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Reversible Isomerization Between Silacyclopropyl Cation and Cyclic

(Alkyl) (Amino)Silylene

Raphaél Nougué, Shintaro Takahashi, Antoine Baceiredo, Nathalie Saffon-Merceron,

Vicen¢ Branchadell, and Tsuyoshi Kato*

Abstract: A phosphine-stabilized silacyclopropyl cation
2 has been synthesized and fully characterized. Of
particular interest, 2 reversibly isomerizes into the
corresponding  seven-membered  cyclic  (alkyl)-
(amino)silylene 3 at room temperature via a formal
migratory ethylene insertion into the Si—P bond.
Although silylene 3 has not been spectroscopically
detected, its transient formation has been evidenced by
the isolation of the corresponding disilene dimer 5 as
well as by trapping reactions. )

Introduction

Highly strained small cyclic molecules often present unusual
stability and properties. Particularly, in marked contrast to
the stable aromatic cylopropenium ions,! cyclopropyl cati-
ons I are extremely fragile molecules (Figure 1). Indeed,
theoretical®™ and experimental® studies indicate that the
parent molecule is not a minimum on the potential energy
surface®® and readily undergoes a ring opening reaction to
afford the significantly more stable allyl cation isomer II
(AEyy=—35 kcalmol™).”! Only a cyclopropyl cation with a
bicyclic structure which, hampers the pericyclic isomeriza-
tion, was characterized as a persistent molecule.” Although
cyclopropyl cations I have been extensively studied since
1960s, the chemistry of the heavier silacyclopropyl cations
III is far less investigated. Indeed, to the best of our
knowledge, there has been any experimental report on their
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Figure 1. a) Cyclopropenium cation I and allyl cation isomer Il and
related silicon-containing species (llI-VIl). b) Known reversible silylene
isomerizations (VIII-X).

synthesis, even though silylium ions have been of growing
interest for many years.’! A few theoretical investigations
predict that silacyclopropyl cations III and cyclopropyl
cation I are quite different, and that sila-allyl cation IV is a
less stable isomer of IIL® It was also predicted that
silacyclopropyl cation III (R=H) readily isomerizes to the
more stable silyliumylidene ion V (AEy;_y=—25 kcalmol ™)
via a formal migratory insertion of ethylene fragment into
the Si—H bond. More recently, Miiller reported computa-
tional investigations predicting that the n-ethylene complex
of silyliumylidene ion VI (R=Me) is very close in energy to
the silacyclopropyl cation III (AEy;_v;=1.0 kcalmol ') and
the facile interconversion between them due to a small
energy barrier (AE*;_vi=13.5 kcalmol™).” Although sta-
ble silicon analogues VII have already been synthesized,"
such a interconversion (III—VI) was not observed probably
due to the unfavored formation of less stable disilene. The
bicyclic derivative of trisilacyclopropyl cation, stabilized by
homoconjugation, similarly to the carbon analogues,” has
been described by Sekiguchi.l’”l Here we report the synthesis
of the first isolable monosilacyclopropyl cation 2 stabilized
by intramolecular phosphine coordination. Of particular
interest, 2 reversibly isomerizes at room temperature to give
a transient seven-membered cyclic (alkyl)(amino) silylene 3
by a formal migratory insertion of ethylene into the Si—P
bond proceeding through a transient formation of a n-
ethylene complex of silyliumylidene ion (type VI) as an
intermediate. This is a rare inter-conversion involving the
formation of a silylene (type VIII) other than the previously
described thermal and photochemical interconversions be-
tween Si=E double bond species (IX, E=R,Si, RN) and
silylene (type IX)'! or reversible cyclotrisilene-disilenyl
silylene interconversion (type X) reported by Scheschkewitz
and co-workers.['!
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Results and Discussion

Previously, we have reported the synthesis of silyliumylidene
ion complex 1 stabilized by a phosphine- and a dimeth-
ylsulfide-ligand, which presents a high reactivity due to the
labile character of both ligands.? Thus, silyliumylidene ion
1 immediately reacts with ethylene at room temperature to
afford the corresponding phosphine-stabilized silacycloprop-
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Scheme 1. The synthesis of silacyclopropyl cation 2, its reversible
isomerization to cyclic silylene 3 and the trapping reaction of 3 with
ethylene as well as its evolution by dimerization and C—H insertion.

