollut Res Int*. 2015;22:17465–74.
- Gómez-Tomás Á, Pumarega J, Alguacil J, Amaral AFS, Malats N, Pallarès N, et al. Concentrations of trace elements and KRAS mutations in pancreatic ductal adenocarcinoma. *Environ Mol Mutagen*. 2019;60:693–703.
- Camargo J, Pumarega JA, Alguacil J, Sanz-Gallén P, Gasull M, Delclos GL, et al. Toenail concentrations of trace elements and occupational history in pancreatic cancer. *Environ Int*. 2019;127:216–25.
- Amaral AF, Porta M, Silverman DT, Milne RL, Kogevinas M, Rothman N, et al. Pancreatic cancer risk and levels of trace elements. *Gut*. 2012;61:1583–8.
- He K. Trace elements in nails as biomarkers in clinical research. *Eur J Clin Invest*. 2011;41:98–102.
- Gutiérrez-González E, García-Esquinas E, de Larrea-Baz NF, Salcedo-Bellido I, Navas-Acien A, Lope V, et al. Toenails as biomarkers of exposure to essential trace metals: A review. *Environ Res*. 2019;179(Pt A):108787.
- Salcedo-Bellido I, Gutiérrez-González E, García-Esquinas E, Fernández de Larrea-Baz N, Navas-Acien A, Téllez-Plaza M, et al. Toxic metals in toenails as biomarkers of exposure: A review. *Environ Res*. 2021;197:111028.
- Signes-Pastor AJ, Gutiérrez-González E, García-Villarino M, Rodríguez-Cabrera FD, López-Moreno JJ, Varea-Jiménez E, et al. Toenails as a biomarker of exposure to arsenic: A review. *Environ Res*. 2020;110286.
- Longnecker MP, Stampfer MJ, Morris JS, Spate V, Baskett C, Mason M, et al. A 1-y trial of the effect of high selenium bread on selenium concentrations in blood and toenails. *Am J Clin Nutr*. 1993;57:408–13.
- Garland M, Morris JS, Rosner BA, Stampfer MJ, Spate VL, Baskett CJ, et al. Toenail trace element levels as biomarkers: reproducibility over a 6-year period. *Cancer Epidemiol Biomarkers Prev*. 1993;2:493–7.
- Hunter DJ, Morris JS, Chute CG, Kushner E, Colditz GA, Stampfer MJ, et al. Predictors of selenium concentration in human toenails. *Am J Epidemiol*. 1990;132:114–22.
- Hopps HC. The biologic bases for using hair and nail for analyses of trace elements. *Sci Total Environ*. 1977;7:71–89.

20. Sukumar A. Human nails as a biomarker of element exposure. In: Ware GW, Nigg HN, Doerge DR, eds. *Reviews of environmental contamination and toxicology*, vol. 185. New York: Springer; 2006: 141–177. https://link.springer.com/chapter/10.1007/0-387-30638-2_5
21. Ntihabose R, Surette C, Foucher D, Clarisse O, Bouchard M. Assessment of saliva, hair and toenails as biomarkers of low level exposure to manganese from drinking water in children. *Neurotoxicol*. 2018;64:126–33.
22. Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat M. What is the best biomarker to assess arsenic exposure via drinking water? *Environ Int*. 2012;39:150–71.
23. Koedrith P, Kim HL, Il Weon J, Seo YR. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. *Int J Hyg Environ Health*. 2013;216:587–98.
24. Chen QY, Costa M. A comprehensive review of metal-induced cellular transformation studies. *Toxicol Appl Pharmacol*. 2017;331:33–40.
25. Porta M, Pumarega J, Ferrer-Armengou O, López T, Alguacil J, Malats N, et al. Timing of blood extraction in epidemiologic and proteomic studies: Results and proposals from the PANKRAS II Study. *Eur J Epidemiol*. 2007;22:577–88.
26. Porta M, Ferrer-Armengou O, Pumarega J, López T, Crous-Bou M, Alguacil J, et al. Exocrine pancreatic cancer clinical factors were related to timing of blood extraction and influenced serum concentrations of lipids. *J Clin Epidemiol*. 2008;61:695–704.
27. Porta M, Pumarega J, López T, Jariod M, Marco E, Grimalt, JO. Influence of tumor stage, symptoms and time of blood draw on serum concentrations of organochlorine compounds in exocrine pancreatic cancer. *Cancer Causes Control*. 2009;20:1893–906.
28. Porta M, Greenland S, Hernán M, dos Santos Silva I, Last M, eds. *A dictionary of epidemiology*. 6th ed. New York: Oxford University Press, 2014: 78.
29. Porta M. Role of organochlorine compounds in the etiology of pancreatic cancer: A proposal to develop methodological standards. *Epidemiology*. 2001;12:272–6
30. Porta M, Fabregat X, Malats N, Guarner L, Carrato A, de Miguel A, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. *Clin Translat Oncol*. 2005;7:189–97.
31. Gasull M, Pumarega J, Kiviranta H, Rantakokko P, Raaschou-Nielsen O, Bergdahl IA, et al. Methodological issues in a prospective study on plasma concentrations of persistent organic pollutants and pancreatic cancer risk within the EPIC cohort. *Environ Res*. 2019;169:417–33.
32. Porta M, Gasull M, Pumarega J, Kiviranta H, Rantakokko P, Raaschou-Nielsen O, et al. Plasma concentrations of persistent organic pollutants and pancreatic cancer risk. *Int J Epidemiol*. 14 July 2021. <https://doi.org/10.1093/ije/dyab115>.
33. Crous-Bou M, 2009. Clinical and environmental influences on the prevalence of mutations in the K-ras oncogene in patients with pancreatic ductal adenocarcinoma [doctoral dissertation]. Barcelona: Universitat Autònoma de Barcelona. Catalan and English. <http://www.imim.es/programesrecerca/epidemiologia/documentsgrecm.html>.
34. Porta M, Pumarega J, Amaral AFS, Genkinger JM, Camargo J, Mucci L, et al. Influence of KRAS mutations, persistent organic pollutants, and trace elements on survival from pancreatic ductal adenocarcinoma. *Environ Res*. 2020;190:109781.
35. Porta M, Malats N, Jariod M, Grimalt JO, Rifà J, Carrato A, et al. Serum concentrations of organochlorine compounds and K-ras mutations in exocrine pancreatic cancer. *Lancet*. 1999;354:2125–9.
36. Soler M, Malats N, Porta M, Fernandez E, Guarner L, Maguire A, et al. Medical conditions in patients with pancreatic and biliary diseases: validity and agreement between data from questionnaires and medical records. *Dig Dis Sci*. 1999;44:2469–77.

