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Abstract

We consider varieties of representations and characters of 2 and 3-dimensional orbifolds
in semisimple Lie groups, and we focus on computing their dimension. For hyperbolic 3-
orbifolds, we consider the component of the variety of characters that contains the holonomy
composed with the principal representation, we show that its dimension equals half the di-
mension of the variety of characters of the boundary. We also show that this is a lower bound
for the dimension of generic components. We furthermore provide tools for computing di-
mensions of varieties of characters of 2-orbifolds, including the Hitchin component. We apply
this computation to the dimension growth of varieties of characters of some 3-dimensional
manifolds in SL(n,C).

1 Introduction

In this paper we are interested in varieties of representations and characters of the fundamental
group of two and three-dimensional orbifolds O in complex semi-simple algebraic Lie groups G,
denoted respectively by

R(O, G) = hom(π1(O), G) and X(O, G) = R(O, G)//G.

Since those are not irreducible, we use dimρR(O, G) and dim[ρ]X(O, G) to denote the dimension
of a component that contains ρ.

We discuss first a particular representation for oriented hyperbolic 3-orbifolds, with holon-
omy in Isom+(H3) ∼= PSL(2,C). Let G be an adjoint complex simple Lie group, eg. PSL(n,C),
PO(n,C) or PSp(2m,C). Let

τ : PSL(2,C) → G

be the principal representation (see §2.2 for the definition), eg. Symn−1 : PSL(2,C) → PSL(n,C),
whose image is contained in PSp(2m,C) for n = 2m or in PO(2m+1,C) for n = 2m+1. When
GR is a split real form of G, it restricts to τ : PGL(2,R) → GR, so that the Hitchin component
of a surface or a 2-orbifold is the component of the variety of representations that contains
the composition of τ with a Fuchsian representation. Here we consider orientable hyperbolic
3-orbifolds and we compose the holonomy in PSL(2,C) with the principal representation τ . We
prove the following generalization of [25, 26]:

Theorem 1.1. Let O3 be a compact orientable 3-orbifold whose interior is hyperbolic with
holonomy hol : π1(O3) → PSL(2,C). Then the character of τ ◦hol is a smooth point of X(O3, G)
of dimension

dim[τ◦hol]X(O3, G) =
1

2
dimX(∂O3, G).

∗Partially supported by the Micinn/FEDER grant PGC2018-095998-B-I00
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Furthermore, the map induced by restriction X(O3, G) → X(∂O3, G) is locally injective at the
character of τ ◦ hol.

The proof of Theorem 1.1 is based on a vanishing theorem of L2-cohomology, as for manifolds
in [25, 26]. Notice that for a Euclidean component O2 of ∂O3, the restriction of τ ◦ hol can be
a singular point of X(O2, G), and to prove that X(O3, G) → X(∂O3, G) is locally injective we
use evaluation of characters.

A representation ρ : Γ → G is called good if it is irreducible and the centralizer of ρ(Γ) in G is
the center Z(G) of G, in particular gρ(Γ) = 0. We are interested in representations of Euclidean
2-orbifolds (eg. χ(O2) = 0) that may be not good. For instance, nontrivial representations
of a 2-torus are never good by Kolchin’s theorem. A representation of a Euclidean 2-orbifold
ρ : π1(O2) → G is called strongly regular if for a maximal torsion free subgroup Γ0 < π1(O2), it
holds:

• dim gρ(Γ0) = rankG, and

• the projection of ρ(Γ0) is contained in a connected abelian subgroup of G/Z(G).

The following is a generalization of a theorem of Falbel and Guilloux for manifolds in [8]:

Theorem 1.2. Let O3 be a compact orientable good 3-orbifold, with boundary ∂O3 = ∂1O3 ⊔
· · · ⊔ ∂kO3, and χ(∂iO3) ≤ 0 for i = l, . . . , k. Let ρ : π1(O3) → G be a good representation such
that:

• If χ(∂iO3) < 0, then ρ|π1(∂iO2) is good.

• If χ(∂iO3) = 0, then ρ|π1(∂iO2) is strongly regular.

Then

dim[ρ]X(O3, G) ≥ 1

2
dimX(∂O3, G).

If ∂O3 = ∂1O3 ⊔ · · · ⊔ ∂kO3 denotes the decomposition in connected components, then
X(∂O3, G) = X(∂1O3, G)× · · · ×X(∂kO3, G) and

dimX(∂O3, G) = dimX(∂1O3, G) + · · ·+ dimX(∂kO3, G).

When the component ∂iO3 is a (closed orientable) surface S:

dimX(S,G) =

{
−χ(S) dimG if χ(S) < 0,

2 rankG if χ(S) = 0,

which can be rewritten as

dimX(S,G) = −χ(S) dimG+ 2dim gρ(π1S),

where gH denotes the centralizer in the Lie algebra of a subset H ⊂ G, via the adjoint action.
When the ∂iO3 is a (closed orientable) 2-orbifold O2 with branching locus Σ ⊂ O2, we prove in
Theorems 1.3 and 1.4:

dimX(O2, G) = −χ(O2 \ Σ) dimG+
∑
x∈Σ

dim gρ(Stab(x)) + 2dim gρ(π1(O2)). (1)

Formula (1) suggests that, instead of the usual Euler characteristic of an orbifold, we need
another quantity to compute dimensions of varieties of characters and representations. For
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that purpose, consider K a CW -structure on a compact orbifold On and ρ : π1(On) → G a
representation. The twisted Euler characteristic is defined (Definition 3.1) as

χ̃(On,Adρ) =
∑

e cell of K

(−1)dim e dim gAd(ρ(Stab(ẽ))) ∈ Z.

This is always an integer and should not be confused with the orbifold Euler characteristic,
that is a rational number. For the trivial representation, this is just the Euler characteristic
of the underlying space of the orbifold times dimG. It is the alternated sum of dimensions of
cohomology groups of On twisted by Adρ (Proposition 3.2):

χ̃(On,Adρ) =
∑
i

(−1)i dimH i(On,Adρ).

In Section 4 we prove the following results, based on Goldman’s work on surfaces [10] (see also
[32]):

Theorem 1.3. Let O2 be a compact connected 2-orbifold, with χ(O2) ≤ 0. Let ρ ∈ R(O2, G)
be a good representation. Then [ρ] is a smooth point of X(O2, G) of dimension −χ̃(O2,Adρ).

Theorem 1.4. Let O2 be a closed Euclidean 2-orbifold and ρ : π1(O2) → G a strongly regular
representation. Then it belongs to a single component of X(O2, G) that has dimension

(a) −χ̃(O2,Adρ) + 2 dim gρ(π1(O2)) if O2 is orientable,

(b) −χ̃(O2,Adρ) + dim gρ(π1(Õ2)) if O2 is non-orientable, where Õ2 → O2 denotes the orienta-
tion covering of O2.

Notice that Theorem 1.4 does not conclude smoothness. For instance, a parabolic represen-
tation of Z2 in SL(2,C) is strongly regular but its character (the trivial character) is a singular
point of X(Z2,SL(2,C)) and X(Z2,PSL(2,C)).

Under the hypothesis of Theorem 1.3 or Theorem 1.4, when O2 is closed and orientable then
χ̃(O2,Adρ) is even (Corollary 3.5) and therefore dim[ρ]X(O2, G) is even.

Most of the computations apply to real Lie groups, in particular we spend a section discussing
applications to the Hitchin component, that we denote by Hit(O2, GR), where GR is the split
real form of the adjoint group G. As we consider non orientable 2-orbifolds, we deal with non
connected real forms GR: we require that GR contains the image by the principal representation
of PGL(2,R), not only of its identity component PSL(2,R). For instance GR = PSL(n,R),
PSp±(2m) or PO(n, n+ 1).

The dimension of Hit(O2, GR) has already been computed in [1] by Alessandrini, Lee and
Schaffhauser, but we give a different approach, closer to the one of Long and Thistlethwaite in
[23] for turnovers. For instance, we show that∣∣ dim(Hit(O2,PGL(n,R))) + χ(O2) dim(PGL(n,R))

∣∣ ≤ C(O2),

where C(O2) is a constant that depends only on O2, Proposition 5.10. For PSp±(2m,R) the
bound is not uniform but linear on m and we only have a weaker conclusion (Corollary 5.15),
cf. [1, Proposition 5.15]:

lim
m→∞

dim(Hit(O2,PSp±(2m,R)))
dim(PSp±(2m,R))

= −χ(O2).

We also show that Hit(O2, GR) maximizes the dimension among all components of the variety
of (good) representations of O2 in GR, for GR = PGL(n,R), Proposition 5.8, or PSp±(2m,R),
Proposition 5.16.

For O2 closed and orientable, the differential form of Atiyah-Bott-Goldman gives naturally
a symplectic structure on Hit(O2, GR). Furhermore (see Proposition 5.4):
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Proposition 1.5. When O2 is closed and non-orientable, with orientation covering Õ2, then

Hit(O2, GR) embeds in Hit(Õ2, GR) as a Lagrangian submanifold.

We apply these computations on 2-orbifolds to estimate the growth of X(M3,SL(n,C)) with
respect to n for some 3-manifolds, in particular for some knot exteriors. For instance we show:

Proposition 1.6. Let Γ be the fundamental group of the exterior of the figure eight knot.
Besides the canonical component (that has dimension n− 1), for large n X(Γ,SL(n,C)) has at
least 3 components that contain irreducible representations, whose dimension grow respectively
as n2/12, n2/20 and n2/42.

The paper is organized as follows. In Section 2 we recall some basic notions and tools
on varieties of representations, and in Section 3 we introduce tools of orbifold cohomology
(some well known, some other new) that we use later to compute Zariski tangent spaces to
varieties of representations and characters. In Section 4 we discuss varieties of representations
of two dimensional orbifolds, and we apply some of the ideas to compute dimensions of Hitchin
components of orbifolds in Section 5. In Section 6 we prove the results on three-dimensional
orbifolds. Finally, some explicit examples are computed in Section 7.

2 Varieties of representations and characters

Let Γ be a finitely generated group, we are mainly interested in the fundamental group of
a compact orbifold. Let G be a complex semi-simple algebraic Lie group. The variety of
representations

R(Γ, G) = hom(Γ, G)

is an affine algebraic set and its quotient by conjugation in the algebraic category is the variety
of characters

X(Γ, G) = R(Γ, G)//G.

Namely, the algebra of invariant functions C[R(Γ, G)]G is of finite type and X(Γ, G) can be
defined as the affine scheme with this function ring: C[X(Γ, G)] ∼= C[R(Γ, G)]G. When Γ =
π1(O), they are denoted respectively by R(O, G) and X(O, G).

Following for instance [19], we define:

Definition 2.1. A representation ρ : Γ → G is:

(a) irreducible if ρ(Γ) is not contained in a proper parabolic subgroup of G, and

(b) good if it is irreducible and the centralizer of the image equals the center of G, Z(G).

When G = SL(n,C), irreducible and good are equivalent.
Let Rgood(Γ, G) denote the subset of good representations in R(Γ, G). The set of conjugacy

classes
Rgood(Γ, G) = Rgood(Γ, G)/G

is a Zariski open subset of X(Γ, G), cf. [19].
We discuss also representations in real Lie groups. For GR, the variety of characters is more

subtle, cf. [5], but we just consider Rgood(Γ, GR) = Rgood(Γ, GR)/GR.
For a compact 2 orbifold O2, we may also consider the relative character variety, defined as

Rgood(O2, ∂O2, G) = {[ρ] ∈ Rgood(O2, G) | [ρ|∂1O2 ], . . . , [ρ|∂kO2 ] are constant},

where ∂O2 = ∂1O2 ⊔ · · · ⊔ ∂kO2 is the decomposition in connected components and [ρ|∂iO2 ]
denotes the conjugacy class of the restriction to the i-th boundary component.
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2.1 Zarisi tangent space and cohomology

For a representation ρ : Γ → G, its composition with the adjoint representation is denoted by

Adρ : Γ → Aut(g).

The adjoint representation preserves the Killing form

B : g× g → C,

that is non-degenerate, as we assume G semi-simple.
A derivation or crossed morphism is a C-linear map d : Γ → g that satisfies

d(γ1γ2) = d(γ1) + Adρ(γ1)(d(γ2)), ∀γ1, γ2 ∈ Γ.

The space of crossed morphisms is denoted by Z1(Γ,Adρ). A crossed morphism is called inner
if there exists a ∈ g such that

d(γ) = (Adρ(γ) − 1)(a), ∀γ ∈ Γ,

and the subspace of inner morphism is denoted by B1(Γ,Adρ). The quotient is the first coho-
mology group:

H1(Γ, gAdρ) = H1(Γ,Adρ) ∼= Z1(Γ,Adρ)/B1(Γ,Adρ).

Theorem 2.2 (Weil). Let TZar
ρ R(Γ, G) be the Zariski tangent space of R(Γ, G) as a scheme

at ρ. There is a natural isomorphism

Z1(Γ,Adρ) ∼= TZar
ρ R(Γ, G)

that maps B1(Γ,Adρ) to the tangent space to the orbit by conjugation. Furthermore, when ρ is
good,

H1(Γ,Adρ) ∼= TZar
ρ X(Γ, G).

We do not need the precise definition of scheme, just mention that the polynomial ideal
that defines R(Γ, G) may be nonreduced, and this is taken into account in the Zariski tangent
space. In particular, when the dimension of the Zariski tangent space at some representation
or character equals the dimension of the component, the variety is smooth (and the scheme is
reduced and smooth) at this representation or character. For a discussion of Theorem 2.2, see
for instance [17] and the references therein. There is a real version of this theorem: when the
image of a good representations is contained in a real form GR, then

H1(Γ,AdρR) ∼= TZar
ρ Rgood(Γ, GR).

When O2 is orientable, a representation ρ : π1(O2) → G is called ∂-regular if for each γ
generator of a peripheral subgroup, ρ(γ) is a regular element (where regular means dim gρ(γ) =
rankG). For non-orientable O2, we call a representation ∂-regular if its restriction to the
orientation covering is ∂-regular.

Proposition 2.3 ([17]). Assume that O2 is orientable and that ρ : π1(O2) → G is good and
∂-regular. Then

TZar
ρ Rgood(O2, ∂O2, G) ∼= ker

(
H1(π1(O2),Adρ) →

k⊕
i=1

H1(π1(∂iO2),Adρ)
)
.
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2.2 The principal representation

Let G be a simple complex Lie group, with Lie algebra g. An element in g is called regular if
its centralizer has minimal dimension, that is the rank of g. Given a regular nilpotent element,
Jacobson-Morozov theorem provides a representation of Lie algebras τ : sl(2,C) → g whose
image contains the given regular nilpotent element. Such a representation is unique up to
conjugacy. Assume that G is an adjoint group, namely that has trivial center. Then the
induced representation of Lie groups

τ : PSL(2,C) → G

is called the principal representation.
For G = PSL(n,C) the principal representation is Symn−1. When defined from SL(2,C)

to SL(n,C), Symn−1 preserves a bilinear form of Cn−1, that is symmetric for n odd and skew-
symmetric for n even, and its restriction yields the principal representations in PSp(2m,C) and
PO(2m+ 1,C).

The principal representation restricts to τ : PGL(2,R) → GR, for GR the split real form of G,
perhaps not connected. The Hitchin component is the connected component ofRgood(π1(O2), GR)
that contains the composition of τ with the holonomy representation of any Fuchsian structure
on O2.

We require that the real form contains the image of PGL(2,R) and therefore may be not
connected. For instance PGL(n,R) contains two components, according to the sign of the
determinant. We also use the notation

Sp±(2m) = {A ∈ SL(2m,R) | AtJA = ±J}

for J an antisymmetric, non-degenerate, bilinear form; the sign + or − corresponds to one or
the other component of the group.

Remark 2.4. The principal representation is irreducible, and its image consists of regular
elements (and the trivial element).

For the principal representation τ : PSL(2,C) → G we have a decomposition

Ad ◦ τ =
r⊕

i=1

Sym2di , (2)

where r = rankG. The d1, . . . , dr ∈ N are denoted the exponents of G. In particular,

dimG =
r∑

i=1

(2di + 1). (3)

For instance, the exponents of PSL(n,C) are 1, . . . , n− 1, because

Ad ◦ Symn−1 =
n−1⊕
i=1

Sym2i .

