
This is the **accepted version** of the journal article:

Etxandi, Mikel; Bañas Soto, Isabel María; Munguía, Lucero; [et al.]. «Clinical features of gambling disorder patients with and without food addiction : gender-related considerations». *Journal of Gambling Studies*, Vol. 38 (2022), p. 843-862. 20 pàg. Springer Nature. DOI 10.1007/s10899-021-10071-w

This version is available at <https://ddd.uab.cat/record/302022>

under the terms of the IN COPYRIGHT license

1 Clinical Features of Gambling Disorder Patients with and 2 without Food Addiction: Gender-related Considerations

3
4 Mikel Etxandi¹, Isabel Baenas^{1,2}, Lucero Munguía^{1,3}, Gemma Mestre-Bach^{1,4}, Roser Granero^{2,5},
5 Mónica Gómez-Peña¹, Laura Moragas¹, Amparo del Pino-Gutiérrez^{2,6}, Ester Codina¹, Bernat
6 Mora-Maltas¹, Eduardo Valenciano-Mendoza¹, Marc N. Potenza⁷, Ashley N. Gearhardt⁸,
7 Fernando Fernández-Aranda^{1,2,3*}, Susana Jiménez-Murcia^{1,2,3}

8
9 ¹Department of Psychiatry. Bellvitge University Hospital-IDIBELL, Barcelona, Spain

10 ²Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain

11 ³Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain

12 ⁴International University of La Rioja, Logroño, La Rioja, Spain

13 ⁵Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain

14 ⁶Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona,
15 Barcelona, Spain

16 ⁷Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, Connecticut,
17 USA; Connecticut Council on Problem Gambling, Wethersfield, Connecticut, USA; Connecticut Mental Health
18 Center, New Haven, Connecticut, USA; Department of Neuroscience, Yale University, New Haven, Connecticut,
19 USA

20 ⁸Department of Psychology, University of Michigan, USA

24 ABSTRACT

25
26 **Background:** Although food addiction (FA) is a debated condition and it is not currently
27 recognized as a formal diagnosis, it shares features with other addictions, such as gambling
28 disorder (GD). However, the prevalence of FA in GD and the clinical correlates are incompletely
29 understood, especially within women versus men. **Objectives:** To investigate FA in patients
30 presenting with GD. **Method:** The sample included 867 patients diagnosed with GD (798 males
31 and 69 females) attending a specialized behavioral addictions unit. **Results:** FA was observed in
32 8.3% of GD patients (18.8% of women, 7.4% of men). More psychopathology and harm
33 avoidance, greater body mass indices and less self-directedness and cooperativeness were
34 associated with FA. In women, FA was associated with a longer GD duration. In men, FA was
35 associated with earlier GD onset, greater GD and problematic alcohol use severities.

36 **Conclusion:** Among patients with GD, FA was associated with more psychopathology and
37 gambling patterns suggestive of more protracted or severe GD. Screening for and addressing FA
38 condition in patients with GD may help optimize preventive and therapeutic approaches. Future
39 studies should consider testing guidelines to improve healthy eating habits, increase physical
40 exercise and better manage stress and other negative emotions in order to target FA in GD.

41
42 **Keywords:** Addictive behaviors; food addiction; gambling disorder; alcohol; gender;

1 INTRODUCTION

2

3 Gambling disorder (GD) is considered a behavioral addiction and defined as a persistent and
4 recurrent maladaptive pattern of gambling behavior associated with impaired functioning in
5 personal, social, and occupational domains (American Psychiatric Association, 2013; Fauth-
6 Bühler et al., 2017; Marc N. Potenza et al., 2019). GD frequently co-occurs with other
7 psychiatric disorders including substance use, mood, anxiety and personality disorders (Grant &
8 Chamberlain, 2015; Karlsson et al., 2019; Kim et al., 2018; Petry et al., 2005; Tackett et al.,
9 2017). Although food addiction (FA) is not a formal diagnostic entity, a possible association
10 between GD and FA has been suggested (Jiménez-Murcia et al., 2017). The prevalence of FA
11 has been estimated at 7.8% in individuals with GD, and an association between body mass index
12 (BMI) and FA symptomatology has been described for patients with GD (Granero, Jiménez-
13 Murcia, et al., 2018).

14 At least two frameworks have been proposed when conceptualizing FA: addictive-like eating
15 and substance-based addiction models (Fernandez-Aranda et al., 2018; Hebebrand et al., 2014;
16 Schulte et al., 2017). This lack of consensus may in part contribute to FA not being considered as
17 a formal mental disorder in the current editions of the Diagnostic and Statistical Manual (DSM-
18 5) or the International Classification of Diseases (ICD-11) (APA, 2013; WHO, 2020). The
19 substance-based addiction framework purports that some foods, especially palatable ones with
20 large amounts of processed sugars and fats, may promote both overeating and addictive-like
21 behaviors by activating brain reward systems (Schulte et al., 2015a). Therefore, FA may show
22 similarities with other addictions, such as substance use disorders (SUDs) (Gearhardt et al.,
23 2011; Schulte et al., 2015b). Proposed similarities include a preoccupation with obtaining the
24 desired substance, the development of tolerance, abstinence, excessive use, difficulties reducing
25 consumption despite negative physical and psychological consequences and similar neural
26 processes (Carter & Davis, 2010; Gearhardt et al., 2011; Volkow et al., 2011, Fletcher & Kenny,
27 2018; Gordon et al., 2018; Pursey et al., 2019).

28 Given GD's classification as a behavioral addiction, common features between FA and GD may
29 exist (Jiménez-Murcia et al., 2017). Both are associated with difficulties in controlling behavior
30 (Hardy et al., 2018; Saunders et al., 2017), impulsivity (Kandgeger et al., 2019; Mestre-Bach,
31 Steward et al., 2020), and impaired executive functions (Mestre-Bach, Fernández-Aranda, et al.,
32 2020a; Steward et al., 2018). As with GD, psychopathology has been associated with FA
33 (Burrows et al., 2018; Jiménez-Murcia et al., 2019). Finally, GD and FA may involve
34 maladaptive emotional regulation, engaging in gambling or eating for negative reinforcement
35 motivations; i.e., to alleviate negative emotions (Innamorati et al., 2017; Mestre-Bach,
36 Fernández-Aranda, et al., 2020b).

37 Differences between GD and FA have also been described. For example, GD is more frequently
38 observed among men, although the gender gap appears to be narrowing (Abbott et al., 2018;
39 Subramaniam et al., 2015). Gender-related differences in types of gambling, age of onset and
40 other features have been reported in GD (Zakiniaeiz et al., 2017). In contrast, FA is more
41 frequently observed among women (Pursey et al., 2014). Women as compared with men are also
42 more likely tendencies to engage in addictive behaviors and eating for negative reinforcement
43 motivations that include coping with stress, depression and anxiety (Zakiniaeiz & Potenza,
44 2018). Thus, there is a need to consider gender in understanding how FA may relate to clinical
45 features in GD patients.

46 Although these two clinical entities have begun to be studied together, gender, personality traits
47 and psychopathology have been scarcely investigated in GD individuals with and without FA.
48 Therefore, the present study aimed to assess the clinical correlates of FA among GD patients,

1 considering personality features, psychological state or substance consumption. Given potential
2 gender-related differences, relationships were also examined in men and women separately. Our
3 main hypothesis is that the presence of FA among GD would be associated with worse clinical
4 profiles, greater psychopathology and more severe GD. We also anticipated more frequent FA
5 among women (versus men) with GD.

6 METHODS

7 Participants:

8 The study sample consisted of 867 GD patients including 798 men and 69 women. Participants
9 were referred for treatment to the Pathological Gambling Unit in the Psychiatry Department at a
10 General University Hospital, in Spain, between May of 2016 and June of 2020. This hospital is
11 part of the Spanish Public Assistance Network and of a Public University Campus, having its
12 own research institute. It is the local reference center for a population of around 343,000
13 inhabitants and the territorial tertiary reference center for more than 2 million people.
14 Participants were diagnosed according to the DSM-5 (American Psychiatric Association, 2013)
15 criteria for GD by clinical psychologists and psychiatrists with more than 20 years of experience
16 in the field of behavioral addictions and eating disorders. None met DSM-5 diagnostic criteria
17 for any current eating disorder.

20 Measures:

21 The South Oaks Gambling Screen (SOGS) (Lesieur & Blume, 1987) is a 20-item screen for
22 problem gambling behaviors and consequences during the prior twelve months. The total score
23 reflects problem gambling severity, with a score of 4 or more indicating problem gambling. The
24 Spanish validation of the scale achieved very good psychometric results in the adaptation study
25 (test-retest reliability $R = 0.98$, internal consistency $\alpha = 0.94$ and convergent validity $R = 0.92$)
26 (Echeburúa et al., 1994). The internal consistency for this scale in the study sample was adequate
27 ($\alpha = 0.74$).

28 The Diagnostic Questionnaire for Pathological Gambling (Stinchfield, 2003) is a self-report
29 questionnaire with 19 items coded in a binary fashion (yes-no) that permits assessing DSM-IV
30 (American Psychiatric Association, 2010) and DSM-5 (American Psychiatric Association, 2013)
31 diagnostic criteria for GD. It was used in the present study for assessing GD. Based on the DSM-
32 5 taxonomy, several GD-related measures may be generated: the presence/absence of each DSM
33 inclusion criterion, the presence/absence of GD diagnosis, a dimensional measure of problem
34 gambling severity (total number of DSM criteria, obtained as the sum of the individual criteria),
35 and GD severity grouped in four levels [non-problem gambling (0 criteria), problem gambling
36 (for 1–3 criteria), mild GD (4–5 criteria), moderate GD (6–7 criteria) and severe GD (8–9
37 criteria)]. The Spanish adaptation of the questionnaire obtained satisfactory psychometric
38 properties: internal consistency with a Cronbach's alpha equal to 0.95 for the combined sample,
39 satisfactory convergent validity (moderate to large correlations with other measures of problem
40 gambling severity), and high discriminative capacity (sensitivity = 0.92 and specificity = 0.99)
41 (S. Jiménez-Murcia et al., 2009). The internal consistency for this scale in the study sample was
42 good ($\alpha = 0.80$).