37. Porta M, Costafreda S, Malats N, Guarner L, Soler M, Gubern JM, et al. Validity of the hospital discharge diagnosis in epidemiologic studies of biliopancreatic pathology. *Eur J Epidemiol*. 2000;16:533–41.
38. Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th edition. Oxford: Blackwell; 2002.
39. Kleinbaum DG, Kupper LL, Muller KE, Nizam A. Applied regression analysis and other multivariable methods. 3rd edition. Pacific Grove, CA: Duxbury; 1998.
40. Lash TL, VanderWeele TJ, Haneuse S, Rothman KJ, eds. Modern epidemiology 4th. ed. Philadelphia: Walters-Kluwer; 2021.
41. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. *Nature*. 2019;567:305–7.
42. Fernandez E, Porta M, Malats N, Belloc J, Gallén M. Symptom to diagnosis interval and survival in cancers of the digestive tract. *Dig Dis Sci*. 2002;47:2434–40.
43. Porta M, Gallén M, Belloc J, Malats N. Predictors of the interval between onset of symptoms and first medical visit in patients with digestive tract cancer. *Int J Oncol*. 1996;8:941–9.
44. Porta M, Fernandez E, Alguacil J. Semiology, proteomics and the early detection of symptomatic cancer. *J Clin Epidemiol*. 2003;56:815–9.
45. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profiles. U.S. Department of Health and Human Services. Atlanta. <https://www.atsdr.cdc.gov/toxprofiledocs/index.html>.
46. Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. *Interdiscipl Toxicol*. 2019;12:45–70.
47. Orloff K, Mistry K, Metcalf S. Biomonitoring for environmental exposures to arsenic. *J Toxicol Environ Health B Crit Rev*. 2009;12:509–24.
48. Nichols T, Morris J, Mason M, Spate V, Baskett C, Cheng T, et al. The study of human nails as an intake monitor for arsenic using neutron activation analysis. *J Radioanal Nucl*. 1998;23:51–7.
49. Fleckman P. Anatomy and physiology of the nail. *Dermatol Clin*. 1985;3:373–81.
50. Gavaldà L, Porta M, Malats N, Piñol JL, Fernández E, Maguire A, et al. Agreement between information supplied by the patient and a family member on medical history, consumption of tobacco, alcohol and coffee, and diet in cancer of the exocrine pancreas and extrahepatic biliary tract. *Gac Sanit*. 1995;9:334–342.
51. Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JPA, Kirsch-Volders M, et al. STREngthening the Reporting of OBservational studies in Epidemiology – Molecular Epidemiology (STROBE-ME). An extension of the STROBE statement. *Eur J Epidemiol* 2011;26: 797–810.

Table 1 Metal concentrations by time from first symptom of pancreatic adenocarcinoma to toenail collection

Metal concentrations ($\mu\text{g/g}$)	Interval from first symptom to toenails collection				
	≤ 40 days		41 – 120 days		P-value ^a
	N	(%)	N	(%)	
Number of subjects	36 (30.5)		45 (38.1)		37 (31.4)
Aluminum					
GM (95% CI)	8.02	(6.1-10.6)	9.27	(7.2-11.9)	11.73 (8.9-15.5)
Median	6.96		8.62		0.159
Median			12.35		0.080 ^b
Nickel					
GM (95% CI)	0.22	(0.16-0.32)	0.25	(0.18-0.34)	0.24 (0.17-0.34)
Median	0.23		0.24		0.929
Median			0.22		0.773 ^c
Zinc					
GM (95% CI)	124.8	(114-137)	113.5	(104-123)	108.0 (98.5-118)
Median	115.0		107.1		0.085
Median			106.8		0.023 ^b
Arsenic					
GM (95% CI)	0.07	(0.06-0.09)	0.08	(0.07-0.10)	0.07 (0.06-0.09)
Median	0.07		0.08		0.525
Median			0.06		0.435 ^c
Selenium					
GM (95% CI)	0.54	(0.49-0.59)	0.51	(0.47-0.55)	0.46 (0.42-0.50)
Median	0.54		0.51		0.039
Median			0.50		0.055 ^b
Cadmium					
GM (95% CI)	0.03	(0.02-0.05)	0.02	(0.01-0.04)	0.03 (0.02-0.05)
Median	0.03		0.03		0.677
Median			0.03		0.812 ^c
Lead					
GM (95% CI)	0.87	(0.61-1.24)	0.86	(0.63-1.18)	0.89 (0.63-1.26)
Median	0.80		0.91		0.986
Median			0.86		0.899 ^c
Vanadium					
GM (95% CI)	0.02	(0.02-0.03)	0.02	(0.02-0.03)	0.03 (0.02-0.03)
Median	0.02		0.02		0.753
Median			0.02		0.761 ^c
Chromium					
GM (95% CI)	0.37	(0.25-0.54)	0.54	(0.38-0.76)	0.49 (0.34-0.72)
Median	0.33		0.52		0.306
Median			0.59		0.240 ^b
Manganese					
GM (95% CI)	0.29	(0.20-0.40)	0.23	(0.17-0.32)	0.27 (0.19-0.37)
Median	0.27		0.21		0.679
Median			0.22		0.634 ^c
Iron					
GM (95% CI)	16.41	(12.4-21.7)	15.30	(11.9-19.7)	17.91 (13.6-23.6)
Median	14.88		11.49		0.707
Median			12.68		0.443 ^c
Copper					
GM (95% CI)	3.81	(3.3-4.4)	3.65	(3.2-4.1)	3.69 (3.2-4.2)
Median	3.36		3.53		0.892
Median			3.50		0.915 ^c

