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Abstract

Two candidates competing for election may raise some issues for debate
during the electoral campaign, while avoiding others. We present a model
in which the decision to introduce an issue, or to reply to the opponent’s
position on one that she raised, may result in further additions to the list
of topics that end up being discussed. Candidates’ strategic decisions are
driven by their appraisal of their expected vote share at the end of the
campaign. Our analysis appeals to a protocol-free equilibrium concept,
and predicts the list of topics that will be touched upon by each candidate,
and the order in which they might be addressed. We show that important
phenomena observed during campaigns, like the convergence of the parties
to address the same issues, or else their diverging choice on which ones to
treat, or the relevance of issue ownership can be explained within our stark
basic model.
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1 Introduction

Contenders in an electoral campaign may decide to raise some issues for con-

troversy, while staying quiet about others. They may decide to confront their

views on issues raised by their opponents, while ignoring the challenge in other

cases. They may have a comparative advantage in dealing with issues that their

parties have a good record on, and start with a handicap on other fronts. All

of these are results of the strategic considerations that lead candidates to build

campaigns through the choice of topics that they will address, conditional on

what they think others will do to attract voters. A vast literature on electoral

campaigns has considered, among other factors, the sort of decisions we just de-

scribed, under the names of issue convergence (confronting opposite positions on

the same issue), issue divergence (avoiding to address the same issues that others

propose) or issue ownership (recognizing a priori advantages regarding certain

issues when deciding which ones to debate).

The empirical literature is mixed and provides evidence for both issue con-

vergence and divergence (see e.g. Petrocik, 1996; Spiliotes and Vavreck, 2003;

Sigelman and Buell, 2004; Green-Pedersen, 2007). This entails the need to ex-

plain both outcomes, ideally with one single model which can produce both issue

convergence and divergence and outcomes between these two extremes depending

on the choice of parameters. The contribution of our paper is to deliver such a

model.

We propose a stark model of campaign formation, where two candidates can

independently determine what issues to address, and on which ones to remain

silent, based on their estimated vote share in the election. Addressing an issue

can be given two interpretations. One is that by addressing an issue a candidate

announces her policy on that issue while staying silent on an issue means that

the status quo policy on that issue will prevail in case the candidate is elected.

Voters are then assumed to base their vote on the belief that candidates will keep

their promises once elected. The other interpretation is that addressing an issue

makes the candidate’s position on that issue salient in the eyes of the voters. Here

voters are assumed to base their vote on the salient positions of the candidates

while they believe that the candidates will stick to the status quo policy for the
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issues they have not addressed during the campaign.

We consider a dynamic campaign formation but different from other authors

(see, e.g. Colomer and Llavador, 2012; Egorov, 2015) we do not assume a given

order of moves but rather derive the order endogenously as part of the equilibrium.

To this end we adapt a protocol-free equilibrium concept that has been introduced

by Dutta et al. (2004).

Our basic model can already explain all possible outcomes including the ex-

treme cases of issue convergence and issue divergence. We also introduce some

variants of our basic model to incorporate two relevant additional considerations.

One is to recognize that limited resources may affect the form of equilibrium

campaigns by limiting the number of issues that contenders can afford to pro-

ductively address. Another is to take into account that campaigning costs may

affect the electoral race by introducing additional considerations in defining the

candidates’ objectives, beyond the maximization of voting shares, and thus turn

the game into one that is no longer zero sum.

Much of the previous theoretical literature on electoral campaigns has con-

sidered models where candidates or parties can allocate a given budget across

different issues thereby increasing the salience of the issues which is assumed to

affect voters’ preferences (see, e.g., Amorós and Puy, 2013; Aragonès, Castan-

heira, and Giani, 2015; Dragu and Fan, 2016; Denter, 2020). In these models the

salience of an issue is determined by the total investment of both candidates or

parties into the issue while in our model a candidate can only affect the salience

of her own position on an issue.

Admittedly, our model omits variables whose role has been analyzed by the

literature on electoral campaigns, and even those that we explicitly consider are

treated in a simplified matter. These additional variables include, for example,

the intensity with which candidates treat each of the issues, or their ability to

misrepresent their true objectives. Yet, our strategy of research here has been to

concentrate on showing that the major phenomena we initially described can arise

even in the absence of these additional qualifying considerations, as a result of a

minimum of variables. Hence, the nature of our results, and our interpretation

of their consequences. Our results are not to deny the relevance of additional

considerations or complications, but point at the fact that these are not strictly
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needed to generate the basic phenomena we want to highlight.

The paper proceeds as follows. In section 2 we present our model and the equi-

librium notion. Section 3 discusses three relevant special cases and also presents

a simple example to analyze the effect of issue ownership on issue convergence

and issue divergence. Section 4 considers the general case of an arbitrary number

of issues. Section 5 studies the effect of campaigning costs. Section 6 concludes.

2 The Model

We consider two candidates, A and B, who compete in an electoral campaign.

There is a finite set of policy issues K with cardinality K ≥ 1. Examples for

issues are social security, education, environmental protection, immigration etc.

During the electoral campaign candidates address issues in K. For i = A,B,

let zi ∈ {0, 1}K be such that zik = 1 if candidate i has addressed issue k ∈ K
and zik = 0, otherwise. Whenever convenient we write the vector zi as a binary

number zi = zi1 . . . z
i
K .

1 We call (zA, zB) with zi ∈ {0, 1}K for i = A,B, a state.

Let p(zA, zB) stand for the vote share of candidate A at state (zA, zB). We

assume that these vote shares are different in each state, i.e.

p(zA, zB) ̸= p(ẑA, ẑB) for (zA, zB) ̸= (ẑA, ẑB).

In most of the paper we retain the implicit assumption that both candidates

assess in the same way the vote shares that each one will obtain. That implies

that they play a zero-sum game. In section 4 we show that under the zero-sum

assumption, our equilibrium payoffs are unique, and in section 5 we prove that

otherwise multiple equilibria with different payoffs may exist. Hence, the zero-

sum assumption ties our hands tighter, and makes our results more conclusive.

A protocol-free electoral campaign

During an electoral campaign, each candidate may decide to address some is-

sues and not others, and to do it according to a given sequence, either raising

a new one, responding to the opponent’s previous mention of it, or ignoring it.

1For example, if K = 3, then zi = 101 means that candidate i has addressed issues 1 and 3

but not issue 2.
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Our choice of equilibrium notion is intended to endogenize the sequence of such

choices, rather than imposing it in the form of a protocol. If candidate i addresses

issue k, we denote this by the pair (k, i). At any point in time an electoral cam-

paign then is characterized by a sequence of pairs (k, i) ∈ K × {A,B} recording

which candidate has addressed which issue and in what order. We call any such

sequence a campaign. Formally, let m ∈ {1, . . . , 2K}. A campaign of length m

then is a sequence s = (s1, . . . , sm) with sl ∈ K×{A,B} for all l = 1, . . . ,m, and

sl ̸= sl′ for all l ̸= l′. The empty campaign ∅, where no candidate has addressed

any issue is defined to have length 0. By Sm we denote the set of campaigns of

length m, where 0 ≤ m ≤ 2K, and by S =
⋃2K

m=0 S
m we denote the set of all

campaigns.

For a given campaign s = (s1, . . . , sm) ∈ S and (k, i) ∈ K × {A,B} we write,

for short, (k, i) ∈ s whenever (k, i) = sl for some l ∈ {1, . . . ,m}, and (k, i) /∈ s

whenever (k, i) ̸= sl for all l = 1, . . . ,m. For s ∈ Sm, where 0 ≤ m ≤ 2K, and

(k, i) ∈ K × {A,B}, (k, i) /∈ s, (s, (k, i)) denotes the campaign s′ ∈ Sm+1 with

s′l = sl for l = 1, . . . ,m, and s′m+1 = (k, i).

Each campaign s ∈ S defines a state (zA(s), zB(s)), where zi(s) ∈ {0, 1}K

denotes which issues have been addressed by candidate i ∈ {A,B} at campaign

s, that is

zik(s) =

{
1, if (k, i) ∈ s,

0, if (k, i) /∈ s

for i = A,B.

The electoral campaign ends if at a given campaign s ∈ S no candidate wants

to address an issue that he or she has not addressed before. In particular, the

electoral campaign ends at any full campaign s ∈ S2K , when all issues have been

addressed by both candidates. But note that the electoral campaign may end

before a full campaign is reached. There may be issues that have only been

addressed by one candidate but not by the other, and also ones not addressed by

any of the two candidates.

Once the electoral campaign has ended there is an election and

P (s) = p(zA(s), zB(s))

denotes candidate A’s vote share at the given campaign s.
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We shall now define the notion of continuation campaigns, that is crucial in

the analysis of our equilibrium concept. Let m ∈ {0, 1, . . . , 2K} and let s ∈ Sm.

We say that s′ is a continuation campaign at s if s′l = sl for all l = 1, . . . ,m.

Note that by definition s is a continuation campaign at s. By S(s) we denote

the set of continuation campaigns at s ∈ S. A collection of sets of continuation

campaigns is a family of subsets of S(s) for each s ∈ S.

We shall use a concept of equilibrium that adapts a proposal by Dutta et

al. (2004). We have adopted this concept because it is very general and it allows

candidates to choose the order in which they express themselves and also that in

which they address the different issues. The notion of equilibrium is defined on

collections of sets of campaigns, rather than on specific campaigns. It demands

from equilibrium collections to satisfy three conditions, which together provide

it a sense of consistency and rationality. The first condition just demands that

each campaign in the collection should at least be followed by another, which

may include the possibility of being its own successor. The second condition is

also very mild and a stopping requirement. Candidates stop adding issues to

the campaign if and only if they unanimously agree that this would hurt them.

