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ABSTRACT: Vanadium bis-phosphine imido and oxo chloride alkylidenes have been extensively applied in the ring-closing me-
tathesis of various acyclic olefins. However, their reactions involving ethylene showed limited productivity due to rapid decomposi-
tion. The primary degradation pathway involving V bis-phosphine imido complexes is β-H elimination at unsubstituted metallacy-
clobutane. In contrast, β-H elimination is disfavored for V oxo species, but bimolecular decomposition precludes its high productivity. 
Herein, we present the synthesis of V imido NHC complexes that are the most productive V catalysts toward various terminal olefins 
in ring-closing metathesis reactions. Experimental and computational studies suggest that β-H elimination and bimolecular decom-
position are disfavored for V imido NHC complexes.

Ru, Mo, and W-catalyzed olefin metathesis (OM)1-3 have 
been applied to produce commodity chemicals,4 pharmaceuti-
cals,5 and advanced materials.6 The shift to more easily acces-
sible and abundant first-row transition metals is desirable to 
lower the cost of the obtained materials and decrease the envi-
ronmental footprint. However, only a few first-row transition 
metal complexes demonstrate the capacity to complete the OM 
catalytic cycle.7-8 Among 3d transition metals, OM catalysts 
based on V are the most developed,9 presumably due to the di-
agonal relationship between V and Mo.10 V alkylidenes contain-
ing imido, alkoxide, and phosphine ligands have been applied 
for ring-opening metathesis polymerization (ROMP) of cyclic 
olefins showing high activity and selectivity.11-13 However, 
those complexes exhibit low productivity toward acyclic termi-
nal olefins.14-15 

Recently, we reported the facile access to V imido chloride 
alkylidenes 1-3 (Scheme 1) and showed the first example of 
productive ring-closing metathesis (RCM) utilizing those com-
plexes.16 The reported equilibrium between polymerization-de-
polymerization of cyclopentene is an example of unproductive 
RCM.17 Complexes 1-3 can tolerate various common functional 
groups. However, those catalysts quickly decompose under eth-
ylene due to	 𝛽-hydride (𝛽-H) elimination at unsubstituted 
metallacyclobutane (MCB). In the following report, we de-
scribed the first catalytically active V oxo alkylidene 4, which 
outperformed 1-3 in reactions involving ethylene (Scheme 1).18 
We found that V oxo alkylidenes significantly disfavor 𝛽-H 
elimination, but the relatively small oxo ligand can bridge two 
metal centers and encourage bimolecular decomposition.19 In 
contrast, V imido counterparts are significantly more stable to-
ward bimolecular decomposition and their further development 
to prevent 𝛽-H elimination is highly desirable.	

 

Scheme 1. Previously synthesized V alkylidenes, model RCM 
reaction, and maximum turnover number (TON) for each cata-
lyst in the model RCM reaction.16, 18 

Increased imido group size and electron-donating properties 
improve RCM productivity (1 and 2, Scheme 1). The change of 
PMe3 to PEt3 leads to an even more pronounced effect (1 and 3, 
Scheme 1). N-heterocyclic carbene (NHC) as a neutral ligand is 
desirable due to high 𝜎-donating abilities and controllable steric 
properties,20-21 which can prevent 𝛽-H elimination and bimolec-
ular decomposition. Previously, NHC complexes were utilized 
to prepare air-stable, highly active, selective, and functional 
group tolerant Mo and W alkylidenes.22 V alkyl alkylidene com-
plexes of type V(NR)(CHSiMe3)(CH2SiMe3)(NHC), where R 
is adamantyl23 or 2,6-Y2C6H2 (Y = Me23-24 or Cl24) have been 
reported, but have limited activity in ROMP of norbornene at 
ambient temperature unless C6X5OH (X = F or Cl) is added. 
Two resulting complexes V[N(2,6-Cl2C6H2)](CHSiMe3) 
(OC6X5)(IMes) have been isolated in 24% (A, X = F) and 21% 
(B, X = Cl) yields. Complex A showed a TOF of 208 s-1 in 
ROMP of norbornene, the highest reported activity among V 
alkylidenes. Unfortunately, complexes A and B have not been 
structurally characterized by X-ray crystallography.24 Studies of 
catalytic activity of V imido alkylidenes bearing neutral ligands 
other than phosphines toward acyclic olefins have not been 
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reported. Here we present the synthesis of V imido NHC chlo-
ride alkylidenes, their X-ray structures,25 DFT studies, and ac-
tivity in RCM of various terminal olefins. 

