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A B S T R A C T   

The potential of geothermal energy for energy transition is increasingly recognized by governments around the 
world. Whether geothermal energy is a sustainable source of heat and/or electricity depends on how it is 
deployed in specific contexts. Therefore, it is striking that there is only limited attention to geothermal energy 
from a social science and humanities (SSH) perspective. Geothermal energy is largely conceptualized as a 
technological and/or geological issue in both science and practice. This perspective article aims to go beyond 
such conceptualizations by positioning social science research as an important lens to explore the promises and 
pitfalls of geothermal energy. We first provide an overview of the current state of geothermal energy as a 
decarbonization strategy. Second, we move on to review the existing literature. This review shows that studies 
that do address geothermal energy from an SSH perspective tend to be of a descriptive nature and lack analytical 
diversity. Third, we discuss three complementary theoretical approaches that are used in the social sciences to 
observe and address other forms of energy and energy transition. We believe that socio-technical assemblages, 
systems, and imaginaries can provide fruitful analytical lenses to study the promises, pitfalls and spatialization of 
geothermal energy. We conclude the paper with a research agenda and call for further engagement with this 
topic in SSH research, with attention to specificities of global South and North contexts.   

1. Harnessing the heat below our feet: the need for social 
science of geothermal energy 

The heat from the core of the Earth can offer an almost limitless 
supply of renewable energy if it is accessed in a feasible, efficient, and 
sustainable manner. Geothermal energy is broadly defined as “the 
thermal energy stored underground, including any contained fluid, 
which is available for extraction and conversion into energy products” 
(p.1 [1]). It is a renewable source of energy which is not affected by 
weather and seasonal variations1 and, therefore, it can produce a stable 

base-load capacity. Geothermal energy can be used in a flexible manner 
to assist variable renewable energy sources such as solar and wind 
power [1–4]. It offers much potential for ongoing energy transitions in 
many countries. This potential is recognized in practice by many gov
ernments and private sector actors, who show a (renewed) interest in 
geothermal energy as part of their decarbonization strategy [2,5]. After 
the invasion of Ukraine, the European imperative to reduce and even
tually phase out Russian natural gas gave further impetus to the heating 
question with increased attention to geothermal energy [6]. 

Geothermal energy is not necessarily sustainable or effective in 
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1 In the case of shallow geothermal heat pumps that use horizontal loops (also called ground source heat pumps) there can be influence of seasonal variations. 
Below 15–20 m depth the temperature remains constant throughout the year [167]. 
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meeting the imperative of decarbonizing energy systems [7]. This mir
rors the increasingly recognized issues of unevenly distributed social 
and environmental problems related to the expansion of renewable 
energy systems (e.g. [8]). Sustainable use of geothermal energy requires 
a balance between the consumption and generation rate to avoid 
extensive cooling of the original aquifer and mitigation of various im
pacts on the environment [1,2,9–12]. Moreover, the social sustainabil
ity2 of geothermal energy is largely overlooked in existing studies 
despite a growing body of literature focusing on social acceptance (see e. 
g., [13]). Engagement with existing debates in energy transition litera
ture related to energy justice and energy democracy (e.g., [14–16]) has 
been very incipient within geothermal studies. In sum, geothermal en
ergy has received surprisingly little attention in social science studies, 
and is mainly perceived and dealt with as a technological and/or 
geological problem [1,17,18]. 

Social science approaches are uniquely suited for providing critical 
perspectives on the burdens and benefits of the production and con
sumption of electricity and heat from geothermal systems. These in
sights are also necessary for the more normative goal of developing 
energy policy and decision-making procedures surrounding geothermal 
energy that are equitable and fair towards communities, and the envi
ronments they live in [19]. Such insights are key to understanding and 
operationalizing geothermal energy as a decarbonization strategy. If we 
truly want to live in a socially just and ecologically sustainable future, 
social science perspectives on geothermal systems are fundamentally 
necessary. 

Aiming at tackling this gap in the literature, our perspective article 
responds to and extends the call for more social science and humanities 
(SSH) research into geothermal energy as a decarbonization strategy 
[1,13,20]. In Section 2, we focus on the promise of geothermal energy, 
followed by a general review of social science literature on geothermal 
energy in Section 3. Building on the three complementary theoretical 
approaches of socio-technical assemblages, systems, and imaginaries in 
Section 4, we discuss a social science research agenda on geothermal 
energy in Section 5. Section 6 provides some concluding remarks and 
calls for further engagement with this topic. 