Total number of subjects: 118. GM: geometric mean. CI: confidence interval.

^a Unless otherwise specified, p value derived from ANOVA.

^b Jonckheere-Terpstra test for trend. ^c Kruskal-Wallis test (two-tailed).

Table 2 Influence of the interval from first symptom of pancreatic adenocarcinoma to toenail collection (iST) on concentrations of trace elements (µg/g)

	Aluminum		Nickel		Zinc	
	GM	(95% CI)	GM	(95% CI)	GM	(95% CI)
<i>Model 1 (N = 118)</i>						
iST						
≤40 days	8.05	(6.04, 10.74)	0.23	(0.16, 0.34)	124.7	(113.6, 136.8)
41 – 120 days	9.25	(7.18, 11.92)	0.24	(0.17, 0.33)	112.9	(104.1, 122.6)
>120 days	11.72	(8.85, 15.52)	0.24	(0.17, 0.34)	108.7	(99.31, 119.1)*
<i>Model 2 (N = 116)</i>						
iST						
≤40 days	7.75	(5.77, 10.40)	0.22	(0.15, 0.33)	122.8	(111.6, 135.2)
41 – 120 days	9.18	(7.11, 11.84)	0.24	(0.17, 0.34)	113.1	(104.1, 122.8)
>120 days	11.44	(8.58, 15.24)	0.24	(0.16, 0.34)	109.6	(99.82, 120.2)
Tumor stage						
Stage I	10.71	(7.58, 15.14)	0.25	(0.16, 0.40)	128.2	(114.7, 143.4)
Stage II	8.20	(5.38, 12.51)	0.26	(0.15, 0.45)	110.1	(96.01, 126.2)
Stage III	9.39	(6.21, 14.21)	0.21	(0.12, 0.37)	107.5	(94.03, 122.9)*
Stage IV	9.12	(7.27, 11.44)	0.23	(0.17, 0.31)	112.9	(104.9, 121.5)

iST: Interval from first symptom of pancreatic cancer to toenails collection. GM: Geometric mean. CI: Confidence Interval.

All models are adjusted for age and sex. Furthermore, in Model 2 iST and stage are also mutually adjusted.

* p value < 0.05 (vs. iST ≤40 days or vs. tumor stage I).

[Continued next page]

Table 2 (continued)

	Arsenic		Selenium		Cadmium	
	GM	(95% CI)	GM	(95% CI)	GM	(95% CI)
<i>Model 1 (N = 118)</i>						
iST						
≤40 days	0.078	(0.063, 0.097)	0.54	(0.50, 0.59)	0.032	(0.019, 0.054)
41 – 120 days	0.084	(0.070, 0.102)	0.51	(0.47, 0.55)	0.023	(0.015, 0.037)
>120 days	0.070	(0.057, 0.087)	0.46	(0.42, 0.50)*	0.029	(0.018, 0.049)
<i>Model 2 (N = 116)</i>						
iST						
≤40 days	0.079	(0.063, 0.099)	0.54	(0.49, 0.59)	0.029	(0.017, 0.050)
41 – 120 days	0.085	(0.070, 0.103)	0.51	(0.47, 0.55)	0.024	(0.015, 0.038)
>120 days	0.070	(0.056, 0.087)	0.46	(0.42, 0.50)*	0.030	(0.018, 0.051)
Tumor stage						
Stage I	0.071	(0.054, 0.092)	0.53	(0.48, 0.59)	0.037	(0.019, 0.070)
Stage II	0.092	(0.067, 0.128)	0.49	(0.43, 0.55)	0.034	(0.016, 0.074)
Stage III	0.076	(0.055, 0.104)	0.48	(0.43, 0.55)	0.029	(0.014, 0.062)
Stage IV	0.079	(0.066, 0.094)	0.50	(0.47, 0.53)	0.022	(0.014, 0.033)

iST: Interval from first symptom to toenails collection. GM: Geometric mean. CI: Confidence Interval.

All models are adjusted for age and sex. Furthermore, in Model 2 iST and stage are also mutually adjusted.

* p value < 0.05 (vs. iST ≤40 days or vs. tumor stage I).