The exponents of simple Lie algebras are detailed in Tables 1 and 2, cf. [1].
The algebra of polynomial functions on the Cartan subalgebra invariant by the Weyl group

C[h]W is freely generated by r homogeneous polynomials. By a theorem of Kostant, the degree
of these polynomials is d1 + 1, . . . , dr + 1.
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Lie algebra Exponents Rank Dimension

sl(n,C) 1, 2, . . . , n− 1 n− 1 n2 − 1
sp(2m,C) 1, 3, 5, . . . , 2m− 1 m 2m2 +m

so(2m+ 1,C) 1, 3, 5, . . . , 2m− 1 m 2m2 +m
so(2m,C) 1, 3, 5, . . . , 2m− 3,m− 1 m 2m2 −m

Table 1: Exponents of simple classical Lie algebras

Lie algebra Exponents Rank Dimension

g2 1, 5 2 14
f4 1, 5, 7, 11 4 52
e6 1, 4, 5, 7, 8, 11 6 78
e7 1, 5, 7, 9, 11, 13, 17 7 133
e8 1, 7, 11, 13, 17, 19, 23, 29 8 248

Table 2: Exponents of exceptional Lie algebras

3 Orbifold cohomology

Group cohomology is useful to study dimensions, by Weil’s theorem (Theorem 2.2). In this
section we discuss a combinatorial approach to cohomology. We are interested in representations
in semi-simple complex algebraic groups, but this section applies also to their real forms, by
replacing complex dimension by real dimension. We focus in homology and cohomology with
coefficients twisted by the adjoint of a representation, but the constructions and results can be
easily adapted to coefficients twisted by other representations.

We recall some basic definitions of orbifolds [2, 31]. An orbifold O is called:

• good if it has an orbifold cover that is a manifold.

• very good it has an orbifold cover of finite index that is a manifold.

• aspherical if its universal covering is a contractible manifold.

• An orbifold is called hyperbolic/Euclidean/spherical if it is the quotient of hyperbolic
space/Euclidean space/the round sphere by a discrete group of isometries.

In a cell decomposition K of an orbifold, we require that isotropy groups or stabilizers are
unchanged along cells. For a cell e in K this isotropy group is denoted by Stab(e). The orbifold
Euler characteristic for a compact orbifold is defined as

χ(O) =
∑

e cell of K

1

|Stab(e)|
(−1)dim e ∈ Q. (4)

This is well behaved under coverings: if O′ → O is an orbifold covering of finite index k, then
χ(O′) = kχ(O). See [31, 2] for instance.

3.1 Combinatorial homology and cohomology for orbifolds

Let On be a compact n-dimensional good orbifold, possibly not orientable. Fix a CW-complex
structure K on On. This means that K is a CW-complex with the same underlying space as On,
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so that the branching locus of On is a subcomplex of K. In particular, it lifts to a CW-complex
structure K̃ of the universal covering Õn of On, so that each cell of K lifts to a disjoint union
of homeomorphic cells of K̃ (perhaps with nontrivial stabilizer).

The complex of chains on the universal covering is the free Z-module on the cells of K̃,
equipped with the usual boundary operator, and it is denoted by C∗(K̃,Z). It has a (non-
free) action of Γ = π1(On) induced by deck transformations. The twisted chain and cochain
complexes are defined as:

C∗(K,Adρ) = g⊗Γ C(K̃,Z), (5)

C∗(K,Adρ) = homΓ(C(K̃,Z), g). (6)

The group Γ acts on g via Adρ on the left, and for the tensor product Γ acts on g on the right
using inverses. Those are complexes and cocomplexes of finite-dimensional vector spaces, and
the corresponding homology and cohomology groups are denoted respectively by

H∗(K,Adρ) and H∗(K,Adρ).

3.2 Twisted orbifold Euler characteristic

For a compact manifold M and a representation ρ : π1(M) → G, as π1(M) acts freely on the

universal covering M̃ , we have

χ(M) dim(G) =
∑
i

(−1)i dimHi(M,Adρ) =
∑
i

(−1)i dimH i(M,Adρ).

To have a similar formula for an orbifold O we need to take into account that Γ = π1(O) acts
non freely on Õ; this motivates the definition of twisted orbifold Euler characteristic below,
Definition 3.1.

Let O be compact oriented orbifold, very good, with a CW-structure K. Given a subset
Γ0 ⊂ Γ = π1(O), the space of invariants is

gρ(Γ0) = {v ∈ g | Adρ(g)(v) = v, ∀g ∈ Γ0}, (7)

and the quotient of coinvariants,

gρ(Γ0) = g/⟨Adρ(g)(v)− v | v ∈ g, g ∈ Γ0⟩. (8)

As the Killing form on g is nondegenerate (G is semisimple) and Ad-invariant,

⟨Adρ(g)(v)− v | v ∈ g, g ∈ Γ0⟩ = (gρ(Γ0))⊥. (9)

Therefore
dim(gρ(Γ0)) = dim(gρ(Γ0)). (10)

Definition 3.1. The orbifold Euler characteristic of O twisted by Adρ is

χ̃(O,Adρ) =
∑

e cell of K

(−1)dim e dim gρ(Stab(ẽ)) ∈ Z.

Here ẽ denotes any lift of e to the universal covering of O and Stab(ẽ) ⊂ Γ its stabilizer,
whose conjugacy class in Γ is independent of the choice of the lift.

It should not be confused with the usual orbifold Euler characteristic χ(O), recalled in (4),
that is a rational number, whilst χ̃(O,Adρ) is always an integer. Notice also that χ̃ is not multi-
plicative under coverings either; its intended to be a tool to compute dimensions of cohomology
groups:
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Proposition 3.2. For O and ρ as above:

χ̃(O,Adρ) =
∑
i

(−1)i dimHi(O,Adρ) =
∑
i

(−1)i dimH i(O,Adρ).

Proof. We compute the dimension of C∗(K,Adρ) and C∗(K,Adρ) as C-vector spaces. We aim
to show that, for 0 ≤ i ≤ dimO,

dimCi(K,Adρ) = dimCi(K,Adρ) =

ki∑
j=1

dim gρ(Stab(ẽ
i
j)) (11)

where {ei1, . . . , eiki} are the i-cells of K and {ẽi1, . . . , ẽiki} a choice of lifts in the universal covering.
Equation (11) will imply that

χ̃(O,Adρ) =
∑
i

(−1)i dimCi(K,Adρ) =
∑
i

(−1)i dimCi(K,Adρ) (12)

and then the proposition will follow from standard arguments in homological algebra.
To prove (11), use the decomposition as Z[Γ]-module of the chain complex on K̃:

Ci(K̃,Z) =
ki⊕
j=1

Z[Γ]ẽij , (13)

because the Γ-orbits of the lifts {ẽi1, . . . , ẽiki} give a partition of the i-cells of K̃. Then we apply

the natural isomorphisms of C-vector spaces, for each cell ẽ of K̃:

homΓ(Z[Γ]ẽ, g) ∼= gρ(Stab(ẽ)

θ 7→ θ(ẽ)

g⊗Γ Z[Γ]ẽ ∼= gρ(Stab(ẽ))
v ⊗ ẽ 7→ v

(14)

whose proof is straightforward and use Equality (10).

For 2-dimensional orientable orbifolds, Proposition 3.2 is essentially a formula computed by
André Weil in [32, Sections 6 and 7].

3.3 Regular Coverings

Let O0 → O be a finite regular covering. Namely, Γ0 = π1(O0) is a normal subgroup of
Γ = π1(O) of finite index. Though O is very good, we do not require O0 to be a manifold in
this subsection (for instance, O0 can be the orientation covering).

The Galois group, or group of deck transformations, of the covering is Γ/Γ0. It acts naturally
on the chain and cochain complexes, C∗(K0,Adρ) and C∗(K0,Adρ). Namely, any γ ∈ Γ maps
a chain m ⊗ c ∈ C∗(K0,Adρ) to m · γ−1 ⊗ γc = Adρ(γ)(m) ⊗ γc, cf. [27]. The action of Γ0

is trivial by construction and therefore we have an action of Γ/Γ0. Similarly, γ ∈ Γ maps a
cochain θ ∈ C∗(K0,Adρ) to Ad(ρ(γ)) ◦ θ ◦ γ−1, which again induces an action of the Galois
group Γ/Γ0. The subspace of elements fixed by this action in homology and cohomology are
denoted respectively by

H∗(O0,Adρ)
Γ/Γ0 and H∗(O0,Adρ)

Γ/Γ0 .
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Proposition 3.3. The map π : O0 → O induces an epimorphism π∗ : H∗(O0,Adρ) ↠ H∗(O,Adρ)
that restricts to an isomorphism

H∗(O0,Adρ)
Γ/Γ0 ∼= H∗(O,Adρ).

Similarly, it induces a monomorphism π∗ : H∗(O,Adρ) ↪→ H∗(O0,Adρ) that yields an isomor-
phism

H∗(O,Adρ) ∼= H∗(O0,Adρ)
Γ/Γ0 .

Proof. The argument is standard and we just outline it. The proof is based in constructing a
section to the maps induced by the projection π. The section at the chain and cochain level
consists in taking an element of the inverse image of the map induced by π and averaging by
the action of Γ/Γ0. One can check that the section for chains is a well defined chain morphism,
induces sections in homology and has the required property, as well as for sections of cochains
and cohomology.

The following proposition summarizes the main properties we need about orbifold cohomol-
ogy:

Proposition 3.4. Let O be a compact very good orbifold and ρ a representation of Γ = π1(O)
in G. The following hold:

(a) H i(O,Adρ) and Hi(O,Adρ) are dual, via the Kronecker pairing.

(b) If O is orientable, then the cup product induces a perfect pairing

H i(O,Adρ)×HdimO−i(O, ∂O,Adρ) → C.

(c) There is a natural isomorphism H1(Γ,Adρ) ∼= H1(O,Adρ).

(d) If O is aspherical (its universal covering is a contractible manifold), then there is a natural
isomorphism H∗(Γ,Adρ) ∼= H∗(O,Adρ).

Proof. For assertion (a), we use the Kronecker pairing between chains and cochains via the
Killing form B:

Ci(K,Adρ)× Ci(K,Adρ) → C
(m⊗ c, θ) 7→ B(m, θ(c))

One checks that it is well defined and it is not degenerate at the level of chains, using (13), (14),
and (9). Hence it induces a perfect pairing between homology and cohomology.

For (b), using Proposition 3.3, the strategy is to use the invariance by Γ/Γ0 of the corre-
sponding properties for a finite regular covering O0 → O that is a manifold. More precisely,
using that O0 is a manifold, the cup product defines a perfect pairing

H i(O0,Adρ)×HdimO0−i(O0, ∂O0,Adρ) → HdimO0(O0, ∂O0,C) ∼= C.

This is compatible with the action of Γ/Γ0, therefore the assertion follows from Proposition 3.3.
Notice that orientability of O is relevant for saying that the action of the Galois group Γ/Γ0 on
HdimO0(O0, ∂O0,C) ∼= C is trivial.

Next we prove (c). Chose X a K(Γ, 1), namely a CW-complex with π1(X) ∼= Γ and trivial
higher homotopy groups. Thus there is a natural isomorphism H∗(X,Adρ) ∼= H∗(Γ,Adρ).
Furthermore, the covering corresponding to Γ0 < Γ, X0 → X, is a K(Γ0, 1); in particular
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H∗(X0,Adρ) ∼= H∗(Γ0,Adρ). As O0 is a manifold, a K(Γ0, 1) can be constructed from the
2-skeleton of O0 by adding cells of dimension ≥ 3, therefore:

H1(O0,Adρ) ∼= H1(X0,Adρ).

Thus, by Proposition 3.3 we have natural isomorphisms

H1(O,Adρ) ∼= H1(O0,Adρ)
Γ/Γ0 ∼= H1(X0,Adρ)

Γ/Γ0 ∼= H1(X,Adρ),

and H1(X,Adρ) ∼= H1(Γ,Adρ) because X is a K(Γ, 1).
Finally, we prove (d). In the proof of (c), asO0 is already aK(Γ0, 1), and therefore homotopy

equivalent to X0, hence
H∗(O0,Adρ) ∼= H∗(X0,Adρ).

and the conclusion holds for any degree in cohomology.

From the duality in Proposition 3.4 (b) we get:

Corollary 3.5. When On is closed and orientable, of dimension n, for n odd χ̃(On,Adρ) = 0,
and for n even χ̃(On,Adρ) is also even.

3.4 Non orientable orbifolds

For a connected non-orientable orbifold On, there exists a unique orientable covering Õn → On

of index 2, called the orientation covering.

Lemma 3.6. Let On be a compact, non-orientable, very good orbifold of dimension n with
orientation covering Õn → On. Then

dimH i(On,Adρ) + dimHn−i(On, ∂On,Adρ) = dimH i(Õn,Adρ).

Proof. The nontrivial deck transformation of the orientation covering is an involution denoted
by σ : Õn → Õn. Let σ∗ be the induced morphism in the cohomology group. By Proposition 3.3:

H i(On,Adρ) ∼= H i(Õn,Adρ)σ
∗

and H i(On, ∂On,Adρ) ∼= H i(Õn, ∂Õn,Adρ)σ
∗
. (15)

The cup product induces a non-degenerate pairing, Proposition 3.4:

H i(Õn,Adρ)×Hn−i(Õn, ∂Õn,Adρ) → Hn(Õn, ∂Õn,C) ∼= C. (16)

Chose C-basis for H i(Õn,Adρ) and for Hn−i(Õn, ∂Õn,Adρ), and use them to get matrices; let

• J denote the matrix of the pairing (16),

• Si denote the matrix of σ∗ on H i(Õn,Adρ), and

• T j denote the matrix of σ∗ on Hj(Õn, ∂Õn,Adρ).

Since σ reverses the orientation, σ∗ acts as minus the identity on Hn(Õn, ∂Õn,C):

(Si)tJTn−i = −J.

As the pairing is non-degenerate, J is invertible, and since σ is an involution:

(Si)t = −JTn−iJ−1.

11



Thus
dimker(Tn−i − Id) = dimker((Si)t + Id) = dimker(Si + Id). (17)

Since (Si)2 = Id:

H i(Õn,Adρ) = ker(Si + Id)⊕ ker(Si − Id). (18)

Combining (17) and (18):

dimker(Tn−i − Id) + dimker(Si − Id) = dimH i(Õn,Adρ).

With (15) this concludes the proof.

Corollary 3.7. If On is non-orientable, very good, closed and of even dimension n, then

dimH
n
2 (On,Adρ) =

1

2
dimH

n
2 (Õn,Adρ).

Remark 3.8. The pairing in the proof of Lemma 3.6 induces a nondegenerate pairing between
the kernels ker

(
H i(Õn,Adρ) → H i(∂Õn,Adρ)

)
and ker

(
Hn−i(Õn,Adρ) → Hn−i(∂Õn,Adρ)

)
[22, 17]. Thus the same argument in the proof of Lemma 3.6 yields

dimker
(
H i(On,Adρ) → H i(∂On,Adρ)

)
+ dimker

(
Hn−i(On,Adρ) → Hn−i(∂On,Adρ)

)
= dimker

(
H i(Õn,Adρ) → H i(∂Õn,Adρ)

)
.

4 Varieties of representations and characters of 2-orbifolds

We recall the possible stabilizers (or isotropy groups) of a point in a 2-orbifold, so that we fix
notation. Besides the trivial one, the possible stabilizers of a point x ∈ O2 are:

• Stab(x) ∼= Ck is a cyclic group of rotations of the plane R2 of order k. Then the singular
point is isolated and its is called a cone point. Those are the unique possible non-trivial
stabilizers for an orientable 2-orbifold (Figure 1 left).

• Stab(x) ∼= C2 is a group of order two generated by a reflection of the plane or the semiplane,
ie. modelled in the interior or in the boundary. This is called a mirror point. The singular
locus is locally an open segment, or a proper half segment in the boundary (Figure 1, both
pictures in the center).

• Stab(x) ∼= D2k is a dihedral group of 2k elements, generated by two reflections at the
plane of angle π/k. The point is called a corner reflector (Figure 1 right).

xx x

x

Figure 1: From left to right, a cone point, an interior mirror point, a mirror point in the
boundary, and a corner reflector. Mirror points are represnetes by a double line.