2. The promise of geothermal energy as a decarbonization 
strategy 

Geothermal energy can be used directly for heating or indirectly for 
electricity generation. A distinction is usually made between technolo
gies that use the thermal stability of the underground (shallow) and 
those that make use of temperatures above the annual mean air tem
perature (deep geothermal) [1]. However, the threshold between 
shallow and deep geothermal is not unanimously defined: for instance, 
while some authors, such as Hähnlein, et al. [21], set 400 m depth as the 
threshold, others such as Limberger et al. [22] move it to 100 m beneath 
the ground. In this paper, we will generally focus on deeper geothermal 
systems rather than on shallow ones, while staying aware of the blur
riness of the distinction. Indirect use of geothermal energy for electricity 
generation usually requires temperatures of over 100 ◦C to be profitable 
and effective [1], but technological developments might reduce this 
limitation [12]. Lower temperature reserves can also be used for other 
(direct) purposes including industrial processes, aqua- and horticulture, 
recreational uses, and residential heating [2]. 

The global capacity of geothermal electric power was almost 16 GW 
in 2020 [23,24]. This is minor compared to other renewable sources (e. 

g. the installed capacity of both solar PV and wind power surpassed 700 
GW in 2020 [24]). A recent IRENA report [2] states that the estimated 
technical potential for geothermal electricity is up to 200 GW. The 
economic potential of current technologies for exploiting these re
sources is projected at 70 GW [2]. However, being a dispatchable source 
of renewable electricity generation, geothermal energy can provide 
crucial services in balancing energy from variable sources such as solar 
PV and wind power [2,25]. It is important to notice that some of the 
sources used in the geothermal industry and IRENA report seem to be 
outdated. This is also indicative of the fact that information on 
geothermal energy is scattered and different countries and market 
players use various indicators to report their use of geothermal re
sources, thereby making it difficult to compare these numbers across 
contexts [12]. 

According to IEA [26], global geothermal expansion is not on track 
with the 2050 Net Zero Emissions scenario, “which requires 13% annual 
increase in generation over 2021-2030, corresponding to average 
annual capacity expansions of approximately 3.6 GW”. There are bio
physical and spatial limits to this expansion since geological conditions 
determine how much heat is available in certain places. The existing 
clusters of geothermal power generation are predominantly located in 
areas with high tectonic and seismic activity. Fig. 1 shows that in 2020, 
over 90 % of power generation capacity from geothermal energy came 
from only 10 countries, which are distributed among various continents 
located both in the global South and North [12,23]. However there are 
territories with significant potential that have not been significantly 
exploited (e.g., Chile [13]). 

The economic side of exploiting geothermal energy also requires 
attention. The costs related to the exploration of geothermal energy are 
high, making geothermal technology a capital-intensive investment 
with significant perceived risks [1,12]. These risks vary depending on 
the geology of the region, the quality of the geothermal resource, 
existing infrastructure and the social acceptance of different geothermal 
technologies [1]. Once past this stage, the operational costs of 
geothermal energy are relatively low [2]. The economic feasibility of 
geothermal energy systems can be further boosted through alternative 
revenue streams. For example, there are opportunities for cascade 
schemes in operating geothermal plants, where heat with decreasing 
temperature is shifted to other purposes such as horticulture or (exist
ing) district heating systems [2]. Geothermal energy systems are 
considered a good option for reducing the costs of off-the-grid energy 
systems [27]. Another opportunity that is currently being studied is the 
potential for mineral recovery, particularly lithium, from geothermal 
brines [28]. 

The benefits of geothermal energy are widely recognized and 
emphasized, for example by the World Bank which renewed its ESMAP 
Geothermal Electricity Development Program in 2020 [5]. Nonetheless, 
IRENA [2] suggests that global geothermal expansion requires increased 
awareness and collaboration among stakeholders, sound legal frame
works and risk-sharing mechanisms aimed towards the particularities of 
geothermal energy. This is what initiatives such as World Bank's Global 
Geothermal Development Plan (GGDP) and EBRD's Early-Stage Private 
Sector Geothermal Development Framework (PLUTO) seek to address 
[29,30]. Geothermal plants are claimed to enhance regional economic 
development and are sometimes presented as opportunities for com
munity investments. A well-known example is the Maori-owned Nga 
AWA Purua power plant in New Zealand [1,2,31]. Other authors discuss 
the potential environmental and socio-economic impacts of geothermal 
energy systems for remote and rural communities in British Columbia 
[9] and for indigenous communities in Kenya [32]. 