Table 3 Influence of time interval from first symptom to toenails collection (iST) on toenail concentrations of metals (μg/g)

	Aluminum		Nickel		Zinc	
	GM	(95% CI)	GM	(95% CI)	GM	(95% CI)
<i>Model 3 (N = 118)</i>						
iST ^a						
≤40 days	8.08	(5.95, 10.99)	0.24	(0.16, 0.35)	127.9	(116.0, 140.9)
41 – 120 days	9.21	(7.13, 11.90)	0.24	(0.17, 0.33)	112.7	(103.9, 122.2)
>120 days	11.74	(8.77, 15.73)	0.24	(0.16, 0.34)	106.4	(97.01, 116.7)*
Cholestatic syndrome ^b						
No syndrome	9.12	(6.72, 12.38)	0.24	(0.17, 0.36)	126.1	(114.4, 138.9)
Partial syndrome	10.82	(7.83, 14.95)	0.23	(0.15, 0.35)	107.8	(97.30, 119.4)*
Complete syndrome	9.23	(7.25, 11.75)	0.24	(0.17, 0.32)	112.1	(103.9, 121.1)
<i>Model 4 (N = 116)</i>						
iST ^a						
≤40 days	8.00	(5.84, 10.95)	0.22	(0.15, 0.34)	127.1	(115.1, 140.3)
41 – 120 days	9.07	(7.01, 11.74)	0.24	(0.17, 0.34)	112.4	(103.7, 121.9)
>120 days	11.25	(8.36, 15.14)	0.24	(0.16, 0.35)	106.7	(97.23, 117.2)*
Cholestatic syndrome ^b						
No syndrome	9.55	(6.96, 13.11)	0.24	(0.16, 0.37)	129.1	(116.8, 142.6)
Partial syndrome	10.63	(7.64, 14.80)	0.22	(0.14, 0.34)	108.6	(97.86, 120.4)*
Complete syndrome	8.62	(6.68, 11.12)	0.24	(0.17, 0.33)	109.4	(101.0, 118.5)*
Tumor stage ^c						
Stage I	11.01	(7.70, 15.75)	0.25	(0.16, 0.40)	131.5	(117.5, 147.1)
Stage II	8.06	(5.25, 12.37)	0.26	(0.15, 0.45)	108.1	(94.49, 123.7)*
Stage III	9.60	(6.28, 14.66)	0.22	(0.12, 0.38)	110.8	(96.96, 126.6)*
Stage IV	9.00	(7.14, 11.35)	0.23	(0.17, 0.31)	111.3	(103.5, 119.7)*

iST: Interval from first symptom to toenails collection. GM: Geometric mean. CI: Confidence Interval.

All models are adjusted for age and sex.

^a Reference category is ≤40 days of interval. ^b Reference category is no cholestatic syndrome.^c Reference category is tumor stage I. * p value <0.05.

[Continued next page]

Table 3 (continued)

	Arsenic		Selenium		Cadmium	
	GM	(95% CI)	GM	(95% CI)	GM	(95% CI)
<i>Model 3 (N = 118)</i>						
iST ^a						
≤40 days	0.082	(0.065, 0.103)	0.55	(0.50, 0.61)	0.035	(0.020, 0.061)
41 – 120 days	0.083	(0.068, 0.101)	0.51	(0.47, 0.55)	0.022	(0.014, 0.036)
>120 days	0.068	(0.055, 0.085)	0.45	(0.41, 0.49)*	0.028	(0.016, 0.047)
Cholestatic syndrome ^b						
No syndrome	0.084	(0.067, 0.106)	0.54	(0.49, 0.59)	0.029	(0.017, 0.049)
Partial syndrome	0.083	(0.065, 0.106)	0.48	(0.44, 0.53)	0.043	(0.024, 0.077)
Complete syndrome	0.072	(0.060, 0.086)	0.49	(0.46, 0.53)	0.021	(0.014, 0.033)
<i>Model 4 (N = 116)</i>						
iST ^a						
≤40 days	0.082	(0.064, 0.104)	0.56	(0.51, 0.61)	0.034	(0.019, 0.060)
41 – 120 days	0.084	(0.069, 0.103)	0.51	(0.47, 0.55)	0.023	(0.014, 0.036)
>120 days	0.068	(0.054, 0.086)	0.45	(0.41, 0.49)*	0.028	(0.016, 0.048)
Cholestatic syndrome ^b						
No syndrome	0.083	(0.065, 0.106)	0.55	(0.50, 0.60)	0.032	(0.018, 0.057)
Partial syndrome	0.083	(0.064, 0.107)	0.49	(0.44, 0.54)	0.045	(0.025, 0.081)
Complete syndrome	0.073	(0.060, 0.089)	0.48	(0.44, 0.52)	0.019	(0.012, 0.030)
Tumor stage ^c						
Stage I	0.072	(0.055, 0.096)	0.54	(0.49, 0.61)	0.042	(0.022, 0.080)
Stage II	0.091	(0.065, 0.127)	0.48	(0.42, 0.54)	0.031	(0.014, 0.068)
Stage III	0.078	(0.056, 0.108)	0.50	(0.44, 0.57)	0.032	(0.015, 0.070)
Stage IV	0.077	(0.065, 0.093)	0.49	(0.46, 0.53)	0.021	(0.014, 0.031)

iST: Interval from first symptom to toenails collection. GM: Geometric mean. CI: Confidence Interval.

All models are adjusted for age and sex.

^a Reference category is ≤40 days of interval. ^b Reference category is no cholestatic syndrome.^c Reference category is tumor stage I. * p value <0.05.