The boundary of a compact 2-orbifold is a union of closed 1-orbifolds. There are two
possibilities for a closed 1-orbifold, up to homeomorphism:
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• A circle S1 (Figure 2 left). Its fundamental group is Z.

• An interval with mirror end-points [[0, 1]] (Figure 2 right). It is the quotient of S1 by an
orientation reversing involution. Its fundamental group is dihedral infinite D∞ ∼= C2 ∗C2,
the free product of the stabilizers of the mirror points. It is called full 1-orbifolds in [1].

Figure 2: A circle S1 and an interval with mirror end-points [[0, 1]] as boundaries.

In dimension two, good and very good are equivalent. Furthermore, a closed 2-orbifold
is good if and only if it is hyperbolic, Euclidean or spherical. When χ(O2) ≤ 0, O2 is very
good and either hyperbolic or Euclidean. In particular a closed 2-orbifold O2 is aspherical iff
χ(O2) ≤ 0.

4.1 Varieties of representations of 2-orbifolds

In this subsection we give a couple of results on the tangent space of the variety of represen-
tations and characters of a 2-orbifold. Those are orbifold versions of theorems of Goldman for
surfaces [10]. In the orientable case, those results go back to André Weil [32, Sections 6 and 7].
We start with the following formulas:

Proposition 4.1. Let O2 be a closed aspherical 2-orbifold. Set Γ = π1(O2) and let ρ ∈ R(Γ, G).

a) If O2 is orientable, then

dimTZar
ρ R(Γ, G) = −χ̃(O2,Adρ) + dimG+ dim gρ(Γ).

b) If O2 is non-orientable, with orientation covering Õ2, and Γ̃ = π1(Õ2), then

dimTZar
ρ R(Γ, G) = −χ̃(O2,Adρ) + dimG+ dim gρ(Γ̃) − dim gρ(Γ).

Proof. Using

TZar
ρ R(Γ, G) ∼= Z1(Γ,Adρ) = dimH1(Γ,Adρ) + dimB1(Γ,Adρ),

the isomorphism H∗(O2,Adρ) ∼= H∗(Γ,Adρ) (as O2 is aspherical we apply Proposition 3.4 (d)),
and:

dimH1(O2,Adρ) = −χ̃(O2,Adρ) + dimH0(O2,Adρ) + dimH2(O2,Adρ),

dimB1(Γ,Adρ) = dim g− dim gρ(Γ) = dimG− dimH0(Γ,Adρ).

we get
dimTZar

ρ R(Γ, G) = −χ̃(O2,Adρ) + dimG+ dimH2(O2,Adρ).

In the orientable case, by duality (Proposition 3.4):

dimH2(O2,Adρ) = dimH0(O2,Adρ) = dim gρ(Γ).

In the non-orientable case, Lemma 3.6 yields

dimH2(O2,Adρ) = dimH2(Õ2,Adρ)− dimH0(O2,Adρ) = dim gρ(Γ̃) − dim gρ(Γ),

and the proposition follows.
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Proposition 4.2. Let O2 be a compact aspherical 2-orbifold and ρ : Γ → G a good representa-
tion. When O2 is non-orientable, assume furthermore that the restriction of ρ to the orientation
covering is also good.

Then the conjugacy class [ρ] is a smooth point of X(O2, G) of dimension −χ̃(O2,Adρ).

Proof. As ρ is good, its centralizer is finite, hence

dimH0(O2,Adρ) = dimH0(Γ,Adρ) = dim gρ(Γ) = 0.

When O2 is closed then H2(O2,Adρ) = 0 (by duality in the orientable case, Proposition 3.4,
or by Lemma 3.6 in the non-orientable case). When O2 is not closed, then it has virtually the
homotopy type of a 1-complex and also H2(O2,Adρ) = 0.

Moreover, as O2 is aspherical, by Proposition 3.4 H2(Γ,Adρ) = 0. By Goldman’s obstruc-
tion theory [10], this implies that [ρ] is a smooth point of local dimension dimH1(Γ,Adρ) =
dimH1(O,Adρ) = −χ̃(O,Adρ).

From Proposition 4.2 and Corollary 3.7:

Corollary 4.3. Let O2 be a closed non-orientable 2-orbifold with χ(O2) ≤ 0 and ρ : Γ → G.

Assume that the restriction of ρ to the orientation covering Õ2 is good. Then

dim[ρ]X(O2, G) =
1

2
dim[ρ]X(Õ2, G).

Proposition 4.4. Let O2 be a compact aspherical 2-orbifold and ρ : Γ → G a good representa-
tion that is ∂-regular. Assume that O2 is orientable. Then the cup product defines a C-valued
symplectic structure on Rgood(O2, ∂O2, G). Furthermore, it is real valued for GR, a real form
of G.

Proof. From the construction, non-degeneracy and skew symmetry is clear. The non-trivial
issue is to check that this differental form is closed. For manifolds with boundary, closedness
is due to [13], as explained in [17]. For an orientable orbifold with boundary, we reduce to the
manifold case. Let ΣO2 denote its branching locus, it is a finite union of cone points. The
restriction map

Rgood(O2, ∂O2, G) → Rgood(O2 \ N (ΣO2), ∂(O2 \ N (ΣO2)), G)

is a (local) isomorphism, as the conjugacy classes of finite order elements cannot be deformed. To
check the isomorphism at the level of tangent spaces, notice that the map induced by inclusion

H1(O2,Adρ) → H1(O2 \ N (ΣO2),Adρ)

yields an isomorphism

ker
(
H1(O2,Adρ) → H1(∂O2,Adρ)

)
∼= ker

(
H1(O2 \ N (ΣO2),Adρ) → H1(∂(O2 \ N (ΣO2),Adρ)

)
,

that can be proved for instance by using Mayer-Vietoris exact sequence. Furthermore, by
naturality, it can be shown that the isomorphism maps the cup product to the cup product.

Proposition 4.5. Let O2 be a closed non-orientable 2-orbifold with χ(O2) ≤ 0. Let ρ : Γ → G

be a representation whose restriction to the orientation covering Õ2 is good and ∂-regular. Then

the restriction map induces an immersion around [ρ] of Rgood(O2, ∂O2, G) in Rgood(Õ2, ∂Õ2, G)
as a Lagrangian submanifold.
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Proof. Let σ : Õ2 → Õ2 be the orienting reversing involution so that Õ2/σ = O2. By Proposi-
tions 3.3 and 4.2

TZar
[ρ] R(O2, G) ∼=

(
TZar
[ρ] R(Õ2, G)

)σ
As σ acts as minus the identity on H2(Õ2,C) and by construction of the bilinear form (see the
proof of Lemma 3.6), the bilinear form must be trivial on the space fixed by σ, ie TZar

[ρ] R(O2, G)
is an isotropic subspace. By Corollary 4.3, it has the dimension to be Lagrangian.

4.2 Orbifolds with boundary

For an orientable 2-orbifold O2 a representation ρ is called ∂-regular if for each γ generator of
a peripheral subgroup, ρ(γ) is a regular element (i.e. dim gρ(γ) = rankG). For a non-orientable
2-orbifold, we will consider ∂-regularity on the orientation covering.

We start with a result on the dimension of the relative variety of (conjugacy classes of)
representations Rgood(O2, ∂O2, G):

Proposition 4.6. Let O2 be a compact 2-orbifold with boundary and χ(O2) ≤ 0. Assume
ρ : Γ → G is good and ∂-regular. When O2 is non-orientable, assume that the restriction to the
orientation covering is good and ∂-regular. Then [ρ] is a smooth point of Rgood(O2, ∂O2, G) of
dimension

−χ̃(O2,Adρ)− (c+
b

2
) rankG+

1

2
χ̃(∂O2,Adρ),

where c is the number of components of ∂O2 that are circles and b the number of components
of ∂O2 that are intervals with mirror points [[0, 1]].

In this proposition, the components of the boundary that are circles do not contribute to
χ̃(∂O2,Adρ).

Proof. The same proof as in [17, Proposition 2.10] applies here, in particular we have smoothness
and the following equalities

dim(Rgood(O2, ∂O2, G)) = dimker
(
H1(O2,Adρ) → H1(∂O2,Adρ)

)
= dimH1(O2,Adρ)− dimH1(∂O2,Adρ).

As H0(O2,Adρ) = H2(O2,Adρ) = 0,

dimH1(O2,Adρ) = −χ̃(O2,Adρ).

We count the contribution of each component ∂iO2 of ∂O2 to dimH1(∂O2,Adρ).

• When ∂iO2 ∼= S1, then, by duality and ∂-regularity:

dimH1(∂iO2,Adρ) = dimH0(∂iO2,Adρ) = dim gρ(∂iO
2) = rankG. (19)

• When ∂iO2 ∼= [[0, 1]], then

χ̃(∂iO2,Adρ) = dimH0(∂iO2,Adρ)− dimH1(∂iO2,Adρ)

rankG = dimH0(∂iO2,Adρ) + dimH1(∂iO2,Adρ),

where the last line follows from Lemma 3.6 and the assumption that ρ is ∂-regular on the
orientation covering. From this we deduce

dimH1(∂iO2,Adρ) =
1

2
(rankG− χ̃(∂iO2,Adρ)). (20)
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From (19) and (20):

dimH1(∂O2,Adρ) = (c+
b

2
) rankG− 1

2
χ̃(∂O2,Adρ),

which concludes the proof of the proposition.

Proposition 4.7. Let O2 be a non-orientable compact 2-orbifold with orientation covering Õ2.

Let ρ : π1(O2) → G be a representation whose restriction to Õ2 is good and ∂-regular. Then

dimρX(O2, G) =
1

2
dimρX(Õ2, G) +

1

2

∑
[[0,1]]⊂∂O2

χ̃([[0, 1]],Adρ)

where the sum runs on the components of ∂O2 that are intervals with mirror boundary, [[0, 1]].

Proof. In the proof of Proposition 4.6 we use (based on [17]):

dim[ρ]X(O2, G) =dim[ρ]Rgood(O2, ∂O2, G) + dimH1(∂O2,Adρ),

dim[ρ]X(Õ2, G) =dim[ρ]Rgood(Õ2, ∂O2, G) + dimH1(∂Õ2,Adρ).

Furthermore, by Proposition 4.5:

dim[ρ]Rgood(O2, ∂O2, G) =
1

2
dim[ρ]Rgood(Õ2, ∂Õ2, G).

And from (19) and (20) in the proof of Proposition 4.6:

dimH1(∂O2,Adρ) = (c+
b

2
) rankG− 1

2
χ̃(∂O2,Adρ),

dimH1(∂Õ2,Adρ) = (2c+ b) rankG.

Using these formulas, we just need to know that χ̃(∂O2,Adρ) is the sum of the twisted Euler
characteristics of each component, and that χ̃(S1,Adρ) = 0.

Z/2Z Z/2Z

Figure 3: The orbifold [[0, 1]] = R/D∞.

The fundamental group of [[0, 1]] is the infinite dihedral group D∞, so that R/D∞ ∼= [[0, 1]].
In a group presentation

D∞ = ⟨σ1, σ2 | σ2
1 = σ2

2 = 1⟩

the stabilizers of the mirror points are the cyclic groups of order 2 generated by σ1 and σ2
respectively, see Figure 3. For further applications we need the following lemma:

Lemma 4.8. For any representation ρ : D∞ = ⟨σ1, σ2 | σ2
1 = σ2

2 = 1⟩ → G:

χ̃(R/D∞,Adρ) = dim gρ(σ1) + dim gρ(σ2) − dim g,

dimH0(R/D∞,Adρ) =
(
dim gρ(σ1σ2) + dim gρ(σ1) + dim gρ(σ2) − dim g

)
/2,

dimH1(R/D∞,Adρ) =
(
dim gρ(σ1σ2) − dim gρ(σ1) − dim gρ(σ2) + dim g

)
/2.
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Proof. We compute the twisted Euler characteristic by using the simplicial structure of R/D∞
with one 1-cell and two 0-cells (with stabilizers generated by σ1 and σ2 respectively):

χ̃(R/D∞,Adρ) = dim gρ(σ1) + dim gρ(σ2) − dim g

= dimH0(R/D∞,Adρ)− dimH1(R/D∞,Adρ).
(21)

The orientation covering is denoted by S1 → R/D∞, and π1(S
1) corresponds to the infinite

cyclic subgroup of D∞ generated by σ1σ2. As S
1 is a manifold and χ(S1) = 0:

dimH1(S1,Adρ) ∼= dimH0(S1,Adρ) ∼= gρ(σ1σ2). (22)

By Lemma 3.6:

dimH0(R/D∞,Adρ) + dimH1(R/D∞,Adρ) = dim gρ(σ1σ2). (23)

Then the lemma follows from (21) and (23).

Notice that in the previous lemma we do not require anything for the representation ρ, that
could be trivial, but G is a semi-simple group. The first direct application goes to the stabilizer
of a corner reflector, the dihedral group D2k, by pre-composing any representation D2k → G
with the natural surjection from the infinite dihedral group D∞ → D2k:

x0

x2

x1

Figure 4: Corner reflector modeled on R2/D2k, with the notation in Corollary 4.9.

Corollary 4.9. Let x0 ∈ O2 be a corner reflector and x1 and x2 mirror points in a neighborhood
of x0 separated by x0, see Figure 4. If Ck ⊂ Stab(x0) is the orientation preserving cyclic
subgroup of index 2, then:

dim gρ(Stab(x0)) =
(
dim gρ(Ck) + dim gρ(Stab(x1)) + dim gρ(Stab(x2)) − dim g

)
/2.

4.3 Euclidean 2-orbifolds

Along this subsection, let O2 be a Euclidean two orbifold without boundary. Set Γ = π1(O2).
As Isom+(R2) is the semidirect product R2 ⋊ O(2), we have an exact sequence (Bieberbach
theorem):

1 → Γ0 → Γ → Λ → 1, (24)

with Γ0
∼= Z2 and Λ ⊂ O(2) the linear part. When O2 is orientable, Λ is cyclic and when O2

is non-orientable, Λ is dihedral (or cyclic of order 2). Furthermore, when O2 is orientable or
a Coxeter group, Γ0 is the maximal torsion free subgroup and the sequence (24) splits, as Λ
corresponds to the stabilizer of a point in R2. A Euclidean Coxeter group is a group generated
by reflections along a square or a Euclidean triangle with angles an integer divisor of π.

There are precisely five closed orientable Euclidean 2-orbifolds (Figure 5):

• the 2-torus T 2,
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T 2

2 2

22

S2(2, 2, 2, 2)

3 3

3

S2(3, 3, 3)

2 4

4

S2(2, 4, 4)

2 3

6

S2(2, 3, 6)

Figure 5: The five closed, orientable, and Euclidean 2-orbifolds.

• a 2-sphere with 4 cone points of order 2, S2(2, 2, 2, 2), and

• three 2-spheres with cone points of order p, q and r satisfying 1
p + 1

q + 1
r = 1, S2(p, q, r)

for (p, q, r) = (3, 3, 3), (2, 4, 4) and (2, 3, 6).

The orbifold S2(2, 2, 2, 2) is sometimes called a pillowcase, geometrically is the double of a
rectangle, and S2(p, q, r) is called a turnover, as it is the double of a triangle. For different
values of the ramifications, turnovers can also be spherical or Euclidean. Table 3 gives the
cardinality of Λ ∼= Γ/Γ0 for these five Euclidean orbifolds.

O2 |Γ/Γ0|
T 2 1

S2(2, 2, 2, 2) 2
S2(3, 3, 3) 3
S2(2, 4, 4) 4
S2(2, 3, 6) 6

Table 3: Values of k(O2) = |Γ/Γ0| when O2 is orientable, for Γ0 maximal torsion free.

As Γ = π1(O2) is virtually abelian, most of the representations we consider are not irre-
ducible. Instead, we deal with strong regularity:

Definition 4.10. A representation of a Euclidean 2-orbifold ρ : π1(O2) → G is called strongly
regular if for a normal subgroup Γ0 < π1(O2), Γ0

∼= Z2,

(a) dim gρ(Γ0) = rankG, and

(b) the projection of ρ(Γ0) is contained in a connected abelian subgroup of G/Z(G).