43 The Symptom Checklist-90-Revised (SCL-90-R) (Derogatis, 1994) is a 90-item self-report
44 questionnaire measured on an ordinal 3-point scale that evaluates a broad range of psychological
45 problems and symptoms of psychopathology by measuring nine primary symptom dimensions:
46 Somatization, Obsession-Compulsion, Interpersonal Sensitivity, Depression, Anxiety, Hostility,
47 Phobic Anxiety, Paranoid Ideation, and Psychoticism. It includes three global ratings, named
48 global severity index (overall psychological distress), positive symptom distress index (the
49 intensity of symptoms), and positive symptom total (self-reported symptoms). The global
50 severity index can be used as a summary of the test. The validation of the scale in a Spanish
51 population (Derogatis, 2002) obtained a mean internal consistency of 0.75 (coefficient alpha).

1 The internal consistency in the study was excellent for the global ratings ($\alpha = 0.98$) and the one
 2 for the subscales range from adequate to excellent ($\alpha = 0.80$ for Paranoid Ideation to $\alpha = 0.92$ for
 3 Depressive).

4 The Temperament and Character Inventory-Revised (TCI-R) (Cloninger, 1999) is a
 5 questionnaire with 240 items scored on a 5-point Likert scale, which measures personality
 6 factors related to three character dimensions (Self-Directedness, Cooperativeness, and Self-
 7 Transcendence) and four temperament dimensions (Harm Avoidance, Novelty Seeking, Reward
 8 Dependence and Persistence). Evaluation of the Spanish revised version (Gutiérrez-Zotes et al.,
 9 2004) had an internal consistency of 0.87 (coefficient alpha). The internal consistency in this
 10 study for the subscales ranged from adequate to very good ($\alpha = 0.70$ for Novelty Seeking to $\alpha =$
 11 0.87 for Self-Directedness).

12 The Yale Food Addiction Scale 2.0 (YFAS-2) (Gearhardt et al., 2016) is a 35-item self-report
 13 questionnaire for measuring FA during the prior year. The original YFAS was based on the
 14 Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) (American Psychiatric
 15 Association, 2010) criteria for substance dependence and was adapted to the context of food
 16 consumption. The YFAS-2 is based on DSM-5 criteria for SUDs (American Psychiatric
 17 Association, 2013) and evaluates 11 symptoms. Two measurements may be calculated: (a) a
 18 continuous symptom count score reflecting the number of fulfilled criteria (ranging from 0 to
 19 11), and (b) a FA threshold based on the number of symptoms (at least 2) and self-reported
 20 clinically significant impairment or distress. This final measurement allows for the binary
 21 classification of FA (present versus absent). Based on the revised DSM-5 taxonomy, it is
 22 possible to establish severity cut-offs: mild (2–3 symptoms), moderate (4–5 symptoms), and
 23 severe (6–11 symptoms). The Spanish validation of the YFAS-2 (Granero, Jiménez-Murcia, et
 24 al., 2018) generated an internal consistency of 0.94 (coefficient alpha). In this study, internal
 25 consistency for the total score was excellent ($\alpha = 0.96$).

26 The Alcohol Use Disorders Identification Test (AUDIT) (Saunders et al., 1993) is a 10-item
 27 screening questionnaire for hazardous alcohol consumption. It includes questions about the
 28 amount and frequency of drinking, alcohol dependence, and problems caused by alcohol. A
 29 score of 8 or more is considered to indicate harmful alcohol use and a score of 12 or more in
 30 women (15 or more in men) is likely to indicate alcohol dependence. This questionnaire has
 31 shown adequate validity in Spanish samples (Delgado, 1996).

32 The Drug Use Disorders Identification Test (DUDIT) (Berman et al., 2003) is an 11-item self-
 33 administered instrument to identify non-alcohol drug use patterns and related problems in
 34 individuals likely to meet criteria for a substance dependence diagnosis. The total score can
 35 range from 0 to 44 (as a result of the sum of the 11 items scored from 0 to 4); higher scores
 36 reflect more severe drug use problem. The first nine items are scored on a 5-point Likert scale
 37 ranging from 0 to 4, and the last two are scored on 3-point scales (values of 0, 2, and 4).

38 Other variables, including sociodemographic variables and other gambling-related measures (e.g.
 39 age of onset and duration), were obtained via face-to-face clinical interviews. The interviews
 40 also assessed participants' educational attainment. Socioeconomic status was assessed using the
 41 Hollingshead Four Factor Index of Socioeconomic Status (Hollingshead, 2011).

42 **Procedure:**

43 All participants in our sample voluntarily sought treatment for GD. Experienced psychologists
 44 and psychiatrists conducted two face-to-face clinical interviews, before and after completing
 45 study instruments. The first visit was a clinical interview, in which the medical/psychiatric
 46 history was assessed, and the subsequent visit consisted of an interview to report the results of
 47 the tests and information about the treatment, according to their clinical characteristics and
 48 factors associated with GD.

49 The participants included in this study met criteria for GD and did not present other comorbid
 50 behavioral addictions and did not receive any compensation for participating in the study.

1 **Statistical analyses:**

2 Statistical analysis was conducted with Stata16 for Windows (Stata-Corp, 2019). Between-group
 3 comparisons for personality (TCI-R), psychopathology (SCL-90R), substance use and BMI
 4 measures were based on analysis of variance adjusted for age (ANCOVA) (gender was not
 5 considered as a covariate because results stratified for men and women were obtained). Effect
 6 sizes for mean differences were estimated through Cohen's d coefficient, poor-low for $|d|>0.20$,
 7 mild-moderate for $|d|>0.50$ and large-high for $|d|>0.80$ (Kelley et al., 2012). Between-group
 8 comparisons for categorical variables were based on logistic regression also adjusted for age.
 9 Type-I error related to multiple comparisons was controlled using the Finner's method, a family-
 10 wise procedure with higher power than a Bonferroni correction (Finner & Roters, 2001).

11 Path analysis was used to assess the set of relationships between gender, age, the personality
 12 domains of self-directedness and harm avoidance, FA severity, global psychopathological
 13 distress and gambling preference. Path analysis constitutes an extension of multiple regression
 14 modeling, used with the aim of estimating magnitudes and significance of simultaneous
 15 associations in a set of variables, including direct and indirect effects (mediational links) (Kline,
 16 2005). This technique is currently used for both exploratory and confirmatory purposes, and
 17 therefore it contributes to theory testing and theory development (MacCallum & Austin, 2000).
 18 This study modeled path analyses through structural equation modeling (SEM), with the
 19 maximum-likelihood estimation method. Goodness of fit was assessed with standard indexes,
 20 and it was considered adequate fitting (Barrett, 2007) for: non-significant result in the chi-square
 21 test (χ^2), root mean square error of approximation RMSEA<0.08, Bentler's Comparative Fit
 22 Index CFI>0.90, Tucker-Lewis Index TLI>0.90, and standardized root mean square residual
 23 SRMR<0.10. Global predictive capacity was estimated with the coefficient of determination
 24 (CD).

25 **Ethics:**

26 The present study was conducted in accordance with the latest version of the Declaration of
 27 Helsinki. The General University Hospital Clinical Research Ethics Committee approved the
 28 study, and signed informed consent was obtained from all participants (Ref: PR329/19).

30 **RESULTS**

31

32 **Sample characteristics**

33 Most patients were single ($n=454$, 52.4%) or married ($n=313$, 36.1%), achieved primary ($n=460$,
 34 53.1%) or secondary ($n=331$, 38.2%) education levels, were of medium-low or low
 35 socioeconomic status ($n=723$, 83.4%) and were employed ($n=527$, 60.8%). Mean age was 40.5
 36 years (SD=13.8). Most patients reported only non-strategic gambling ($n=449$; 51.8%), and
 37 26.1% ($n=226$) and 22.1% ($n=192$) reported only strategic gambling and both gambling forms,
 38 respectively. Strategic gambling activities are those where the gambler can use knowledge of the
 39 game to influence or predict the outcome, while nonstrategic gambling implies little or no
 40 possibility of influencing the outcome (Potenza et al., 2001). The gambling activity reported as
 41 the main reason for seeking treatment in the sample was slot-machines (60.1%), followed by
 42 casino or gambling saloons (24.7%), sports-betting (16.0%), and lotteries (14.4%).

43 **Comparison between patients with positive versus negative FA screening**

44 Seventy-two participants (8.3%) screened positive for FA. FA was observed among 18.8% of
 45 women and 7.4% of men. Table 1 contains the comparison for individuals with negative versus
 46 positive FA screening, stratified by gender (separate comparisons were performed for women
 47 and men due the potential moderator role of gender). Among women, FA was associated with
 48 harm avoidance, less self-directedness and cooperativeness, greater psychopathology and higher
 49 BMI. Among men, FA was associated with harm avoidance and self-transcendence, less self-
 50

1 directedness and cooperativeness, greater psychopathology, greater alcohol use problem severity
2 and higher BMI.

3 --- Insert Table 1 ---

4 Table 2 includes the prevalence of patients outside the normative ranges for the main
5 psychological variables of the study (estimates represent proportions of participants in
6 subclinical or clinical severity levels). Among women, FA was associated with obesity, greater
7 psychopathology and more self-directedness. Among men, FA was associated with higher GD
8 severity, obesity, greater psychopathology, more self-directedness and harm avoidance and less
9 cooperativeness.

10 --- Insert Table 2 ---

11 Table S1 (supplementary) contains the comparison between patients with negative versus
12 positive FA screening for socio-demographics, gambling profile, and problem gambling severity
13 measured as the total number of DSM-5 criteria for GD and SOGS scores. Among women, FA
14 was associated with lower socioeconomic status, unemployment, non-strategic gambling
15 preference, and longer durations of gambling problems. Among men, FA was associated with
16 higher socioeconomic status, greater GD severity and earlier age of onset of gambling.

17 Figure 1 displays a radar chart with the profiles related to FA, separately for women and men.
18 Standardized scores are plotted in this graphic to allow easy interpretation as original scales had
19 different ranges.