Table 4 Spearman's correlations (ρ) between concentrations of trace elements ($\mu\text{g/g}$) and time intervals (days) from clinical events to collection of toenails

	Clinical events related to pancreatic cancer									
	First symptom	Hospital admission	Interview	Diagnostic	Treatment onset	Ultrasound scan	CT	Fibrogastroscopy	ERCP	Exploratory laparotomy
	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)
Total number	118 (100)	115 (97.5)	97 (82.2)	68 (57.6)	36 (30.5)	101 (85.6)	82 (69.5)	30 (25.4)	41 (34.7)	37 (31.4)
Aluminum	0.186**	0.087	-0.121	0.253**	0.090	0.063	0.089	-0.144	0.054	0.311*
Nickel	0.001	0.082	-0.109	0.201	-0.009	0.138	0.162	0.052	0.207	0.143
Zinc	-0.112	-0.017	-0.020	-0.075	-0.216	0.084	-0.025	0.084	0.043	-0.092
Arsenic	-0.032	0.084	-0.033	0.022	-0.102	0.048	0.129	0.321*	-0.006	-0.152
Selenium	-0.117	-0.002	0.089	0.062	0.026	0.120	0.124	-0.014	0.045	-0.028
Cadmium	-0.012	0.061	-0.159	-0.063	-0.327*	-0.074	-0.020	-0.110	-0.129	-0.166
Lead	-0.001	0.073	-0.128	0.049	-0.247	0.041	0.144	0.073	-0.080	-0.061
Vanadium	0.079	0.005	-0.128	0.125	-0.051	0.013	0.059	-0.192	-0.072	0.062
Chromium	0.065	0.013	0.097	0.019	-0.064	0.030	0.094	-0.094	-0.071	0.003
Manganese	-0.061	-0.045	-0.131	0.092	-0.225	-0.096	-0.078	-0.225	-0.130	-0.108
Iron	0.010	-0.052	-0.143	0.292**	0.084	0.028	-0.041	-0.038	-0.098	-0.171
Copper	0.054	0.046	-0.058	0.121	-0.004	0.139	-0.069	0.149	0.104	-0.054

Total number of subjects: 118.

CT: Computerized axial tomography. ERCP: Endoscopic retrograde cholangiopancreatography.

* $0.05 < p \text{ value} \leq 0.10$.