Theorem 4.11. Assume that O2 is compact Euclidean and that ρ : π1(O2) → G is strongly
regular. Then:

(i) ρ is a smooth point of R(Γ, G) of dimension

−χ̃(O2,Adρ) + dimG+ dim gρ(Γ).

(ii) The component X0(Γ, G) of X(Γ, G) that contains the character of ρ has dimension:

dimX0(Γ, G) = −χ̃(O2,Adρ) + 2 dim gρ(Γ) = dimH1(O2,Adρ).

Proof. (i) First consider the case O2 = T 2, here we adapt an argument of [16]. In this case
χ̃(O2,Adρ) = 0, and by a theorem of Richardson [29, Theorem B], ρ is in the closure of T× T
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for T ⊂ G a maximal torus, T ∼= (C∗)rank(G) (meaning torus of an algebraic group). Therefore
ρ is contained in a component of dimension at least dimG+ rankG. As dim gρ(Γ) = rankG, by
Proposition 4.1, dimTZar

ρ R(Γ, G) = dimG+ rankG. Therefore

dimρR(Γ, G) ≥ dimG+ rankG = dimTZar
ρ R(Γ, G).

Using that the dimension of the Zariski tangent space is always larger than or equal to the
dimension of a variety, with equality only at smooth points, it follows that dimρR(Γ, G) =
dimTZar

ρ R(Γ, G) and ρ is a smooth point.

For general O2, notice that −χ̃(O2,Adρ)+dimG+dim gρ(Γ) = dimTZar
ρ R(Γ, G), by Propo-

sition 4.1 and all we need to show is that ρ is a smooth point. For that purpose, we use that
the variety of representations of Γ0 at ρ|Γ0 is smooth. As Goldman obstructions are natural
[18, §3], they are also equivariant. In particular if we start with a equivariant infinitesimal de-
formation of Γ0, then the sequence of obstructions to integrability is also equivariant. Thus, by
Proposition 3.3 and Proposition 3.4, the sequence of obstructions to integrability of Γ vanishes.
This proves (i).

For (ii), notice that dim gρ(Γ) = dimH0(Γ,Adρ) is upper semicontinuous on R(Γ, G) [14,
Ch. III, Theorem 12.8]. By smoothness, the dimension of the Zariski tangent space reaches its
minimum (along the irreducible component) at ρ. Hence, as

dimG+ dim gρ(Γ) − χ̃(O2,Adρ) = dimTZar
ρ R(Γ, G)

by Proposition 4.1, dim gρ(Γ) reaches its minimum along the irreducible component at ρ. (Here
we use that χ̃(O2,Adρ) is constant along components, because the elements of finite order
cannot be deformed.) Equivalently the dimension of the orbit by conjugation

dimG− dim gρ(Γ)

reaches its maximum at ρ. It follows (for instance from [6, Section 6.3]) that

dimX0(Γ, G) = dimR0(Γ, G)−
(
dimG− dim gρ(Γ)

)
,

which proves (ii).

Remark 4.12. It does not follow from Theorem 4.11 that the variety of characters X(Γ, G) is
smooth at the character of ρ.

To explain Remark 4.12, we point out that even if ρ is strongly regular, its orbit may be not
closed, so ρ could be smooth but its character not. For instance, the parabolic representation
of Z2 in SL(2,C) is a smooth point of R(Z2,SL(2,C)), but its character is a singular point of
X(Z2, SL(2,C)). The orbit of the parabolic representation is not closed because it accumulates
to the trivial representation (that it is not regular).

Orientable Euclidean 2-orbifolds appear as peripheral subgroups of hyperbolic three-orbifolds
of finite volume. Thus a natural representation of Γ = π1(O2) in PSL(2,C) occurs as the
holonomy of horospherical cusps, homeomorphic to O2 × [0,+∞). We are interested in the
composition of this holonomy with the principal representation τ : PSL(2,C) → G, in view of
further computations for hyperbolic three-orbifolds.

Proposition 4.13. Let O2 be a closed orientable Euclidean 2-orbifold. Consider the holonomy
hol : π1(O2) → PSL(2,C) as the horospherical section of a cusp, composed with the principal
representation τ : PSL(2,C) → G. Then dim[τ◦hol]X(O2, G) is given by Table 4. Furthermore,

the dimension of gτ◦hol(Γ) is given by Table 5.
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HHH
HHHG
O2

T 2 S2(2, 2, 2, 2) S2(3, 3, 3) S2(2, 4, 4) S2(2, 3, 6)

PSL(n,C) 2(n− 1) 2⌊n2 ⌋ 2⌊n3 ⌋ 2⌊n4 ⌋ 2⌊n6 ⌋
PSp(2m,C) 2m 2m 2⌊m3 ⌋ 2⌊m2 ⌋ 2⌊m3 ⌋

PO(2m+ 1,C) 2m 2m 2⌊m3 ⌋ 2⌊m2 ⌋ 2⌊m3 ⌋
PO(2m,C) 2m+ 2 4⌊m2 ⌋ 2⌊m3 ⌋ 2(⌊m4 ⌋+ ⌊m+1

4 ⌋) 2(⌊m6 ⌋+ ⌊m+2
6 ⌋)

G2 4 4 2 0 2
F4 8 8 4 4 4
E6 12 8 4 4 6
E7 14 14 6 4 6
E8 16 16 8 8 8

Table 4: Dimension of X(O2, G) at [τ ◦ hol], for hol : Γ → PGL(2,C) the holonomy of a
horospherical cusp and τ : PGL(2,C) → G the principal representation.

HH
HHHHg

O2

T 2 S2(2, 2, 2, 2) S2(3, 3, 3) S2(2, 4, 4) S2(2, 3, 6)

sl(n,C) n− 1 ⌊n−1
2 ⌋ ⌊n−1

3 ⌋ ⌊n−1
4 ⌋ ⌊n−1

6 ⌋
sp(2m,C) m 0 ⌊m+1

3 ⌋ 0 0
so(2m+ 1,C) m 0 ⌊m+1

3 ⌋ 0 0

so(2m,C) m δm−1
2Z ⌊m3 ⌋+ δm−1

3Z δm−1
4Z δm−1

6Z
g2 2 0 0 0 0
f4 4 0 0 0 0
e6 6 2 0 2 0
e7 7 0 1 0 0
e8 8 0 0 0 0

Table 5: Dimension of gτ◦hol(Γ) for τ ◦ hol as in Table 4, where δijZ = 1 if i ∈ jZ and δijZ = 0
otherwise.

Proof. The principal representation τ maps regular elements to regular elements. Furthermore
the parabolic holonomy of the maximal torsion-free subgroup of π1(O2) is contained in a con-
nected abelian subgroup of PGL(2,C), hence τ ◦hol|π1(O2) is strongly regular and Theorem 4.11
applies. The computation of dimension is based on the decomposition of Ad ◦ τ as a sum of
Sym2dα , according to the exponents d1, . . . , dr of G, where r is the rank of G. Let V2dα is the
space of the representation Sym2dα . We use the following three facts:

1. dimV2dα = 2dα + 1.

2. For a cyclic group of rotations Ck < PSL(2,C) of order k, with hyperbolic rotation angles
in 2π

k Z, dimV Ck
2dα

= 2⌊dαk ⌋+ 1.

3. dimV Γ
2dα

= δikZ, Γ = π1(O2), Γ0
∼= Z2 a maximal torsion-free subgroup and k = |Γ/Γ0|,

where δikZ = 1 if i ∈ kZ and 0 if i ̸∈ kZ.

From this, the computation is elementary.

Lemma 4.14. Let O2 = S2(2, 2, 2, 2), O2 = S2(3, 3, 3), O2 = S2(2, 4, 4), or O2 = S2(2, 3, 6).
There is an irreducible representation of Γ = π1(O2) in PSL(k,C) iff and only if k = |Γ/Γ0|.
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Proof. We first construct the irreducible representation of Γ in PSL(k,C), for k = |Γ/Γ0|. From
the exact sequence (24), start with a diagonal representation of Γ0, then represent the cyclic
group Γ/Γ0 as a cyclic permutation the k coordinates of Ck. (In each case, Proposition 4.2
applies and the dimension of the variety of characters is 2.)

Let ρ : Γ → PSL(k,C) be an irreducible representation. Let Fix(ρ(Γ0)) ⊂ CPk−1 denote the
fixed point set of ρ(Γ0), that is nonempty by Kolchin’s theorem. We consider the action of the
cyclic group Γ/Γ0 on Fix(ρ(Γ0)). It can be checked that any possibility other than k = |Γ/Γ0|
and that Fix(ρ(Γ0)) has k points in generic position that are permuted cyclically by Γ/Γ0 yields
a contradiction with irreducibility.

Example 4.15. We consider planar Euclidean Coxeter groups, namely generated by reflections
along a square or a Euclidean triangle with angles an integer divisor of π, denoted by:

Q(2, 2, 2, 2), T (3, 3, 3), T (2, 4, 4), T (2, 3, 6).

The respective orientation coverings are S2(2, 2, 2, 2), S2(3, 3, 3), S2(2, 4, 4) and S2(2, 3, 6). The
group Γ = π1(O) acts naturally in the Euclidean plane, and one can construct representations
in G by realizing this action on a flat of the symmetric space associated to G. On this flat, one
allows translations, but the rotational part is restricted to the action of the Weyl group, which
in its turn is a Coxeter group that acts faithfully on a maximal flat (eg the Cartan subalgebra).
Hence one can construct representations by analyzing the Weyl group.

We discuss the case of rank 2. Here the Weyl group is a dihedral group of order 2m generated
by reflections along two lines at angle π/m, the walls of the Weyl chamber. For type A2 the
angle is π/3, for B2, π/4, and for G2, π/6. This yields discrete faithful representations of the
triangle group T (3, 3, 3) in SL(3,C) and G2(C), of T (2, 4, 4) in Sp(4,C), of T (2, 3, 6) in G2(C)
and of the quadrilateral group Q(2, 2, 2, 2) in Sp(4,C) or G2(C) (or the corresponding split real
forms).

The triangle groups constructed here have a one-parameter space of deformations (homoteties
in the plane) and the quadrilateral group a 2-parameter space. Those are half the dimension of
the deformation space of their orientable cover.

4.4 Spherical 2-orbifolds

Finally, we also need to consider spherical two-orbifolds, namely finitely covered by the 2-sphere.
They are rigid, but we require a cohomological computation later in the paper.

Lemma 4.16. Let O2 be a spherical 2-orbifold and ρ : π1(O2) → G a representation. Then

dimH i(O2,Adρ) =

{
dim gρ(π1(O2)), for i = 0, 2

0, for i = 1
,

and thus
χ̃(O2,Adρ) = 2 dim gρ(π1(O2)). (25)

Proof. Let O2 be a spherical 2-orbifold. As it is finitely covered by S2, by Proposition 3.3 we
have

H i(O2,Adρ) ∼= H i(S2, g)π1(O2) ∼= H i(S2,Z)⊗ gρ(π1(O2)).

Hence the lemma follows.
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Remark 4.17. For a spherical orbifold, the component of R(O2, G) that contains ρ is an orbit
by conjugation of dimension

dimG− dim gρ(π1(O2)).

In particular, by (25) it is a smooth variety of dimension

−χ̃(O2,Adρ) + dimG+ dim gρ(π1(O2)).

5 Computing dimensions of the Hitchin component

Assume thatO2 is hyperbolic, namely that the standard orbifold-Euler characteristic is negative,
χ(O2) < 0. For G a simple complex adjoint group, the principal representation τ : PSL(2,C) →
G is constructed from Jacobson-Mozorov theorem, and it restricts to τ : PGL(2,R) → GR, for
GR a (non connected) split real form of G. The Hitchin component

Hit(O2, GR)

is the connected component of Rgood(O2, GR) that contains the composition of τ with the
holonomy representation of any Fuchsian structure on O2. Hitchin componnents for surface
have been intensively studied. here just mention that Alessandrini, Lee, and Schaffhauser [1]
have introduced them for (perhaps non-orientable) 2-orbifolds; furthermore they have shown
that they are homeomorphic to balls, as for surfaces.

The purpose of this section is to provide formulas for the dimension of the Hitchin component
of orbifolds, using the tools of Section 4. Many of the formulas are equivalent to the ones
already computed in [1], but the approach and presentation of results is different. In particular
we give some applications in Proposition 5.10 and Corollary 5.15 to the dimension growth of
some families of Hitchin representations. Long and Thistlethwaite in [23] have also computed
the dimension of Hitchin components in PGL(n,R) for turnovers (2-spheres with three cone
points).

Remark 5.1. The representation τ ◦ hol is good, Remark 2.4, so the real dimension of the
Hitchin component of O2 in GR is precisely the complex dimension of X(O2, G) at the character
of τ ◦ hol, namely −χ̃(O2,Adρ); we often use:

dimRHit(O2, GR) = dimC,[τ◦hol]X(O2, G) = −χ̃(O2,Adρ).

Remark 5.2. By Corollary 3.5, for O2 orientable dimRHit(O2, GR) is even.

Remark 5.3. For O2 closed and orientable, Atiyah-Bott-Goldmann defines a symplectic struc-
ture on Hit(O2, GR), Proposition 4.4.

The following is Proposition 1.5 from the introduction:

Proposition 5.4. For O2 closed and non-orientable, with orientation covering Õ2, via the

restriction map Hit(O2, GR) embeds in Hit(Õ2, GR) as a Lagrangian submanifold.

Proof. By Proposition 4.5 the restriction map yields a Lagrangian immersion from Hit(O2, GR)

to Hit(Õ2, GR). Furthermore, using the irreducibility of Hitchin representations, one can prove
that this restriction map is injective (see for instance Lemma 2.9 and Proposition 2.10 in ??).
The restriction map to a finite index subgroup is proper, therefore it is an embedding (or one
can quote [1, Corollary 2.13])
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5.1 Hitchin component for PGL(n,R)

.
Following Long and Thistlethwaite [23], for n, k positive integers we set

σ(n, k) = qn+ (q + 1)r,

where q and r are nonnegative integers such that n = q k + r (the quotient and reminder of
integer division).

Proposition 5.5. Let x ∈ O2 and τ = Symn−1. For ρ = τ ◦ hol : π1(O2) → PGL(n,R),

dim gρ(Stab(x)) =



σ(n, k)− 1 if x is a cone point with Stab(x) ∼= Ck,

(σ(n, k)− 1)/2 if x is a corner with Stab(x) ∼= D2k and n is odd,

(σ(n, k)− 2)/2 if x is a corner with Stab(x) ∼= D2k and n is even,

(n2 − 1)/2 if x is a mirror point and n is odd,

(n2 − 2)/2 if x is a mirror point and n is even.

Proof. For an elliptic element γ ∈ Γ of order k, we may compute dim gρ(γ) using that, up to
conjugacy:

ρ(γ) = ±Symn−1

(
e

πi
k 0

0 e−
πi
k

)
= ±diag(e

πi
k
(n−1), e

πi
k
(n−3), . . . , e

πi
k
(n−1)).

As n = qk + r, among the k eigenvalues of this matrix, (k − r) eigenvalues have multiplicity q
and r eigenvalues have multiplicity q + 1. Thus

dim gρ(γ) = (k − r)q2 + r(q + 1)2 − 1 = qn+ (q + 1)r − 1 = σ(n, k)− 1.

This computation yields the formula for cone points and mirror points. For corner points, apply
Corollary 4.9 and the previous computations.

We then have:

Proposition 5.6. Let O2 be a connected hyperbolic 2-orbifold, with underlying surface |O2|.
Then

dimHit(O2,PGL(n,R)) = −(n2 − 1)χ(|O2|) +
cp∑
i=1

(n2 − σ(n, ki)) +

cr∑
j=1

n2 − σ(n, lj)

2
+ b ⌊n

2

2
⌋,

where the cone points have order k1, k2, . . . , kcp, the corner reflectors have order 2l1, 2l2, . . . , 2lcr
and b is the number of components of ∂O2 homeomorphic to R/D∞, an interval with mirror
boundary.