Complex 7 was synthesized from 1 utilizing ligand ex-
change reaction in the presence of IMes in 49% yield (Scheme 
2). 

 
Scheme 2. Synthesis of complex 7. 

The X-ray structural study showed that complex 7 is syn-
isomer (Figure 1) and has a distorted trigonal bipyramidal ge-
ometry with IMes and PMe3 in axial positions [V1−C11 
2.1828(11) Å, V1−P1 2.4545(3) Å, C11−V1−P1 154.52(3)°]. 
The V1−C1 distance is 1.8300(11) Å and the large V=C−Si an-
gle 145.94(7) is indicative of 𝛼-hydrogen agostic interaction 
with V center.16	

 
Figure 1. Perspective view of the crystal structure of complex 7 
with thermal ellipsoids shown at 30% probability. 

The direct exchange of one PMe3 to IMes is a suitable 
method to synthesize 7 bearing a small imido group (NC6F5). 
However, in the case of larger imido group (N(2,6-Me2C6H3), 
the resulting complex V(N(2,6-Me2C6H3)(CHSiMe3)(IMes)Cl 
(C) does not contain PMe3 confirmed by NMR spectroscopy. 
Unfortunately, the isolation of C was challenging due to the 
high solubility in common crystallization solvents and slow de-
composition of C in solution. To overcome this challenge, we 
exchanged TMS-alkylidene for the less sterically demanding o-
MeO-benzylidene. The following replacement of one phos-
phine by NHCs led to complexes 8 and 9 in 52% and 55% yield, 
respectively, after two steps. (Scheme 3). In both cases, only 
one isomer was observed by 1H NMR spectroscopy. 

 
Scheme 3. Synthesis of complexes 8 and 9. 

Although it is assumed that V-based OM involves the 
Chauvin mechanism, the isolation and characterization of key 

intermediates of the catalytic cycle, such as MCB or new alkyli-
dene, have not been reported previously. Therefore, the pre-
sented alkylidene exchange is important from a fundamental 
standpoint and further supports the Chauvin mechanism in V-
based OM. In addition, complexes 8 and 9 are the first examples 
of well-defined catalytically active V alkylidenes that do not 
contain TMS-alkylidene moiety. From a historical perspective, 
a transient V benzylidene is thought to be the active catalyst in 
early work on V-based ROMP.26 

Complexes 8 and 9 were successfully crystallized and stud-
ied by X-ray crystallography (Figure 2). 

  

 

 
Figure 2. Perspective view of the crystal structures of complexes 
8 (top) and 9 (bottom) with thermal ellipsoids shown at 30% prob-
ability. 

o-MeO-benzylidene moiety was chosen to form 6-coordi-
nated complexes. However, the long distance between the V 
and methoxy group (2.524 Å in 8 and 2.517 Å in 9) does not 
confidently define V1−O1 as a bond. Therefore, we describe the 
geometry of 8 and 9 as a distorted square pyramid (𝜏27 = 0.38 
in 8 and 𝜏 = 0.36 in 9) with the imido group in the apical position 
with a weak interaction between V and methoxy group trans to 
the imido group. Both 8 and 9 are anti-isomers with neutral lig-
ands trans to each other and have similar bond distances and 
angles. Complex 8: V1−C3 2.231(2) Å, V1−P1 2.4939(7) Å, 
C3−V1−P1 172.80(6)°, V1−C30 1.952(2), V1−C30−C31 
124.64 (17)°. Complex 9: V1−C3 2.240(5) Å, V1−P1 
2.4994(17) Å, C3−V1−P1 172.40(15)°, V1−C32 1.944(7), 
V1−C32−C33 125.6(5)°. As expected, the V=C distances in 8 
and 9 are longer and V=C−C angles are smaller than analogous 
bond and angle in 7 due to the absence of 𝛼-hydrogen agostic 
interactions.16, 28 