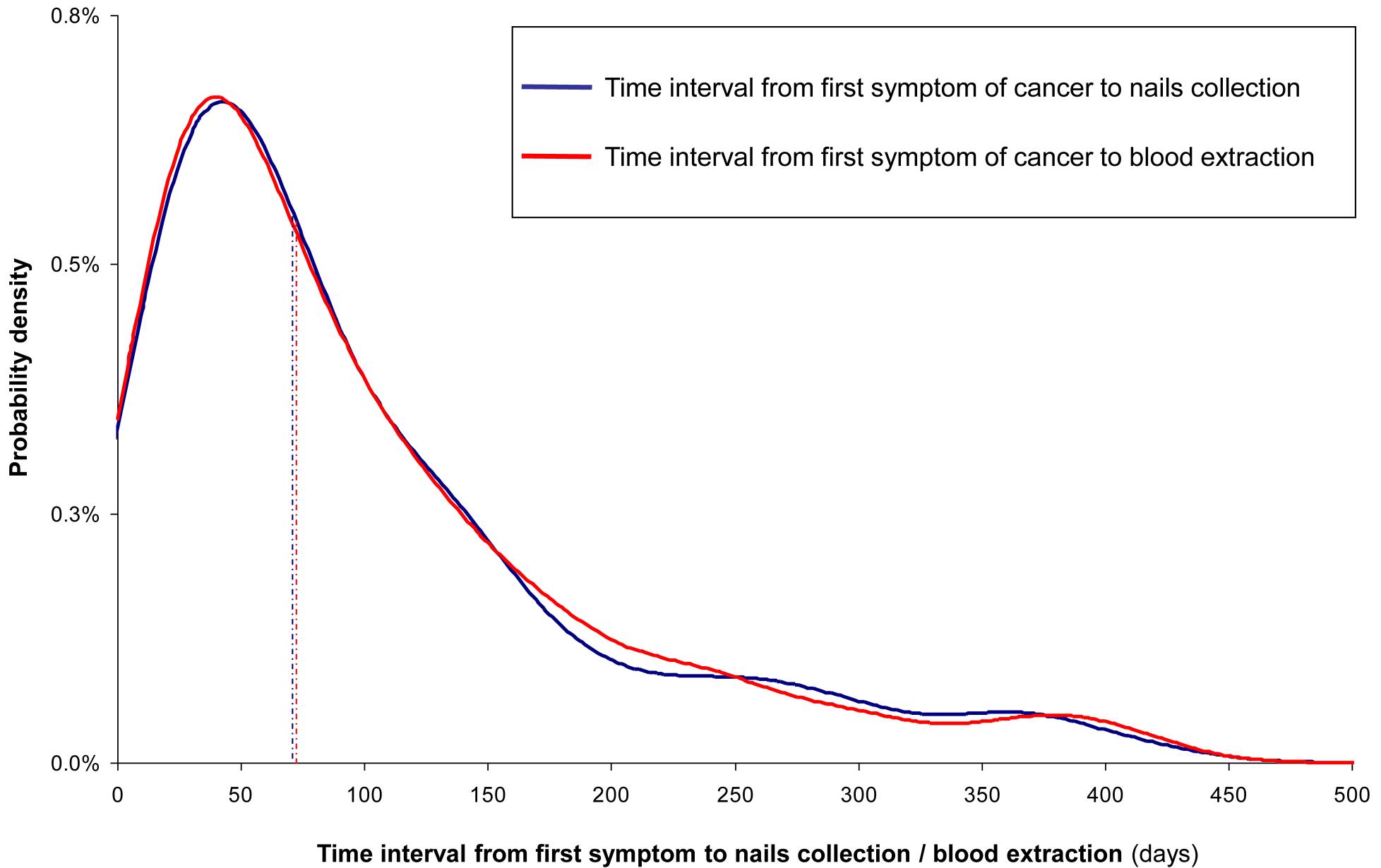
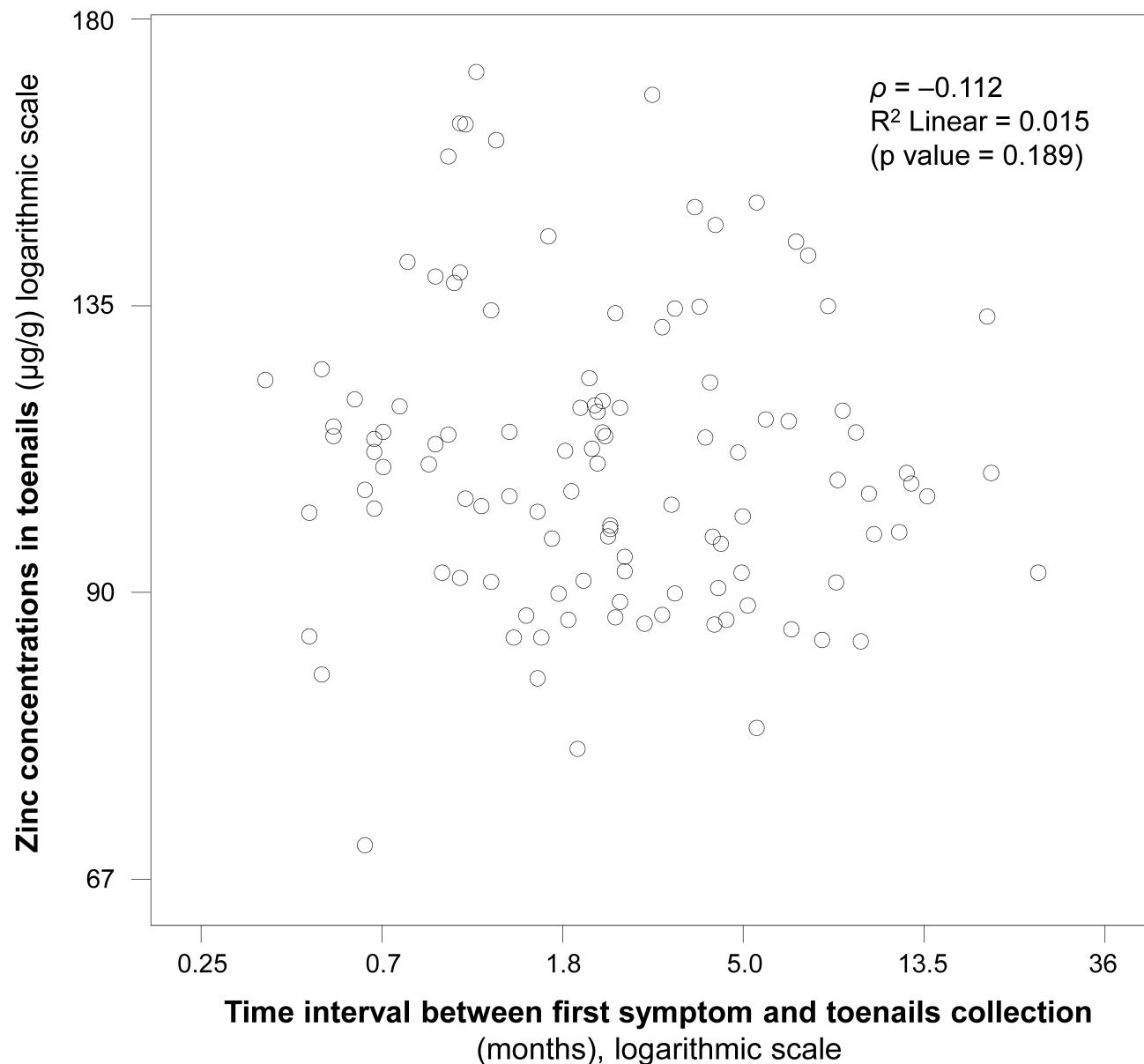

** $p \text{ value} \leq 0.05$.

Figure 1. Distribution of the interval from first symptom of cancer to toenails collection and the interval from first symptom of cancer to blood extraction in patients with pancreatic cancer


To be published as a footnote to the figure:

Note: The blue broken line indicates the median (in days) of the interval from first symptom of cancer to toenails collection, and the red broken line indicates the median (in days) of the interval from first symptom of cancer to blood extraction in patients with pancreatic cancer.

Figure 2. Scatterplot of toenail concentrations of zinc against the interval between first symptom of pancreatic cancer and toenails collection (iST).