Proof. We apply Proposition 4.2 to get that the dimension of the Hitchin component is−χ(O2,Adρ),
which, by Proposition 5.5, equals:

−(n2 − 1)χ(O2 \Σ)−
cp∑
i=1

(σ(n, ki)− 1)+

{
−
∑cr

j=1
σ(n,lj)−2

2 + (me−mp)n
2−2
2 if n even

−
∑cr

j=1
σ(n,lj)−1

2 + (me−mp)n
2−1
2 if n odd

(26)
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where me is the number of mirror edges (joining corner reflectors or mirror points in the bound-
ary), and mp the number of boundary points that are also mirrors. Next we use the formulas
(from additivity of the Euler characteristic):

χ(|O2|) =χ(O2 \ Σ) + cp+ cr +mp−me,

0 = χ(∂|O2|) = −me− b+ cr +mp,

that are equivalent to

−χ(O2 \ Σ) = − χ(|O2|) + cp+ b, (27)

me−mp = cr − b. (28)

Using (27) and (28), (26) becomes:

−(n2 − 1)χ(|O2|) +
cp∑
i=1

(n2 − σ(n, ki)) +
cr∑
j=1

n2 − σ(n, lj)

2
+

{
b n2

2 if n even

b n2−1
2 if n odd

which proves the proposition.

Example 5.7 (Proved in [23] when cp = 3). Let S2(k1, . . . , kcp) be a sphere with cp ≥ 3 cone
points of order k1, . . . , kcp respectively (and satisfying 1

k1
+ 1

k2
+ 1

k3
< 1 for cp = 3). Then, the

dimension of the Hitchin component of S2(k1, . . . , kcp) in PGL(n,R) is

n2(cp− 2) + 2−
cp∑
i=1

σ(n, ki).

Consider now P (k1, . . . , kcr) the orbifold generated by reflections on a hyperbolic polygon with
angles π

k1
, . . . , π

kcr
. In particular S2(k1, . . . , kcr) is its orientation covering and therefore the

dimension of the Hitchin component of P (k1, . . . , kcr) in PGL(n,R) is

n2(cr − 2) + 2−
∑cr

i=1 σ(n, ki)

2
.

Proposition 5.8. Every component of Rgood(O2,PGL(n,R)) that contains representations that
are boundary regular has dimension at most the dimension of the Hitchin component.

Proof. Assume first that ∂O2 = ∅. By Corollary 4.3, we may assume that O2 is orientable,
hence the singular locus is a finite union of cone points, that have cyclic stabilizers. We claim
that for an elliptic element γ, dim(gρ(γ)) is minimized for ρ in the Hitchin component. Assuming
the claim, χ̃(O2, ρ) is minimized for ρ in the Hitchin component, and apply Proposition 4.2.
To prove the claim, since ρ(γ) has order k, its eigenvalues have multiplicities {n1, . . . , nk}, with
n1 + · · ·+ nk = n. Therefore dim(gρ(γ)) = n2

1 + · · ·+ n2
k − 1. This function is minimized when

|ni − nj | ≤ 1, because if we replace n1 by n1 + 1 and n2 by n2 − 1, then n2
1 + n2

2 increases
by 2(n1 − n2 + 1). As, for a rotation of angle 2π/k, Symn−1(ρ(γ)) satisfies |ni − nj | ≤ 1, it
minimizes the required dimension.

When ∂O2 ̸= ∅, in the orientable case we apply Proposition 4.6, knowing that by ori-
entability ∂O2 is a union of circles and χ̃(∂O2,Adρ) = 0. In the non-orientable case we apply
Proposition 4.7 and use the claim we have proved, that for an elliptic element γ, dim(gρ(γ)) is
minimized for ρ in the Hitchin component.

Example 5.9. In Table 6 we compute the dimension of Hit(S2(3, 3, 4)PSL(n,R)). Notice that
the difference with n2/12 is bounded, this is a particular case of the next proposition.
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n mod 12 dimHit(S2(3, 3, 4),PGL(n,R))
0 n2/12 + 2

±1,±5 (n2 − 1)/12
±2 (n2 − 4)/12
±3 (n2 + 15)/12
±4 (n2 + 8)/12
6 n2/12 + 1

Table 6: Dimension of the Hitchin component of S2(3, 3, 4). The dimension for the group
generated by reflections on a triangle of angles (π3 ,

π
3 ,

π
4 ) is half of it.

Proposition 5.10. There exists a uniform constant C(O2) depending only on O2 such that∣∣dimHit(O2,PGL(n,R)) + χ(O2)(n2 − 1)
∣∣ ≤ C(O2).

Here 0 > χ(O2) ∈ Q denotes the (untwisted) orbifold-Euler characteristic.

Proof. Let ρ = τ ◦ hol. Assume first that O2 is orientable. If γ is an elliptic element of order k,

we shall prove that
∣∣∣n2−1

k − dim gρ(γ)
∣∣∣ is bounded uniformly on n. Namely, if n = kq + r, then

dim gρ(γ) = kq2 + 2rq + r − 1. On the other hand n2 = k2q2 + 2rkq + r2, thus:∣∣∣∣n2 − 1

k
− dim gρ(γ)

∣∣∣∣ = ∣∣∣∣r2 − 1

k
− r + 1

∣∣∣∣ = (r − 1)

(
1− r + 1

k

)
≤ k.

In the orientable case, as all stabilizers are cyclic this estimate tells that the difference χ̃(O2,Adρ)−
χ(O2)(n2 − 1) is uniformly bounded, for ρ = Symn−1 ◦ hol. With Proposition 4.2, this yields
the proposition for O2 orientable.

In the non-orientable case, consider Õ2 → O2 the orientation cover. By Proposition 4.7∣∣∣∣dimHit(O2,PGL(n,R))− 1

2
dimHit(Õ2,PGL(n,R))

∣∣∣∣ ≤ 1

2

(
dimG− 2 dim gρ(C2)

)
b(O2)

where ρ(C2) denotes the image of any cyclic stabilizer of order 2 and b(O2) is the number of
components of ∂O2 homeomorphic to R/D∞ = [[0, 1]] (an interval with mirror end-points). As

1

2

(
dimG− 2 dim gρ(C2)

)
=

n2 − 1

2
− (σ(n, 2)− 1) =

{
1/2 for even n

0 for odd n

the proposition follows.

5.2 Exponents of a simple Lie algebra

Recall from Proposition 5.5 that the exponents d1, . . . , dr ∈ N of the Lie algebra g are defined
by the equation

Ad ◦ τ =
r⊕

α=1

Sym2dα ,

Equation (2), where τ is the principal representation. Here r = rank g and
∑r

α=1(2dα + 1) =
dim g.
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Lemma 5.11. For ρ ∈ Hit(O2, G) and x ∈ ΣO2 a point in the branching locus with nontrivial
stabilizer Γx:

dim gρ(Γx) =

{∑r
α=1(2⌊

dα
k ⌋+ 1) if Γx

∼= Ck(∑r
α=1⌊

dα
k ⌋
)
+#{dα | dα is even} if Γx

∼= D2k

where Ck is cyclic of order k, and D2k dihedral of order 2k, r = rank(g), and {d1, . . . , dr} are
the exponents of the Lie algebra.

Proof. For a Fuchsian representation, the image of the cyclic group Ck is generated by a matrix
conjugate to

±

(
e

πi
k 0

0 e−
πi
k

)
. (29)

Using (2), the contribution of the α-th exponent to dim gρ(Γx) is the multiplicity of eigen-
value 1 in the 2dα-th symmetric power of (29). Namely, the number of appearances of 1 in

{e
2πi
k

dα , e
2πi
k

(dα−1), . . . , e
2πi
k

(−dα)} which is precisely 2⌊dαk ⌋+ 1.
For the dihedral group, Corollary 4.9, the cyclic case, and (3) yield that the dimension is

dim gρ(Dk) = (2 dim gρ(C2) + dim gρ(Ck) − dim g)/2 =

r∑
α=1

(2⌊dα
2
⌋+ 1 + ⌊dα

k
⌋ − dα)

and 2⌊dα2 ⌋+ 1− dα =

{
1 for dα even,

0 for dα odd.

Lemma 5.11 allows to give a new proof of Proposition 5.5.
As the exponents for sp(2m) and s0(m,m + 1) are the same, (1, 3, 5 · · · , 2m − 1), by

Lemma 5.11 we have:

Remark 5.12. Let ρ1 ∈ Hit(O2,PSp±(2m)) and ρ2 ∈ Hit(O2,PO(m+1,m)). For any x ∈ O2,

dim gρ1(Γx) = dim gρ2(Γx).

Another consequence of Lemma 5.11 is the following.

Corollary 5.13 ([1]). Let O2 be a connected hyperbolic 2-orbifold. If {d1, . . . , drankG} are the
exponents of G. Then the dimension of Hit(O2, G) is

−χ(|O2|) dimG+
rankG∑
α=1

 cp∑
i=1

2(dα − ⌊dα
ki

⌋) +
cr∑
j=1

(dα − ⌊dα
lj
⌋) + 2b ⌊dα + 1

2
⌋


where the cone points have order k1, k2, . . . , kcp, the corner reflectors have order 2l1, 2l2, . . . , 2lcr,
and b is the number of components of ∂O2 homeomorphic to R/D∞, an interval with mirror
boundary.

Proof. We follow the same scheme as the proof of Proposition 5.6. Set δijZ = 1 if i ∈ jZ and

δijZ = 0 otherwise. Firstly we apply Proposition 4.2 and Lemma 5.11 to get that the dimension

of the Hitchin component is −χ(O2,Adρ), which equals:

−χ(O \ Σ) dimG+
rankG∑
α=1

−
cp∑
i=1

(2⌊dα
ki

⌋+ 1)−
cr∑
j=1

(⌊dα
lj
⌋+ δdα2Z) + (me−mp)(2⌊dα

2
⌋+ 1)


where me is the number of mirror edges (joining corner reflectors or mirror points in the bound-
ary), and mp the number of boundary points that are also mirrors, and δdα2Z = 1 if dα is even,
and 0 if dα is odd. Then the corollary follows from (27) and (28).
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This computation of dimensions is contained in [1, Theorem 1.2], where it is proved that
the Hitchin component is a cell.

For exceptional groups the dimension can be directly computed from this corollary and the
exponents in Table 2. For instance, for (the real split form of the adjoint group) G2, as the
indices are 1 and 5 the dimension of the Hitchin component is

−14χ(|O2|) + 8cp2 + 10cp3,4,5 + 12cp≥6 + 4cr4 + 5cr6,8,20 + 6cr≥12 + 8b,

where cpi is the number of cone points with stabilizer Ci and cr2i of corner reflectors with
stabilizer D2i.

It can also be checked that for G2 and F4 that dimension of the variety of characters is
maximized by the Hitchin component, but this is a rather tedious computation.

5.3 Hitchin component for PSp±(2m) and PO(m,m+ 1)

For both G = PSp±(2m) and G = PO(m,m+1), the principal representation τ : PGL(2,R) →
G is the restriction of Symn−1 : PGL(2,R) → PGL(n,R), with n = 2m and n = 2m + 1,
respectively. Since SL(2,R) preserves the skew bilinear form

J =

(
0 1
−1 0

)
,

Symn−1(SL(2,R)) preserves the symmetric power of J , which is symmetric or skew, according to
the parity. Similarly one easily argues that Symn−1(SL(2,R)) is contained in either PSp±(2m)
or PO(m,m+ 1), according to wheter n = 2m or n = 2m+ 1.

Write
2m = kq + r

with q,m ∈ Z, q, r ≥ 0 and r < k. Recall that:

σ(2m, k) = 2mq + r(q + 1).

Proposition 5.14. Let ρ ∈ Hit(O2, G), for G = PSp±(2m) or PO(m,m+ 1) and let x ∈ O2.

1. If x is a cone point with Stab(x) ∼= Ck then

dim gρ(Ck) =

{
σ(2m,k)

2 for k even,
σ(2m,k)

2 + ⌊ q+1
2 ⌋ for k odd.

2. If x is a mirror point with Stab(x) ∼= C2 then dim gρ(C2) = m2.

3. If x is a corner reflector with Stab(x) ∼= D2k then

dim gρ(Dk) =

{
σ(2m,k)

4 − m
2 for k even,

σ(2m,k)
4 − m

2 + 1
2⌊

q+1
2 ⌋ for k odd.

Proof. By Remark 5.12, it is sufficient to make the computations for G = PSp(2m,C). The
bilinear form Sym2m−1(J) has matrix

0 · · · 0 0 1
0 · · · 0 −1 0
0 · · · 1 0 0
...

. . .
...

...
...

−1 · · · 0 0 0

 .
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thus
sp(2m) = {(ai,j ∈ M2m,2m(C) | ai,j = (−1)i+j+1a2m+1−j,2m+1−i}.

From this expression, as a diagonal matrix D ∈ PSp(2m,C) is

D = diag(λ1, . . . , λm, λ−1
m , . . . , λ−1

1 ),

we have that

dim(sp(2m)D) =
1

2
dim(gl(2m)D) + dim(adD)

where ad = {(ai,j ∈ M2m,2m(C) | aij = 0 if i + j ̸= 2m + 1} ⊂ sp(2m) is the anti-diagonal,
namely the subspace of matrices 

0 · · · 0 0 ∗
0 · · · 0 ∗ 0
0 · · · ∗ 0 0
...

. . .
...

...
...

∗ · · · 0 0 0

 .

A rotation of angle 2π
k in PGL(2,C) is conjugate to ±

(
e

πi
k 0

0 e−
πi
k

)
and

D = Sym2m−1

(
±

(
e

πi
k 0

0 e−
πi
k

))
= ±diag(e

πi
k
(2m−1), e

πi
k
(2m−3), . . . , e

πi
k , e−

πi
k , . . . , e−

πi
k
(2m−1)).

Therefore, the (adjoint) action of D, on the antidiagonal ad has eigenvalues

{e
2πi
k

(2m−1), e
2πi
k

(2m−3), . . . , e
2πi
k , e−

2πi
k , . . . , e−

2πi
k

(2m−1)}.

Thus, dim adD is the number appearances of 1 in this list of eigenvalues:

dim adD =

{
0 for k even,

2⌊2m−1+k
2k ⌋ = 2⌊ q+1

2 ⌋ for k odd.

On the other hand, gl(2m)D = 2mq + r(q + 1) (because D has r eigenvalues with multiplicity
q + 1 and k − r eigenvalues with multiplicity q), what concludes item 1.

Item 2 is a particular case of item 1, and item 3 follows from Corollary 4.9 and the previous
cases.

If we look at the growth of dimHit(O2,PSp±(2m)), the difference

|dimHit(O2,PSp±(2m)) + χ(O2) dim(PSp±(2m))|

may be unbounded because of cyclic stabilizers of odd order (and dihedral stabilizers of order
a multiple of 4). But instead we have (already proved in [1]):

Corollary 5.15 ([1]). For a compact hyperbolic two orbifold O2:

lim
m→∞

dimHit(O2,PSp±(2m))

dim(PSp±(2m))
= lim

m→∞

dimHit(O2,PO(m+ 1,m))

dim(PO(m+ 1,m))
= −χ(O2).

28



Proof. For every stabilizer Stab(x) we check from Proposition 5.14 that

lim
m→∞

dim gρ(Stab(x))

2m2
=

1

| Stab(x)|
,

because 2m/q → k. The corollary follows using Proposition 4.2.

Proposition 5.16. Every component of Rgood(O2,PSp±(2m)) that contains representations
that are boundary regular has dimension at most the dimension of the Hitchin component.

Proof. We use the same argument as in the proof of Proposition 5.8. The same discussion applies
here, the difference being in the proof that the Hitchin component minimizes the dimension of
the centralizer of elliptic elements of given order k. We follow the description in the proof of
Proposition 5.14, in particular a diagonal element in PSp(2m,C) is

D = diag(λ1, λ2, . . . , λm, λ−1
m , . . . , λ−1

2 , λ−1
1 ).

Hence {± Id} is the center of Sp(2m,C). To compute dimSp(2m,C)D, we distinguish the case
k even from the case k odd.

For k even we assume first that λk
i = −1, then there are no elements in the antidiagonal ad

fixed by D. Therefore dimSp(2m,C)D = 1
2 dim gl(2m,C)D. Hence if ni is the multiplicity of

λi plus the multiplicity of λ−1
i (in this notation we chose half of the eigenvalues {λ1, . . . , λ k

2
}

disjoint form their inverses):

dimSp(2m,C)D = n2
1 + n2

2 + · · ·+ n2
k.