Figure 2. Molecular structures of 2 (a), 4 (b) and 5 (c). Thermal
ellipsoids represent 30% probability. H and disordered atoms, counter
anions and solvent molecules are omitted for clarity. Selected bond
lengths [A] and angles [°]: 2: Si1—C1 1.802(7), C1—C2 1.594(10), C2-Si1
1.814(6), N1-Si1 1.739(4), Si1—P 2.260(2), Si1—C1-C2 64.2(3),
C1-C2-Si1 63.5(3), C2—Si1-C1 52.3(3), N1-Si1—P 94.8(2). 4: Si1—C5
1.787(9), C5-C6 1.553(11), C6-Si1 1.821(7), N1-Sil 1.755(5), Si1—C1
1.830(8), Si1—C5—C6 63.4(4), C5—C6-Si1 65.6(4), C6-Si1—C5 51.0(4),
N1-Si1—C1 111.8(3). 5: Si1-Si1" 2.261(3), N1-Si1 1.787(2), Si1—C1
1.867(3), N1-Si1-Si1" 113.6(2), C1-Si1-Si1’ 120.1(2), N1-Si1—C1
106.6(2).
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yl cation 2 with the release of SMe, (Scheme 1). In the
P NMR spectrum of 2, a signal appears at higher field
(32.9 ppm) compared to the chemical shift of silyliumylidene
ion 1 (66.9 ppm)."" A similar upfield shift has already been
observed in the analogous reactions of 1 with silanes or
alkynes to give the corresponding phosphine-stabilized
silylium cations (24-45 ppm).' The *Si NMR spectrum
displays a high-field doublet signal at —51.9 ppm with a large
coupling constant ('Jgp=175.4 Hz), within the range ob-
served for silacyclopropanes (—42.2 to —81.9 ppm).'*™ In
addition, *C NMR resonances for the two carbon atoms in
the three-membered ring appear as doublets at 2.4 ppm
(Jep=3.2 Hz) and 3.0 ppm (Jcp < 1.0 Hz) in the characteristic
region of silacyclopropanes (2.1 to 4.1 ppm).'"*" The
structure of 2 was confirmed by X-ray diffraction analysis
(Figure 2a).%!

Notably, if excess ethylene gas is not removed under
vacuum immediately after the reaction, silacyclopropyl
cation 2 reacts further with a second equivalent of ethylene
(16 h at room temperature) to give silacyclopropane 4 with
an additional ethylene fragment inserted into the Si—P bond.
Silacyclopropane 4 was fully characterized in solution by
NMR spectroscopy and in the solid state by single crystal X-
ray diffraction analysis (Figure 2b)."*) The *'P NMR spec-
trum of 4 displays a relatively downfield shifted signal at
54.5 ppm compared to that of silacyclopropyl cation 2
(32.9 ppm). The inserted ethylene fragment between Si and
P atoms was confirmed by the “C NMR spectrum which
shows two characteristic doublet signals at 2.1 ppm (3Jcp=
2.1 Hz, SiCH,) and at 31.7 ppm (‘Jcp=61.9 Hz, CH,P). This
result could suggest the in situ-formation of a seven-
membered cyclic (alkyl)(amino)-silylene 3, via an isomer-
ization of 2, which then undergoes a [2+1]-cycloaddition
with ethylene to give 4 (Scheme 1)."" However, since
silylene 3 cannot be detected in solution by NMR spectro-
scopy, both isomers silacyclopropyl cation 2 and silylene 3
should be in equilibrium at room temperature with a low
concentration of 3.