Supplementary Table 1 Characteristics of pancreatic cancer patients with and without available toenail samples

Characteristics	Toenails available		P-value
	Yes N (%)	No N (%)	
Number of patients	118 (63.8)	67 (36.2)	
Age (years)	66.1 ± 12.5	68.0 ± 12.9	0.320 ^a
Sex (males)	75 (61.9)	37 (55.2)	0.437 ^b
Social class			0.967 ^b
I – II	12 (10.5)	6 (12.0)	
III	30 (26.3)	13 (26.0)	
IV – V	72 (63.2)	31 (62.0)	
Education			0.758 ^b
Illiterate	15 (13.2)	5 (10.0)	
Can only read and write	32 (28.1)	12 (24.0)	
Up to 10 years of schooling	58 (50.9)	27 (54.0)	
>10 years of schooling	9 (7.9)	6 (12.0)	
Smoking			
Ever-smokers (%)	65 (56.5)	27 (54.0)	0.865 ^b
Pack-years (median)	9.1	13.5	0.627 ^c
Coffee drinking			
Regular coffee drinkers (%)	98 (86.0)	42 (84.0)	0.811 ^b
Cups per week (median)	2.0	1.0	0.320 ^c
Alcohol drinking			0.050 ^b
Non-drinker or occasional	31 (27.2)	12 (24.0)	
Regular drinker	64 (56.1)	21 (42.0)	
Heavy drinker	19 (16.7)	17 (34.0)	
iSD			
Days (median)	71.0	68.0	0.473 ^c
iSB			
Days (median)	70.0	78.0	0.917 ^c
Cholestatic syndrome^d			
No syndrome	35 (29.7)	29 (43.3)	0.164 ^b
Partial syndrome	28 (23.7)	11 (16.4)	
Complete syndrome	55 (46.6)	27 (40.3)	
Constitutional syndrome^e			
No syndrome	5 (4.2)	7 (10.4)	0.003 ^b
Partial syndrome	33 (28.0)	6 (9.0)	
Complete syndrome	80 (67.8)	54 (80.6)	
Tumor stage at diagnosis			
Stage I	25 (21.6)	20 (29.9)	0.345 ^b
Stage II	17 (14.7)	6 (9.0)	
Stage III	17 (14.7)	6 (9.0)	
Stage IV	57 (49.1)	35 (52.2)	

iSD: Interval from first symptom of pancreatic cancer to diagnosis.

iSB: Interval from first symptom of pancreatic cancer to blood extraction.

Plus-minus values are mean ± standard deviation.

^a Student's *t*-test (two-tailed). ^b Fisher's exact test (two-tailed). ^c Mann-Whitney's *U* test (two-tailed). ^d Cholestatic syndrome involved jaundice, hypocholia, and choluria. ^e Constitutional syndrome involved asthenia, anorexia, and weight loss.

Supplementary Table 2 Within- and between-assay coefficients of variation, percentage of detection, and lowest concentration detected.^a

Trace element	Within-assay coefficient of variation (%)	Between-assay coefficient of variation (%)	Percentage of detection (%) ^{b,c}	Lowest concentration detected (µg/g)
Aluminum (Al)	10	16	100	1.35
Arsenic (As)	7	9	98.3	0.024
Cadmium (Cd)	15	25	92.4	0.001
Chromium (Cr)	40	96	100	0.010
Copper (Cu)	11	21	100	1.24
Iron (Fe)	20	32	100	4.15
Lead (Pb)	6	8	98.3	0.106
Manganese (Mn)	5	6	100	0.040
Nickel (Ni)	19	25	100	0.011
Selenium (Se)	8	12	99.2	0.134
Vanadium (V)	16	40	100	0.023
Zinc (Zn)	5	8	100	35.54

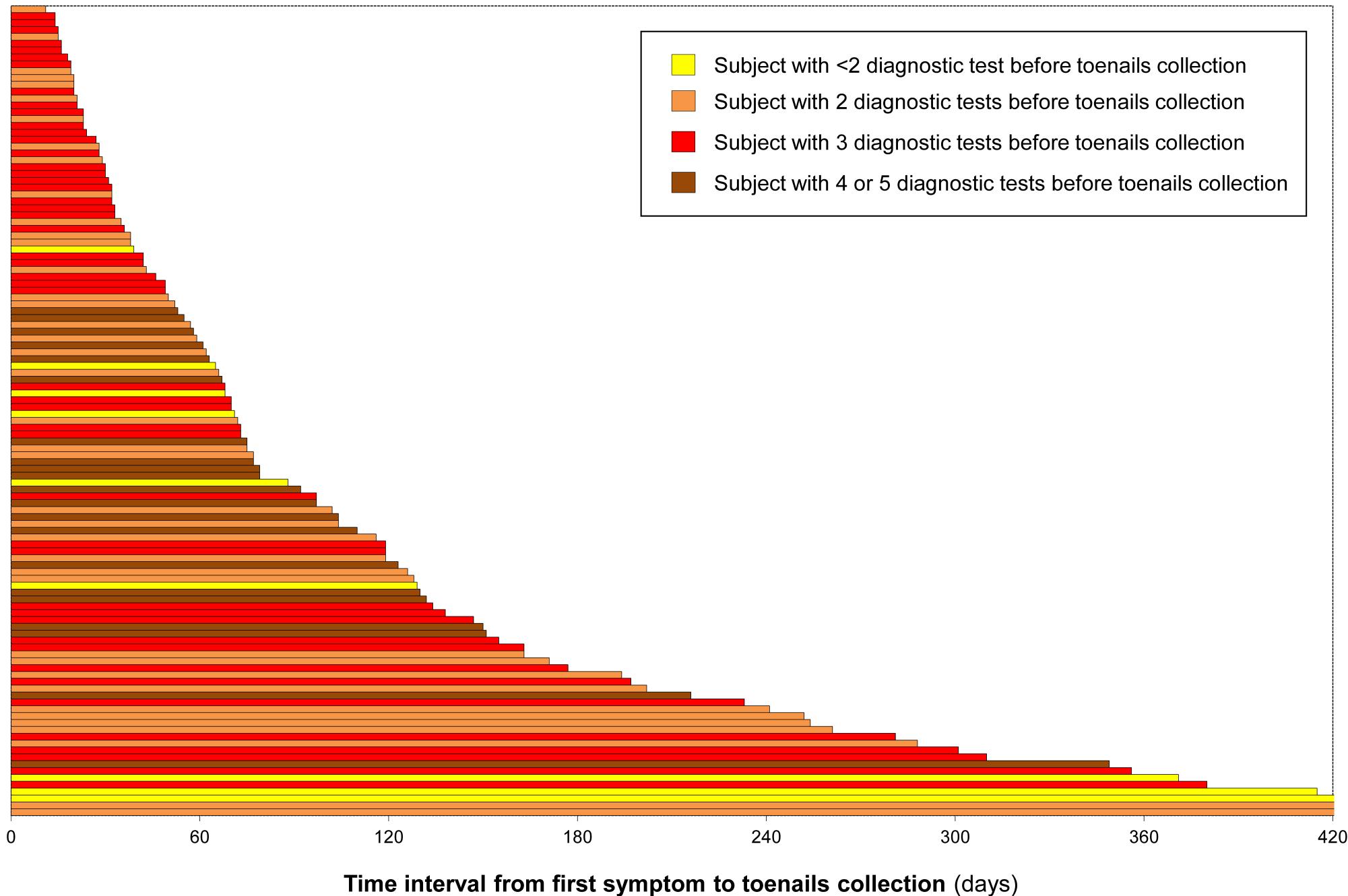
^a Trace elements were quantified at the Trace Element Analysis Core (Dartmouth College, Hanover, New Hampshire, USA), using inductively coupled plasma mass spectrometry (see Methods).