20 --- Insert Figure 1 ---

21 **Path analysis**

22 Figure 2 displays a path diagram with standardized coefficients obtained in the path analysis
23 (Table S2 includes the complete results for this model, including tests for direct, indirect and
24 total effects). Only significant coefficients were retained in the final model. Only two personality
25 domains were retained (self-directedness and harm avoidance) because the other TCI-R scales
26 did not achieve significant effects. Adequate goodness-of-fit was achieved: $\chi^2=10.71$ ($p=.296$),
27 RMSEA=0.015 (95% confidence interval: 0.001 to 0.043), CFI=0.999, TLI=0.997, and
28 SRMR=0.019. Global predictive capacity was also good (CD=0.299).

29 --- Insert Figure 2 ---

30 FA severity level (defined as the YFAS-2 total score) was higher for women and participants
31 with lower self-directedness scores and higher harm avoidance level. Both personality domains
32 also showed mediational links between gender and age with FA severity: being female was
33 associated with decreased self-directedness and increased harm avoidance, while older age was
34 associated with increased harm avoidance. Path analysis also suggested that FA levels led to
35 higher psychopathology, which also was directly related to lower self-directedness and higher
36 harm avoidance. Gambling preference was also directly related to age, with older age linked to
37 preferences for non-strategic gambling.

38 **DISCUSSION**

39 The present work studied among GD patients clinical features associated with FA in women and
40 men. The prevalence of FA in the total sample was 8.3% (18.8% among women, 7.4% among
41 men). Although no relation between FA and age was found, significant differences in socio-
42 economic level and employment state were evidenced only among women. Additionally, women
43 with FA to be of lower socioeconomic status and unemployed. Higher scores in general
44 psychopathology and certain personality traits, namely higher harm avoidance and lower self-
45 directedness and cooperativeness, were found in both genders. However, men with FA presented
46 higher self-transcendence, although a numerical difference in the same direction with a similar
47 effect size was observed in women, suggesting a similar relationship in the smaller female
48 sample. Relationships between FA and longer duration of GD in women and between FA and
49 both severities of GD and problematic alcohol use in men were observed. Regardless of gender,
50

1 FA was associated with a higher BMI and obesity. Association between FA and types of
2 gambling were largely negligible. Implications are discussed below.

3 Although a higher prevalence of GD is described in men than women (Blanco et al., 2006;
4 Husky et al., 2015), previous studies have reported that women are more likely to engage in FA
5 behaviors (Schulte & Gearhardt, 2018) and experience abnormal eating and weight disorders
6 (Jiménez-Murcia et al., 2019; Romero et al., 2019; Schulte & Gearhardt, 2018), with initial
7 studies suggesting similar relationships in patients with GD (Granero et al., 2018; Jiménez-
8 Murcia et al., 2017). Lower socioeconomic status has been associated with GD severity among
9 women (Jiménez-Murcia et al., 2020). Higher psychopathology, particularly depressive and
10 anxiety symptoms, and some specific personality features, such as low self-directedness and
11 perseverance or high reward dependence, have been linked to FA in both medical and mental
12 conditions (Brunault et al., 2018; Imperatori, 2014; Wolz et al., 2016). FA may impact global
13 health, with a special influence on BMI and overweight/obesity (Murphy et al., 2014; Meseri et
14 al., 2020). Our findings among GD patients suggest a poor socioeconomic context and work
15 difficulties (e.g., unemployment), higher emotional vulnerability (e.g., anxiety and depressive
16 symptoms, particularly for women) and poor adaptive coping strategies to deal with stress (e.g.,
17 higher harm avoidance and lower self-directedness and cooperativeness) may characterize GD
18 patients with FA.

19 Both men and women with GD and FA appear to fit the emotionally vulnerable subtype from the
20 pathway model proposed by Blaszczynski and Nower (2002), and also within the cluster 2-3
21 (moderate-functional clusters) described among FA individuals with obesity by Jiménez-Murcia
22 (2019). In this group of patients, gambling and eating behaviors might represent potential
23 elements of addiction as these behaviors are seen as strategies to relieve emotional discomfort
24 they may experience in daily situations, usually perceived as threatening and stressful, or which
25 they may not have the proper skills to manage adequately. Therefore, the identification of a
26 vulnerable clinical profile at baseline among GD patients with FA suggests a need for early
27 systematic identification of FA by clinicians. Although both genders have similarities, this
28 subtype may be especially important among women, who appear more likely to experience FA,
29 overweight/obesity and fewer socio-economic resources. Moreover, the creation and/or
30 optimization of specific and individualized social and therapeutic approaches are needed, taking
31 into account that the lack of social support, economic difficulties or physical limitations (e.g.,
32 related to obesity) may result in decreased access to medical services. As suggested in previous
33 studies (Jiménez-Murcia et al., 2019), some approaches may target better nutritional and weight
34 management, but also emotional regulation and problem-solving strategies to cope with stress
35 may also be needed.

36 To the best of our knowledge, this is the first study that analyzes clinical correlates of FA in GD
37 patients from a gender-informed perspective. The results suggest a negative influence of FA on
38 GD prognosis that are both similar across genders and differ by gender. With respect to the
39 latter, a longer duration of the GD was associated with FA in women, and in men, FA was
40 associated with an earlier age of onset and higher severities of GD and problematic alcohol use.
41 Of note, some of these differences (particularly with respect to relationships with GD severity)
42 may also pertain to women, as evidenced by largely similar effect sizes and the smaller sample
43 of women.

44 The clinical characteristics associated with FA have been reported as having deleterious impacts
45 on the course of GD (del Pino-Gutiérrez et al., 2017; Susana Jiménez-Murcia et al., 2016;
46 Valero-Solís et al., 2018). Low socioeconomic status or co-occurring psychopathology (e.g.
47 depression, anxiety) may be particularly relevant to FA in women with GD. These factors could
48 delay medical consultation for GD, resulting in a longer duration of GD when receiving a GD
49 diagnosis. In the case of men, early age of gambling onset and problematic alcohol use appear
50 particularly relevant. Previous studies have reported a relationship between FA and tobacco use
51 among a male predominant sample with GD (Jiménez-Murcia et al., 2017). Apart from gambling

1 and food, men with GD and FA may also use alcohol as a mechanism to cope with stress and
2 negative emotions.

3 FA was more prevalent among women (versus men) with GD. These results suggest that
4 assessing for FA in treatment-seeking individuals with GD may be particularly helpful for
5 women's health and useful in general for identifying vulnerable patients presenting with the
6 potential for worse courses of GD. The detection and simultaneous treatment of co-occurring
7 psychiatric concerns among GD patients is important. Our findings suggest that the design of
8 specific protocols to detect FA is needed, as is the testing of treatment approaches used in other
9 care settings for addressing FA in GD populations.

10 In considering the pathway analyses, relationships between gender and personality features with
11 appear mediated by FA. Therefore, the results reinforce the interpretations of a specific
12 vulnerable group of GD patients (i.e., women with dysfunctional personality features) in whom
13 FA may represent a maladaptive way of dealing with higher levels of psychological distress.
14 Similar conclusions may extend to GD, as has been also proposed previously (Di Trani et al.,
15 2017; Jiménez-Murcia et al., 2017), with poor emotional regulation contributing importantly to
16 behavioral addictions (Estévez et al., 2017; Mestre-Bach, Fernández-Aranda, et al., 2020b). In
17 this sense, the detection of FA among GD patients could lead to a greater emphasis on
18 approaches to improve emotional regulation (e.g., with mindfulness-based or stress-reduction
19 treatments) within GD treatment. The acquisition of adaptive emotional skills may be translated
20 into a better stress management and reduced gambling and eating to manage such negative states.
21 A relationship between age and gambling preferences was found, with preferences for non-
22 strategic gambling with older age, consistent with prior findings (Marc N. Potenza, Steinberg, et
23 al., 2006). Among patients with FA the relationship with GD subtype was only indirect, and
24 specifically in females. This result is consistent with previous works regarding GD samples
25 (Assanangkornchai et al., 2016; Odlaug et al., 2011). Men (particularly younger ones) tend to
26 prefer and have problems with strategic gambling, whereas women (particularly older ones) tend
27 to prefer and have problems with non-strategic gambling (Moragas et al., 2015; Odlaug et al.,
28 2011; M. N. Potenza et al., 2001; Potenza et al., 2006; Stevens & Young, 2010).

29 Strengths of this study, such as the large clinical sample, should be mentioned. To date, this is
30 the first study to consider FA in GD patients in a gender-sensitive manner. As the sample
31 consisted of patients treated at a specific unit, assessments were consistently conducted.
32 However, study limitations should also be mentioned. For instance, the treatment-seeking
33 sample was from a region of Spain; as such, the findings may not generalize to non-clinical
34 samples or those from other jurisdictions. The use of self-report assessments for psychiatric
35 conditions may decrease reliability. Future studies should consider alternate assessments (e.g.,
36 structured clinical interviews). However, as FA remains a debated construct, its evaluation with a
37 self-report measure is presently most reasonable.

38 CONCLUSIONS

41 In conclusion, this study characterizes the clinical profile of GD patients with and without FA
42 from a gender-informed perspective. GD patients, especially women, with specific personality
43 characteristics and psychopathology may be particularly prone to FA. Further, a lower
44 socioeconomic status may also be relevant for women with GD to experience FA. Speculatively,
45 the findings taken together suggest that GD patients may engage in FA behaviors to manage high
46 levels of psychological distress. Alcohol and consumption, early age of onset, and severity of
47 GD may contribute to a worse GD prognosis in the presence of FA, particularly in men. In
48 women, a longer duration of GD was linked to FA, suggesting the need for enhancing early
49 intervention efforts to improve women's health. Therefore, these results support the existence of
50 a specific vulnerable group of GD patients and suggest the relevance of designing specific
51 screening and treatment protocol to address FA in GD patients. Further studies are necessary to
52 increase knowledge about FA and its influence not only in GD, but also in other addictive

1 disorders and mental health conditions. Addressing areas such as underlying mechanisms and
2 neurobiological factors related to FA could be helpful for a better understanding of this condition
3 and its clinical relevance.