A growing number of studies also point at the drawbacks of 
geothermal energy, including runaway emissions, water pollution, 
seismic activity, and potentially low net energy returns [4,7,9,12,33]. It 
is therefore timely to note that the geothermal sector [12], IRENA [2], 
the World Bank [5,30] and the European Bank for Reconstruction and 
Development (EBRD) [29] differ in how they portray the promises and 

2 According to the UN global compact website “Social sustainability is about 
identifying and managing business impacts, both positive and negative, on 
people” [168]. Our definition, instead, is rooted in the political ecology tradi
tion and focuses on equity (the unequal distribution of burdens and benefits), 
access (to energy and decision making) and ownership (who controls and makes 
profits). 
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pitfalls of geothermal energy as a decarbonization strategy. To better 
contextualize this landscape, we now turn to the scholarly literature on 
geothermal energy from a social science perspective. 

3. Exploring the social in geothermal: perspectives from social 
sciences and humanities 

Despite initial engagement in the 1980s with pioneering works from 
researchers like Martin Pasqualetti [34–36] and Penelope Canan 
[37,38], social scientists' interest in geothermal power is relatively 
recent and limited. This section illustrates how geothermal energy is 
flying low under the radar of energy and environmental social scientists 
and is perceived as a technological and biophysical issue (as also 
observed by [1,17,18]). Here we provide a narrative review [39] of the 
existing body of work. 

While attention for direct use of geothermal energy is gaining trac
tion (see [40] for a review of this literature), deep geothermal energy 
remains in the domain of the geological. Bobbette & Dononvan [17] call 
for critical engagement with the political side of geology in general, 
including geothermal energy. Some initial insight into the social science 
dimensions of geothermal energy from various disciplines (e.g., geog
raphy, policy, economics) are provided by [1,10]. However, these ac
counts remain relatively general, providing an overview of geothermal 
technology and pointing towards issues and cases that could be explored 
in more depth. 

The majority of literature on geothermal energy presents national 
cases and development trajectories in an unmistakably descriptive 
manner [41–46]. These studies, focusing on availability, affordability, 
exploitability, and eventually legal issues, often result in policy recom
mendations regarding administrative systems, financial policy mea
sures, and instruments necessary for further deployment of geothermal 
energy. There are only a few cross-country comparisons [3,47,48]. 
Studies that explicitly address government policy focus predominantly 
on the benefits and drawbacks of various fiscal policies (e.g., 
[11,49–51]). Two notable exceptions are a study by Ejderyan et al. [52] 
which analyses how federal and local governance surrounding 
geothermal energy in Switzerland is both a bottom-up and top-down 

effort, and a study by Horn et al. [53] regarding the need for gover
nance for sustainable management of near-surface geothermal energy 
systems. 

Existing social science and humanities perspectives on geothermal 
energy focus primarily on public perception, participation and social 
acceptance [3,13,20,54–63]. These studies often result in policy advice 
regarding public communication on risks and benefits related to 
geothermal energy development. A related strand of literature analyzes 
how media and social movements frame geothermal energy (e.g., 
[64–70]). Unlike other renewable sources of energy such as solar and 
wind power, geothermal energy has barely been associated with major 
discourses in energy transition literature regarding energy governance, 
energy decentralization, energy democracy, and energy justice (see e.g., 
[14,16,71–73]). Some notable exceptions are Shortall et al. [7] and 
Soltani et al. [4], who provide a review of geothermal energy from an 
integrated sustainability perspective. These authors hint at the connec
tions between geothermal energy and issues such as energy poverty (see 
also [47] for a discussion on cultural dimensions in geothermal energy). 
Benediktsson's [74] critical study on the “nature imaginary” of 
geothermal energy technology and Guðmundsdóttir et al.'s [75] inquiry 
into the political ecology of Iceland's geothermal energy development 
also represent notable exceptions calling for further research. 

The existing body of literature shows that there are opportunities to 
expand the lenses used to explore geothermal energy, paying attention 
to how the production of geothermal spaces is intertwined with an 
intricate convergence of different epistemologies, imaginaries, constel
lations of political economic actors, and the production of specific socio- 
natures (see Section 4). An interesting side of this debate can also be 
found in the synergies sought between politics of expertise flowing be
tween geothermal and fossil fuel sectors (see [76]). 

In sum, there appears to be a lacuna in terms of the analytical di
versity of approaches from social science and humanities engaging 
critically with geothermal energy in its materialities, temporalities, and 
spatialities. The studies that do exist demonstrate the urgent need for 
further critical engagement with geothermal energy systems from a so
cial science and humanities perspective. Despite some studies hinting at 
opportunities and drawbacks of geothermal energy for a specific 

Fig. 1. The ten countries with the highest installed capacity (MWe) of geothermal power generation in 2020. Source: authors, based on data from Huttrer [23].  
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location or a specific community (e.g., [9,31,32]) we argue that there is 
room to expand geothermal debates with emphasis on issues such as 
equity, access and ownership and make explicit links with larger energy 
transition governance discussions. In the following we illustrate three 
theoretical approaches that may be particularly promising, discuss their 
interlinkages, and explore how they may be applied to geothermal 
energy. 