As seen in the proof of Proposition 5.8 this is minimized when |ni − nj | ≤ 1. Next assume
that k is even and that λk

i = 1. Then ±1 are possible eigenvalues of D, and they yield fixed
elements in the antidiagonal. Let n0 be the multiplicity of 1, n1 the multiplicity of −1, and let
for i = 2, . . . , k2 the addition of the multiplicities of each eigenvalue and its inverse. Then

dimSp(2m,C)D = 2n2
0 + n0 + 2n2

1 + n1 + n2
2 + · · ·+ n2

k

An elementary computation shows that 2n2
0 + n0 + 2n2

1 + n1 ≥ (n0 + n1)
2 (with equality iff

n0 = n1 = 0), therefore the dimension of the invariant subspace is higher than when λk
i = −1.

For k odd, up to changing D by −D we may assume that λk
i = 1 (and −1 is not an

eigenvalue). We count again multiplicities: we take n0 the multiplicity of 1. We group the
remaining eigenvalues in pairs, each eigenvalue with its inverse, and we add the multiplicities
of each pair to get n1, . . . , n(k−1)/2. Then a computation yields

dimSp(2m,C)D = 2n2
0 + n0 + n2

1 + n2
2 + · · ·+ n2

(k−1)/2.

To minimize it, we notice that when we replace n0 by n0+1 and n1 by n1−1 then this quantity
increases by 2(2n0 − n1 + 2). Furthermore, if we replace n0 by n0 − 1 and n1 by n1 + 1 then
it increases by 2(−2n0 + n1 + 1). Combined with the previous computations, this quantity is
minimized when

2n0 − 1 ≤ ni ≤ 2n0 + 2 and |ni − nj | ≤ 1, for 1 ≤ i, j ≤ (k − 1)/2.

This is realized by the symmetric power of a fuchsian element of order k.

Remark 5.17. Proposition 5.16 also holds true for PO(m+1,m) with a similar proof. However
the argument does not work for PO(m+ 1,m+ 1).
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6 Representations of 3-orbifolds

We restrict to orientable 3-orbifolds. In particular their singular locus is a union of circles,
proper segments, and trivalent graphs, where the isotropy groups or stabilizers of edges are
cyclic, and the isotropy groups or stabilizers of trivalent vertices are non-cyclic finite subgroups
of SO(3) (hence dihedral, tetrahedral, octahedral or icosahedral). See Figure 6.

n

Cn

2

n n

D2n

2

3 3

T12

2

3 4

O24

2

3 5

I60

Figure 6: Local models for the branching locus, with the corresponding isotropy groups: the
cyclic group Cn, the dihedral group D2n, the tetrahedral group T12, the octahedral group O24,
and the icosahedral group I60. The subindex denotes the order of the group. The label on an
edge denotes the order of the cyclic isotropy group of points in the interior of the edge.

6.1 Geometric representations

Let O3 denote a hyperbolic 3-orbifold of finite type, possibly of infinite volume. In particular
it has a compactification O3 that is an orbifold with boundary. Let

∂O3 = ∂1O3 ⊔ · · · ⊔ ∂kO3

denote its decomposition in connected components.
Consider the composition of the holonomy hol : π1(O3) → PSL(2,C) with the principal

representation τ : PSL(2,C) → G. The following is part of Theorem 1.1.

Theorem 6.1. The character of ρ = τ ◦ hol is a smooth point of X(O3, G). Furthermore

dim[ρ]X(O3, G) =− 1

2

k∑
i=1

χ̃(∂iO3,Adρ) +
k∑

i=1

dim gρ(π1(∂iO3))

=
1

2

k∑
i=1

dim[ρ|∂i]X(∂iO3, G) =
1

2
dim[ρ|∂]X(∂O3, G).

Proof. We follow the proof for the manifold case in [26] for representations in PSL(n,C), or
[20] in PSL(2,C). In particular we use Selberg’s lemma: there exists O3

0 → O3 a finite regular
covering which is a manifold.

The first step is to prove that the inclusion of ∂O3 in O3 induces an injection in cohomology

H1(O3,Adρ) ↪→ H1(∂O3,Adρ).

WhenO3 is a manifold, then this is proved in [26] using a theorem of vanishing in L2-cohomology
(as, using de Rham cohomology and a metric on the bundle and differential forms, every element
in the kernel is represented by an L2-form), by using the decomposition (2) of Ad ◦ τ . For
orbifolds in general, using Selberg’s lemma, the inclusion follows from the manifold case and
Proposition 3.3.
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The next step is to prove that

dimH1(O3,Adρ) =
1

2
dimH1(∂O3,Adρ).

As in the manifold case, this follows from Poincaré duality, Proposition 3.4, and the long
exact sequence of the pair (O3, ∂O3). Namely, if the morphisms in the long exact sequence in
cohomology are

H1(O3,Adρ)
i∗→ H1(∂O3,Adρ)

β→ H2(O3, ∂O3; Adρ)

then
⟨i∗(x), y⟩

∂O3 = ⟨x, β(y)⟩O3 ∀x ∈ H1(O3,Adρ), ∀y ∈ H1(∂O3,Adρ),

where ⟨, ⟩ denotes the perfect pairing in Proposition 3.4, and the pairing on ∂O3 is the sum of
pairings on each connected component. As the pairings are nondegenerate and kerβ = im i∗,
the claim on the dimension follows from a linear algebra argument.

Finally, as H1(O3,Adρ) ∼= H1(Γ,Adρ) by Proposition 3.4, with Γ = π1(O3), we use Gold-
man’s obstruction theory to integrability to prove that [ρ] is a smooth point of the character
variety of local dimension H1(O3,Adρ). For Γ0 < Γ a torsion-free subgroup, any infinitesimal
deformation in H1(Γ,Adρ) yields a Γ/Γ0-equivariant infinitesimal deformation of Γ0, and we
may apply the same argument as in Theorem 4.11. Alternatively as X(Γ0, G) is analytically
smooth at the character of the restriction of ρ, by Cartan’s linearization [4, Lemma 1] there exist
local analytic coordinates that linearize the action of Γ/Γ0 in a neighborhood of the character
of ρ|Γ0 in X(Γ0, G). Hence the fixed point set of Γ/Γ0 is a smooth subvariety and, as ρ|Γ0 is
good this fixed point set can be locally identified with X(Γ, G).

Definition 6.2. The component of Theorem 6.1 is called the canonical or distinguished com-
ponent.

To complete the proof of Theorem 1.1 we need to show thatX(O3, G) → X(∂O3, G) is locally
an injection. This does not follow directly from the injection H1(O3,Adρ) → H1(∂O3,Adρ), as
X(∂O3, G) can be non smooth because of rank 2 cusps. (Rank one cusps are part of components
with negative Euler characteristic and we discuss only rank 2 cusps.) Consider a nonsingular
(manifold) cusp, T 2 × [0,+∞) equipped with the warped product metric e−2tgT 2 + dt2, where
gT 2 is a flat metric on the torus and t ∈ [0,+∞) is the Busemann function coordinate. Set
ρ = τ ◦ hol : π1(T

2) → G. Using de Rham cohomology, we may talk about L2-forms on
T 2 × [0,+∞).

Lemma 6.3. For any non-contractible loop l ⊂ T 2, the restriction induces a surjection

H1(T 2 × [0,+∞),Adρ) → H1(l,Adρ)

whose kernel consists of the cohomology classes represented by L2-forms.

Proof. Since Ad ◦ τ = ⊕α Sym
2dα by (2) and Ad ◦ Symn−1 = ⊕n−1

i=1 Sym2i, it suffices to prove
the lemma for τ = Symn−1 and g = sl(n,C). In [25] precisely the situation when τ = Symn−1

is discussed. In particular by [25, Lemma 3.3] the image of the map induced by the inclusion

sl(n,C)π1(T 2) ⊂ sl(n,C),

H1(T 2, sl(n,C)π1(T 2)) → H1(T 2, sl(n,C)Adρ) (30)

is represented by L2-forms. (Here sl(n,C)Adρ denotes the coefficients on the Lie algebra, usually

just denoted by Adρ, whilst on the invariant subspace sl(n,C)π1(T 2) the action is trivial by
construction.) Furthermore, either by [25, Lemma 3.4] or by a straightforward computation,

H1(T 2, sl(n,C)Adρ) → H1(l, sl(n,C)Adρ)
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is a surjection with kernel precisely the image of (30).

Remark 6.4. Let γ ∈ π1(T
2) be an element represented by the loop l as in Lemma 6.3. We

have a natural isomorphism:

H1(l,Adρ) ∼= H0(l,Adρ) ∼= H0(⟨γ⟩,Adρ) ∼= gρ(γ) = gρ(π1(T 2))

Let G̃ be the universal covering of G and let χ1, . . . , χr denote its fundamental characters
(the characters of the fundamental representations). E.g. for G̃ = SL(n,C) the fundamental
characters are the symmetric functions on the eigenvalues. By a theorem of Steinberg, they
define an isomorphism:

(χ1, . . . , χr) : G̃
reg/G ∼= Cr, (31)

where G̃reg denotes the set of regular elements in G̃. When the group G is not simply connected,
the characters (χ1, . . . , χr) still define local functions in a neighborhood of ρ(γ) in G, where
γ ∈ π1(T

2) is represented by the loop l. We identify the variety of representations of the cyclic
group ⟨γ⟩ ∼= Z with G via the image of γ. In particular the differential form dχi : g → C may
be viewed as a linear map

dχi : H
1(⟨γ⟩,Adρ) ∼= gρ(γ) → C,

because the characters χi are constant on orbits by conjugation (hence the characters are trivial
on coboundaries). This uses the natural identification between H1(⟨γ⟩,Adρ) and the space of
coinvariants gρ(γ) in Remark 6.4.

Lemma 6.5. (dχ1, . . . , dχr) : H
1(⟨γ⟩,Adρ) → Cr is an isomorphism.

Proof. We follow the proof of [17, Corollary 19]. Steinberg has shown that the map (31) has
a smooth section, Cr → G̃reg [30]. In particular (dχ1, . . . , dχr) : g → Cr is surjective and so is
the induced map (dχ1, . . . , dχr) : H1(⟨γ⟩,Adρ) ∼= gρ(γ) → Cr. Hence the lemma follows from
equality of dimensions.

Consider ∂hypO3 the union of components of ∂O3 that have negative Euler characteristic.
In particular, for a manifold O3 = M3,

∂M3 = ∂hypM3 ⊔ T 2
1 ⊔ · · · ⊔ T 2

k

where k is the number of rank-2 cusps of M3.

Proposition 6.6. When M3 = O3 is a manifold, then the restriction to the boundary and the
characters of peripheral curves of cusps yield a local embedding

X(M3, G) → X(∂hypM3, G)× Crk,

where k is the number of rank-2 cusps and the coordinates in Crk are (locally defined) funda-
mental characters of chosen peripheral elements, one for each cusp.

Proof. The proof of Theorem 6.1 is based in the vanishing of L2-cohomology, here we use the
fact that a form is L2 on M3 if it is so in the restriction to each end. Hence using Lemmas 6.3
and 6.5 the kernel of the differential of the map of the proposition is represented by L2-forms,
hence trivial.

The following concludes the proof of Theorem 1.1.

Corollary 6.7. The restriction to the boundary yields a local embedding X(O3, G) → X(∂O3, G).
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Proof. In the manifold case, we use that the injection in Proposition 6.6 factors through the
restriction to X(∂M3, G):

X(M3, G) → X(∂M3, G) → X(∂hypM3, G)× Crk,

Thus the map induced by restriction X(M3, G) → X(∂M3, G) must be locally an injection.
For an orbifold O3, consider a finite manifold covering O3

0 → O3, we have the commutative
diagram:

X(O3
0, G) −−−−→ X(∂O3

0, G)x x
X(O3, G) −−−−→ X(∂O3, G)

As O3
0 is a manifold, we have alreay shown that X(O3

0, G) → X(∂O3
0, G) is locally an inclusion.

Furthermore, as the restriction of ρ to O3
0 is good, the restriction map X(O3, G) → X(O3

0, G)
is also locally injective, and we are done from the commutativity of the diagram.

A particular case of Proposition 6.6 is the following corollary (proved for representations of
manifold groups in SL(2,C) in [3, 20], and for representations of manifold groups in SL(n,C)
in [25]).

Corollary 6.8. When M3 is a manifold whose interior has finite volume, chose γ1, . . . , γk a
nontrivial peripheral element for each cusp. Let χ1, . . . , χr denote the fundamental characters
of G̃. Then

(χ1,γ1 , . . . , χr,γk) : U ⊂ X(M3, G) → Ckr.

define a local homeomorphism for a neighborhood U ⊂ X(M3, G) of [τ ◦ hol].

Recall that the adjoint or Sym2 gives an isomorphism PSL(2,C) ∼= SO(3,C). By an argu-
ment on dimensions (see Table 4):

Corollary 6.9. Let O3 be a compact orientable three-orbifold, with hyperbolic interior of finite
volume. If all components of ∂O3 are homeomorphic to S2(2, 2, 2, 2), S2(2, 4, 4) or S2(2, 3, 6),
then

X0(O3,SL(3,C)) ∼= X0(O3, SO(3,C)) ∼= X0(O3,PSL(2,C)),

where X0 denotes the distinguished component.

6.2 Lower bound of the dimension

In this subsection we provide a lower bound à la Thurston (for PSL(2,C)) or à la Falbel-Guilloux
(for general G), in both cases for manifolds. For a compact three orbifold O3, let

∂O3 = ∂1O3 ⊔ · · · ⊔ ∂kO3

denote the decomposition in connected components of its boundary.

Theorem 6.10. Let G be semi-simple C-algebraic Lie group, O3 a compact, orientable very
good orbifold. Let ρ : π1(O3) → G be a good representation. Assume that:

(a) if ∂iO3 is a hyperbolic boundary component, then the centralizer of its image is zero-
dimensional;

(b) if ∂iO3 is a Euclidean boundary component, then the restriction ρ|π1(O3) is strongly regular.
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Then

dim[ρ]X0(Γ, G) ≥ 1

2

k∑
i=1

dim[ρ|∂i]X0(∂iO3, G)

= −1

2

k∑
i=1

χ̃(∂iO3,Adρ) +
k∑

i=1

dim gρ(π1(∂iO3))).

Proof. The branching locus Σ of the compact orbifold O3 is a trivalent graph. Chose a finite
subset Σ0 ⊂ Σ as follows: for each component of Σ that is a circle chose precisely one point,
and chose also the trivalent vertices of Σ. So Σ0 has the smallest cardinality so that Σ \ Σ0 is
a disjoint union of edges (open or not, as they can meet ∂O3). Consider the orbifold

O0 = O3 \ N (Σ0),

ie. remove a tubular neighborhood for each point in Σ0. The branching locus of O0 is a union of
(proper) edges (it contains no vertices nor circles). The boundary components of O0 are either
the boundary components of O or the boundary of a neighborhood of a point in Σ0 (spherical).
For each Euclidean or spherical boundary component ∂iO0, chose ki disjoint embedded loops
γi,1, . . . , γi,ki in O0 based at ∂iO0 so that

gρ(π1(∂O0)) ∩ gρ(γi,1) ∩ · · · ∩ gρ(γi,ki ) = 0.

Namely, the centralizer in g of the image of the group generated by π1(∂iO0) and γi,1, . . . , γi,ki
is trivial. The next step in the construction is to remove a tubular neighborhood of the γi,j :

O1 = O0 \
⋃
i,j

N (γi,j).

Finally remove a tubular neighborhood of the branching locus of O1 (which is a union of edges):

O2 = O1 \ N (ΣO1).