4

5

6 **Authors' Contribution**

7 ME, IB, LM, GM-B and SJ-M contributed to the development of the study concept and design.
8 RG performed the statistical analysis. ME, IB, MG-P, LM, AP-G, EC, BM-M and EV-M aided
9 with data collection. ME, IB, LM, GM-B and SJ-M aided with interpretation of data and the
10 writing of the manuscript. MNP, ANG, FF-A, and SJ-M revised the manuscript and provided
11 substantial comments. FF-A and SJ-M obtained funding.

12

13 **Funding Sources**

14 First, we thank CERCA Programme / Generalitat de Catalunya for institutional support. This
15 work was additionally supported by grants from the Ministerio de Ciencia, Innovación y
16 Universidades (grant RTI2018-101837-B-100) and the Delegación del Gobierno para el Plan
17 Nacional sobre Drogas (2017I067 and 2019I47), Instituto de Salud Carlos III (ISCIII)
18 (PI17/01167) and co-funded by FEDER funds/European Regional Development Fund (ERDF), a
19 way to build Europe. CIBERObn is an initiative of ISCIII. IB was partially supported by a Post-
20 Residency Grant from the Research Committee of the University Hospital of Bellvitge (HUB;
21 Barcelona, Spain) 2019-2020. LM is supported by a postdoctoral grant of the mexican institution
22 Consejo Nacional de Ciencia y Tecnología (CONACYT). GMB was supported by a postdoctoral
23 grant from FUNCIVA. The funders had no role in the study design, data collection and analysis,
24 decision to publish or preparation of the manuscript. Dr. Potenza involvement was supported by
25 the Connecticut Department of Mental Health and Addiction Services, the Connecticut Council
26 on Problem Gambling and the National Center for Responsible Gaming.

27

28 **Conflicts of Interest**

29 Dr. Potenza has consulted for and advised Game Day Data, the Addiction Policy Forum, AXA,
30 Idorsia, and Opiant Therapeutics; has received research support from the Veteran's
31 Administration, Mohegan Sun Casino, and the National Center for Responsible Gaming (no the
32 International Center for Responsible Gambling); has participated in surveys, mailings, or
33 telephone consultations related to addictions, impulse-control disorders or other health topics;
34 has consulted for law offices and the federal public defender's office in issues related to impulse-
35 control and addictive disorders; has provided clinical care in the Connecticut Department of
36 Mental Health and Addiction Services Problem Gambling Services Program; has performed
37 grant reviews for the National Institutes of Health and other agencies; has edited journals and
38 journal sections; has given academic lectures in grand rounds, CME events and other
39 clinical/scientific venues; and has generated books or chapters for publishers of mental health
40 texts. Other authors report no disclosures.

41

42 **Ethics**

43 The present study was carried out in accordance with the latest version of the Declaration of
44 Helsinki. The Bellvitge University Hospital Clinical Research Ethics Committee approved the
45 study, and signed informed consent was previously obtained from all participants (Ref:
46 PR329/19).

1 **REFERENCES**

2 Abbott, M., Romild, U., & Volberg, R. (2018). The prevalence, incidence, and gender and age-
 3 specific incidence of problem gambling: results of the Swedish longitudinal gambling study
 4 (Swelogs). *Addiction*. <https://doi.org/10.1111/add.14083>

5 American Psychiatric Association. (2010). *Diagnostic and statistical manual of mental disorders*
 6 (4th ed.). American Psychiatric Association.

7 American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders*
 8 (5th ed.). American Psychiatric Association.

9 APA. (2013). American Psychiatric Association, 2013. Diagnostic and statistical manual of
 10 mental disorders (5th ed.). In *American Journal of Psychiatry*.

11 Assanangkornchai, S., McNeil, E. B., Tantirangsee, N., & Kittirattanapaiboon, P. (2016).
 12 Gambling disorders, gambling type preferences, and psychiatric comorbidity among the
 13 Thai general population: Results of the 2013 national mental health survey. *Journal of*
 14 *Behavioral Addictions*, 5(3), 410–418. <https://doi.org/10.1556/2006.5.2016.066>

15 Berman, A. H., Bergman, H., Palmstierna, T., & Schlyter, F. (2003). *The Drug Use Disorders*
 16 *Identification Test (DUDIT) Manual*. Karolinska Institutet.

17 Blanco, C., Hasin, D. S., Petry, N., Stinson, F. S., Grant, B. F. (2006). Sex differences in
 18 subclinical and DSM-IV pathological gambling: Results from the National Epidemiologic
 19 Survey on Alcohol and Related Conditions. *Psychological Medicine*, 36(7), 943–953.
 20 <http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L4382736>
 21 6

22 Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological
 23 gambling. In *Addiction* (Vol. 97, Issue 5, pp. 487–499). John Wiley & Sons, Ltd.
 24 <https://doi.org/10.1046/j.1360-0443.2002.00015.x>

25 Brunault, P., Ducluzeau, P. H., Courtois, R., Bourbao-Tournois, C., Delbachian, I., Réveillère,
 26 C., & Ballon, N. (2018). Food Addiction is Associated with Higher Neuroticism, Lower
 27 Conscientiousness, Higher Impulsivity, but Lower Extraversion in Obese Patient
 28 Candidates for Bariatric Surgery. In *Substance Use and Misuse*.
 29 <https://doi.org/10.1080/10826084.2018.1433212>

30 Burrows, T., Kay-Lambkin, F., Pursey, K., Skinner, J., & Dayas, C. (2018). Food addiction and
 31 associations with mental health symptoms: a systematic review with meta-analysis. In
 32 *Journal of Human Nutrition and Dietetics* (Vol. 31, Issue 4, pp. 544–572). Blackwell
 33 Publishing Ltd. <https://doi.org/10.1111/jhn.12532>

34 Carter, J. C., & Davis, C. (2010). An Addiction Model of Binge Eating Disorder. In *Addiction*
 35 *Medicine* (pp. 633–647). Springer New York. <https://doi.org/10.1007/978-1-4419-0338->

1 9_30

2 Cloninger, C. R. (1999). *The Temperament and Character Inventory-Revised*. Center for
3 Psychobiology of Personality, Washington University.

4 del Pino-Gutiérrez, A., Fernández-Aranda, F., Granero, R., Tárrega, S., Valdepérez, A., Agüera,
5 Z., Håkansson, A., Sauvaget, A., Aymamí, N., Gómez-Peña, M., Moragas, L., Baño, M.,
6 Honrubia, M., Menchón, J. M., & Jiménez-Murcia, S. (2017). Impact of alcohol
7 consumption on clinical aspects of gambling disorder. *International Journal of Mental
8 Health Nursing*, 26(2), 121–128. <https://doi.org/10.1111/inm.12221>

9 Delgado, J. M. M. (1996). *Validación de los cuestionarios breves: AUDIT, CAGE y CBA para la
10 detección precoz del síndrome de dependencia de alcohol en Atención Primaria*.
11 Universidad de Cadiz.

12 Derogatis, L. R. (1994). *SCL-90-R: Symptom Checklist-90-R. Administration, Scoring and
13 Procedures Manuall—II for the revised version*. Clinical Psychometric Research.

14 Derogatis, L. R. (2002). *SCL-90-R. Cuestionario de 90 síntomas-Manual*. . TEA Editorial.

15 Di Trani, M., Renzi, A., Vari, C., Zavattini, G. C., & Solano, L. (2017). Gambling Disorder and
16 Affect Regulation: The Role of Alexithymia and Attachment Style. *Journal of Gambling
17 Studies*. <https://doi.org/10.1007/s10899-016-9637-3>

18 Echeburúa, E., Baez, C., Fernández-Montalvo, J., & Páez, D. (1994). Cuestionario de Juego
19 Patológico de South Oaks (SOGS): validación española. *Análisis y Modificación de La
20 Conducta*, 20(74), 769–791.

21 Estévez, A., Jáuregui, P., Sánchez-Marcos, I., López-González, H., & Griffiths, M. D. (2017).
22 Attachment and emotion regulation in substance addictions and behavioral addictions.
23 *Journal of Behavioral Addictions*, 6(4), 534–544. <https://doi.org/10.1556/2006.6.2017.086>

24 Fauth-Bühler, M., Mann, K., & Potenza, M. N. (2017). Pathological gambling: a review of the
25 neurobiological evidence relevant for its classification as an addictive disorder. In *Addiction
26 Biology*. <https://doi.org/10.1111/adb.12378>

27 Fernandez-Aranda, F., Karwautz, A., & Treasure, J. (2018). Food addiction: A transdiagnostic
28 construct of increasing interest. In *European Eating Disorders Review* (Vol. 26, Issue 6, pp.
29 536–540). John Wiley and Sons Ltd. <https://doi.org/10.1002/erv.2645>

30 Finner, H., & Roters, M. (2001). On the false discovery rate and expecte type I errors. *Journal of
31 the American Statistical Association*, 88, 920–923. <https://doi.org/10.1002/1521-4036>

32 Fletcher, P. C., & Kenny, P. J. (2018). Food addiction: a valid concept?
33 *Neuropsychopharmacology*, 43(13), 2506–2513. <https://doi.org/10.1038/s41386-018-0203-9>

35 Gearhardt, A., Corbin, W., & Brownell, K. (2016). Development of the Yale Food Addiction

1 Scale Version 2.0. *Psychology of Addictive Behaviors*, 30, 113–121.
2 <https://doi.org/10.1037/adb0000136>

3 Gearhardt, A. N., Davis, C., Kuschner, R., & Brownell, K. D. (2011). The addiction potential of
4 hyperpalatable foods. *Current Drug Abuse Reviews*, 4(3), 140–145.
5 <https://doi.org/10.2174/1874473711104030140>

6 Gordon, E. L., Ariel-Donges, A. H., Bauman, V., & Merlo, L. J. (2018). What is the evidence for
7 “food addiction?” A systematic review. In *Nutrients* (Vol. 10, Issue 4). MDPI AG.
8 <https://doi.org/10.3390/nu10040477>