4. Theoretical reflection on geothermal energy from a social- 
technical perspective 

Energy transition is often conceptualized as a socio-technical tran
sition, focusing on the interrelations between actors, networks, in
stitutions, and technologies across levels and scales [77–79]. Thus, 
pushing geothermal energy studies beyond the technical-geological 
domain requires recognition of geothermal energy as an explicit part 
of the socio-technical transition of energy systems, including a critical 
perspective on its promises and pitfalls. In this section, we discuss the 
key concepts, relevance, and potential operationalization of three 
complementary approaches that have been used in the social sciences to 
observe and address other forms of energy and energy transition: (1) 
socio-technical assemblages, (2) socio-technical systems, and (3) socio- 
technical imaginaries. 

4.1. Socio-technical assemblages 

The key purpose of assemblage thinking is to focus attention on how 
phenomena are shaped through multiplicities of contingent and het
erogeneous elements (e.g., human and non-human, material and non- 
material) that are related at a certain moment in time [80–83]. An 
assemblage can be broadly understood as a ‘fragmentary whole’, where 
the various elements can be rearranged and recombined to change its 
nature [81]. This enables researchers “to remain deliberately open as to 
the form of the unity, its durability, the types of relations and the human 
and non-human elements involved” (p.124 [83]). In socio-technical 
assemblages, the material aspects are placed in relation to the social 
and cultural networks surrounding it. 

Using an assemblage perspective in the context of energy transition, 
Van Veelen [84] argues that “‘energy’ [is perceived] not as a singular, 
self-evident object of analysis, but rather as a phenomenon that is 
composed of plural social, political, and material actors and processes; 
and […] how this assemblage (re)produces the more-than technical 
aspects that make up our lives” (p.3). Elements of energy-related as
semblages include, for example, political-institutional structures, energy 
markets, material infrastructures, and socio-cultural discourses [82]. 
Assemblage thinking is increasingly used to explore and explain energy 
systems [82,85]. Haarstad & Wanvik [82], for example, explain the 
existing carbonscape as a collection of “smaller assemblages that are 
partially integrated in other assemblages of different scales” (p.442). 
They argue that assemblage thinking is particularly suited to exploring 
change processes and potentials (see also [83,86]). Thereby, they make 
the connection to energy transition literature. Examples where assem
blage thinking has been applied to study energy transition include topics 
such as green financing for low-carbon agriculture [87], energy de
mocracy [88], the electric mobility transition [89], energy efficient 
cities [90], and the potential of solar energy for enhancing energy access 
[91]. We argue that with its focus on the dynamic relation between 
material and non-material aspects of geothermal energy, insights from 
assemblage thinking can provide novel apertures to expand this field 
into the domain of new materialism and beyond. 

Existing research into fossil fuel assemblages can also help explore 
the interwoven linkages between the matter and the social. Haarstad & 
Wanvik [82] make a useful distinction between assemblages surround
ing resource exploitation zones, distribution infrastructure, and sites of 
consumption in oil landscapes. In a similar manner, Sheller [92] dis
tinguishes between objects, infrastructures and practices embodied in 

assemblages when studying aluminum's relation to the energy sector. 
When applied within geothermal energy assemblages, such distinctions 
can help connect resources and energy across sites and scales. Therefore, 
assemblage thinking is particularly suited for exploring issues of equity, 
access, and ownership related to geothermal energy. This is exacerbated 
by the heat component associated with geothermal energy. This heat 
component creates incentives for cascading systems with various users 
of heat in relatively close proximity to extraction sites to ensure opti
mum use of geothermal resources. Taking into account the whole heat 
chain is particularly pressing in countries where geothermal energy is 
seen as part of an ongoing transition from natural gas to other heating 
sources (e.g., the Netherlands) [93,94]. 

Assemblage thinking is also useful in studying how geothermal sys
tems are embedded in the wider material and spatial repertoire of en
ergy transition in both the global South and North. This relates to 
questions on how assemblages of geothermal energy are related to and 
potentially reconfigure, adapt and convert related assemblages around 
other types of energy production. Such assemblages intentionally or 
unintentionally leave some subjects out of the equation. Kathryn Yusoff 
[95] suggests that “voiding subjects was also about voiding a relation to 
earth that was embodied, organized, and intensified by those relations to 
place; taking place is also taking ways in which people realize them
selves through the specific geologies of a land” (p.4). 