The third condition requires continuation equilibria to satisfy a minimum ratio-

nality requirement: If there are multiple continuation equilibria, then candidates

should not build campaigns that are worse for them than any other equilibrium

campaign. Moreover, if there is a unique continuation equilibrium that does not

involve stopping, then the candidate who initiates the continuation must not be

worse off by doing so than by stopping at the given campaign. Definition 2.1

formalizes these ideas.
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Definition 2.1 (Equilibrium Continuation Campaigns)

A collection of sets of continuation campaigns (CE(s))s∈S is an equilibrium

collection of sets of continuation campaigns if the following conditions

are satisfied for all s ∈ S:

(E1) CE(s) is a nonempty subset of
⋃

(k,i)/∈s CE((s, (k, i)) ∪ {s}.
(E2) s ∈ CE(s) if and only if

P (s) > P (s′) for all s′ ∈
⋃

k:(k,A)/∈s

CE((s, (k,A)))

and

1− P (s) > 1− P (s′) for all s′ ∈
⋃

k:(k,B)/∈s

CE((s, (k,B))).

(E3) For s ∈ S say that the campaign s′ = (s, (k, i), . . .) ∈ S is rationalizable

(relative to s) if s′ ∈ CE((s, (k, i)) and there exists an s′′ ∈ CE(s) with either

s′′ = (s, (h, j), . . .) for some (h, j) ̸= (k, i) or s′′ = s such that

P (s′) > P (s′′), if i = A,

and 1− P (s′) > 1− P (s′′), if i = B.

If s′ ∈
⋃

(h,i)/∈sCE((s, (h, i))) is rationalizable, then s′ ∈ CE(s). Conversely, if

s′ = (s, (k, i), . . .) ∈ CE(s) and if either s ∈ CE(s) or s′′ =

(s, (h, j), . . .) ∈ CE(s) for some (h, j) ̸= (k, i), then s′ is rationalizable. If

s′ = (s, (k, i), . . .) ∈ CE(s) and ∄j ̸= i such that s′′ = (s, (h, j), . . .) ∈ CE(s)

for some (h, j) /∈ s, then

P (s′) > P (s), if i = A,

and 1− P (s′) > 1− P (s), if i = B.2

Notice that in order to determine what is an equilibrium collection of contin-

uation campaigns, one must proceed to a backward induction analysis. One must

first decide whether the full campaign satisfies the conditions as a continuation of

2In Dutta et al. (2004) an equilibrium collection of sets of continuation campaigns is defined

to satisfy (E1) and (E2). If, in addition, (E3) is satisfied, the equilibrium collection is said to

be consistent.
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each of the campaigns where only one candidate has kept silent on only one issue.

Then, in view of that, the next step is to analyze whether each of the latter may

be equilibrium continuations of campaigns in which either a candidate does not

address two of the issues, or both candidates fail to address one issue each. After

completing the backward induction, we will have one or several possible collec-

tions of equilibrium continuations. Multiplicity is possible, but we will show in

section 4 that all equilibrium collections are outcome equivalent.

In what follows, after identifying those collections of continuation campaigns

that satisfy our equilibrium conditions, we will focus attention on campaigns that

are part of these equilibrium continuations and are continuations of themselves

and of the empty set. This formalizes the notion that the disclosure of positions

starts from scratch at the beginning of the campaign and follows a path leading to

a campaign s, after which no further disclosures will be in the interest of anyone,

given the continuations predicted from further additions.

Definition 2.2 s∗ is an equilibrium campaign if there exists an equilibrium

collection of sets of continuation campaigns (CE(s))s with s∗ ∈ CE(∅).

The reader may wonder how decisive our choice of specific vote shares is to

drive our results. In fact, since what matters for equilibrium is just the order of

preference that the vote shares imply for the candidates’ ranking of campaigns,

we can make sure that any ordering of vote shares can be explained as being

associated with some profile of voters’ preferences. This follows from a result

in Debord (1987) who proves that for a finite set of alternatives X and for any

collection (m(x, y))x ̸=y of integers with m(x, y) = −m(y, x) for all x ̸= y in X

such that m(x, y) is either even for all x ̸= y or odd for all x ̸= y in X, there

exists a set of voters V and strict preference orderings Pi for all voters i ∈ V such

that m(x, y) is the majority margin for x over y for all alternatives x ̸= y at the

given preference profile, i.e. m(x, y) = |{i ∈ V |xPiy}| − |{i ∈ V | yPix}|.3 Since

m(x, y) = 2N
|{i ∈ V |xPiy}|

N
−N,

3Le Breton (2005, Remark 2.5 and Section 4) provides an alternative proof of Debord’s

theorem.
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where N = |V | it follows that the majority margin for x over y is increasing in

the proportion of voters strictly preferring x over y which is the vote share for

alternative x. Hence, any given ordering of vote shares can be generated by some

preference profile.

3 Special Cases and Issue Ownership

As we stated in the introduction, one of our purposes is to discuss relevant features

of the process of campaign formation, and to do it within a model that is stark,

and yet powerful enough to generate the phenomena that have been considered

most salient by previous analysts. In this section we discuss three special cases

and use them with a double purpose.

One is to present the reader with examples of the workings of our general

model and equilibrium notion. The other is to show that, indeed, their analysis

reveals the basic phenomena that we shall later try to extend to the general case.

In our first subsection we study the case in which only one issue is at stake

and provide a full characterization of its equilibria. One first conclusion from this

analysis is that issue convergence or issue divergence may arise, depending on the

vote shares at the different campaigns, among other configurations; in fact, all

possible combinations of equilibrium campaigns may arise.

In the second subsection we present the two-issue case, and different examples

confirming that, again, all possible forms of campaign may arise, including now,

among others, different combinations of divergence and convergence.

In the third subsection we study an intermediate case: the situation where

two issues are available for discussion, but each candidate can only address one of

them. The reason to propose this case is that it nicely incorporates the idea that,

because of budgetary reasons or others, the candidates may be constrained in

their choices. In that case, we can again offer a full characterization of equilibrium

configurations.

Finally, in the last subsection we consider the important idea of issue owner-

ship, in a simple form.
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3.1 One issue

Assume that there is only one issue, i.e. K = 1. In this case we shortly write

(A), (B), (A,B), (B,A) for the campaigns, where only candidate A, only candi-

date B, first candidate A and then B, first candidate B and then A have addressed

the unique issue.

Recall that every campaign s defines a state (zA(s), zB(s)), where zi(s) ∈
{0, 1} for i = A,B, and zi(s) = 1 if and only if candidate i ∈ {A,B} has

addressed the issue at campaign s. Campaigns then can be represented in a

square (see Figure 1).

0,0

0,1

1,0

1,1

Figure 1: Representation of campaigns in a square. Edges denote feasible moves

between two campaigns. Candidate A moves along the horizontal edges (dotted).

Candidate B moves along the vertical edges (solid).

In the following we characterize equilibrium campaigns in terms of the vote

shares p(0, 0), p(1, 0), p(0, 1) and p(1, 1).

For illustration, consider the case where

p(1, 1) < p(0, 0) < p(0, 1) and p(1, 1) < p(1, 0).

In this case, (E1) and (E2) imply that

CE(A) = {(A,B)} and CE(B) = {(B)},

which in turn implies that CE(∅) ⊂ {∅, (B), (A,B)} by (E1). (E2) then implies

that ∅ ∈ CE(∅) and (E3) implies that

CE(∅) = {∅}.

10



This case is illustrated in Figure 2.

0,0

0,1

1,0

1,1

Figure 2: Equilibrium continuations for p(1, 1) < p(0, 0) < p(0, 1) and p(1, 1) <

p(1, 0). Arrows denote the equilibrium path. The bordered node corresponds to

the equilibrium continuation at ∅.

Table 1 summarizes the necessary and sufficient conditions on the vote shares

for all possible equilibrium campaigns. Note that for all orderings of the vote

shares the equilibrium campaign is unique. The detailed analysis can be found

in the appendix.
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CE(∅) Conditions on vote shares

{∅} p(1, 1) < p(0, 0) < p(0, 1) and p(1, 1) < p(1, 0)

or p(1, 0) < p(0, 0) < p(1, 1) and p(0, 1) < p(1, 1)

or p(1, 0) < p(0, 0) < p(0, 1) and p(1, 0) < p(1, 1) < p(0, 1)

{(A)} p(0, 0) < p(1, 0) < p(1, 1)

{(B)} p(1, 1) < p(0, 1) < p(0, 0)

{(A,B)} p(0, 0) < p(1, 1) < min{p(1, 0), p(0, 1)}

or p(0, 1) < p(1, 1) < p(1, 0) and p(0, 0) < p(1, 1)

{(B,A)} max{p(1, 0), p(0, 1)} < p(1, 1) < p(0, 0)

or p(0, 1) < p(1, 1) < p(1, 0) and p(1, 1) < p(0, 0)

Table 1: Vote shares and equilibrium campaigns for one issue.
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3.2 Two issues

Let there be two issues, i.e. K = 2. Campaigns then can be represented in the

4-hypercube, also called tesseract, in Figure 3, where the edges denote feasible

moves: There is an edge between two nodes if and only if there is exactly one

candidate and one issue which is addressed by the candidate in one node, but

not in the other.