9 Granero, R., Fernández-Aranda, F., Mestre-Bach, G., Steward, T., García-Caro, B., Prever, F.,
10 Gavriel-Fried, B., Del Pino-Gutiérrez, A., Moragas, L., Aymamí, N., Gómez-Peña, M.,
11 Mena-Moreno, T., Martín-Romera, V., Menchón, J. M., & Jiménez-Murcia, S. (2018).
12 Clustering of treatment-seeking women with gambling disorder. *Journal of Behavioral
Addictions*, 7(3), 770–780. <https://doi.org/10.1556/2006.7.2018.93>

13 Granero, R., Jiménez-Murcia, S., Gerhardt, A. N., Agüera, Z., Aymamí, N., Gómez-Peña, M.,
14 Lozano-Madrid, M., Mallorquí-Bagué, N., Mestre-Bach, G., Neto-Antao, M. I., Riesco, N.,
15 Sánchez, I., Steward, T., Soriano-Mas, C., Vintró-Alcaraz, C., Menchón, J. M., Casanueva,
16 F. F., Diéguez, C., & Fernández-Aranda, F. (2018). Validation of the Spanish version of the
17 Yale Food Addiction Scale 2.0 (YFAS 2.0) and clinical correlates in a sample of eating
18 disorder, gambling disorder, and healthy control participants. *Frontiers in Psychiatry*.
19 <https://doi.org/10.3389/fpsyg.2018.00208>

20 Grant, J. E., & Chamberlain, S. R. (2015). Gambling disorder and its relationship with substance
21 use disorders: Implications for nosological revisions and treatment. *American Journal on
22 Addictions*. <https://doi.org/10.1111/ajad.12112>

23 Gutiérrez-Zotes, J. A., Bayón, C., Montserrat, C., Valero, J., Labad, A., Cloninger, C. R., &
24 Fernández-Aranda, F. (2004). Temperament and Character Inventory Revised (TCI-R).
25 Standardization and normative data in a general population sample. *Actas Espanolas de
26 Psiquiatria*, 32(1), 8–15. <http://www.ncbi.nlm.nih.gov/pubmed/14963776>

27 Hardy, R., Fani, N., Jovanovic, T., & Michopoulos, V. (2018). Food addiction and substance
28 addiction in women: Common clinical characteristics. *Appetite*, 120, 367–373.
29 <https://doi.org/10.1016/j.appet.2017.09.026>

30 Hebebrand, J., Albayraka, Ö., Adanb, R., Antel, J., Dieguez, C., De Jongb, J., Lenge, G.,
31 Menziese, J., Mercer, J. G., Murphy, M., Van der Plasse, G., & Dickson, S. L. (2014).
32 “Eating addiction”, rather than “food addiction”, better captures addictive-like eating
33 behavior. In *Neuroscience and Biobehavioral Reviews* (Vol. 47, pp. 295–306). Elsevier Ltd.
34 <https://doi.org/10.1016/j.neubiorev.2014.08.016>

1 Hollingshead, A. B. (2011). Four factor index of social status. *Yale Journal of Sociology*, 8, 21–
2 51. http://www.yale.edu/sociology/yjs/yjs_fall_2011.pdf

3 Husky, M. M., Michel, G., Richard, J. B., Guignard, R., & Beck, F. (2015). Gender differences
4 in the associations of gambling activities and suicidal behaviors with problem gambling in a
5 nationally representative French sample. *Addictive Behaviors*, 45, 45–50.
6 <https://doi.org/10.1016/j.addbeh.2015.01.011>

7 Imperatori, C. et al. (2014). The association among food addiction, binge eating severity and
8 psychopathology in obese and overweight patients attending low-energy-diet therapy.
9 *Comprehensive Psychiatry*, 55(6), 1358–1362. <https://doi.org/10.1016/j.combeh.2014.04.023>

10 Innamorati, M., Imperatori, C., Harnic, D., Erbuto, D., Patitucci, E., Janiri, L., Lamis, D. A.,
11 Pompili, M., Tamburello, S., & Fabbricatore, M. (2017). Emotion Regulation and
12 Mentalization in People at Risk for Food Addiction. *Behavioral Medicine*, 43(1), 21–30.
13 <https://doi.org/10.1080/08964289.2015.1036831>

14 *International Statistical Classification of Diseases and Related Health Problems (11th ed.; ICD-11; World Health Organization, 2020).*

15 Jiménez-Murcia, S., Stinchfield, R., Álvarez-Moya, E., Jaurrieta, N., Bueno, B., Granero, R.,
16 Aymamí, M. N., Gómez-Peña, M., Martínez-Giménez, R., Fernández-Aranda, F., &
17 Vallejo, J. (2009). Reliability, validity, and classification accuracy of a spanish translation
18 of a measure of DSM-IV diagnostic criteria for pathological gambling. *Journal of Gambling
19 Studies*, 25(1), 93–104. <https://doi.org/10.1007/s10899-008-9104-x>

20 Jiménez-Murcia, Susana, Agüera, Z., Paslakis, G., Munguia, L., Granero, R., Sánchez-González,
21 J., Sánchez, I., Riesco, N., Gearhardt, A. N., Dieguez, C., Fazia, G., Segura-García, C.,
22 Bañas, I., Menchón, J. M., & Fernández-Aranda, F. (2019). Food Addiction in Eating
23 Disorders and Obesity: Analysis of Clusters and Implications for Treatment. *Nutrients*,
24 11(11). <https://doi.org/10.3390/nu11112633>

25 Jiménez-Murcia, Susana, Del Pino-Gutiérrez, A., Fernández-Aranda, F., Granero, R.,
26 Hakansson, A., Tárrega, S., Valdepérez, A., Aymamí, N., Gómez-Peña, M., Moragas, L.,
27 Baño, M., Sauvaget, A., Romeu, M., Steward, T., & Menchón, J. M. (2016). Treatment
28 outcome in male Gambling Disorder patients associated with alcohol use. *Frontiers in
29 Psychology*, 7(MAR), 1–11. <https://doi.org/10.3389/fpsyg.2016.00465>

30 Jiménez-Murcia, Susana, Granero, R., Giménez, M., del Pino-Gutiérrez, A., Mestre-Bach, G.,
31 Mena-Moreno, T., Moragas, L., Baño, M., Sánchez-González, J., de Gracia, M., Bañas-
32 Soto, I., Contaldo, S. F., Valenciano-Mendoza, E., Mora-Maltas, B., López-González, H.,
33 Menchón, J. M., & Fernández-Aranda, F. (2020). Contribution of sex on the underlying
34 mechanism of the gambling disorder severity. *Scientific Reports*, 10(1), 1–13.

35

1 <https://doi.org/10.1038/s41598-020-73806-6>

2 Jiménez-Murcia, Susana, Granero, R., Wolz, I., Baño, M., Mestre-Bach, G., Steward, T.,
 3 Agüera, Z., Hinney, A., Diéguez, C., Casanueva, F. F., Gearhardt, A. N., Hakansson, A.,
 4 Menchón, J. M., & Fernández-Aranda, F. (2017a). Food addiction in gambling disorder:
 5 Frequency and clinical outcomes. *Frontiers in Psychology*.
 6 <https://doi.org/10.3389/fpsyg.2017.00473>

7 Jiménez-Murcia, Susana, Granero, R., Wolz, I., Baño, M., Mestre-Bach, G., Steward, T.,
 8 Agüera, Z., Hinney, A., Diéguez, C., Casanueva, F. F., Gearhardt, A. N., Hakansson, A.,
 9 Menchón, J. M., & Fernández-Aranda, F. (2017b). Food addiction in gambling disorder:
 10 Frequency and clinical outcomes. *Frontiers in Psychology*, 8(MAR), 1–12.
 11 <https://doi.org/10.3389/fpsyg.2017.00473>

12 Kandeger, A., Selvi, Y., & Tanyer, D. K. (2019). The effects of individual circadian rhythm
 13 differences on insomnia, impulsivity, and food addiction. *Eating and Weight Disorders*,
 14 24(1), 47–55. <https://doi.org/10.1007/s40519-018-0518-x>

15 Karlsson, J., Broman, N., & Håkansson, A. (2019). Associations between Problematic Gambling,
 16 Gaming, and Internet Use: A Cross-Sectional Population Survey. *Journal of Addiction*.
 17 <https://doi.org/10.1155/2019/1464858>

18 Kelley, K., & KJ., P. (2012). On Effect Size. *Psychological Methods*, 17(2), 137–152.
 19 <https://doi.org/10.1037/a0028086>

20 Kim HS, von Ranson KM, Hodgins DC, McGrath DS, T. H. (2018). Demographic, psychiatric,
 21 and personality correlates of adults seeking treatment for disordered gambling with a
 22 comorbid binge/purge type eating disorder. *Eur Eat Disord Rev.*, Sep;26(5), 508-518.
 23 <https://doi.org/10.1002/erv.2606>

24 Kline, R. B. (2005). *Principles and Practice of Structural Equation Modeling* (2nd Editio). The
 25 Guilford Press.

26 Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new
 27 instrument for the identification of Pathological gamblers. *American Journal of Psychiatry*,
 28 144(9), 1184–1188. <https://doi.org/10.1176/ajp.144.9.1184>

29 MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in
 30 psychological research. *Annual Review of Psychology*, 51, 201–226.