Tracing methodologies have been used to analyze assemblages 
[92,96,97] and can provide insight into the role and position of 
geothermal energy assemblages in (trans)national energy assemblages 
that are embedded in objects/materials, infrastructures and practices. 
Particularly given the absence of a body of work on geothermal energy 
grounded in social sciences and humanities, assemblage thinking can 
demonstrate and prove novel regroupings of material and social re
lations with its “capacity to deal with coexisting complexities, keeping 
open their multiplicities, without reducing them to singularities” (p.12 
[98]). For instance, the geothermal boom in Turkey since 2010s, which 
catapulted the country to the position of fourth largest producer glob
ally, can also be read as an uncanny assemblage of international climate 
finance, overlapping exploration permits over a major fault line, dubious 
environmental impact assessment procedures, struggle over land rights, 
specific geological formations with a high-carbon content, and techno- 
utopian visions to commercialize CO2 released from these reservoirs 
[99,100]. As such, assembling geothermal energy as a complex field of 
material and non-material relations can help analyze the multiplicity of 
elements and relations that condition geothermal energy deployment as 
a decarbonization strategy in different contexts, as well as the potential 
conditions for change [101]. 

4.2. Socio-technical systems 

The concept of socio-technical systems points to a heterogenous and 
interdisciplinary scientific community adopting a systems-theoretical 
[102] approach to study processes of technological change, especially 
sustainability-related. It heralds the need for an integrated perspective 
to understand innovation as emerging from the complex interplay of 
multiple, partly autonomous elements and processes (e.g., technologies, 
regulations, practices, markets, cultural meanings, and networks of 
distribution and support) at different scales [103,104]. 

Socio-technical systems literature comprises two main strands: the 
first strand is analytical and studies past transitions to understand their 
dynamics. It spawns from a gradual broadening in perspective of science 
and technology studies since the 1990s, leading to an integrated 
perspective on how technical and social processes interact in promoting 
or hampering technological change [105]. This change cannot be fully 
directed or predicted in advance, but emerges from iterative processes of 
variation, selection, and retention, depending on existing social and 
technical structures [106,107]. One of the most successful approaches, 
the multi-level-perspective (MLP), observes transitions as non-linear 
processes emerging from the interactions between niches (protected 
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spaces where radical innovations occur), regimes (semi-coherent sets of 
rules and structures which provides stability to the systems) and land
scapes (slowly changing variables and trends influencing socio-technical 
actors but unvarying in the short run [106]). The regimes tend to pro
duce inertia in the momentum [108] of technological change, causing it 
to suffer path dependency [109] and lock-in along predetermined 
pathways (e.g., around fossil fuel technologies). Regimes can be 
changed when alternative solutions developed in the niches reach a 
critical mass breaking down the inertia of incumbent structures, an 
insight that can be used to accelerate transitions [110–114]. 

The second strand aims at devising processes to deliberately promote 
the transition of innovation systems towards more collectively desirable 
equilibria, such as those fostering sustainable development [115]. One 
of the most known approaches within this strand is transition manage
ment (TM), a new form of long-term policy-making, focused on driving 
desirable transitions in socio-technical systems (especially energy) 
[116]. As MLP, TM acknowledges that any socio-technical transition is 
emergent - it results from the interactions between multiple groups, and 
thus, cannot be steered at will by public authorities [117] - it may even 
be unclear what the problem is and which actors should be involved 
[118]. It is conscious that policy designs may have unpredictable and 
unintended effects, causing new problems while striving to solve others 
[119–121]. 

Socio-technical systems approaches are not immune from criticisms 
[122]. Scholars have called for more attention to the political and value- 
laden character of transitions [116,123], citizen participation [124] and 
ensuring that the field maintains overture to new perspectives, chal
lenges and contexts [114], especially with other forms of systems- 
thinking, such as those connect with resilience [104,125,126]. Other 
scholars have noted the need for this approach to consider the role of 
social elements, such as trust, in transitions [127], and more funda
mentally, to provide a clearer definition on the socio-technical nature of 
the systems [128]. Studying the social sustainability of geothermal en
ergy can also progress the theoretical development of socio-technical 
systems approaches. 