Note that by assumption the candidates’ vote shares at a given campaign only

depend on the issues that have been addressed by the different candidates, but

not on the order in which the issues have been addressed.

00,10

10,10

00,00

10,00

00,11

10,11

00,01

10,01

01,10

11,10

01,00

11,00

01,11

11,11

01,01

11,01

Figure 3: Representation of campaigns in a tesseract. Edges denote feasible

moves between two campaigns. Candidate A moves between adjacent campaigns

in the same level of the tesseract (dotted edge). Candidate B moves between

adjacent campaigns in different levels of the tesseract (solid edge).

In the following we will present some examples to illustrate that any outcome

can obtain in equilibrium, i.e. for any possible state we can find vote shares that

13



the given state is the unique outcome in equilibrium. In particular, we present

examples for issue convergence (both candidates address the same issue) and issue

divergence (both candidates address different issues). The general characteriza-

tion of equilibrium campaigns in terms of properties of the vote shares can be

found in section 4 where we consider the general case with an arbitrary number

of issues.

Example 3.1 This is an example for issue convergence. Let candidate A’s vote

share be given in the following table.

zB

00 10 01 11

00 0.5 0.3 0.7 0.65

10 0.75 0.45 0.9 0.95
zA

01 0.6 0.4 0.1 0.2

11 0.8 0.85 0.55 0.35

Figure 4 illustrates the equilibrium continuation campaigns. As we see there

is a unique equilibrium campaign, where first candidate B and then A address

issue 1:

CE(∅) = {((1, B), (1, A))}.
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10,00

0.75

10,10

0.45

00,00

0.50

00,10

0.30

11,00

0.80

11,10

0.85

01,00

0.60

01,10

0.40

10,01

0.90

10,11

0.95

00,01

0.70

00,11

0.65

11,01

0.55

11,11

0.35

01,01

0.10

01,11

0.20

Figure 4: Equilibrium continuations in Example 3.1. The lower number in a node

is candidate A’s vote share at the given campaign. Arrows denote the equilibrium

path. The bordered node corresponds to the equilibrium continuation at ∅.
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Example 3.2 This is an example for issue divergence. Let candidate A’s vote

share be given in the following table.

zB

00 10 01 11

00 0.5 0.88 0.31 0.73

10 0.72 0.8 0.58 0.74
zA

01 0.2 0.67 0.25 0.55

11 0.51 0.7 0.43 0.62

Figure 5 illustrates the equilibrium continuation campaigns. As we see there

is a unique equilibrium campaign, where first candidate A addresses issue 1 and

then candidate B addresses issue 2:

CE(∅) = {((1, A), (2, B))}.
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10,00

0.72

10,10

0.80

00,00

0.50

00,10

0.88

11,00

0.51

11,10

0.70

01,00

0.20

01,10

0.67

10,01

0.58

10,11

0.74

00,01

0.31

00,11

0.73

11,01

0.43

11,11

0.62

01,01

0.25

01,11

0.55

Figure 5: Equilibrium continuations in Example 3.2. The lower number in a node

is candidate A’s vote share at the given campaign. Arrows denote the equilibrium

path. The bordered node corresponds to the equilibrium continuation at ∅.
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Example 3.3 This is an example where no candidate addresses any issue in

equilibrium. Let candidate A’s vote share be given in the following table.

zB

00 10 01 11

00 0.5 0.7 0.68 0.76

10 0.32 0.28 0.2 0.58
zA

01 0.3 0.21 0.29 0.59

11 0.24 0.41 0.42 0.19

Figure 6 illustrates the equilibrium continuation campaigns. Note that there

are multiple equilibrium continuations at state (11, 00): If z(s) = (11, 00), then

CE(s) = {(s, (1, B), (2, B))} and CE(s) = {(s, (2, B), (1, B))} are two single-

ton sets of continuation campaigns which are outcome equivalent. Despite this

multiplicity the equilibrium campaign is unique and given by

CE(∅) = {∅}.
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10,00

0.32

10,10

0.28

00,00

0.50

00,10

0.70

11,00

0.24

11,10

0.41

01,00

0.30

01,10

0.21

10,01

0.20

10,11

0.58

00,01

0.68

00,11

0.76

11,01

0.42

11,11

0.19

01,01

0.29

01,11

0.59

Figure 6: Equilibrium continuations in Example 3.3. The lower number in a node

is candidate A’s vote share at the given campaign. Arrows denote the equilibrium

path. The bordered node corresponds to the equilibrium continuation at ∅.
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Example 3.4 This is an example where both candidates address both issues in

equilibrium. Let candidate A’s vote share be given in the following table.

zB

00 10 01 11

00 0.5 0.2 0.19 0.09

10 0.72 0.66 0.61 0.49
zA

01 0.75 0.59 0.7 0.45

11 0.82 0.79 0.78 0.74

Figure 7 illustrates the equilibrium continuation campaigns. Note that there

are several states with multiple equilibrium continuations, where all equilibrium

continuations are initiated by the same candidate and lead to the same outcome.

This is also true for the initial state (00, 00), so we get multiple equilibrium

collections and multiple equilibrium campaigns which all give the same outcome,

where both candidates have addressed both issues. All equilibrium campaigns

are initiated by candidate A which is the candidate who gains from moving to

state (11, 11) relative to the initial state (00, 00):

CE(∅) = {((1, A), (2, A), (1, B), (2, B))}

or CE(∅) = {((1, A), (2, A), (2, B), (1, B))}

or CE(∅) = {((2, A), (1, B), (1, A), (2, B))}

or CE(∅) = {((2, A), (2, B), (1, A), (1, B))}
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10,00

0.72

10,10

0.66

00,00

0.50

00,10

0.20

11,00

0.82

11,10

0.79

01,00

0.75

01,10

0.59

10,01

0.61

10,11

0.49

00,01

0.19

00,11

0.09

11,01

0.78

11,11

0.74

01,01

0.70

01,11

0.45

Figure 7: Equilibrium continuations in Example 3.4. The lower number in a node

is candidate A’s vote share at the given campaign. Arrows denote the equilibrium

path. The bordered node corresponds to the equilibrium continuation at ∅.
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3.3 Candidates can only address one issue

Let there be two issues, i.e.K = 2, but now assume that candidates can address at

most one issue. The reasons may be manifold. For example, candidates may not

have enough time to campaign with more than one issue or because candidates

do not have enough funds for a campaign with more than one issue. Let S̄ ⊂ S

denote the set of campaigns under the restriction that candidates can address at

most one issue. The possible campaigns can then be represented in a grid, where

edges denote feasible moves between two edges (see Figure 8).

10,01 00,01 01,01

10,00 00,00 01,00

10,10 00,10 01,10

Figure 8: Representation of states in a grid. Edges denote feasible moves be-

tween two campaigns. Candidate A moves along the horizontal edges (dotted).

Candidate B moves along the vertical edges (solid).
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We then have the following result:

Theorem 3.1 Let Z = {(zA, zB)| zi1 + zi2 ≤ 1 for i = A,B}.

(i) There exists a unique equilibrium collection of sets of continuation cam-

paigns (CE(s))s∈S̄ and for all s ∈ S̄ there is a unique equilibrium continu-

ation in CE(s), i.e. CE(s) = {s′} for some s′ ∈ S̄.

(ii) For all (zA, zB) ∈ Z let p∗(zA, zB) be the vote share of candidate A in

the unique continuation equilibrium in CE(s) where s ∈ S̄ is such that

z(s) = (zA, zB). Then

p∗(zA, zB) = p(zA, zB), if zi1 + zi2 = 1 for i = A,B,

p∗(zA, 00) = min{p(zA, 00), p(zA, 10), p(zA, 01)}, if zA1 + zA2 = 1,

p∗(00, zB) = max{p(00, zB), p(10, zB), p(01, zB)} if zB1 + zB2 = 1,

and

p∗(00, 00) =



min{p∗(00, 10), p∗(00, 01)}, if p(00, 00) > min{p∗(00, 10), p∗(00, 01)}

p(00, 00), if min{p∗(00, 10), p∗(00, 01)} > p(00, 00) >

max{p∗(10, 00), p∗(01, 00)}

max{p∗(10, 00), p∗(01, 00)}, if max{p∗(10, 00), p∗(01, 00)} > p(00, 00)

.

In particular, it is true that

min{p∗(00, 10), p∗(00, 01)} ≥ p∗(00, 00) ≥ max{p∗(10, 00), p∗(01, 00)}.

Theorem 3.1 provides a full characterization of the unique equilibrium out-

come in terms of the vote shares at different campaigns. It shows that any

outcome can obtain for some ordering of the vote shares at the different states.

For example, candidate A addressing issue 1 and B addressing issue 2 (“issue di-

vergence”) is the unique equilibrium outcome if and only if p∗(00, 00) = p(10, 01)
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which by Theorem 3.1 is equivalent to

p(00, 00) > min{p∗(00, 10), p∗(00, 01)} = p(10, 01) (1)

or p(00, 00) < max{p∗(10, 00), p∗(01, 00)} = p(10, 01). (2)

Note that (1) is equivalent to

max{p(00, 01), p(01, 01)} < p(10, 01) < max{p(00, 10), p(10, 10), p(01, 10)}

and p(10, 01) < p(00, 00),

and (2) is equivalent to

min{p(01, 00), p(01, 10), p(01, 01)} < p(10, 01) < min{p(10, 00), p(10, 10)}

and p(00, 00) < p(10, 01).