^b Percentage of the 118 subjects who had the trace element detected.

^c When geometric means were computed, for subjects with concentrations undetected the half-value of the lowest concentration detected was assigned.

Supplementary Table 3 Time intervals from first symptom of pancreatic adenocarcinoma, and from hospital admission, to collection of toenails in 118 patients with pancreatic cancer

	Days	N	(%)	(Cumulative %)
Time from first symptom to toenails collection		118	(100)	
Mean	115.1			
Standard deviation	125.9			
25 th percentile	32.8			
Median	70.5			
75 th percentile	140.3			
Minimum	11			
Maximum	763			
Collection in the month following the first symptom	25	(21.2)	(21.2)	
Collection in the 2nd following month	24	(20.3)	(41.5)	
Collection in the 3rd following month	20	(16.9)	(58.5)	
Collection in the 4th following month	12	(10.2)	(68.6)	
Collection in the 5th following month	10	(8.5)	(77.1)	
Collection in the 6th following month	6	(5.1)	(82.2)	
Collection after the 6th following month	21	(17.8)	(100)	
Time from hospital admission to toenails collection		118	(100)	
Mean	28.2			
Standard deviation	49.9			
25 th percentile	10.0			
Median	15.0			
75 th percentile	24.3			
Minimum	-32			
Maximum	349			
Collection of toenails shortly before or same day than hospital admission	5	(4.2)	(4.2)	
Collection in the following week	11	(9.3)	(13.6)	
Collection in the 2nd following week	40	(33.9)	(47.5)	
Collection in the 3rd following week	26	(22.0)	(69.5)	
Collection in the 4th following week	13	(11.0)	(80.5)	
Collection after the first month	23	(19.5)	(100)	


Supplementary Table 4 Time intervals from clinical events (performance of diagnostic tests, diagnosis, treatment onset and interview) to toenails collection

Time intervals	Ultrasound			
	scan N (%)	CT N (%)	Fibrogastroscopy N (%)	ERCP N (%)
Total number of cases	103 (87.3)	93 (78.8)	35 (39.7)	47 (39.8)
Collection of toenails before or same day than the clinical event	3 (2.9)	18 (19.4)	6 (17.1)	7 (14.9)
Collection in the following week	17 (16.5)	33 (35.5)	3 (8.6)	24 (51.1)
Collection in the 2nd following week	27 (26.2)	19 (20.4)	7 (20.0)	5 (10.6)
Collection in the 3rd following week	20 (19.4)	7 (7.5)	3 (8.6)	4 (8.5)
Collection in the 4th following week	11 (10.7)	3 (3.2)	2 (5.7)	2 (4.3)
Collection after the first month	25 (24.3)	13 (14.0)	14 (40.0)	5 (10.6)

	Exploratory laparotomy		Treatment onset	
	N (%)	N (%)	N (%)	N (%)
Total number of cases	69 (58.5)	118 (100)	73 (61.9)	115 (97.5)
Collection of toenails ≥15 days before the clinical event	9 (13.0)	13 (11.0)	13 (17.8)	2 (1.7)
Collection in the 2nd previous week	6 (8.7)	12 (10.2)	5 (6.8)	4 (3.5)
Collection in the previous week	17 (24.6)	25 (21.2)	19 (26.0)	12 (10.4)
Collection in the same day	4 (5.8)	12 (10.2)	6 (8.2)	67 (58.3)
Collection in the following week	13 (18.8)	25 (21.2)	13 (17.8)	23 (20.0)
Collection in the 2nd following week	8 (11.6)	14 (11.9)	7 (9.6)	4 (3.5)
Collection ≥ 15 following days	12 (17.4)	17 (14.4)	10 (13.7)	3 (2.6)

CT: Computerized axial tomography. ERCP: Endoscopic retrograde cholangiopancreatography.