All attempts to isolate 3 by crystallization failed,
however, its dimer, dicationic disilene 5, was obtained as
highly air-sensitive red crystals (20 % yield) from a concen-
trated C4H;F solution of 2 at room temperature. The X-ray
diffraction analysis of 5 (Figure 2c) shows a trans-bent
arrangement of disilene fragment with strongly pyramidal-
ized silicon centers (X°;: 340.39°, bent angle: 40.79°) and an
elongated Si=Si bond (Sil-Sil": 2.261(3) A) compared to the
typical values reported for disilenes (2.15-2.20 A)."" This
Si=Si-bond length is similar to those observed for disilenes
substituted by strongly n-donating groups such as 1,2-
diamino-1,2-disilyldisilene (2.2890(14) A)!"®! or 1,2-diimino-
disilyl-disilene (2.3124(7) A).") Disilene 5 could be detected
in solution only as a reaction mixture by P NMR (§=
49.4 ppm) and Si NMR (8 =100.9 ppm) spectroscopies, due
to its precipitation /crystallization and its insolubility in
common organic solvents. However, the solid-state CP/MAS
¥Si NMR spectroscopy of 5 shows the same signal appearing
at 100.9 ppm. This chemical shift is in the range of typical
values reported for disilenes (50-155 ppm) and is in-between
those observed for 1,2-diaminodisilenes (15.1-119.5 ppm).I"™
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The CP/MAS *PNMR also shows a signal at 49.0 ppm,
which is consistent with the result observed in solution. The
dimerization of 3 in C,HsF (3+3—5) is calculated to be
exergonic (AG =—15.5 kcalmol™!, AG*=16.2 kcalmol™).[*")
In addition to the formation of silylene dimer 5, the
isomerization of 2, via a silylene insertion into the C—H
bond at the B-position of Si" center to afford a silirane
derivative 6,*! was observed (Scheme 1). The structure of 6
was also confirmed by X-ray diffraction analysis. (See the
Supporting Information.) The reaction completed in 8 h at
room temperature to give a mixture of 5 and 6 in a 20:80
ratio. This result is in good agreement with DFT-calculations
indicating that the formation of 6 from 3 via a C-H
activation by the silylene in C¢HsF proceeds with a slightly
smaller energy barrier (AG*=15.5kcalmol ') and is a less
exergonic process (AG=—14.6 kcalmol™).”>® This result
also confirms the in situ-generation of silylene 3 via the
isomerization of silacyclopropyl cation 2.

The DFT calculations indicate that the formation of
silylene 3 from silacyclopropyl cation 2 is only slightly
endergonic (AG,_3= +2.5 kcalmol™") and the energy barrier
for the reaction is reasonably small (AG", ;=
22.5 kcalmol™), which is in good agreement with the
experimental results suggesting the presence of an equili-
brium between silacyclopropyl cation 2 and silylene 3 at
room temperature (Figure 3). Calculations also indicate that
the reaction starts with the formation of a n-ethylene
complex of silyliumylidene ion INT1 rather than a direct
isomerization from 2 to 3 via a formal reductive elimination
of phosphonium fragment from the cationic tetra-coordinate
silicon center or via a nucleophilic attack of phosphine on
the carbon atom of the three-membered ring. The nature of
n-ethylene complex of INT1 was indicated by the ethylene
coordinating on the Si atom from the top of P-Si—N
molecular plane in INT1 as well as by the significantly
shortened C—C bond (1.402 A) and elongated Si—C bonds
(2.016 and 2.512 A) in the three-membered ring relative to
those calculated for 2 (C—C: 1.559 A, Si—C: 1.841 and
1.839 A). Then, the INTI1 isomerizes via a migratory

AG (kcal/mol)

Pl
T
(22.5) E'b
o7 TS2) 2
(17.9) INT1 .- 3 TS2
/TS 184 (14.0)
RETT

2 R CAR
Y

R, INT2

Figure 3. Calculated pathway for the silacyclopropyl cation-silylene
interconversion in CsHsF. Gibbs energies of intermediates (and
transition states) are in kcalmol™.
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insertion of ethylene into the Si—P bond to generate a
phosphonioenamine adduct of silylene INT2 as second
intermediate, which isomerizes further via a ring-opening
reaction to give the base-free cyclic (alkyl)(amino)silylene 3
(AGint2—3=—5.0 kcalmol ™!, AG* |\q2_3=6.5 kcalmol ™).