Also, both candidates addressing issue 1 (“issue convergence”) is the unique

equilibrium outcome if and only if p∗(00, 00) = p(10, 10) which by Theorem 3.1

is equivalent to

p(00, 00) > min{p∗(00, 10), p∗(00, 01)} = p(10, 10) (3)

or p(00, 00) < max{p∗(10, 00), p∗(01, 00)} = p(10, 10). (4)

Note that (3) is equivalent to

max{p(00, 10), p(01, 10)} < p(10, 10) < max{p(00, 01), p(10, 01), p(01, 01)}

and p(10, 10) < p(00, 00),

and (4) is equivalent to

min{p(01, 00), p(01, 10), p(01, 01)} < p(10, 10) < min{p(10, 00), p(10, 01)}

and p(00, 00) < p(10, 10).
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3.4 Issue ownership

We will now explore the effect of issue ownership on equilibrium outcomes in the

limited case we discussed in the last subsection. Issue ownership captures the

fact that a candidate has an a priori advantage in dealing with some issue and

that this is reflected in her vote share (see Petrocik, 1996). Therefore, defining

ownership first requires to introduce some notion of competence or reliability. We

then illustrate how issue ownership may lead to issue convergence or divergence

in more specific terms.

Assume that all voters care about one and only one issue and let α be the

share of voters who only care about issue 1 and let 1− α be the share of voters

who only care about issue 2, where 0 < α < 1. Moreover, for k = 1, 2, let γk be

the share of voters who consider candidate A more competent or more reliable

on issue k than candidate B.

If the candidates address different issues (issue divergence) voters vote for

the candidate who has addressed the issue they care about. If the candidates

address the same issue (issue convergence), the voters who care about this issue

vote for the candidate they consider more competent on the issue and the voters

who do not care about the issue split their vote evenly between the candidates.4

Moreover, if one candidate does not address any issue and the other candidate

addresses issue k, the voters who care about issue k vote for the candidate who

addresses this issue and the voters who do not care about the issue split their

vote evenly. Finally, if no candidate addresses any issue the total vote share is

also split at value 0.5.

Under these assumptions we get the following vote shares of candidate A at

the different outcomes of a campaign:

zB

00 10 01

00 0.5 0.5(1− α) 0.5α

zA 10 α + 0.5(1− α) γ1α + 0.5(1− α) α

01 1− α + 0.5α 1− α γ2(1− α) + 0.5α

4In case of a finite and odd number of voters, just assume that an odd number of voters

abstain.
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Note that the vote shares differ across states if and only if α ̸= 0.5 and γk ̸= 0.5

for k = 1, 2, which we will assume in the following. We will now explore under

which conditions on the parameters of our voting model the candidates address

the same or different issues in equilibrium. In particular, we are interested in

the implications of issue ownership, which is modelled by the parameters γ1 and

γ2. To this end we define candidate A to “own” issue k if a majority of voters

considers A more competent on issue k than B, i.e. if γk > 0.5. Similarly, B owns

issue k if γk < 0.5.

Consider first the case of issue divergence. W.l.o.g. let candidate A address

issue 1 and let candidate B address issue 2 in equilibrium. Then p∗(00, 00) =

p(10, 01) which by Theorem 3.1 is the case if and only if

max{0.5α, γ2(1−α)+0.5α} < α < max{0.5(1−α), γ1α+0.5(1−α), 1−α} (5)

and α < 0.5, (6)

or

min{1−α+0.5α, 1−α, γ2(1−α)+0.5α} < α < min{α+0.5(1−α), γ1α+0.5(1−α)}
(7)

and 0.5 < α. (8)

(5) and (6) hold if and only if

γ2
γ2 + 0.5

< α < 0.5 (9)

and (7) and (8) hold if and only if

0.5 < α <
0.5

1.5− γ1
. (10)

From (9) and (10) we conclude that a necessary and sufficient condition for issue

divergence is that one of the two candidates owns the issue she addresses and

that a majority of voters cares about this issue but there is also a sufficiently

large share of voters who care about the other issue.5 The required minimum

5Note that (9) implies that γ2 < 0.5, i.e. that candidate B owns issue 2, and (10) implies

that γ1 > 0.5, i.e. that candidate A owns issue 1.
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share of voters is decreasing in the share of voters who consider the candidate

who addresses the issue she owns more competent on this issue than the other

candidate.

Consider next the case of issue convergence. W.l.o.g. let both candidates

address issue 1 in equilibrium. Then p∗(00, 00) = p(10, 10) which by Theorem 3.1

is the case if and only if

max{0.5(1−α), 1−α} < γ1α+0.5(1−α) < max{0.5α, α, γ2(1−α)+0.5α} (11)

and γ1α + 0.5(1− α) < 0.5, (12)

or

min{1−α+0.5α, 1−α, γ2(1−α)+0.5α} < γ1α+0.5(1−α) < min{α+0.5(1−α), α}
(13)

and γ1α + 0.5(1− α) > 0.5. (14)

(11) and (12) hold if and only if

γ1 < 0.5 and α >
0.5

0.5 + γ1
(15)

and (13) and (14) hold if and only if

γ1 > 0.5 and α >
0.5

1.5− γ1
. (16)

From (15) and (16) we conclude that a necessary and sufficient condition for issue

convergence is that one candidate owns the issue addressed by both candidates

and that a sufficiently large share of voters care about this issue. The required

minimum share is always larger than 0.5 and increasing in the share of voters

who consider the issue owner more competent than the other candidate.

4 The General Case

Consider now the general case with K ≥ 2 issues and no restrictions on the

number of issues that can be addressed by the candidates. We first provide

sufficient conditions on the vote shares to obtain arbitrary equilibrium outcomes.
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Let 1 ∈ {0, 1}K denote the vector with 1k = 1 for all k. (ẑA, ẑB) is a continuation

of (zA, zB) if for all k = 1 . . . , K, zik = 1 implies that ẑik = 1.6

Let Gk > 0 and Lk > 0 for k = 1, . . . , K, be such that the following conditions

are satisfied:

Gk > 0 and Lk > 0 for k = 1, . . . , K, (17)
K∑
k=1

Gk < 0.5, (18)

K∑
k=1

Lk < 0.5, (19)∑
k∈M1

Gk ̸=
∑
k∈M2

Lk for all M1,M2 ⊂ K. (20)

For all (zA, zB) let

p̂(zA, zB) = 0.5 +
K∑
k=1

(zAk Gk − zBk Lk)

be the standard vote share for candidate A in state (zA, zB). Note that condi-

tions (17)-(20) imply that 0 < p̂(zA, zB) < 1 for all (zA, zB), p̂(0,0) = 0.5, and

p̂(zA, zB) ̸= p̂(ẑA, ẑB) for all (zA, zB) ̸= (ẑA, ẑB).

If (zA, zB) and all its continuations have standard vote shares then in equi-

librium any campaign that starts at state (zA, zB) will end at state (1,1) corre-

sponding to the full campaign. We state this result in the following lemma:

Lemma 4.1 Let (zA, zB) be such that p(ẑA, ẑB) = p̂(ẑA, ẑB) for all continua-

tions (ẑA, ẑB) of (zA, zB). Then any continuation equilibrium at a campaign s

with z(s) = (zA, zB) is a full campaign, i.e. (1,1) is the unique outcome at any

continuation equilibrium at (zA, zB).

The next theorem provides sufficient conditions for arbitrary equilibrium out-

comes.

6Note that by this definition (zA, zB) is a continuation of itself.
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Theorem 4.1

1. Let p(zA, zB) = p̂(ẑA, ẑB) for all (zA, zB) ∈ {0, 1}2K. Then any equilibrium

campaign is a full campaign.

2. Let (z∗A, z∗B) ̸= (1,1) and let the parameters of the standard vote shares

be such that

p̂(z∗A, z∗B) < p̂(1,1).

If z∗Ak = 0 for some k and the vote shares satisfy

p(zA, zB) < p̂(z∗A, z∗B)

for all (zA, zB) with zB ≤ z∗B and zAk = 1 for some k with z∗Ak = 0, and

p(zA, zB) = p̂(zA, zB)

for all remaining campaigns, then (z∗A, z∗B) is the unique outcome at any

equilibrium campaign.7

We now go back to the case where vote shares are arbitrary and only satisfy

p(zA, zB) ̸= p(ẑA, ẑB) for (zA, zB) ̸= (ẑA, ẑB). The following theorem presents

the remarkable result that all continuation equilibria are outcome equivalent.

Moreover, similar to Theorem 3.1 the theorem provides a recursive procedure to

determine candidate A’s vote share in the unique equilibrium outcome.

The uniqueness result is anything but an obvious implication of our equilib-

rium notion. As we will show in the next section multiple equilibrium outcomes

may obtain if we relax the assumption that the electoral campaign is a zero-sum

game.

7Analogous conditions can be provided if z∗Ak = 1 for all k and z∗Bk = 0 for some k.
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Theorem 4.2 For k = 1, . . . , K, let ek ∈ {0, 1}K be such that ekk = 1 and ekl = 0

for all l ̸= k.

(i) If (CE(s))s∈S is an equilibrium collection of sets of continuation campaigns,

then for all s ∈ S, there is a unique continuation equilibrium in CE(s).

Moreover, all equilibrium collections of sets of continuation campaigns are

outcome equivalent, i.e. if (CE(s))s∈S and
(
ĈE(s)

)
s∈S

are two equilibrium

collections of sets of continuation campaigns, then for all s ∈ S, CE(s) =

{s′} and ĈE(s) = {s′′} implies that z(s′) = z(s′′).