31 Mestre-Bach, G., Fernández-Aranda, F., Jiménez-Murcia, S., & Potenza, M. N. (2020a).
 32 Emotional regulation in gambling disorder. *Current Opinion in Behavioral Sciences*, 31,
 33 102–108. <https://doi.org/10.1016/j.cobeha.2020.03.004>

34 Mestre-Bach, G., Fernández-Aranda, F., Jiménez-Murcia, S., & Potenza, M. N. (2020b).
 35 Decision-Making in Gambling Disorder, Problematic Pornography Use, and Binge-Eating

1 Disorder: Similarities and Differences. In *Current Behavioral Neuroscience Reports* (Vol.
2 7, Issue 3, pp. 97–108). Springer. <https://doi.org/10.1007/s40473-020-00212-7>

3 Mestre-Bach, G., Steward, T., Granero, R., Fernández-Aranda, F., Mena-Moreno, T., Vintró-
4 Alcaraz, C., Lozano-Madrid, M., Menchón, J. M., Potenza, M. N., & Jiménez-Murcia, S.
5 (2020). Dimensions of Impulsivity in Gambling Disorder. *Scientific Reports*, 10(1).
6 <https://doi.org/10.1038/s41598-019-57117-z>

7 Moragas, L., Granero, R., Stinchfield, R., Fernández-Aranda, F., Fröberg, F., Aymamí, N.,
8 Gómez-Peña, M., Fagundo, A. B., Islam, M. A., del Pino-Gutiérrez, A., Agüera, Z.,
9 Savvidou, L. G., Arcelus, J., Witcomb, G. L., Sauchelli, S., Menchón, J. M., & Jiménez-
10 Murcia, S. (2015). Comparative analysis of distinct phenotypes in gambling disorder based
11 on gambling preferences. *BMC Psychiatry*. <https://doi.org/10.1186/s12888-015-0459-0>

12 Murphy, C. M., Stojek, M. K., & MacKillop, J. (2014). Interrelationships among impulsive
13 personality traits, food addiction, and Body Mass Index. *Appetite*.
14 <https://doi.org/10.1016/j.appet.2013.10.008>

15 Odlaug, B. L., Marsh, P. J., Kim, S. W., & Grant, J. E. (2011). Strategic vs nonstrategic
16 gambling: Characteristics of pathological gamblers based on gambling preference. *Annals
17 of Clinical Psychiatry*.

18 Petry, N. M., Stinson, F. S., & Grant, B. F. (2005). Comorbidity of DSM-IV pathological
19 gambling and other psychiatric disorders: Results from the national epidemiologic survey
20 on alcohol and related conditions. In *Journal of Clinical Psychiatry*.
21 <https://doi.org/10.4088/JCP.v66n0504>

22 Potenza, M. N., Steinberg, M. A., McLaughlin, S. D., Wu, R., Rounsvaile, B. J., & O'Malley, S.
23 S. (2001). Gender-related differences in the characteristics of problem gamblers using a
24 gambling helpline. *American Journal of Psychiatry*.
25 <https://doi.org/10.1176/appi.ajp.158.9.1500>

26 Potenza, Marc N., Balodis, I. M., Derevensky, J., Grant, J. E., Petry, N. M., Verdejo-Garcia, A.,
27 & Yip, S. W. (2019). Gambling disorder. *Nature Reviews Disease Primers*.
28 <https://doi.org/10.1038/s41572-019-0099-7>

29 Potenza, Marc N., Maciejewski, P. K., & Mazure, C. M. (2006). A gender-based examination of
30 past-year recreational gamblers. *Journal of Gambling Studies*.
31 <https://doi.org/10.1007/s10899-005-9002-4>

32 Potenza, Marc N., Steinberg, M. A., Wu, R., Rounsvaile, B. J., & O'Malley, S. S. (2006).
33 Characteristics of older adult problem gamblers calling a gambling helpline. *Journal of
34 Gambling Studies*. <https://doi.org/10.1007/s10899-006-9013-9>

35 Pursey, K. M., Contreras-Rodriguez, O., Collins, C. E., Stanwell, P., & Burrows, T. L. (2019).

1 Food addiction symptoms and amygdala response in fasted and fed states. *Nutrients*, 11(6).
2 <https://doi.org/10.3390/nu11061285>

3 Pursey, K. M., Stanwell, P., Gearhardt, A. N., Collins, C. E., & Burrows, T. L. (2014). The
4 prevalence of food addiction as assessed by the yale food addiction scale: A systematic
5 review. In *Nutrients*. <https://doi.org/10.3390/nu6104552>

6 Reci Meseri 1, C. A. 1. (2020). Food addiction: A key factor contributing to obesity? *J Res Med
7 Sci*, 27, 71. https://doi.org/doi: 10.4103/jrms.JRMS_971_19

8 Romero X, Agüera Z, Granero R, Sánchez I, Riesco N, Jiménez-Murcia S, Gisbert-Rodriguez M,
9 Sánchez-González J, Casalé G, Baenas I, Valenciano-Mendoza E, Menchon JM, Gearhardt
10 AN, Dieguez C, F.-A. F. (2019). Is food addiction a predictor of treatment outcome among
11 patients with eating disorder? *Eur Eat Disord Rev.*, Nov;27(6), 700–711.
12 <https://doi.org/10.1002/erv.2705>

13 Saunders, J. B., Aasland, O. G., Babor, T. F., de la fuente, J. R., & Grant, M. (1993).
14 Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO
15 Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption-II.
16 *Addiction*, 88(6), 791–804. <https://doi.org/10.1111/j.1360-0443.1993.tb02093.x>

17 Saunders, J. B., Hao, W., Long, J., King, D. L., Mann, K., Fauth-Bühler, M., Rumpf, H. J.,
18 Bowden-Jones, H., Rahimi-Movaghari, A., Chung, T., Chan, E., Bahar, N., Achab, S., Lee,
19 H. K., Potenza, M., Petry, N., Spritzer, D., Ambekar, A., Derevensky, J., ... Poznyak, V.
20 (2017). Gaming disorder: Its delineation as an important condition for diagnosis,
21 management, and prevention. In *Journal of Behavioral Addictions* (Vol. 6, Issue 3, pp. 271–
22 279). Akademiai Kiado Rt. <https://doi.org/10.1556/2006.6.2017.039>

23 Schulte, E. M., Avena, N. M., & Gearhardt, A. N. (2015a). Which foods may be addictive? The
24 roles of processing, fat content, and glycemic load. *PLoS ONE*, 10(2).
25 <https://doi.org/10.1371/journal.pone.0117959>

26 Schulte, E. M., Avena, N. M., & Gearhardt, A. N. (2015b). Which foods may be addictive? The
27 roles of processing, fat content, and glycemic load. *PLoS ONE*, 10(2).
28 <https://doi.org/10.1371/journal.pone.0117959>

29 Schulte, E. M., & Gearhardt, A. N. (2018). Associations of Food Addiction in a Sample
30 Recruited to Be Nationally Representative of the United States. *European Eating Disorders
31 Review*. <https://doi.org/10.1002/erv.2575>

32 Schulte, E. M., Potenza, M. N., & Gearhardt, A. N. (2017). A commentary on the “eating
33 addiction” versus “food addiction” perspectives on addictive-like food consumption.
34 *Appetite*, 115, 9–15. <https://doi.org/10.1016/j.appet.2016.10.033>

35 Stata-Corp. (2019). *Stata Statistical Software: Release 16*. College Station, TX: StataCorp LLC.

1 Stevens, M., & Young, M. (2010). Who plays what? participation profiles in chance versus skill-
2 based gambling. *Journal of Gambling Studies*. <https://doi.org/10.1007/s10899-009-9143-y>

3 Steward, T., Mestre-Bach, G., Vintró-Alcaraz, C., Lozano-Madrid, M., Agüera, Z., Fernández-
4 Formoso, J. A., Granero, R., Jiménez-Murcia, S., Vilarrasa, N., García-Ruiz-de-Gordejuela,
5 A., Veciana de las Heras, M., Custal, N., Virgili, N., López-Urdiales, R., Gearhardt, A. N.,
6 Menchón, J. M., Soriano-Mas, C., & Fernández-Aranda, F. (2018). Food addiction and
7 impaired executive functions in women with obesity. *European Eating Disorders Review*,
8 26(6), 574–584. <https://doi.org/10.1002/erv.2636>

9 Stinchfield, R. (2003). Reliability, validity, and classification accuracy of a measure of DSM-IV
10 diagnostic criteria for pathological gambling. *American Journal of Psychiatry*, 160(1), 180–
11 182. <https://doi.org/10.1176/appi.ajp.160.1.180>

12 Subramaniam, M., Wang, P., Soh, P., Vaingankar, J. A., Chong, S. A., Browning, C. J., &
13 Thomas, S. A. (2015). Prevalence and determinants of gambling disorder among older
14 adults: A systematic review. In *Addictive Behaviors*.
15 <https://doi.org/10.1016/j.addbeh.2014.10.007>

16 Tackett, J. L., Krieger, H., Neighbors, C., Rinker, D., Rodriguez, L., & Edward, G. (2017).
17 Comorbidity of Alcohol and Gambling Problems in Emerging Adults: A Bifactor Model
18 Conceptualization. *Journal of Gambling Studies*. <https://doi.org/10.1007/s10899-016-9618-6>

19 Valero-Solís, S., Granero, R., Fernández-Aranda, F., Steward, T., Mestre-Bach, G., Mallorquí-
20 Bagué, N., Martín-Romera, V., Aymamí, N., Gómez-Peña, M., Del Pino-Gutiérrez, A.,
21 Baño, M., Moragas, L., Menchón, J. M., & Jiménez-Murcia, S. (2018). The contribution of
22 sex, personality traits, age of onset and disorder duration to behavioral addictions. *Frontiers
23 in Psychiatry*. <https://doi.org/10.3389/fpsyg.2018.00497>

24 Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., & Baler, R. (2011). Food and drug
25 reward: Overlapping circuits in human obesity and addiction. *Current Topics in Behavioral
26 Neurosciences*, 11, 1–24. https://doi.org/10.1007/7854_2011_169

27 Wolz, I., Hilker, I., Granero, R., Jiménez-Murcia, S., Gearhardt, A. N., Dieguez, C., Casanueva,
28 F. F., Crujeiras, A. B., Menchón, J. M., & Fernández-Aranda, F. (2016). “Food Addiction”
29 in Patients with Eating Disorders is Associated with Negative Urgency and Difficulties to
30 Focus on Long-Term Goals. *Frontiers in Psychology*, 7(FEB).
31 <https://doi.org/10.3389/fpsyg.2016.00061>

32 Zakiniaeiz, Y., Cosgrove, K. P., Mazure, C. M., & Potenza, M. N. (2017). Does telescoping exist
33 in male and female gamblers? Does it matter? In *Frontiers in Psychology*.
34 <https://doi.org/10.3389/fpsyg.2017.01510>