The calculated structure of 3 shows a relatively short
N-Si bond (1.783 A in Figure 4), indicating a n-donation of
amino group to the divalent silicon atom (canonical
structure 3-B in Figure 5). However, it is longer than those
observed for other mono-amino silylenes (1.715-1.730 A).
In addition, the C4-N (1.384 A) and P—C3 (1.750 A) bonds
are shorter than the corresponding single bonds (N—C5
1.465 A, C2—P 1.812 A). These results suggest a significant
delocalization of N-lone pair to the phosphonio fragments
(3-C, Figure 4), Indeed, the NBO analysis of 3 indicates a
Lewis structure with a C3—C4 double bond and lone pairs
on Si and N atoms, with a total non-Lewis occupancy of only
1.6 %, showing that 3-A is the most representative canonical
structure of 3. The second order perturbation analysis of
donor-acceptor interactions, assessing electron delocaliza-
tion, shows that the most significant interactions in the
P—C3-C4-N-Si  fragment are LP(N)—n*(C3—-C4)
(54.9 kcalmol ™), LP(N)—empty 3p (Si) (32.6 kcalmol™)
and 1(C3—C4)—c*(P-N) (13.0 kcalmol™"). This indicates an
important contribution of canonical structure 3-C which
should reduce the electronic compensation of divalent
silicon center by the amino group (3-B). Indeed, the LUMO
of 3 (—3.6¢eV), mainly localized on the silicon atom (p,g;)
(Figure 3b), is the considerably lower than that calculated
for the Iwamoto’s neutral five-membered cyclic (amino)-
(alkyl)silylene XI (0.1 eV, Figure 5).”* Furthermore, prob-
ably due to such a reduced n-electron donation of amino
group as well as the increased silylene bond angle (100.9° for
3, 92.6° for XI), the singlet/triplet gap of 3 (36.7 kcalmol ')
is significantly smaller than that calculated for XI
(50.0 kcalmol™) and thus silylene 3 presents a greater

LUMO (-3.6 V)

HOMO (=10.2 &V)

Figure 4. Calculated structure of 3 (a) and its frontier orbitals (b:
LUMO and c: HOMO, Isosurface level: 0.05). Selected bond lengths [A]
and angles [°]: N—Si 1.783, Si—C1 1.926, C1—C2 1.540, C2—P 1.812,
P—C3 1.750, C3—C4, 1.374, C4—N 1.384, N-Si—C1 100.91.
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Figure 5. Some canonical structures of 3 A-C.
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reactivity, as indicated by the facile dimerization and
isomerization (Scheme 1).

As expected, the in situ generated silylene 3 exhibits the
typical reactivity of silylenes, even though the very low
concentrations of 3 in solution slow down reaction rates
(Scheme 2). Thus, 3 reacts slowly with unsaturated com-
pounds such as allytrimethylsilane (8 h) and 2,3-dimeth-
ylbutadiene (8 h) at room temperature to give the corre-
sponding [2+1]- and [4+2]-cycloadducts (7 and 8),
respectively (Scheme 2). It is interesting to note that the
intramolecular C-H insertion of 3 to give 6 was not
observed upon these reactions. Silylene 3 also reacts with
H,SiPh at room temperature via a silylene insertion into a
Si—H bond of the silane to give the corresponding disilane 9.
Interestingly, silylene 3 is able to activate a C—H bond of the
methyl group of 2-methylpyridine to give a cyclic silane 10.
The reaction is probably triggered by the coordination of
pyridine to the Si" center of 3, which increases both the

TMS =
® H
Ar g X ~TMS NP Al s N
4_— —— X
3 RT RT 3
PR, PR,
® 7 ® 10

N 3 (
3 RT [31 RT PR,
gRZ 8 [CERET

H_SiH,Ph NS
Ar. & - r
\N’S'X X HsiPh Pt(PPhs)s N PPhs
RT RT R®P Si:>Pt
PR _ 2 \
@‘@) 20 PPh; N/ 1 PP

Scheme 2. The reactions of cyclic (alkyl) (amino)silylene 3.