Socio-technical systems approaches have been used extensively in 
the energy field, and there are many studies examining the drivers and 
barriers to the energy transition. Very few of these studies (e.g., 
[129–132]) explicitly mention geothermal power among renewable al
ternatives. Kinchy et al. [133] argue in favor of a socio-technical system 
approach to analyze subterranean resource development, as an oppor
tunity to integrate materialities and controversies in areas such as 
mining and energy. Moreover, existing studies have explored possible 
synergies between geothermal power and other energy debates such as 
carbon capture and storage [134,135], complementarities with the oil 
and gas sector [136] or geothermal's potential role in green hydrogen 
[137]. Ejderyan et al. [52] mention the importance of socio-technical 
systems perspectives when comparing different pathways to foster 
geothermal energy in Switzerland, concluding on the need for more 
coordination across levels to promote its development. Socio-technical 
systems approaches have also been used to highlight the possible 
future pathways for geothermal energy in Indonesia [138] and potential 
side effects of near-surface geothermal development in Germany [53]. 
Other studies employ the notion of socio-technical systems in a more 
metaphoric fashion, to offer an integrated view on issues such as public 
perception [74,139,140] or public engagement [59,124] regarding 
geothermal power. While the application of socio-technical systems to 
geothermal power is very incipient, the few cases in which it has been 
used, plus its robust trajectory in analyzing other kinds of renewable 
energy sources, grant it a strong potential to provide an integrative 
overlook on the dynamics and governance challenges of geothermal 
power and its interaction with other technologies. 

4.3. Socio-technical imaginaries 

The concept of socio-technical imaginaries is commonly attributed to 

Jasanoff & Kim's [141] seminal study on how the political cultures of the 
U.S. and South Korea informed divergent visions of nuclear power. 
Defined as “collectively imagined forms of social life and social order 
reflected in the design and fulfillment of nation-specific scientific and/or 
technological projects” (Ibid. 120), an imaginary is a type of social 
vision of a desirable future. The central task in the study of socio- 
technical imaginaries is to analyze how such social visions are consti
tuted by and constitutive of scientific or technological projects. Re
searchers have now examined the imaginaries of a variety of 
technologies, social groups, environments, and geographical regions at 
multiple scales. Much research has been carried out to understand the 
imaginaries implicated in both renewable energy systems (e.g., 
[76,142–144]) and fossil energy systems (e.g., [145–148]). While these 
represent two different streams of research, we argue that it is auspicious 
to consider insights from both streams to understand the imaginaries of 
geothermal energy projects in energy transitions. 

Existing studies have uncovered a rich variety of imaginaries impli
cated in renewable energy systems. Even so, structural similarities can 
be observed. For instance, deeper ideographs such as progress, envi
ronmental sustainability, and autonomy recur across cases, as well as 
themes of conflicting visions such as ecological modernization vs. 
degrowth, utopian vs. dystopian, or incremental vs. transformative 
[144,149]. Beyond identifying cross-regional patterns, the study of 
socio-technical imaginaries includes critical considerations of culture, 
power, and sustainability. One study revealed that imaginaries were 
“used to attract heavy industry investment” [75] for geothermal energy 
in Iceland. This study demonstrated how imaginaries of geothermal 
energy as a renewable resource may be interwoven in political and 
economic interests which perpetuate problematic perceptions of nature 
and justify social inequalities (see also [74]). In a study on solar energy 
in Senegal and South India, Jasanoff & Simmet [150] similarly 
concluded that alternative visions of social life, nature relations and 
collective energy are demoted in the face of hegemonic imaginaries of 
large-scale renewable energy development. Drawing on progenitors of 
socio-technical imaginaries research [151], we may ask to what degree 
such imaginaries are inherent to advanced geothermal energy devel
opment which often requires large capital investments. 

Studies on imaginaries implicated in fossil energy systems make up a 
rich body of research, pivotal for work on energy transitions within 
fields such as energy geography, ecological economics, and energy hu
manities. This stream considers how imaginaries derive from human- 
environmental relations and the biophysical composition of fossil 
fuels. Notable insights from this literature include how access to highly 
energy-dense fossil energy carriers have influenced modern notions of 
space, time, energy, progress, money, and economic growth 
[145,152–155]. It also includes the modern notion of technology, which 
was closely knit to the surge in fossil fuel consumption during the 20th 
century [156,157]. As such, even if socio-technical imaginaries of 
renewable energy technology may challenge fossil-based systems, they 
may rely on notions of reality symptomatic of fossil imaginaries. 
Studying the imaginaries of geothermal energy projects, we may ask 
how different social groups in the world struggle for representation of 
alternatives to such fossil imaginary lock-in. 