1 Zakiniaeiz, Y., & Potenza, M. N. (2018). Gender-related differences in addiction: a review of
2 human studies. In *Current Opinion in Behavioral Sciences*.
3 <https://doi.org/10.1016/j.cobeha.2018.08.004>

4

Table 1. Associations between FA and clinical variables with the FA measures

	Women						Men					
	FA- (n=56)		FA+ (n=13)		p	d	FA- (n=739)		FA+ (n=59)		p	d
	Mean	SD	Mean	SD			Mean	SD	Mean	SD		
TCI-R Novelty seeking	108.3	12.2	106.4	8.8	.585	0.19	110.9	13.0	111.8	12.5	.371	0.07
TCI-R Harm avoidance	108.2	17.4	118.3	17.2	.046*	0.59†	98.4	15.8	107.4	15.4	.001*	0.58†
TCI-R Reward depend.	101.1	14.7	99.8	10.6	.763	0.11	97.3	13.8	95.4	16.1	.324	0.12
TCI-R Persistence	105.5	18.1	103.4	21.7	.729	0.10	108.2	18.5	105.1	22.7	.228	0.15
TCI-R Self-directedness	128.4	20.6	108.8	18.7	.003*	1.00†	130.4	21.2	117.4	18.8	.001*	0.65†
TCI-R Cooperativeness	137.7	12.2	129.3	13.8	.035*	0.65†	129.6	15.6	122.9	18.8	.002*	0.39
TCI-R Transcendence	62.7	13.7	67.4	11.2	.255	0.38	61.2	14.1	67.7	14.7	.001*	0.46
SCL-90R Somatization	1.40	0.90	2.34	0.89	.001*	1.05†	0.89	0.76	1.54	0.99	.001*	0.75†
SCL-90R Obsessive/comp.	1.32	0.87	2.16	0.99	.004*	0.90†	1.11	0.77	1.93	0.93	.001*	0.97†
SCL-90R Interp. sensitive	1.21	0.85	2.32	0.84	.001*	1.32†	0.97	0.80	1.74	0.95	.001*	0.87†
SCL-90R Depressive	1.87	1.00	2.74	0.82	.005*	0.95†	1.50	0.92	2.20	0.93	.001*	0.75†
SCL-90R Anxiety	1.20	0.84	2.06	0.72	.001*	1.10†	0.97	0.78	1.59	0.98	.001*	0.69†
SCL-90R Hostility	0.90	0.78	1.67	0.73	.002*	1.02†	0.94	0.84	1.53	1.10	.001*	0.61†
SCL-90R Phobic anxiety	0.54	0.51	1.25	1.09	.001*	0.85†	0.42	0.61	0.97	0.90	.001*	0.73†
SCL-90R Paranoid	1.09	0.84	2.21	0.86	.001*	1.32†	0.94	0.80	1.60	0.99	.001*	0.74†
SCL-90R Psychotic	0.98	0.82	1.68	0.70	.007*	0.92†	0.89	0.75	1.57	0.95	.001*	0.80†
SCL-90R GSI score	1.28	0.72	2.13	0.65	.001*	1.24†	1.03	0.68	1.72	0.83	.001*	0.91†
SCL-90R PST score	51.20	20.16	65.91	15.96	.018*	0.81†	46.42	21.96	62.03	18.86	.001*	0.76†
SCL-90R PSDI score	2.08	0.60	2.89	0.61	.001*	1.33†	1.85	0.56	2.37	0.71	.001*	0.82†
Tobacco (cigarettes/day)	9.91	11.51	7.55	13.77	.531	0.19	9.45	10.90	9.31	13.12	.925	0.01
Alcohol (AUDIT total)	2.41	4.01	1.06	1.87	.254	0.43	5.20	5.68	7.25	8.31	.011*	0.29
Drugs (DUDIT total)	1.25	4.02	0.10	0.00	.320	0.40	2.75	6.61	3.80	8.18	.247	0.14
Body mass index (kg/m ²)	27.43	5.96	33.43	6.89	.002*	0.93†	26.08	4.35	30.34	6.87	.001*	0.74†

Note. SD: standard deviation. FA-: food addiction negative screening. FA+: food addiction positive screening.

TCI-R: Temperament and Character Inventory – Revised.

SCL-90R: Symptom Checklist-90-Revised.

AUDIT: Alcohol Use Disorders Identification Test.

DUDIT: Drug Use Disorders Identification Test.

*Bold: significant parameter (.05 level). †Bold: effect size into the range mild-moderate ($|d|>0.50$) to large-high ($|d|>0.80$).

Results adjusted by the covariate age.

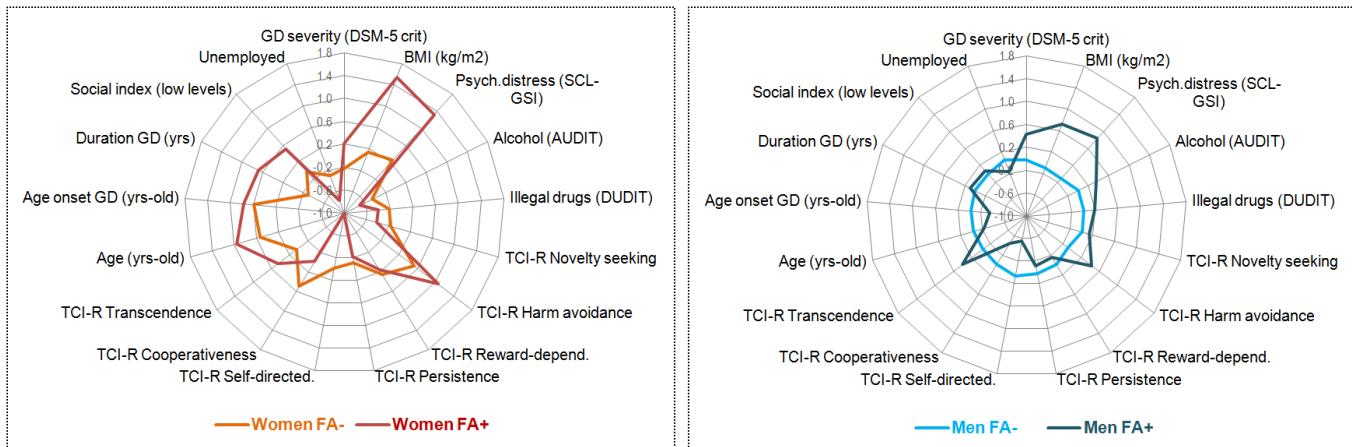
Table 2. Comparison of clinical measures by gender and FA status

	Women						Men					
	FA- (n=56)		FA+ (n=13)		P	d	FA- (n=739)		FA+ (n=59)		p	d
	n	%	n	%			n	%	n	%		
GD (8-9 DSM-5 criteria)	30	53.6%	8	61.5%	.603	0.16	354	47.9%	42	71.2%	.001*	0.51†
Obesity (BMI>30)	18	32.1%	9	69.2%	.014*	0.76†	129	17.5%	32	54.2%	.001*	0.79†
SCL-90R Somatization	22	39.3%	10	76.9%	.013*	0.78†	288	39.0%	41	69.5%	.001*	0.62†
SCL-90R Obsessive/comp.	24	42.9%	10	76.9%	.027*	0.71†	304	41.1%	46	78.0%	.001*	0.77†
SCL-90R Interp. sensitive	30	53.6%	11	84.6%	.040*	0.69†	323	43.7%	48	81.4%	.001*	0.80†
SCL-90R Depressive	30	53.6%	12	92.3%	.010*	0.94†	439	59.4%	47	79.7%	.001*	0.50†
SCL-90R Anxiety	17	30.4%	10	76.9%	.002*	0.97†	321	43.4%	41	69.5%	.001*	0.53†
SCL-90R Hostility	14	25.0%	10	76.9%	.001*	1.09†	207	28.0%	31	52.5%	.001*	0.51†
SCL-90R Phobic anxiety	13	23.2%	7	53.8%	.028*	0.64†	196	26.5%	37	62.7%	.001*	0.75†
SCL-90R Paranoid	23	41.1%	11	84.6%	.005*	0.94†	219	29.6%	36	61.0%	.001*	0.64†
SCL-90R Psychotic	30	53.6%	12	92.3%	.010*	0.94†	363	49.1%	45	76.3%	.001*	0.57†
SCL-90R GSI score	31	55.4%	13	100.0%	.003*	1.46†	419	56.7%	50	84.7%	.001*	0.63†
SCL-90R PST score	35	62.5%	11	84.6%	.128	0.51†	420	56.8%	48	81.4%	.001*	0.54†
SCL-90R PSDI score	8	14.3%	8	61.5%	.001*	1.03†	160	21.7%	31	52.5%	.001*	0.65†
TCI-R Novelty seeking	30	53.6%	4	30.8%	.138	0.47	324	43.8%	22	37.3%	.328	0.13
TCI-R Harm avoidance	28	50.0%	7	53.8%	.803	0.08	263	35.6%	33	55.9%	.002*	0.41
TCI-R Reward depend.	21	37.5%	6	46.2%	.565	0.18	260	35.2%	25	42.4%	.267	0.15
TCI-R Persistence	16	28.6%	6	46.2%	.220	0.37	267	36.1%	25	42.4%	.338	0.13
TCI-R Self-directedness	41	73.2%	12	92.3%	.142	0.53†	465	62.9%	47	79.7%	.010*	0.37
TCI-R Cooperativeness	16	28.6%	6	46.2%	.220	0.37	277	37.5%	37	62.7%	.001*	0.51†
TCI-R Transcendence	16	28.6%	4	30.8%	.875	0.05	286	38.7%	19	32.2%	.323	0.14

Note. SD: standard deviation. GD: gambling disorder.

FA-: food addiction negative screening. FA+: food addiction positive screening. BMI: Body Mass Index.

SCL-90R: Symptom Checklist-90-Revised.


TCI-R: Temperament and Character Inventory-Revised.