(ii) For all (zA, zB) let p∗(zA, zB) be the unique vote share of candidate A in all

continuation equilibria at s where z(s) = (zA, zB). Then

p∗(zA, zB) =



min
k:zBk =0

p∗(zA, zB + ek), if p(zA, zB) > min
k:zBk =0

p∗(zA, zB + ek)

p(zA, zB), if min
k:zBk =0

p∗(zA, zB + ek) > p(zA, zB) > max
k:zAk =0

p∗(zA + ek, zB)

max
k:zAk =0

p∗(zA + ek, zB), if max
k:zAk =0

p∗(zA + ek, zB) > p(zA, zB)

where the minimum (maximum) over the empty set is defined to be ∞
(−∞). In particular, it is true that

min
k:zBk =0

p∗(zA, zB + ek) ≥ p∗(zA, zB) ≥ max
k:zAk =0

p∗(zA + ek, zB).

Theorem 4.2 can also be used to determine all equilibrium collections of sets

of continuation campaigns. The construction is by backwards induction:

Let s be a full campaign, i.e. z(s) = (1,1). Then it is obviously true that

CE(s) = {s}. Now consider a campaign s with z(s) < (1,1) and assume that

CE(ŝ) has been determined for all ŝ with z(ŝ) > z(s). Then from Theorem 4.2

(ii) there are three cases.
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1. If p∗(zA, zB) = p(zA, zB) the campaign ends at s and CE(s) = {s}.

2. If p∗(zA, zB) = min
k:zBk =0

p∗(zA, zB + ek), then CE(s) = {ŝ} for some ŝ with

ŝ = (s, (k,B), . . .), where CE((s, (k,B)) = {ŝ} and p∗(zA, zB + ek) =

min
l:zBl =0

p∗(zA, zB + el).

3. If p∗(zA, zB) = max
k:zAk =0

p∗(zA + ek, zB), then CE(s) = {ŝ} for some ŝ with

ŝ = (s, (k,A), . . .), where CE((s, (k,A)) = {ŝ} and p∗(zA + ek, zB) =

max
l:zAl =0

p∗(zA + el, zB).

5 An Extension

So far, we have assumed that candidates want to maximize their vote shares, and

that they have the same perception regarding their chances. One consequence of

this zero-sum game property is the uniqueness of the equilibrium outcome (see

Theorem 4.2). Now we will explore what happens if we abandon the zero-sum

game property. More specifically, we will consider an extension of our model,

where candidates face costs for addressing issues. Our particular way of turning

the game into a non-zero sum one, by combining vote shares with campaigning

costs is only an illustrative example. Obviously, payoff functions may have more

complex origins.

Let ci ≥ 0 be the cost of candidate i ∈ {A,B} for addressing an issue. We

assume that costs are additive, i.e. if zi ∈ {0, 1}K records the issues addressed by

candidate i, then i’s total cost is

ci
K∑
k=1

zik.

If (zA, zB) is the outcome at a campaign, then A’s utility is

UA(zA, zB) = p(zA, zB)− cA
K∑
k=1

zAk ,

and B’s utility is

UB(zA, zB) = 1− p(zA, zB)− cB
K∑
k=1

zBk .
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The adjustment of the equilibrium conditions then is straightforward. We just

have to replace P (s) by UA(z(s)) and 1− P (s) by UB(z(s)).

Note that with positive costs the electoral campaign is not a zero-sum game

anymore. This changes the equilibrium predictions as we can already demonstrate

for the case with one issue.

LetK = 1. Then under the following conditions CE(∅) = {(A), (B)}, i.e. dif-
ferent from the case with zero costs (see Theorem 4.2) there are two equilibrium

campaigns which are not outcome equivalent. In one equilibrium campaign only

candidate A addresses the issue and in the other only candidate B addresses the

issue:

p(0, 1) > p(1, 1)− cA (21)

1− p(1, 0) > 1− p(1, 1)− cB (22)

p(1, 0)− cA > p(0, 0) (23)

p(1, 0)− cA > p(0, 1) (24)

1− p(0, 1)− cB > 1− p(1, 0) (25)

For example, conditions (21)-(25) are satisfied if

p(0, 0) = 0.5, p(1, 0) = 0.8, p(0, 1) = 0.6, p(1, 1) = 0.7,

cA = cB = 0.15.

(21) implies that CE(B) = {(B)} and (22) implies that CE(A) = {(A)},
i.e. the campaign stops when one candidate has addressed the issue (here we use

equilibrium conditions (E2) and (E3)).

(23) implies that stopping is no equilibrium at the empty campaign, i.e. ∅ /∈
CE(∅) (here we use equilibrium condition (E2)).

(24) implies that candidate A prefers (A) over (B) and (25) implies that

candidate B prefers (B) over (A). Using equilibrium condition (E3) this implies

that CE(∅) = {(A), (B)}.
Conditions (21)-(25) cannot be satisfied simultaneously if cA = cB = 0 because
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in that case (21) implies that

p(0, 1) > p(1, 1)

and (22) implies that

p(1, 1) > p(1, 0).

Hence, p(0, 1) > p(1, 0) which violates (24).

Note that by (E3) having multiple equilibrium continuations at some cam-

paign s that are not outcome equivalent implies that there exist at least two

equilibrium continuations at s that are not initiated by the same candidate.

Otherwise, one of the continuations would not be rationalizable. We may then

have situations where a candidate, let’s say A, continues a campaign because one

of the possible equilibrium continuations is such that A moves again and this is

favorable for A relative to stopping, even if there is another equilibrium continua-

tion, where B moves that is unfavorable for A relative to stopping.8 This suggests

that we may get very different equilibrium predictions if we would assume a fixed

order of moves of the candidates rather than deriving the order endogenously as

part of our protocol-free equilibrium concept. The following example illustrates

this point for the case with two issues.

Example 5.1 Let K = 2 and let candidate A’s vote share be given in the fol-

lowing table.

zB

00 10 01 11

00 0.5 0.3 0.95 0.99

10 0.94 0.51 0.61 0.6
zA

01 0.3 0.82 0.2 0.4

11 0.1 0.8 0.83 0.7

8Recall equilibrium condition (E2) according to which the campaign stops if and only if the

addition of one further issues makes each candidate worse off, no matter which equilibrium

continuation is taken from there.
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Let costs be given by cA = cB = 0.15. Figure 9 then illustrates the equilibrium

continuation campaigns. The equilibrium campaign is unique and given by

CE(∅) = {∅}.

Note that there are multiple equilibrium continuations at states (10, 10) and

(10, 01) which are not outcome equivalent and which are initiated by different can-

didates. Consider a campaign s with state z(s) = (10, 00). (E2) then implies that

stopping is no equilibrium continuation because if B continues to (10, 10), then

there is an equilibrium continuation leading to (10, 11) which gives B a higher

utility than at (10, 00). (E3) then implies that CE(s) = {(s, (1, B), (2, B))} or

CE(s) = {(s, (2, B), (1, B))}.
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10,00

0.79,0.06

10,10

0.36,0.34

00,00

0.50,0.50

00,10

0.30,0.55

11,00

−0.20,0.90

11,10

0.50,0.05

01,00

0.15,0.70

01,10

0.67,0.03

10,01

0.46,0.24

10,11

0.45,0.1

00,01

0.95,−0.10

00,11

0.99,−0.29

11,01

0.53,0.02

11,11

0.40,0.00

01,01

0.05,0.65

01,11

0.15,0.30

Figure 9: Equilibrium continuations in Example 5.1. The lower numbers in a node

are the candidates’ utilities UA, UB, at the given campaign. Arrows denote the

equilibrium path. The bordered node corresponds to the equilibrium continuation

at ∅.
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Example 5.1 illustrates the difference between our protocol-free equilibrium

notion and subgame perfect Nash equilibrium in an extensive form game where

candidates take turn and each candidate can either address one single issue or

pass if it is her turn. The game ends if both candidates have addressed both

issues or if one candidate has addressed both issues and the other passes or if

there are two passes in a row. The reader can then verify that independent

of which candidate is the first mover, the unique subgame perfect equilibrium

outcome for the parameters in Example 5.1 is (10, 00), i.e. candidate A addresses

issue 1 and candidate B addresses no issue.

6 Conclusion

We offer a stark but attractive model to study the phenomena associated with

campaign formation. Solving for equilibria may be demanding if there are many

issues, but the backwards induction procedure is no more complex than solving

for subgame perfect Nash equilibria in an extensive form game where candidates

move according to some exogenously given order. We are convinced that we add

significant realism to the study of campaign formation decisions by dispensing

from the aprioristic assumptions introduced by any protocol determining a fixed

order of play. Our analysis highlights the effect of allowing players to decide

whether or not to move at any point of the game, and identifies the paths that

will lead rational players to equilibrium outcomes. Even in the case considered

here, where campaign payoffs are independent of the order in which issues were

included in the agenda, not any path leading to equilibrium is admissible as part

of an equilibrium in our sense.

Our model and results highlight the interaction between issues, thus challeng-

ing the possibility of identifying the role of each one of them separately. We show

that the characteristics of equilibrium can be very sensitive to parameter changes

allowing for different combinations of silences and voice in campaigns. We provide

sufficient conditions for any campaign configuration to arise in equilibrium, and

present a general result (Theorem 4.2) on the uniqueness of equilibrium outcomes

and on properties of the candidates vote shares in equilibrium. For some relevant

special cases we have also provided explicit characterizations of equilibria.