The notion of energy and space presents another fruitful area for 
researching the imaginaries of geothermal energy projects. Recent 
literature has demonstrated how modernity has developed an uncritical 
distinction between access to land and access to energy [158–160]. 
These studies unanimously show how the turn to renewable energy 
represents a return to land as a crucial factor of production. This in
cludes not only the land implicated at the site of energy harnessing, but 
also the land implicated in the production of renewable energy carriers 
and their infrastructure [15]. Chateau et al.'s [161] integration of socio- 
technical imaginaries and “spatial imaginaries” may be useful to un
derstand how actors generate competing imaginaries of the space and 
scale of geothermal energy projects. The deep geothermal energy project 
driven by the corporation E.ON in Malmö (Sweden) [162] may be 
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studied to understand how the imaginaries of the developers form scalar 
imaginaries of geothermal energy which include or exclude environ
ments and peoples implicated in the global production of the infra
structure. Using methods such as Q methodology (see [163]) or story- 
completion method (see [164]), this may bring interesting results to 
discuss in relation to geothermal energy, fossil imaginary lock-in and 
environmental justice. 

5. Towards a steaming research agenda for the social science of 
geothermal energy 

The three theoretical approaches discussed in this perspective article 
have all been fruitfully applied in energy transition studies. A funda
mental commonality in each of these approaches is the socio-technical 
perspective, which focuses attention on how geothermal energy pro
jects necessarily include both material/immaterial and biotic/abiotic 
relations of the world, prompting the need for interdisciplinarity 
scholarship. These approaches see geothermal energy projects funda
mentally as relations. This relational approach is particularly suited for 
studying geothermal energy, where cases are characterized by multiple 
actors, components, and transformative potential in various contexts, 
both in the global South and North. 

Besides these commonalities there are some notable differences be
tween the theoretical approaches (see Table 1). Each of these ap
proaches has a slightly different drive and focus. Assemblage thinking is 
more focused on creating an understanding of the relations between 
material and immaterial, human and non-human elements that shape 
current geothermal energy systems in various contexts. Socio-technical 
systems literature specifically focuses on the rather pragmatic question 
of understanding what makes a transition towards geothermal energy 
possible and how to better foster it. Imaginaries strive to analyze how 
social visions of desirable futures are constituted by and constitutive of 
geothermal energy projects. As such, these perspectives have a com
plementary temporal focus. 

These theoretical approaches also place different emphasis on 

immaterial (or cultural) aspects in shaping geothermal energy projects. 
However, we argue that they are complementary in this regard as well. 
For example, fossil-based imaginaries of geothermal energy technology 
might help to explain the tacit assumptions that inform governance and 
influence social-technical systems. Similarly, multi-scalar and multi- 
sited assemblages of geothermal energy infrastructure might help to 
problematize geothermal imaginaries often emerging within the con
fines of specific regions. This will help shed light on issues of equity, 
access and ownership which, despite being the focal point of much 
existing energy transition research [16,72], have been understudied in 
relation to geothermal energy. 

One way of synthesizing these approaches in a case study is to focus 
on one approach and use the two other approaches as complementary 
explanations. Identifying and analyzing stakeholder imaginaries 
through interviews (or other methods of data collection) may be suffi
cient, but could be further contextualized by assemblage and systems 
approach for a more holistic understanding of the imaginary. The 
assemblage approach may provide conceptual tools for understanding 
how the geothermal imaginary is emerging within given social and 
natural conditions, i.e. provide materialist nuance to understanding its 
social-ecological context. The systems approach may provide a deeper 
understanding on how the imaginary is constructed by the major 
stakeholders to meet the challenges of deep geothermal energy systems 
transcending the level of niche to regime. The geothermal imaginary 
takes its shape in the complex interplay of actors operating with specific 
interests within the confines of a system. For instance, in a case we are 
currently investigating in Sweden, it is possible to see that the major 
stakeholder is currently forming advertisements and communicating a 
geothermal imaginary to cater to the assemblage as well as their aspi
ration to take deep geothermal to the regime level. Thus, the geothermal 
imaginary is better understood by including considerations of how the 
assemblage and system dictates its form. A multitude of such case 
studies may transcend the conceptual boundaries of each of the ap
proaches and form a new understanding of geothermal energy systems. 

Table 1 
Comparison between three socio-technical approaches and their relevance to social science and humanities research on geothermal systems. Source: authors.  

Approach Definition of socio- 
technical 
relationships 

Analytical drive 
(guiding question) 

Temporal focus Spatial focus Example of application to 
geothermal energy 

Example of potential cases 

Socio- 
technical 
assemblages 

Heterogenous 
material relations 
embedded in socio- 
cultural contexts 

Theoretical 
(understand 
relations between 
material and 
immaterial, human 
and non-human 
elements) 

Past to Present 
(how assemblages 
emerge and 
operate) 

Mostly local 
(assemblages are 
context- 
dependent) 

Understanding how geothermal 
energy systems in a certain 
context emerged and operate as 
a result of interrelations 
between xthe natural 
characteristics of the local 
geothermal resources, the 
technologies deployed, the 
actors involved, their roles and 
impact on decision-making, and 
the institutional context. 