We tested complexes 7-9 toward our model substrate 5. 
Noteworthy, the reactions in open and closed vials showed sim-
ilar conversions for 7-9 suggesting that studied complexes are 
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stable toward ethylene. The results and comparison with 1-4 at 
the same conditions are summarized in Table 1.       
Table 1. Model RCM of diallyl-N-tosylamide 5.a 

 
# cat. cat., mol% time, h conv., %b TON 
1 1 5 5 8 1.6 
2 2 5 5 29 5.8 
3 3 5 5 42 8.4 
4 4 5 5 67 13.4 
5 7 5 5 54 10.8 
6 8 5 5 96 19.2 
7 9 5 5 87 17.4 
8 8 1 0.5 76 76.0 
9 8 0.5 0.5 70 141 
10 8 0.1 0.5 14 140 
11 8 0.1c 0.5 17 170 
12 9 0.1c 0.5 14 140 
13 8 3c,d 1.3 >99 33.3 
14 8 3c 0.5 91 30.3 
15 8 3c,e 0.5 2 0.7 

a0.12 M 5. bby 1H NMR. c0.24 M 5. d1% increments followed by 
1% B(C6F5)3. e4 equiv. of PMe3 

Complexes 7-9 outperform their bis-phosphine counterparts 
1-3 in the model RCM reaction. Complex 8 is the most effective 
catalyst among the studied, showing productivity higher than V 
oxo complex 4 (entries 1-7, Table 1). 8 is not observed by 1H 
NMR spectroscopy after 30 minutes of the reaction in all cases. 
The decrease of the catalyst’s loading leads to the increase of 
TON (entries 8-10, Table 1) with the maximum TON of 170 at 
0.1 mol% of 8 at a higher concentration of 5 (entry 11, Table 
1), which is the highest reported TON of V-based OM involving 
acyclic terminal olefins.  

Following the catalysis with 8 by 1H NMR spectroscopy 
showed the formation of triplet at 14.1 ppm (3JHP = 8.9 Hz), 
which corresponds to alkylidene signal of bis-phosphine com-
plex V(N(2,6-Me2C6H3)(CHAr')(PMe3)2Cl (D, Ar' = o-
(OMe)C6H4), observed previously during the PMe3→NHC ex-
change reaction. We explain the formation of D by the reverse 
NHC→PMe3 exchange reaction in the presence of PMe3, 
formed during the initiation step. Complex D quickly decom-
poses in the presence of ethylene in analogy to 1 via β-H elimi-
nation.16 Thus, the reaction between 8 and ethylene showed the 
formation of D and propene (see Supporting Information). 
Based on our observation, the larger IEt ligand dissociates more 
readily than IMes to form D, explaining the lower productivity 
of 9 compared to 8. The rates of two competitive reactions, 
8→D and OM, depend on the concentrations of PMe3 and 5 
correspondingly. Therefore, low catalyst loading and increased 
substrate concentration led to higher productivity. The reaction 
in the presence of 4 equiv. of PMe3 showed low conversion sup-
porting our hypothesis (entry 15, Table 1). In contrast, the reac-
tion in the presence of phosphine scavenger (B(C6F5)3) allowed 
completing the reaction. The optimal conditions included the 
addition of 8 in 1% increments followed by 1% increments of 

B(C6F5)3 to remove free PMe3 before adding a new portion of 8 
to suppress the formation of D. This strategy resulted in the full 
conversion of 5 to 6 and required 3 mol% of 8 (entry 13, Table 
1). 