*Bold: significant parameter (.05 level). †Bold: effect size into the range mild-moderate ($|d|>0.50$) to large-high ($|d|>0.80$) .

Results adjusted by the covariate age.

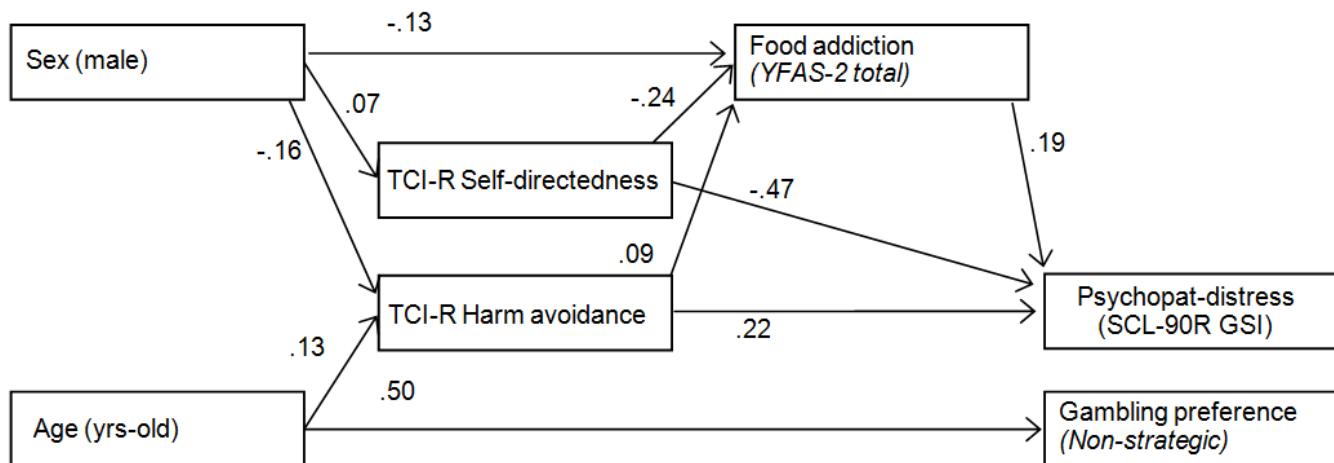

Figure legends

Figure 1. Radar chart (n=867)

Figure 2. Path diagram with the results of the structural equation model (n=867)

Note. Only significant coefficients were retained in the model.

Supplementary material

Table S1. Comparison of sociodemographics and gambling measures by gender and FA status

		Women						Men					
		FA- (n=56)		FA+ (n=13)				FA- (n=739)		FA+ (n=59)			
Civil status	Single	n	%	n	%	p	d	n	%	n	%	p	d
	Married	26	46.4%	7	53.8%	.890	0.15	387	52.4%	34	57.6%	.638	0.11
	Divorced	20	35.7%	4	30.8%		0.11	271	36.7%	18	30.5%		0.13
Education level	Primary	10	17.9%	2	15.4%		0.07	81	11.0%	7	11.9%		0.03
	Secondary	31	55.4%	10	76.9%	.348	0.46	385	52.1%	34	57.6%	.697	0.11
	University	19	33.9%	2	15.4%		0.44	290	39.2%	20	33.9%		0.11
Social	Mean-high to high	6	10.7%	1	7.7%		0.10	64	8.7%	5	8.5%		0.01
	Mean	5	8.9%	0	0.0%	.326	0.61†	56	7.6%	2	3.4%	.006*	0.19
	Mean-low	8	14.3%	1	7.7%		0.21	61	8.3%	11	18.6%		0.31
Employment	Low	15	26.8%	2	15.4%		0.28	292	39.5%	14	23.7%		0.34
	Unemployed	28	50.0%	10	76.9%		0.57†	330	44.7%	32	54.2%		0.19
	Employed	30	53.6%	10	76.9%	.124	0.50†	272	36.8%	28	47.5%	.104	0.22
Gambling	Non-strategic	10	23.1%					467	63.2%	31	52.5%		
	Strategic	38	67.9%	12	92.3%	.190	0.64†	370	50.1%	29	49.2%	.614	0.02
	Mixed	6	10.7%	0	0.0%		0.67†	206	27.9%	14	23.7%		0.09
Gambling	Slot-machines	12	21.4%	1	7.7%		0.40	163	22.1%	16	27.1%		0.12
	Bingo	30	53.6%	6	46.2%	.630	0.15	446	60.4%	39	66.1%	.384	0.12
	Lotteries	21	37.5%	5	38.5%	.949	0.02	40	5.4%	5	8.5%	.327	0.12
Gambling	Casino	10	17.9%	3	23.1%	.665	0.13	106	14.3%	6	10.2%	.374	0.13
	Cards	10	17.9%	0	0.0%	.033*	0.87†	187	25.3%	17	28.8%	.552	0.08
	Betting on sports	2	3.6%	0	0.0%	.498	0.38	31	4.2%	3	5.1%	.745	0.04
Gambling	Internet	0	0.0%	0	0.0%	---	0.00	131	17.7%	8	13.6%	.417	0.11
	DSM-5 criteria for GD	8	14.3%	1	7.7%	.525	0.21	189	25.6%	15	25.4%	.980	0.00
	SOGS total	Mean	SD	Mean	SD	p	d	Mean	SD	Mean	SD	p	d
47.93	11.64	9.93	3.88	11.46	3.55	.232	0.41	7.03	1.86	7.86	1.09	.001*	0.55†
35.13	12.15	10.04	3.33	9.69	10.04	.001*	0.80†	10.74	3.14	11.78	3.26	.015*	0.32
Duration of GD (years)	3.73	3.73	3.73	3.73	3.73			5.57	6.23	6.12	5.66	.514	0.09

Note. SD: standard deviation. GD: gambling disorder.

FA-: food addiction negative screening. FA+: food addiction positive screening.

SOGS: South Oaks Gambling Screen.

*Bold: significant parameter (.05 level). †Bold: effect size into the range mild-moderate ($|d|>0.50$) to large-high ($|d|>0.80$).

Results adjusted by the covariate age.

Table S2. Complete results obtained in the structural equation model: direct, indirect and total effects

<i>Direct effects</i>		<i>Coefficient</i>	<i>SE</i>	<i>T-statistic</i>	<i>p</i>	<i>St.Coeff.</i>
YFAS2-total	TCI-R Harm avoidance	0.0144	0.0060	2.40	0.016	0.0901
	TCI-R Self dependence	-0.0289	0.0045	-6.38	<.001	-0.2350
	Gender	-1.2136	0.3157	-3.84	<.001	-0.1255
	Age (yrs-old)	0.0000	(no path)			0.0000
TCI-R Harm avoidance	Gender	-9.5756	2.0264	-4.73	<.001	-0.1584
	Age (yrs-old)	0.1573	0.0347	4.53	<.001	0.1325
TCI-R Self dependence	Gender	4.7216	2.6688	1.97	0.049	0.0700
Non-strategic gambling	Age (yrs-old)	0.0181	0.0011	17.02	<.001	0.5004
SCL90-R GSI	YFAS-total	0.0528	0.0072	7.36	<.001	0.1896
	TCI-R Harm avoidance	0.0098	0.0013	7.76	<.001	0.2206
	TCI-R Self dependence	-0.0160	0.0010	-16.28	<.001	-0.4690
	Gender	0.0000	(no path)			0.0000
	Age (yrs-old)	0.0000	(no path)			0.0000
<i>Indirect effects</i>		<i>Coefficient</i>	<i>SE</i>	<i>T-statistic</i>	<i>p</i>	<i>St.Coeff.</i>
YFAS2-total	TCI-R Harm avoidance	0.0000	(no path)			0.0000
	TCI-R Self dependence	0.0000	(no path)			0.0000
	Gender	-0.2744	0.1075	-2.55	0.011	-0.0284
	Age (yrs-old)	0.0023	0.0011	2.12	0.034	0.0119
TCI-R Harm avoidance	Gender	0.0000	(no path)			0.0000
	Age (yrs-old)	0.0000	(no path)			0.0000
TCI-R Self dependence	Gender	0.0000	(no path)			0.0000
Non-strategic gambling	Age (yrs-old)	0.0000	(no path)			0.0000
SCL90-R GSI	YFAS-total	0.0000	(no path)			0.0000
	TCI-R Harm avoidance	0.0008	0.0003	2.28	0.022	0.0171
	TCI-R Self dependence	-0.0015	0.0003	-4.82	0	-0.0446
	Gender	-0.2482	0.0640	-3.88	0	-0.0923
	Age (yrs-old)	0.0017	0.0004	3.96	0	0.0315
<i>Total effects</i>		<i>Coefficient</i>	<i>SE</i>	<i>T-statistic</i>	<i>p</i>	<i>St.Coeff.</i>
YFAS2-total	TCI-R Harm avoidance	0.0000	(no path)			0.0000
	TCI-R Self dependence	0.0000	(no path)			0.0000
	Gender	-0.2744	0.1075	-2.55	0.011	-0.0284
	Age (yrs-old)	0.0023	0.0011	2.12	0.034	0.0119
TCI-R Harm avoidance	Gender	0.0000	(no path)			0.0000
	Age (yrs-old)	0.0000	(no path)			0.0000
TCI-R Self dependence	Gender	0.0000	(no path)			0.0000
Non-strategic gambling	Age (yrs-old)	0.0000	(no path)			0.0000
SCL90-R GSI	YFAS-total	0.0000	(no path)			0.0000
	TCI-R Harm avoidance	0.0008	0.0003	2.28	0.022	0.0171
	TCI-R Self dependence	-0.0015	0.0003	-4.82	0	-0.0446
	Gender	-0.2482	0.0640	-3.88	0	-0.0923
	Age (yrs-old)	0.0017	0.0004	3.96	0	0.0315

Note. SE: standard error. StCoeff: standardized coefficient. Sample size: $n=867$.

SCL-90R: Symptom Checklist-90-Revised.

TCI-R: Temperament and Character Inventory-Revised.

YFAS: Yale Food Addiction Scale.