The geothermal energy 
‘boom’, its recent slowdown 
and the associated social 
conflicts in Turkey [29,165], 
the difficulties in geothermal 
power generation in Chile  
[13], or barriers and enablers 
to geothermal heating systems 
in the U.S. [48] 

Socio- 
technical 
systems 

Changes in social 
structures driving or 
hampering 
technological 
innovations 

Pragmatical 
(understand how 
transitions may 
occur and how to 
foster them) 

Past (analytical) to 
future 
(prescriptive), 
long-term oriented 

Multi-level (local 
niches to regional 
and national 
landscapes) 

Understanding how geothermal 
energy systems are shaped by 
developments on the niche, 
regime and landscape level, and 
what changes are necessary on 
these various scales to foster 
sustainable development of 
geothermal energy as part of 
wider energy transition debates. 

A cross-country comparison of 
the niche, regime and 
landscape level context and 
how these levels have affected 
geothermal energy 
development, e.g. in Chile  
[13], Turkey [45], Indonesia  
[138], or Kenya [32]. 

Socio- 
technical 
imaginaries 

Semantic-semiotic 
constructs 
interweaved in 
technology 
developments 

Critical-reflexive 
(observe relationship 
between projects and 
social visions of 
desirable futures) 

Future 
(imaginaries) into 
the Present 
(projects) 

Local to global 
(imaginaries span 
geographies) 

Understanding divergent 
imaginaries on geothermal 
energy projects, their scalar 
dimensions, and their position as 
a decarbonization strategy, 
including how these imaginaries 
are used to justify the (unequal) 
distribution of benefits and 
burdens. 

The divergent imaginaries on 
geothermal energy projects in 
Büyük Menderes Graben, 
Turkey [165], the role of 
geothermal in heat transition 
in the Netherlands [94], or 
the deep geothermal energy 
project driven by E.ON in 
Malmö (Sweden) [162].  
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6. Conclusions: full steam towards a sustainable approach to 
geothermal energy 

In this paper we discuss the renewed interests in geothermal energy 
systems as part of countries' decarbonization strategies, both in the 
global South and North. The reduction and eventual phase out of 
Russian natural gas after the invasion of Ukraine has heightened the 
sense of urgency for this issue, particularly in Europe [6]. Despite the 
previous contribution of several authors, we noticed a lack of critical 
social science and interdisciplinary scholarship on geothermal energy 
systems. The available literature demonstrate a need to further consider 
geothermal energy systems from social science and humanities per
spectives. This is especially important in the context of an increased 
interest in the potential of geothermal energy technology as a decar
bonization strategy. As emphasized in a recent article in this journal, 
geothermal energy has been “predominantly studied by ‘hard’ sciences 
(e.g., engineering)” (p.5 [18]). Our perspective article responds to and 
extends the call for more social science and humanities (SSH) research 
into geothermal energy as a decarbonization strategy and discusses 
three theoretical approaches to better understand geothermal energy 
systems with a focus on how they arise from and give rise to specific 
social, technical and ecological relations. We show that the three ap
proaches elaborated here can provide critical perspectives on the 
promises and pitfalls of geothermal systems across time and scales, 
taking into account issues such as equity (the unequal distribution of 
burdens and benefits), access (to energy and decision making) and 
ownership (who controls and makes profits). Such considerations must 
be taken into account if geothermal energy is to become part of sus
tainable decarbonization strategies. 

We call on researchers to engage with a broader spectrum of theo
retical approaches to critically discuss and explore the use of geothermal 
energy as a decarbonization strategy. It is high time for social science 
and humanities researchers to consciously engage with the particular
ities of deep (and shallow) geothermal systems, as well as the direct and 
indirect use of geothermal energy. This requires researchers to work in 
interdisciplinary research teams. We also join the call by another recent 
piece in this journal [166] for reconfiguring energy governance as a 
commons, in which we see an explicit role for the study of geothermal 
energy systems. Such an approach offers key opportunities for single 
country case studies and cross-country comparisons regarding the 
development trajectories of geothermal energy systems, policies, and 
their embeddedness in locally-grounded, internationally-relevant, fair 
and equitable decarbonization strategies. 
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S. Akerboom, C. Foulds, K. Smith Stegen, Ç. Adem, S. Batel, F. Rabitz, C. Certomà, 
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