In particular O2 is a manifold.
The connected 3-manifold with non-empty boundary O2 retracts to a 2-dimensional CW-

complex with a single 0-cell. This gives a presentation of π1(O2) from this CW-complex (1-cells
are generators and 2-cells relations). Each generator contributes with a copy of G in the variety
of representations, and each relation decreases at most dimG the dimension; this gives the
standard bound:

dimR(O2, G) ≥ (1− χ(O2)) dimG =

(
1− χ(∂O2)

2

)
dimG

= −1

2
χ̃(∂O2,Adρ)) + dimG. (32)

Next we compute lower bounds for the orbifolds O1, O0, and finally for O. We shall use the
following key lemma of Falbel and Guilloux, in fact it is a local version of Proposition 1 in [8]:

Lemma 6.11 ([8]). Let W be a smooth complex (analytic) variety and W ′ ⊂ W a smooth
subvariety. Let X be a complex variety with an analytic map f : X → W . For p ∈ X there
exists a neighborhood U ⊂ X of p such that

codimp(f
−1(W ′) ∩ U,X) ≤ codimf(p)(W

′,W ).
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Proof. By the implicit function theorem, there exists a neighborhood V ⊂ W of f(p) and an
analytic map F : V → Ck such that V ∩W ′ = F−1(0), where k = codimf(p)(W

′,W ). Then, for
a neighborhood of p, U ⊂ f−1(V ) ⊂ X,

f−1(W ′) ∩ U = (F ◦ f)−1(0) ∩ U,

and the estimate follows, because f−1(W ′) ∩ U is a fiber of a map to Ck.

To get O1 from O2, we add the edges of ΣO1 . Topologically, we add 2-handles whose co-core
is an edge of ΣO1 . For each singular edge e of ΣO1 consider a meridian µ ∈ π1(O2), which
is represented by the attaching circle of the 2-handle, and has a finite order in π1(O1). By
homogeneity, the conjugation orbit G · ρ(µ) = O(ρ(µ)) ⊂ G is a smooth analytic submanifold
of G, of codimension equal the dimension of the centralizer dim(gρ(µ)). Thus, by Lemma 6.11,
when we add the edge e to O2, the dimension of the variety of representations decreases at most
by dim(gρ(µ)):

dimR(O2, G)− dimR(O1, G) = codim(R(O1, G), R(O2, G)) ≤
∑
µ

dim(gρ(µ)). (33)

Furthermore, adding the 2-handle to O2 corresponding to µ means replacing an annulus by
two cone points with cyclic stabilizer generated by µ. Hence, the twisted Euler characteristic
increases by 2 dim(gρ(µ)). Counting the contribution of all edges of ΣO1 :

χ̃(∂O1,Adρ) = χ̃(∂O2,Adρ) + 2
∑
µ

dim(gρ(µ)). (34)

Hence from (32), (33), and (34):

dimR(O1, G) ≥ −1

2
χ̃(∂O1,Adρ) + dimG. (35)

To get O0 from O1, we add the neighborhoods of the loops γi,j , i.e. we add 2-handles
(without singular co-core). Consider the i-th boundary component ∂iO1. The corresponding
boundary component ∂iO0 is obtained from ∂iO1 by the surgery corresponding to the addition
of ki 2-handles. Namely ki annuli in ∂iO1 corresponds to 2ki smooth disks in ∂iO0. Thus

χ̃(∂iO0,Adρ) = χ̃(∂iO1,Adρ) + 2ki dimG. (36)

On the other hand, following the idea of [8], we apply Lemma 6.11 to ∂iO1 and the free product
π1(∂iO0)∗⟨γi,1⟩∗· · ·∗⟨γi,ki⟩, that is, the group obtained by filling the ki meridians of the surface
∂iO1:

W ′ = R(π1(∂iO0) ∗ ⟨γi,1⟩ ∗ · · · ∗ ⟨γi,ki⟩, G) ⊂ R(∂iO1, G) = W. (37)

By Proposition 4.1, and since we assume that the centralizer of ρ(π1(∂iO1)) in g is trivial,

dimW = dimR(∂iO1, G) = −χ̃(∂iO1,Adρ) + dimG. (38)

By Proposition 4.1 when ∂iO0 is hyperbolic, Theorem 4.11 when Euclidean, and Remark 4.17
when spherical, R(π1(∂iO0), G) is smooth and

dimR(∂iO0, G) = −χ̃(∂iO0,Adρ) + dimG+ dim gρ(π1(∂iO0)). (39)

As the variety of representations of a free product is the Cartesian product of varieties or
representations of its factors, W ′ is smooth and:

dimW ′ = dimR(π1(∂iO0) ∗ ⟨γi,1⟩ ∗ · · · ∗ ⟨γi,ki⟩, G) = dimR(∂iO0, G) + ki dimG. (40)
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From (39) and (40):

dimW ′ = −χ̃(∂iO0,Adρ) + (ki + 1) dimG+ dim gρ(π1(∂iO0)). (41)

It follows from (38) and (41) that the codimension of the inclusion (37) is

codim(W ′,W ) = dimW −dimW ′ = χ̃(∂iO0,Adρ)− χ̃(∂iO1,Adρ)− ki dimG−dim gρ(π1(∂iO0)),

that combined with (36) yields

codim(W ′,W ) = ki dimG− dim gρ(π1(∂iO0)). (42)

So when we apply Lemma 6.11 we get from the contribution (42) of each boundary component:

codim(R(O0, G), R(O1, G)) ≤
∑
i

(
ki dimG− dim gρ(π1(∂iO0))

)
. (43)

Thus, with (35) and (36), (43) becomes:

dimR(O0, G) ≥ dimR(O1, G)−
∑
i

(
ki dimG− dim gρ(π1(∂iO0))

)
≥
∑
i

(
− 1

2
χ̃(∂iO1,Adρ))− ki dimG+ dim gρ(π1(∂iO0)

)
+ dimG

=
∑
i

(
− 1

2
χ̃(∂iO0,Adρ)) + dim gρ(π1(∂iO0)

)
+ dimG.

Finally, for each spherical boundary component ∂iO0, by (25)

−1

2
χ̃(∂iO0,Adρ)) + dim gρ(π1(∂iO0) = 0.

Hence we can get rid of the contribution of the neighborhoods of vertices and get the initial
orbifold O3:

dimR(O3, G) ≥
∑
i

(
− 1

2
χ̃(∂iO3,Adρ)) + dim gρ(π1(∂iO3)

)
+ dimG

= dimX(∂O3, G) + dimG.

As dimX(O3, G) = dimR(O3, G) − dimG, because the representation is good, this concludes
the proof of the theorem.

6.3 Dimension growth

Let M3 be an orientable hyperbolic 3-manifold of finite volume with k ≥ 1 cusps. As M3 is a
manifold, its holonomy lifts to SL(2,C).

Let X0(M,SL(n,C)) be the canonical or distinguished component of X(M,SL(n,C)) (Def-
inition 6.2), i.e. the component that contains the composition of a lift of the holonomy with
Symn−1. By Theorem 6.1,

dimX0(M,SL(n,C)) = (n− 1)k,

where k is the number of cusps. This linear growth differs from the quadratic growth of 2-
orbifolds in Section 5. Those 2-orbifolds may appear as basis of Seifert fibered Dehn filling and
yield components in the variety of characters of higher dimension. Next we discuss two examples,
the figure eight knot and the Whitehead link exteriors. The following is Proposition 1.6 from
the introduction.
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Proposition 6.12. Let Γ be the fundamental group of the exterior of the figure eight knot.
Besides the canonical component (that has dimension n− 1), for large n X(Γ,SL(n,C)) has at
least 3 components that contain irreducible representations, whose dimension grow respectively
as n2/12, n2/20 and n2/42.

Proof. Let Kp/q denote the Dehn surgery on the figure eight knot with coefficients p/q. There
are 6 Dehn fillings on the figure eight knot that yield small Seifert manifolds [11, 24]: K±3 are
small Seifert manifolds fibered over the 2-orbifold O2

3 = S2(3, 3, 4), K±2 over O2
2 = S2(2, 4, 5),

and K±1 over O2
1 = S2(2, 3, 7). They induce representations in SL(2,R) of the filled 3-manifolds

Kp, that map the fiber to − Id and induce the holonomy representation of the (unique) hyper-
bolic structure on O2

p. The composition with Symn−1 is a representation that maps the fiber
to (−1)n−1 Id and it induces a representation from π1(O2

p) to PSL(n,R) in the Hitchin com-
ponent. Therefore the complexification of the Hitchin component of O2

p yields a component
of X(Kp,SL(n,C)) of the same dimension, and hence a subvariety of X(Γ, SL(n,C)). Let
Xp ⊂ X(M,SL(n,C)) be the component of X(Γ, SL(n,C)) that contains the subvariety in-
duced by X(Kp, SL(n,C)). Next we estimate the dimension of X1, X2 and X3, which allow to
distinguish them, but does not allow to distinguish the component induced by Xp from X−p,
as the dimension estimates are the same.

The lower bound on the dimension of Xp is given by Proposition 5.10:

dimXp ≥ −χ(O2
p)n

2 − c(O2
p).

Aiming to find an upper bound of dimXp, we bound above the dimension of its Zariski tangent
space, which is isomorphic to H1(Γ,Adρ) ∼= H1(M,Adρ) for M the (compact) exterior of
the figure eight knot, M = S3 \ N (K). In particular ∂M ∼= T 2. Here ρ = Symn−1 ◦ρ0, for
ρ0 : Γ → SL(2,R) the representation that factors through Kp.

First we bound dimH1(∂M,Adρ). Notice that since χ(T 2) = 0,

dimH1(∂M,Adρ) = 2 dimH0(∂M,Adρ) = 2 dim gAdρ(π1(∂M)).

To compute dim gAdρ(π1(∂M)), one may check explicitly that the image of ρ0(π1(∂M)) contains
an element of SL(2,R) of infinite order (one may use for instance the A-polynomial). As the
symmetric power of a hyperbolic matrix in SL(2,C) is regular, ρ(π1(∂M)) contains regular
elements and dim gAdρ(π1(∂M)) = rankG = n− 1, Thus dimH1(∂M,Adρ) = 2(n− 1).

Let
i∗ : H1(M,Adρ) → H1(∂M,Adρ)

be the morphism induced by inclusion. Using the long exact sequence of the pair (M,∂M) and
Poincaré duality as in the proof of Theorem 6.1, its rank is

rank(i∗) = n− 1. (44)

Furthermore, by Mayer-Vietoris exact sequence applied to the decomposition Kp = M ∪∂M

(D2 × S1), we get that
dimker i∗ ≤ dimH1(Kp,Adρ). (45)

Next we need a lemma:

Lemma 6.13. The projection π1(Kp) → π1(O2
p) induces an isomorphism

H1(π1(Kp),Adρ) ∼= H1(π1(O2
p),Adρ). (46)
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Assuming the lemma, we conclude the proof of Proposition 6.12. Putting together (44), (45)
and (46):

dimH1(M,Adρ) ≤ dimH1(O2
p,Adρ) + (n− 1).

It follows that

−n2χ(O2
p)− c(O2

p) ≤ dimXp ≤ −n2χ(O2
p) + c(O2

p) + n− 1.

For large n this allows to distinguish three components, according to the different values for
χ(O2

p).

Proof of Lemma 6.13. We use the central exact sequence

1 → Z(π1(Kp)) → π1(Kp) → π1(O2
p) → 1,

where the center Z(π1(Kp)) ∼= Z is the group generated by the fiber. To prove the lemma,
we use crossed morphisms or derivations, as in Subsection 2.1. Since π1(Kp) → π1(O2

p) is a
surjection, we have an injection of spaces of cocycles

Z1(π1(O2
p), g) ↪→ Z1(π1(Kp), g). (47)

We prove surjectivity of the map in (47): let d : π1(Kp) → g be a crossed morphism (namely,
satisfying d(γ1γ2) = d(γ1) + Adρ(γ1)d(γ2), ∀γ1, γ2 ∈ π1(Kp)). Let t ∈ π1(Kp) be a generator of
the center Z(π1(Kp)) ∼= Z; from the relation

tγt−1 = γ ∀γ ∈ π1(Kp),

we deduce
d(t) + Adρ(t)d(γ)−Adρ(tγt−1)d(t) = d(γ), ∀γ ∈ π1(Kp).

Since ρ(t) = ± Id, Adρ(t) is the identity on g, hence

(1−Adρ(γ))d(t) = 0, ∀γ ∈ π1(Kp).

This equality implies that d(t) = 0, because gρ(π1(Kp)) = 0 by irreducibility of ρ. This proves that
every crossed morphism of π1(Kp) factors through a crossed morphism of π1(O2), hence (47)
is surjective. This isomorphism between cocycle spaces induces an isomorphism of coboundary
space and this proves the lemma.

Remark 6.14. For small values of n, the arguments do not apply, but for n = 3 the canonical
component has dimension 2, and according to Table 6, (±3)-Dehn fillings also provide two sub-
varieties of dimension 2. It is proved in [9] and [15] that the canonical component and the sub-
varieties induced by the (±3)-Dehn filling are precisely the three components of X(Γ, SL(3,C))
that contain irreducible representations.

Remark 6.15. At the moment, we do not know whether for large n the component that contains
representations that factor through Kp is the same as the component corresponding to K−p, for
p = 1, 2, 3. To distinguish them would require a better upper bound of the dimension of their
Zariski tangent space. This would allow also to distinguish components corresponding to Galois
conjugates (5-th or 7-th roots of unity).

Remark 6.16. An analog of Proposition 6.12 can be obtained for the variety of characters of
the figure eight knot in Sp(2m,C), for large m.
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Proposition 6.17. Let Γ be the fundamental group of the exterior of the Whitehead link.
Besides the canonical component (that has dimension 2n − 2), for large n, X(Γ,SL(n,C)) has
at least 3 components that contain irreducible characters, whose dimension grow respectively as
n2/3, n2/4 and n2/6.

The proof of Proposition 6.17 is the same as Proposition 6.12. Here there are partial Dehn
fillings that yield Seifert fibered manifolds, with basis a disc with two cone points: the (−3)-
filling fibers over D2(3, 3), the (−2)-filling over D2(2, 4), and the (−1)-filling is fibered over
D2(2, 3) [24, Table A.1]. This yields the three rational orbifold Euler characteristics, 1/3, 1/4
and 1/6.

As the basis orbifolds are rather simple, it is also easy to state the dimension of their Hitchin
component. The dimension of the Hitchin component of D2(3, 3) is{

n2

3 + 1 for n ≡ 0 mod 3
n2−1
3 for n ̸≡ 0 mod 3

The dimension of the Hitchin component of D2(2, 4) is
n2

4 + 1 for n ≡ 0 mod 4
n2−1
4 for n ≡ 1 mod 2

n2

4 for n ≡ 2 mod 4

The dimension of the Hitchin component of D2(2, 3) is
n2

6 + 1 for n ≡ 0 mod 6
n2−1
6 for n ≡ ±1 mod 6

n2+2
6 for n ≡ 2 mod 6

n2+3
6 for n ≡ 3 mod 6

Remark 6.18. When we apply these computation to SL(3,C), for D2(2, 4) and D2(2, 3) it yields
dimension 2, but for D2(3, 3) it has a component of dimension 4, the same as the dimension
of the canonical component. It has been proved by Guilloux and Will [12] that this is in fact a
whole component of X(Γ,SL(3,C)).

For Montesinos links, the same arguments yield the following:

Proposition 6.19. Let L ⊂ S3 be a Montesinos link. Assume that either it has at least 4
tangles, or that it has three tangles (eg. a pretzel link) with indices α1, α2, and α3 satisfying
1
α1

+ 1
α2

+ 1
α3

≤ 1. Then dimX(S3 \ L,SL(n,C)) grows quadratically with n.

7 Representations in SL(3,C)

In this section we give explicit computations of some varieties of characters in SL(3,C). We
compute varieties of characters of groups generated by two elements, using the description of
X(F2,SL(3,C)) due to Lawton [21], where F2 = ⟨a, b |⟩ is the free group of rank two.

Setting coordinates

x = ta, y = tb, z = tab, r = tab−1 , τ = t[a,b],

u = ta−1 , v = tb−1 , w = t(ab)−1 , s = ta−1b,
(48)

Lawton has proved:
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Theorem 7.1 ([21]). X(F2,SL(3,C)) is the hypersurface of C9 defined by

τ2 − Pτ +Q = 0

for some polynomials P,Q ∈ Z[x, y, z, u, v, w, r, s]. The solutions of τ2 − Pτ + Q = 0 are t[a,b]
and t[b,a]. Namely t[a,b] + t[b,a] = P and t[a,b]t[b,a] = Q.