36



Moreover, we show that issue ownership is a useful concept to better under-

stand the shape of equilibrium campaigns, but not the unique determinant of

their shape, even in simple contexts. We prove that multiple equilibrium out-

comes may arise if payoffs are not zero-sum, but not if that condition is met, as

it is the case if payoffs only value the vote shares of each candidate.

We do not deny the importance in reality of many variables that our model

omits. Our concern has been to prove that, in fact, relevant insights can be

obtained even before appealing to other qualifications.
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Appendix

Equilibrium campaigns for one issue

There are the following cases.

Case 1: p(1, 1) < min{p(1, 0), p(0, 1)}

In this case, (E1) and (E2) imply that

CE(A) = {(A,B)} and CE(B) = {(B)},

which in turn implies that CE(∅) ⊂ {∅, (B), (A,B)} by (E1). We then obtain

the following subcases:

(i) p(0, 0) < p(1, 1)

In this case, (E2) and (E3) imply that

CE(∅) = {(A,B)}.

This case is illustrated in Figure 10.

0,0

0,1

1,0

1,1

Figure 10: Equilibrium continuations for p(0, 0) < p(1, 1) < min{p(1, 0), p(0, 1)}.
Arrows denote the equilibrium path. The bordered node corresponds to the

equilibrium continuation at ∅.
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(ii) p(1, 1) < p(0, 0) < p(0, 1)

This case was considered in the main text.

(iii) p(0, 1) < p(0, 0)

In this case, (E2) and (E3) imply that

CE(∅) = {(B)}.

This case is illustrated in Figure 11.

0,0

0,1

1,0

1,1

Figure 11: Equilibrium continuations for p(1, 1) < p(0, 1) < p(0, 0) and p(1, 1) <

p(1, 0). Arrows denote the equilibrium path. The bordered node corresponds to

the equilibrium continuation at ∅.
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Case 2: max{p(1, 0), p(0, 1)} < p(1, 1)

In this case, (E1) and (E2) imply that

CE(A) = {(A)} and CE(B) = {(B,A)},

which in turn implies that CE(∅) ⊂ {∅, (A), (B,A)} by (E1). We then obtain

the following subcases:

(i) p(0, 0) < p(1, 0)

In this case, (E2) and (E3) imply that

CE(∅) = {(A)}.

This case is illustrated in Figure 12.

0,0

0,1

1,0

1,1

Figure 12: Equilibrium continuations for p(0, 0) < p(1, 0) < p(1, 1) and p(0, 1) <

p(1, 1). Arrows denote the equilibrium path. The bordered node corresponds to

the equilibrium continuation at ∅.

(ii) p(1, 0) < p(0, 0) < p(1, 1)

In this case, (E2) and (E3) imply that

CE(∅) = {∅}.

This case is illustrated in Figure 13.
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0,0

0,1

1,0

1,1

Figure 13: Equilibrium continuations for p(1, 0) < p(0, 0) < p(1, 1) and p(0, 1) <

p(1, 1). Arrows denote the equilibrium path. The bordered node corresponds to

the equilibrium continuation at ∅.

(iii) p(1, 1) < p(0, 0)

In this case, (E2) and (E3) imply that

CE(∅) = {(B,A)}.

This case is illustrated in Figure 14.

0,0

0,1

1,0

1,1

Figure 14: Equilibrium continuations for max{p(1, 0), p(0, 1)} < p(1, 1) < p(0, 0).

Arrows denote the equilibrium path. The bordered node corresponds to the

equilibrium continuation at ∅.
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Case 3: p(1, 0) < p(1, 1) < p(0, 1)

In this case, (E1) and (E2) imply that

CE(A) = {(A)} and CE(B) = {(B)},

which in turn implies that CE(∅) ⊂ {∅, (A), (B)} by (E1). We then obtain the

following subcases:

(i) p(0, 0) < p(1, 0) < p(0, 1)

In this case, (E2) and (E3) imply that

CE(∅) = {(A)}.

This case is illustrated in Figure 15.

0,0

0,1

1,0

1,1

Figure 15: Equilibrium continuations for p(0, 0) < p(1, 0) < p(1, 1) < p(0, 1).

Arrows denote the equilibrium path. The bordered node corresponds to the

equilibrium continuation at ∅.

(ii) p(1, 0) < p(0, 0) < p(0, 1)

In this case, (E2) and (E3) imply that

CE(∅) = {∅}.

This case is illustrated in Figure 16.
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0,0

0,1

1,0

1,1

Figure 16: Equilibrium continuations for p(1, 0) < p(0, 0) < p(0, 1) and p(1, 0) <

p(1, 1) < p(0, 1). Arrows denote the equilibrium path. The bordered node corre-

sponds to the equilibrium continuation at ∅.

(iii) p(1, 0) < p(0, 1) < p(0, 0)

In this case, (E2) and (E3) imply that

CE(∅) = {(B)}.

This case is illustrated in Figure 17.

0,0

0,1

1,0

1,1

Figure 17: Equilibrium continuations for p(1, 0) < p(1, 1) < p(0, 1) < p(0, 0).

Arrows denote the equilibrium path. The bordered node corresponds to the

equilibrium continuation at ∅.
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Case 4: p(0, 1) < p(1, 1) < p(1, 0)

In this case, (E1) and (E2) imply that

CE(A) = {(A,B)} and CE(B) = {(B,A)},

which in turn implies that CE(∅) ⊂ {∅, (A,B), (B,A)} by (E1). By (E2),

∅ /∈ CE(∅). If p(0, 0) < p(1, 1), then (E3) implies that

CE(∅) = {(A,B)}.

This case is illustrated in Figure 18.

0,0

0,1

1,0

1,1

Figure 18: Equilibrium continuations for p(0, 1) < p(1, 1) < p(1, 0) and p(0, 0) <

p(1, 1). Arrows denote the equilibrium path. The bordered node corresponds to

the equilibrium continuation at ∅.

If p(1, 1) < p(0, 0), then (E3) implies that

CE(∅) = {(B,A)}.

This case is illustrated in Figure 19.
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0,0

0,1

1,0

1,1

Figure 19: Equilibrium continuations for p(0, 1) < p(1, 1) < p(1, 0) and p(1, 1) <

p(0, 0). Arrows denote the equilibrium path. The bordered node corresponds to

the equilibrium continuation at ∅.
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Proofs

Proof of Theorem 3.1: Let p(zA, zB) ̸= p(ẑA, ẑB) for all (zA, zB), (ẑA, ẑB) ∈ Z

with (zA, zB) ̸= (ẑA, ẑB). Let (CE(s))s∈S̄ be an equilibrium collection of sets of

continuation campaigns and let (zA, zB) ∈ Z. If zi1 + zi2 = 1 for i = A,B, then

(E1) implies that CE(s) = {s} for s with z(s) = (zA, zB). This implies that

p∗(zA, zB) = p(zA, zB).

Next consider (zA, zB) = (zA, 00) with zA1 + zA2 = 1 and let s be such that

z(s) = (zA, 00). Then (E1) implies that CE(s) ⊆ {s, (s, (1, B)), (s, (2, B))}. By

(E2) s ∈ CE(s) if and only if p(zA, 00) < min{p(zA, 10), p(zA, 01)}. Moreover, if

the latter condition holds, then neither (s, (1, B)) nor (s, (2, B)) are rationalizable

and hence (E3) implies that CE(s) = {s} which in turn implies that p∗(zA, 00) =

p(zA, 00).

If p(zA, 00) > min{p(zA, 10), p(zA, 01)}, then CE(s) ⊆ {(s, (1, B)), (s, (2, B))}.
If p(zA, 10) < p(zA, 01), then suppose by way of contradiction that (s, (2, B)) ∈
CE(s). Then (s, (1, B)) is rationalizable and hence (E3) implies that (s, (1, B)) ∈
CE(s). But then (s, (2, B)) is not rationalizable and hence by (E3) (s, (2, B)) /∈
CE(s) which is a contradiction. We conclude that p(zA, 10) < min{p(zA, 00),
p(zA, 01)} implies that CE(s) = {(s, (1, B))} and therefore p∗(zA, 00) = p(zA, 10).

In the same way one proves that p(zA, 01) < min{p(zA, 00), p(zA, 10)} implies

that CE(s) = {(s, (2, B))} and therefore p∗(zA, 00) = p(zA, 01).

Summarizing, if s is such that z(s) = (zA, 00) with zA1 + zA2 = 1, then there is

a unique continuation equilibrium in CE(s) and

p∗(zA, 00) = min{p(zA, 00), p(zA, 10), p(zA, 01)}. (26)

Now consider (zA, zB) = (00, zB) with zB1 + zB2 = 1 and let s be such that

z(s) = (00, zB). Then (E1) implies that CE(s) ⊆ {s, (s, (1, A)), (s, (2, A))}. By

(E2) s ∈ CE(s) if and only if p(00, zB) > max{p(10, zB), p(01, zB)}. Moreover, if

the latter condition holds, then neither (s, (1, A)) nor (s, (2, A)) are rationalizable

and hence (E3) implies that CE(s) = {s} which in turn implies that p∗(00, zB) =

p(00, zB).

If p(00, zB) < max{p(10, zB), p(01, zB)}, then CE(s) ⊆ {(s, (1, A)), (s, (2, A))}.
If p(10, zB) > p(01, zB), then suppose by way of contradiction that (s, (2, A)) ∈
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CE(s). Then (s, (1, A)) is rationalizable and hence (E3) implies that (s, (1, A)) ∈
CE(s). But then (s, (2, A)) is not rationalizable and hence by (E3) (s, (2, A)) /∈
CE(s) which is a contradiction. We conclude that p(10, zB) > max{p(00, zB),
p(01, zB)} implies that CE(s) = {(s, (1, A))} and therefore p∗(00, zB) = p(10, zB).