To further understand the role of the NHC ligand on catalyst 
stability, we performed DFT (B3LYP-D3)29-31 calculations on 
the unimolecular catalyst deactivation. It is nowadays well ac-
cepted that OM with d0 alkylidene complexes implies the coor-
dination of the olefin trans to the strongest ancillary s-donor 
ligand to form the trigonal bipyramid MCB (tbp, Scheme 4).32-

33 Unimolecular deactivation starts from the resting-state square 
pyramid MCB (sp) and occurs through a 𝛽-H elimination trans 
to the weakest s-donor ligand.34-35 We recently showed that V 
alkylidenes proceed through the same reaction mechanism.18 
Therefore, we explored OM between the methylidene derivates 
of 7 and 8 and ethylene and the subsequent 𝛽-H elimination 
(Scheme 4). For comparison, we include the Gibbs energies for 
methylidene derivates of 3 and 4 reported previously.18 

 
Scheme 4. Gibbs energies (kcal mol-1) of OM and unimolecular 
decomposition of methylidene derivates of 3, 4, 7, and 8. aAr = 
2,6-Me2C6H3. bsee ref.18  

According to calculations, the energy barrier for the cy-
cloaddition step with 7-m is 5.4 kcal mol-1 higher than that of 
3-m. Moreover, the tbp and sp MCBs of 7 are less stable with 
respect to separated reactants than those of 3. Both factors sug-
gest that 7 is slightly less prone to undertake OM. The lower 
activity of 7 arises from a weaker alkylidene – olefin interaction 
at the transition state for cycloaddition due to the stronger s-
donating ability of IMes when compared to PEt3. The substitu-
tion of the NC6F5 imido ligand by the more donating N(2,6-
Me2C6H3) has a small effect on the energy barrier and MCB 
stability. More importantly, the 𝛽-H elimination from the sp for 
both 7 and 8 requires overcoming high energy barriers, the tran-
sition state lying 22.0 and 23.9 kcal mol-1 above separated reac-
tants, respectively. These values are significantly higher than 
those computed for 3 (13.8 kcal mol-1) and comparable to those 
obtained for the most stable V oxo alkylidene (24.9 kcal mol-1). 
This agrees with the experimental results and suggests that the 
enhanced stability of 7-9 compared to 4 arises mainly by pre-
venting the bimolecular decomposition. 

We expanded the scope to 12 substrates using catalyst 8 and 
the best conditions obtained for 5 (Scheme 5). 
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Scheme 5. Scope of RCM catalyzed by 8. a1% increments fol-
lowed by 1% B(C6F5)3. 

Organic compounds containing thiophene (10), pyrazole 
(11), quinoline (13), tertiary aniline (14), isoxazole (16), meth-
oxy group (17), and pyridine (19) are easily accessible by using 
8 with high conversions. Substrates containing a thioether (12), 
an ether (15), N,N-diallylaniline (18), an ester (20), and tertiary 
amine (21) exhibit moderate conversions, presumably due to 
competing binding to the catalyst. 

CONCLUSION  
We have shown that V imido NHC chloride complexes can 

be prepared utilizing ligand exchange reaction from bis-phos-
phine precursors in the presence of free NHC. In the case of a 
larger imido group, the alkylidene exchange before the reaction 
with NHC is necessary to decrease the steric bulk around the 
metal center. The resulting NHC complexes exhibit high stabil-
ity toward ethylene. As a result, catalyst 8 shows the highest 
reported OM productivity in reactions with terminal olefins in 
the presence of various common functional groups. Experi-
mental and computational studies suggest that 𝛽-H elimination 
from metallacyclobutane is significantly disfavored compared 
to bis-phosphine counterparts. In addition, synthesized com-
plexes are less prone to bimolecular decomposition than re-
ported V oxo alkylidene. The dissociation of phosphine during 
the initiation step leads to the poisoning of the catalysts by 
forming the V bis-phosphine complex, a less active and stable 
catalyst. A phosphine scavenger was used to address this issue 
temporarily. The shift to phosphine-free systems is a logical 
strategy to develop a reliable V-based catalyst for olefin me-
tathesis, the direction that is currently addressed in our group. 
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