The polynomials P and Q in Theorem 7.1 can be found in [21]:

P = xuyv − uyr − xvs− uvz − xyw + rs+ xu+ yv + zw − 3

and

Q = vu2x2y + uv2y2x− ryxu2 − uxvrw − ry2vu+ rx2v2 − rzyxv + su2y2 − swvuy − svux2

− uxysz − sv2yx− u3vy + u2v2w − zu2xv − uv3x− zv2yu− wx2uy − uy3x− wy2vx

− x3vy + x2y2z + uwr2 − 2 r2xv + r2zy + surx+ svry + wszr + rzu2 + ruv2 + rvz2

+ xrw2 + rwy2 + x2yr − 2 s2uy + s2wv + xzs2 + u2vs+ usz2 + szv2 + syw2 + swx2

+ sxy2 + u2wy − 2w2vu+ xuyv + wuzx+ uy2z + xv2w + wvzy + x2zv − 2 z2yx

+ r3 + 3uyr − 3 rvw − 3 rzx+ s3 − 3 swu+ 3xvs− 3 syz + u3 + 3uvz + v3 + w3

+ 3xyw + x3 + y3 + z3 − 6 rs− 6xu− 6 yv − 6 zw + 9

This theorem tells that an SL(3,C)-character of F2 is a polynomial on the coordinates x, y, z,
u, v, w, r, s, τ . Its expression can be computed by using basic identities on traces, including
Cayley-Hamilton’s formula

A3 − tr(A)A2 + tr(A−1)A− Id = 0, ∀A ∈ SL(3,C), (49)

and elementary identities on traces.

7.1 Two dimensional examples

Let us compute the variety of SL(3,C)-characters of some 2-orbifolds.
We start with the turnover S2(3, 3, 4), Figure 7. Its fundamental group has presentation

π1(S
2(3, 3, 4)) ∼= ⟨a, b | a3 = b3 = (ab)4 = 1⟩

We look at the possible eigenvalues of the elements of finite order:

(a) A matrix in SL(3,C) of order 3 is either central or has eigenvalues {1, ω, ω2}, for ω ∈ C a
primitive third root of unity: ω3 = 1 and ω ̸= 1.

(b) A matrix in SL(3,C) of order 4 is either trivial or has eigenvalues

{1, i,−i}, {−1, i, i}, {−1,−i,−i}, or {1,−1,−1}.

Remark 7.2. Let ρ : π1(S
2(3, 3, 4)) → SL(3,C) be an irreducible representation. The eigen-

values of ρ(a) and ρ(b) are {1, ω, ω2} and the eigenvalues of ρ(ab) are {1, i,−i}, {−1, i, i},
{−1,−i,−i}, or {1,−1,−1}. Furthermore, using that for an irreducible representation

dim[ρ]X(S2(3, 3, 4),SL(3,C)) = −χ̃(S2(3, 3, 4),Adρ),

and dim gρ(ab) depends on whether ρ(ab) has repeated eigenvalues or not, we have:

dim[ρ]X(S2(3, 3, 4),SL(3,C)) =

{
2 if the eigenvalues of ρ(ab) are {1, i,−i},
0 otherwise.
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S2(3, 3, 4)
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T (3, 3, 4)

3
4

D(3; 4)

Figure 7: The turnover S2(3, 3, 4) and two nonorientable quotients: a triangle with mirror
boundary T (3, 3, 4), which is a Coxeter group, and a disc with a cone point, mirror boundary,
and a corner reflector, D(3; 4).

Using the coordinates (48), the two dimensional components of the variety of characters are
obtained by setting x = y = u = v = 0 and z = w = 1, because this fixes the eigenvalues of
ρ(a), ρ(b) and ρ(ab). By replacing those values in Theorem 7.1, we obtain:

Example 7.3. The component of X(S2(3, 3, 4), SL(3,C)) that has positive dimension is iso-
morphic to

{(r, s, τ) ∈ C3 | τ2 − (rs− 2)τ + (r3 + s3 − 5 rs+ 5) = 0}.

For the components that are isolated points, we set, again x = y = u = v = 0 and, according
to the eigenvalues of ρ(ab):

(z, w) = (−1 + 2 i,−1− 2 i), (z, w) = (−1− 2 i,−1 + 2 i), or (z, w) = (−1,−1).

Notice that this does not fix the conjugacy class of ρ(ab), because it has eigenvalues of multi-
plicity 2. We need to find further restrictions on the traces: by taking traces on the relation
(ab)−2a = (ab)2a, using (49) and replacing x = y = u = v = 0 we get

s = zs and r = wr. (50)

For the 2-dimensional component it holds z = w = 1, hence (50) do not give any further
information. For the isolated components, this yields r = s = 0. For these values P 2 − 4Q = 0
and therefore there is a unique value for τ . Hence we get:

Example 7.4. There are three components of X(S2(3, 3, 4),SL(3,C)) that contain irreducible
representations and are zero-dimensional. They have coordinates x = y = u = v = r = s = 0
and

(z, w, τ) = (−1 + 2 i,−1− 2 i, 1), (−1− 2 i,−1 + 2 i, 1), or (−1,−1,−1).

Next we describe the Hitchin component Hit(S2(3, 3, 4),PSL(3,R)). Notice that the repre-
sentation Sym2 : SL(2,R) → SL(3,R) factors through PSL(2,R), hence Hit(S2(3, 3, 4),PSL(3,R))
lifts to a component of X(S2(3, 3, 4),SL(3,R)). We consider the 2-dimensional component of
Example 7.3 and we require that its coordinates are real:

{(r, s, τ) ∈ R3 | τ2 − (rs− 2)τ + (r3 + s3 − 5 rs+ 5) = 0}.

By looking at the discriminant of this equation, this real set has has three components. One of
them is the isolated point (r, s, τ) = (2, 2, 1), which is in fact a singular points of the defining
surface. The other two components are homeomorphic to R2, one of them is the lift of the
Hitchin component. By looking at the symmetric power of the holonomy, we deduce:
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Example 7.5. The Hitchin component Hit(S2(3, 3, 4),PSL(3,R)) is isomorphic to the compo-
nent of

{(r, s, τ) ∈ R3 | τ2 − (rs− 2)τ + (r3 + s3 − 5 rs+ 5) = 0}

that contains the point of coordinates (r, s, τ) = (2 + 2
√
2, 2 + 2

√
2, 5 + 4

√
2).

Next we consider the turnover T (3, 3, 4), Figure 7. Its fundamental group is an extension of
π1(S

2(3, 3, 4)) by an involution σ, that satisfies

σ2 = 1, σaσ = a−1, and σbσ = b−1. (51)

Denote by σ∗ the involution induced on the fundamental group:

σ∗(γ) = σγσ−1, ∀γ ∈ π1(S
2(3, 3, 4)).

This involution σ∗ permutes the coordinates r and s and preserves τ , the trace of the commu-
tator. Therefore, the component of X(S2(3, 3, 4),SL(3,C))σ∗ of positive dimension is

{(r, τ) ∈ C2 | τ2 − (r2 − 2)τ + (2r3 − 5 r2 + 5) = 0}.

This curve is singular at precisely at (r, τ) = (2, 1), and the singularity is an ordinary double
point (a self intersection with transverse tangents).

Lemma 7.6. The restriction map

X(T (3, 3, 4), SL(3,C)) → X(S2(3, 3, 4),SL(3,C))σ∗

desingularizes the curve τ2 − (r2 − 2)τ + (2r3 − 5 r2 + 5) = 0.
The component of X(T (3, 3, 4),SL(3,C)) of positive dimension that contains irreducible rep-

resentations is this desingularization.

Proof. We look at the fibre of the restriction map. We show that:

(a) the fibre of an irreducible character consists precisely of one point,

(b) (r, τ) = (2, 1) is the only reducible character in X(S2(3, 3, 4), SL(3,C))σ∗ , and

(c) the fibre of (r, τ) = (2, 1) consists precisely of 2 points.

Those three items prove the lemma, because the singularity is an ordinary double point.
We prove (a): For an irreducible representation ρ of π1(S

2(3, 3, 4)) in SL(3,C) we show that
there is a unique choice of A ∈ SL(3,C) such that mapping σ to A defines an extension of ρ
to π1(T (3, 3, 4)). By irreducibility of ρ, as ρ and ρ ◦ σ∗ have the same character, there exists
a matrix A ∈ SL(3,C) such that AρA−1 = ρ ◦ σ∗. Furthermore, A is unique up multiplication
by a matrix in the center (the center of SL(3,C) is {Id, ωId, ω2Id}). As σ is an involution, A2

commutes with ρ, that is irreducible, and therefore A2 ∈ {Id, ωId, ω2Id}. Hence among A, ωA
or ω2A there is a unique choice whose square is the identity. Thus there is a unique choice that
satisfies (51).

To prove (b) we use that for a reducible representation the trace of a commutator and its
inverse are the same, thus it must be a zero of the discriminant of the defining equation. This
discriminant is

(r − 2)2(r2 − 4r − 4) (52)

and its zeros are r = 2 and r = 2±2
√
2. The value r = 2±2

√
2 corresponds to the symmetriza-

tion of the fuchsian holonomy (and its Galois conjugate), hence it is irreducible. Thus r = 2 is
the only reducible character.
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To prove (c), we check that r = 2 corresponds to a representation ρ = ρ2 ⊕ Id, for
ρ2 : π1(S

2(3, 3, 4)) → SL(2,C) an irreducible representation (for a reducible representation in
SL(2,C) the trace of any commutator is 2 and, as τ = 1, trace(ρ2([a, b])) = τ − 1 ̸= 2). Then,
reproducing the argument of the irreducible case (a), there exist a matrix A ∈ SL(2,C) such
that Aρ2A

−1 = ρ2 ◦ σ∗ and, by irreducibility of ρ2, A is unique up to sign. Furthermore, again
by irreducibility of ρ2, A

2 is central in SL(2,C), namely A2 = ± Id. The case A2 = +Id does
not occur, because this would imply that A = ± Id and with (51) this would yield that ρ2 itself
would be central, but it is irreducible. Therefore A2 = − Id and the choices for ρ(σ) are

ρ(σ) =

±i A
0
0

0 0 −1

 .

This concludes the proof of (c) and of the lemma.

Next we look for the Hitchin component of the turnover. We look therefore at the real points

{(r, τ) ∈ R2 | τ2 − (r2 − 2)τ + (2r3 − 5 r2 + 5) = 0}.

By looking at the discriminant (52), the set of real points has three components, the isolated
point (r, τ) = (2, 1) an two lines, defined by r ≤ 2− 2

√
2 and r ≥ 2 + 2

√
2. As r = 2 + 2

√
2 is

the symmetric power of the holonomy:

Example 7.7. The Hitchin component Hit(T (3, 3, 4),PSL(3,R)) is isomorphic (via the restric-
tion to S2(3, 4, 4)) to the line

{(r, τ) ∈ R2 | τ2 − (r2 − 2)τ + (2r3 − 5 r2 + 5) = 0, r ≥ 2 + 2
√
2}.

Finally, we consider D(3; 4), the disc with a cone point of order 3, mirror boundary, and a
corner reflector of order 4 (with isotropy group the dihedral group of 8 elements). It is again the
quotient of S2(3, 3, 4) by an involution. This involution maps a to b−1 and b to a−1. Therefore
it fixes the coordinates r and s but permutes the trace of [a, b] with the trace of its inverse [b, a].
The fixed point set of this involution in X(S2(3, 3, 4), SL(3,C)) is obtained by looking at the
zero locus of the discriminant of the variable τ :

{(r, s) ∈ C2 | r2s2 − 4 r3 − 4 s3 + 16 rs− 16 = 0}.

With the very same discussion as in Lemma 7.6:

Lemma 7.8. The restriction map

X(D(3; 4), SL(3,C)) → X(S2(3, 3, 4),SL(3,C))σ
′

desingularizes the curve r2s2 − 4 r3 − 4 s3 + 16 rs− 16 = 0.
The component of X(D(3; 4),SL(3,C)) of positive dimension that contains irreducible char-

acters is this desingularization.

The set of real points of r2s2 − 4 r3 − 4 s3 + 16 rs− 16 = 0 is the discriminant locus of the
set of real points for S2(3, 3, 4): it has three components, the isolated point r = s = 2 and two
unbounded curves. Thus, similarly to S2(3, 3, 4) we have:

Example 7.9. The Hitchin component Hit(D(3; 4),PSL(3,R)) is isomorphic (via the restriction
to S2(3, 4, 4)) to the component of

{(r, s) ∈ R2 | r2s2 − 4 r3 − 4 s3 + 16 rs− 16 = 0}

that contains r = s = 2 + 2
√
2.
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7.2 A family of 3-dimensional orbifolds

Consider the family of examples with underlying space S3 (perhaps punctured twice) and three
branching arcs as in Figure 8, with branching labels n0, n1 and n2 ≥ 2. Whether a singular
vertex is included or not depends on the orders of the adjacent branching locus: if 1/n0+2/n1 >
1, then the three edges meet at a vertex, otherwise the vertex is removed, and similarly for the
other vertex. In other words, we consider the twice punctured 3-sphere, and we add the vertices
needed for the orbifold to be irreducible.

n0
n1n2

Figure 8: The underlying space of the orbifold is a 3-sphere, possibly punctured once or twice,
according to the branching indices, the branching locus consists of three arcs as in the picture.

Let O3 denote this orbifold. The geometry of O3 depends on the indices:

(a) When n2 = 2 and 1/n0+2/n1 ≤ 1, it is an interval bundle, over a disc with mirror boundary,
with an interior cone point of order n1 and a corner reflector of order 2n0. It is doubly
covered by the product of a turnover S2(n0, n1, n1) by an interval.

(b) When n2 = 2 and 1/n0 + 2/n1 > 1, it is obtained by coning the boundary of the previ-
ous example, and it is spherical. It is doubly covered by the suspension over a turnover
S2(n0, n1, n1).

(c) When (n0, n1, n2) = (2, 3, 3) the orbifold is spherical [7].

(d) If n1, n2 ̸= 2 and (n0, n1, n2) ̸= (2, 3, 3), then it is hyperbolic.

The hyperbolicity is realized by a tetrahedron as in Figure 9. The vertices are possibly
finite, ideal or exterior (hence truncated by geodesic triangles perpendicular to the other sides).
Poincaré fundamental domain theorem yields the following presentation for the fundamental
group

π1(O3) ∼= ⟨a, b | an1 = bn2 = [a, b]n0 = 1⟩.

In case (a) the variety of characters of O3 in SL(3,C) is the variety of characters of a non-
orientable 2-orbifold. It has dimension 1 or 0 according to the values of n0 and n1. Cases (b)
and (c) are spherical, hence the variety of characters is finite. In the hyperbolic case, (d), when
n0 = 2 then the canonical component is an isolated point, by Theorem 6.1. For ni ≥ 3, it has
dimension 2.

Example 7.10. Consider the case n0 = n1 = n2 = 3. The fundamental group is

π1(O3) = ⟨a, b | a3 = b3 = [a, b]3 = 1⟩.

On the canonical component, the image of any of a, b and [a, b] is not central, therefore by
Theorem 7.1, using the notation in (48) we impose the following equalities:

x = y = u = v = P = Q = 0.

Thus the canonical component X0(O3, SL(3,C)) is the following complex surface:{
rs+ zw − 3 = 0
r3 + s3 + z3 + w3 + rszw − 6rs− 6zw + 9 = 0
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Figure 9: The fundamental domain of the orbifold in this subsection. It is an ideal tetrahedron
in hyperbolic 3-space, with vertices perhaps ideal or hyperideal. The side parings, a and b, are
rotations of order n1 and n2 around two opposite edges. Those edges have dihedral angle 2π/n1

and 2π/n2 respectively, the remaining four edges have dihedral angle π/(2n0).

The symmetric power of the complete structure has coordinates

r = s =
−3 +

√
−3

2
, z = w =

−3−
√
−3

2

(The complex conjugate corresponds to a change of orientation).
There are other components of X(O3,SL(3,C)) but it may be checked that they are isolated

points. For instance, if ρ(a) is central, then ρ(b) has order three at this gives finitely many
conjugacy classes for ρ (whether ρ(b) is central or not). If ρ(a) and ρ(b) are noncentral but
ρ([a, b]) is central, then it can be computed that x = y = z = r = u = v = w = s = 0. This is
realized by the representation

ρ(a) =

1 0 0
0 ω 0
0 0 ω2

 and ρ(b) =

0 0 1
1 0 0
0 1 0


When n0 = n1 = n2 = 3, a component of the variety of characters in SL(4,R) corresponding

to projective structures has been computed in [28].
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