In the same way one proves that p(01, zB) > max{p(00, zB), p(10, zB)} implies

that CE(s) = {(s, (2, A))} and therefore p∗(00, zB) = p(01, zB).

Summarizing, if s is such that z(s) = (00, zB) with zB1 + zB2 = 1, then there

is a unique continuation equilibrium in CE(s) and

p∗(00, zB) = max{p(00, zB), p(10, zB), p(01, zB)}. (27)

(26) and (27) imply that

p∗(10, 00) ≤ p(10, 10) ≤ p∗(00, 10),

p∗(10, 00) ≤ p(10, 01) ≤ p∗(00, 01),

p∗(01, 00) ≤ p(01, 10) ≤ p∗(00, 10),

p∗(01, 00) ≤ p(01, 01) ≤ p∗(00, 01),

from which we conclude that

max{p∗(10, 00), p∗(01, 00)} ≤ min{p∗(00, 10), p∗(00, 01)}.

Finally, consider (zA, zB) = (00, 00) and let s = ∅. From the previous analysis

we know that there is a unique continuation equilibrium at s = (k, i) for k = 1, 2,

and i = A,B. Let CE((k, i)) = {sik} for k = 1, 2, and i = A,B. (E1) then

implies that CE(∅) ⊆ {∅, sA1 , s
A
2 , s

B
1 , s

B
2 }. By (E2) ∅ ∈ CE(s) if and only if

max{p∗(10, 00), p∗(01, 00)} < p(00, 00) < min{p∗(00, 10), p∗(00, 01)}.

Moreover, if the latter condition holds then sik is not rationalizable for k = 1, 2,

and i = A,B. Hence, (E3) implies that CE(∅) = {∅} which in turn implies that

p∗(00, 00) = p(00, 00).

If p(00, 00) > min{p∗(00, 10), p∗(00, 01)} ≥ max{p∗(10, 00), p∗(01, 00)}, then
CE(∅) ⊆ {sA1 , sA2 , sB1 , sB2 }. W.l.o.g. let p∗(10, 00) ≤ p∗(01, 00). Then sA1 is not

rationalizable and (E3) implies that sA1 /∈ CE(∅) which in turn implies that sA2 is

not rationalizable and hence sA2 /∈ CE(∅) by (E3). Therefore, CE(∅) ⊆ {sB1 , sB2 }.
Since z(sB1 ) ̸= z(sB2 ) it follows that p

∗(00, 10) = p(z(sB1 )) ̸= p(z(sB2 )) = p∗(00, 01).
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If p∗(00, 10) > p∗(00, 01), then suppose by way of contradiction that sB1 ∈
CE(∅). Then sB2 is rationalizable and hence (E3) implies that sB2 ∈ CE(∅).

But then sB1 is not rationalizable and therefore sB1 /∈ CE(∅) by (E3) which is a

contradiction. Therefore, p∗(00, 10) > p∗(00, 01) implies that CE(∅) = {sB2 } and

p∗(00, 00) = p∗(00, 01). Similarly, p∗(00, 10) < p∗(00, 01) implies that CE(∅) =

{sB1 } and p∗(00, 00) = p∗(00, 10).

In any case we conclude that if

p(00, 00) > min{p∗(00, 10), p∗(00, 01)} ≥ max{p∗(10, 00), p∗(01, 00)},

then there is a unique equilibrium continuation in CE(∅) and

p∗(00, 00) = min{p∗(00, 10), p∗(00, 01)}.

Finally, if p(00, 00) < max{p∗(00, 10), p∗(00, 01)} ≤ min{p∗(00, 10), p∗(00, 01)},
then CE(∅) ⊆ {sA1 , sA2 , sB1 , sB2 }. W.l.o.g. let p∗(00, 01) ≤ p∗(00, 10). Then

sB1 is not rationalizable and (E3) implies that sB1 /∈ CE(∅) which in turn im-

plies that sB2 is not rationalizable and hence sB2 /∈ CE(∅) by (E3). Therefore,

CE(∅) ⊆ {sA1 , sA2 }. Since z(sA1 ) ̸= z(sA2 ) it follows that p
∗(10, 00) = p(z(sA1 )) ̸=

p(z(sA2 )) = p∗(01, 00).

If p∗(10, 00) < p∗(01, 00), then suppose by way of contradiction that sA1 ∈
CE(∅). Then sA2 is rationalizable and hence (E3) implies that sA2 ∈ CE(∅).

But then sA1 is not rationalizable and therefore sA1 /∈ CE(∅) by (E3) which is a

contradiction. Therefore, p∗(10, 00) < p∗(01, 00) implies that CE(∅) = {sA2 } and

p∗(00, 00) = p∗(01, 00). Similarly, p∗(00, 01) < p∗(10, 00) implies that CE(∅) =

{sA1 } and p∗(00, 00) = p∗(10, 00).

In any case we conclude that if

min{p∗(00, 10), p∗(00, 01)} ≥ max{p∗(10, 00), p∗(01, 00)} > p(00, 00),

then there is a unique equilibrium continuation in CE(∅) and

p∗(00, 00) = max{p∗(10, 00), p∗(01, 00)}.

This proves the theorem.

□
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Proof of Lemma 4.1: The proof is by backwards induction: Consider a state

where one candidate i has addressed all issues and the other candidate j ̸= i has

addressed all but one issue. Then (17) implies that j can increase her vote share

by addressing the remaining issue. Hence, the unique equilibrium continuation

is a full campaign.

Consider now an arbitrary state (zA, zB) and assume that for all (ẑA, ẑB) >

(zA, zB) it is true that any continuation equilibrium at a campaign s with z(s) =

(ẑA, ẑB) is a full campaign. Then (20) implies that either candidate A or candi-

date B can increase her vote share by continuing from (zA, zB) which will then

lead to a full campaign by the induction hypothesis. Hence, the unique equilib-

rium continuation at (zA, zB) is a full campaign.

□

Proof of Theorem 4.1: For all k, let ek ∈ {0, 1}K be such that ekk = 1 and

ekl = 0 for all l ̸= k.

1. The claim immediately follows from Lemma 4.1.

2. If candidate A continues from (z∗A, z∗B) to (z∗A + ek, z∗B) for some k with

z∗Ak = 0, then A’s vote share in any continuation equilibrium will be below

p̂(z∗A, z∗B) = p(z∗A, z∗B) by assumption on the vote shares. To see this

note that B will not add further issues because this would lead to a full

campaign by Lemma 4.1 and p(1,1) = p̂(1,1) > p̂(z∗A, z∗B) > p(zA, z∗B)

for all zA with zAk = 1 for some k with z∗Ak = 0. For the same reason

candidate B will not continue from (z∗A, z∗B) to (z∗A, z∗B + ek) for some k

with z∗Bk = 0. Hence, the campaign will stop at (z∗A, z∗B).

We will now prove by backwards induction that any equilibrium continu-

ation at a campaign with state (zA, zB) < (z∗A, z∗B) is a campaign with

state (z∗A, z∗B). Let (zA, zB) = (z∗A − ek, z∗B) for some k with z∗Ak = 1.

Then A can increase her vote share by continuing to (z∗A, z∗B) while any

continuation to (z∗A − ek + el, z∗B) for some l with z∗Al = 0 leads to a vote

share below p̂(z∗A, z∗B) = p(z∗A, z∗B) for the same reason as above. More-

over, if B continues to (z∗A − ek, z∗B + el) for some l with z∗Bl = 0, then

any equilibrium continuation will be a full campaign by Lemma 4.1 which
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is worse for candidate B than (z∗A, z∗B). Hence, the unique state in any

equilibrium continuation at (z∗A − ek, z∗B) is (z∗A, z∗B).

Let (zA, zB) = (z∗A, z∗B − ek) for some k with z∗Bk = 1. Then B can

increase her vote share by continuing to (z∗A, z∗B) while any continuation

to (z∗A, z∗B − ek + el) for some l with z∗Bl = 0 leads to a full campaign

where A’s vote share is above p(z∗A, z∗B). Moreover, if A continues to

(z∗A + el, z∗B − ek) for some l with z∗Al = 0, then A’s vote share will be

below p̂(z∗A, z∗B) = p(z∗A, z∗B) in any continuation equilibrium which is

worse for candidate A than (z∗A, z∗B). Hence, the unique state in any

equilibrium continuation at (z∗A, z∗B − ek) is (z∗A, z∗B).

Consider now an arbitrary state (zA, zB) < (z∗A, z∗B) and assume that

for all (ẑA, ẑB) with (zA, zB) < (ẑA, ẑB) < (z∗A, z∗B) it is true that the

unique state in any continuation equilibrium at (ẑA, ẑB) is (z∗A, z∗B). By

(20) either candidate A or candidate B can increase their vote share by

continuing to (zA + ek, zB) for some k with zAk = 0 and z∗Ak = 1, or to

(zA, zB + ek) for some k with zBk = 0 and z∗Bk = 1 as this will lead to state

(z∗A, z∗B) by the induction hypothesis. Moreover, for the same reason as

above neither A nor B will continue to (zA + ek, zB) with z∗Ak = 0 or to

(zA, zB + ek) with z∗Bk = 0. Hence, the unique state in any equilibrium

continuation at (zA, zB) is (z∗A, z∗B).