Figure 6. Molecular structures of 11 (left) and 12 (right). Thermal
ellipsoids represent 30% probability. H and disordered atoms and
counter anions are omitted for clarity. Selected bond lengths [A] and
angles [°]: 11: Si1—P2 2.339(3), N1-Si1 1.869(4), Si1—C1 1.922(9),
C1-C2 1.578(17), C2—P1 1.810(11), P1-C3 1.732(5), C3—C4 1.393(6),
C4—NT1 1.339(6), N1-Si1—P2 105.2(2), P2—Si1—C1 92.6(3), N1-Si1—C1
98.0(4). 12: Si1—Pt 2.201(1), Pt—P2 2.298(1), Pt—P3 2.308(1), N1-Si1
1.791(3), Si1—C1 1.849(4), Si1—Pt—P2 113.7(1), P2—Pt—P3 109.2(1),
P3—Pt-Si1 135.0(1), N1—Si1—Pt 133.5(2), Pt-Si1—C1 122.9(2),
N1-Si1—C1 103.5(2).

Angew. Chem. Int. Ed. 2023, 62, €202215394 (4 of 6)

Research Articles

Angewandte

intemationaldition’y) Chemie

acidity of the methyl group of 2-methylpyridine and the
basicity of the Si" center, which promotes the deprotonation
of the methyl group by the silylene moiety. Indeed, no
reaction was observed with a bulkier, and therefore less
coordinating, 2,6-dimethylpyridine.

As expected, silylene 3 possess an ambiphilic character
and behaves as Lewis acid as well as Lewis base. Indeed, the
addition of an excess of PMe; cleanly affords the corre-
sponding phosphine-stabilized silylene 11 as a mixture of
two diastereomers (85:15) which have been fully character-
ized by NMR spectroscopy (¥’Si NMR:8=18.4 ppm, 'Jgp=
193.5 Hz for the major diastereomer) and X-ray diffraction
analysis (Figure 6-left). The structure of 11 confirms the
coordination PMe; on the Si' atom and a resulting
pyramidalized and chiral three-coordinate silicon center
(X°5;=295.8°). In the absence of an excess of PMe;, 11 is not
stable and slowly and cleanly affords silylene dimer §
certainly due to an easy dissociation of phosphine ligand in
solution. It is interesting to note that in this case the
isomerization of silylene 3 to give the insertion product 6
was not observed. This suggests that the silylene dimeriza-
tion process could be promoted by a Lewis base such as
PMe;. In turn, the Lewis basic character of 3 was demon-
strated by its reaction with Pt(PPh;); leading to the clean
formation of silylene—Pt® complex 12. The #Si NMR
spectrum of 12 displays a low-field shifted triplet signal at
278 ppm ((Jsp=126 Hz, 'Jgp,=3631 Hz), within the range
observed for the Pt”-complexes with the Iwamoto’s (alkyl)-
(amino)silylene ligand XI (§=281-285 ppm, 'Jgp =2335-
2250 Hz).™ The structure of complex 12 has been also
confirmed by X-ray diffraction analysis (Figure 6-right). The
structure exhibits a Sil-Pt bond length (2.201(1) A) which is
as short as those observed for the related Pt’-complexes with
a aryl- or alkyl-silylene ligands [silylene—Pt(PR;), com-
plexes (2.2076(15)-2.2123(11) A)]* and is shorter than that
observed for the complex with a diaminosilylene Si-
[(NCH,'Bu),C.H,-1,2] (2.261(3) A).””) This also confirms the
enhanced electrophilic character of silylene 3.

Conclusion

In conclusion, we have successfully synthesized the first
phosphine-stabilized silacyclopropyl cation 2 and its unpre-
cedented reversible isomerization at room temperature to
the corresponding seven-membered cyclic (alkyl)-
(amino)silylene 3 (CAASI) via a formal migratory ethylene
insertion into the Si—P bond. Although silylene 3 has not
been detected in solution by NMR spectroscopy, its
formation was evidenced by typical reactions of silylenes
such as cycloaddition reactions, insertion reactions into C—H
or Si—H bonds, and complexations with a Lewis Base or a
Lewis Acid. Therefore, the phosphine-stabilized cycloprope-
nium ion 2 can be considered as a masked CAASi which is
stable and easy-to-manipulate. The applications of this
unique molecule is under active investigation.
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