□

Proof of Theorem 4.2: Let (CE(s))s∈S be an equilibrium collection of sets of

continuation campaigns and let s be a campaign with z(s) = (zA, zB). The proof

is by induction over L, where L = #{(i, k)| zik = 0}. Note that 0 ≤ L ≤ 2K.

If s is such that L = 0, then (zA, zB) = (1 . . . 1, 1 . . . 1) and by (E1) CE(s) =

{s} which implies p∗(1 . . . 1, 1 . . . 1) = p(1 . . . 1, 1 . . . 1). This proves the claim for

L = 0.

Let s be such that L = 1. First consider the case where zAk = 0 for some

k. W.l.o.g. let k = 1 which implies (zA, zB) = (01 . . . 1, 1 . . . 1). Then from

the case L = 0 we know that (1 . . . 1, 1 . . . 1) is the unique continuation cam-

paign at (zA + e1, zB). Moreover, by (E1) CE(s) ⊆ {s, (s, (1, A))}. By (E2)

50



s ∈ CE(s) if and only if p(01 . . . 1, 1 . . . 1) > p(1 . . . 1, 1 . . . 1). If the latter con-

dition is satisfied, then s ∈ CE(s) and (E3) implies that (s, (1, A)) /∈ CE(s)

because if it were true that (s, (1, A)) ∈ CE(s), then by (E3) it would have to

be true that p(1 . . . 1, 1 . . . 1) > p(01 . . . 1, 1 . . . 1) which is not the case. Hence,

if p(01 . . . 1, 1 . . . 1) > p(1 . . . 1, 1 . . . 1), then CE(s) = {s}. If p(01 . . . 1, 1 . . . 1) <
p(1 . . . 1, 1 . . . 1), then s /∈ CE(s) by (E2) and nonemptiness of CE(s) implies

that CE(s) = {(s, (1, A))} which also satisfies (E3) because p(1 . . . 1, 1 . . . 1) >

p(01 . . . 1, 1 . . . 1) . In any case there is a unique continuation equilibrium in

CE(s) and A’s vote share p∗(01 . . . 1, 1 . . . 1) in the unique continuation equilib-

rium satisfies

p∗(01 . . . 1, 1 . . . 1) = max{p∗(1 . . . 1, 1 . . . 1), p(01 . . . 1, 1 . . . 1)}.

Next consider the case where zBk = 0 for some k. W.l.o.g. let k = 1 which

implies (zA, zB) = (1 . . . 1, 01 . . . 1). Then from the case L = 0 we know that

(1 . . . 1, 1 . . . 1) is the unique continuation campaign at (zA, zB+e1). Moreover, by

(E1) CE(s) ⊆ {s, (s, (1, B))}. By (E2) s ∈ CE(s) if and only if p(1 . . . 1, 1 . . . 1) >

p(1 . . . 1, 01 . . . 1). If the latter condition is satisfied, then s ∈ CE(s) and (E3)

implies that (s, (1, B)) /∈ CE(s) because if it were true that (s, (1, B)) ∈ CE(s),

then by (E3) it would have to be true that p(1 . . . 1, 1 . . . 1) < p(01 . . . 1, 1 . . . 1)

which is not the case. Hence, if p(1 . . . 1, 01 . . . 1) < p(1 . . . 1, 1 . . . 1), then CE(s) =

{s}. If p(1 . . . 1, 1 . . . 1) < p(1 . . . 1, 01 . . . 1), then s /∈ CE(s) by (E2) and nonempti-

ness of CE(s) implies that CE(s) = {(s, (1, B))} which also satisfies (E3) because

p(1 . . . 1, 1 . . . 1) < p(1 . . . 1, 01 . . . 1). In any case there is a unique continuation

equilibrium in CE(s) and A’s vote share p∗(1 . . . 1, 01 . . . 1) in the unique contin-

uation equilibrium satisfies

p∗(1 . . . 1, 01 . . . 1) = min{p∗(1 . . . 1, 1 . . . 1), p(1 . . . 1, 01 . . . 1)}.

This proves the claim for L = 1.

Let 2 ≤ M ≤ 2K and assume that the claim has been proved for all L with

0 ≤ L ≤ M − 1. Let s be such that L = M . From the induction hypothesis we

then know that for all k with zik = 0 all continuation equilibria in CE((s, (k, i)))

are outcome equivalent. Moreover, if l is such that zAl = 0, then by the induction
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hypothesis

min
l′:zB

l′ =0
p∗(zA + el, zB + el

′
) ≥ p∗(zA + el, zB) ≥ max

l′ ̸=l:zA
l′ =0

p∗(zA + el + el
′
, zB), (28)

and if k is such that zBk = 0, then

min
k′ ̸=k:zB

k′=0
p∗(zA, zB+ek+ek

′
) ≥ p∗(zA, zB+ek) ≥ max

k′:zA
k′=0

p∗(zA+ek
′
, zB+ek), (29)

where the minimum (maximum) over the empty set is defined to be ∞ (−∞).

(28) and (29) imply that for all k and l such that zAl = 0 and zBk = 0,

p∗(zA, zB + ek) ≥ p∗(zA + el, zB + ek) ≥ p∗(zA + el, zB). (30)

(30) implies that

min
k:zBk =0

p∗(zA, zB + ek) ≥ max
k:zAk =0

p∗(zA + ek, zB). (31)

From (E1) we know that CE(s) ⊆
⋃

(k,i):zik=0

CE((s, (k, i))) ∪ {s}. By (E2) s ∈

CE(s) if and only if

min
k:zBk =0

p∗(zA, zB + ek) > p(zA, zB) > max
k:zAk =0

p∗(zA + ek, zB). (32)

Assume that (32) is satisfied which implies s ∈ CE(s). Suppose by way of

contradiction that there exist some (k, i) with zik = 0 such that s′ ∈ CE(s) ∩
CE((s, (k, i))). W.l.o.g. let i = A. Let

KA = {k| zAk = 0 and ∃ s′ ∈ CE(s) ∩ CE((s, (k,A)))} (33)

and let

k̂ ∈ {k ∈ KA| p∗(zA + ek, zB) ≤ p∗(zA + el, zB) for all l ∈ KA}. (34)

Then s′ ∈ CE(s) ∩ CE((s, (k̂, A))) is not rationalizable which contradicts (E3).

Hence, if (32) is satisfied, then CE(s) = {s} and

p∗(zA, zB) = p(zA, zB).

Assume now that

p(zA, zB) > min
k:zBk =0

p∗(zA, zB + ek) ≥ max
k:zAk =0

p∗(zA + ek, zB).
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Then (32) is violated and (E2) implies that s /∈ CE(s). Suppose by way of contra-

diction that ∃ s′ ∈ CE(s)∩CE((s, (k,A))) for some k with zAk = 0. Let KA and

k̂ be defined as in (33) and (34), respectively. Then s′ ∈ CE(s)∩CE((s, (k̂, A)))

is not rationalizable which together with p∗(zA+ ek̂, zB) < p(zA, zB) implies that

(E3) is violated. Hence, CE(s) ∩CE((s, (k,A))) = ∅ for all k with zAk = 0. (E1)

then implies that

CE(s) ⊆
⋃

(l,B):zBk =0

CE((s, (l, B))).

Let

LB = {l| zBl = 0 and p∗(zA, zB+el) ≤ p∗(zA, zB+ek) for all k with zBk = 0}. (35)

Suppose by way of contradiction that CE(s) ∩ CE((s, (l, B))) = ∅ for all l ∈ LB

and let s′ ∈ CE((s, (l, B))) for some l ∈ LB. Then s′ is rationalizable and hence

(E3) implies that s′ ∈ CE(s) which is a contradiction. Hence, there exists some

l ∈ LB and some s′ ∈ CE(s) ∩ CE((s, (l, B))).

Suppose by way of contradiction that CE(s) ∩ CE((s, (l, B))) ̸= ∅ for some

l /∈ LB with zBl = 0. Let l̄ /∈ LB be such that there exists some s′ ∈ CE(s) ∩
CE((s, (l̄, B))) and p∗(zA, zB + el̄) ≥ p∗(zA, zB + el) for all l with CE(s) ∩
CE((s, (l, B))) ̸= ∅. Then s′ is not rationalizable and hence (E3) is violated

which is a contradiction. Hence, CE(s) ∩ CE((s, (l, B))) = ∅ for all l /∈ LB

with zBl = 0. This implies that all continuation equilibria in CE(s) are outcome

equivalent and

p∗(zA, zB) = min
k:zBk =0

p∗(zA, zB + ek).

Finally, assume that

min
k:zBk =0

p∗(zA, zB + ek) ≥ max
k:zAk =0

p∗(zA + ek, zB) > p(zA, zB).

Then analogously to the previous case ones shows that all continuation equilibria

in CE(s) are outcome equivalent and

p∗(zA, zB) = max
k:zAk =0

p∗(zA + ek, zB).

This proves the claim for L = M and concludes the proof of the theorem.

□

53



References

Amorós, P., and M. S. Puy (2013): “Issue convergence or issue divergence in

a political campaign?,” Public Choice, 155, 355–371.

Aragonès, E., M. Castanheira, and M. Giani (2015): “Electoral Com-

petition through Issue Selection,” American Journal of Political Science, 59,

71–90.

Colomer, J. M., and H. Llavador (2012): “An agenda-setting model of

electoral competition,” SERIEs, 3, 73–93.
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