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Abstract: Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality
in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with
protective effects in several chronic diseases, including breast cancer. This diet is characterized by the
consumption of abundant plant foods and olive oil as the principal source of fat, which is considered
one of the main components with potential antioxidant, anti-inflammatory and anticancer effects.
Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated
fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids
(e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While
epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protec-
tive effect of this oil and its compounds on mammary carcinogenesis. Such effects account through
complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein
expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a
role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their
beneficial effects on human prevention and progression of the disease, evidence points to EVOO in
the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising
adjuvants in anticancer strategies.

Keywords: olive oil; EVOO; breast cancer; minor compounds; apoptosis; proliferation; migration

1. Introduction

Breast cancer has been the most commonly diagnosed cancer in 2020, with high
rates of incidence and mortality in women worldwide [1,2]. Geographical differences in
incidence rates suggest an effect of environmental and lifestyle factors in the etiology of this
neoplasia [1]. Lifestyles have attracted great scientific interest since they are modifiable risk
factors for cancer, with healthy diets, body mass index and exercise showing a significant
impact on this disease. Thus, different dietary patterns have been associated with the risk of
breast cancer and dietary lipids have a key role on such effect [3]. Human studies regarding
such association are controversial; however, experimental studies have provided strong
data supporting an effect of dietary lipids on breast cancer [4,5]. This potential modulatory
influence depends on the total amount and on the specific type of dietary fat. Hence,
diets rich in n-6 polyunsaturated fatty acids (PUFA), especially linoleic acid, have shown
stimulating effects on mammary cancer in animal models. Saturated fats and trans fatty
acids have also shown to enhance carcinogenesis [4,5]. On the contrary, n-3 PUFA (mainly
the long chain n-3 eicosapentaenoic and docosahexaenoic acids), but also gamma-linolenic
acid and conjugated linoleic acid, has shown inhibitory effects on cancer cells. Diets with
high ratios of n-3/n-6 PUFAs have also demonstrated protective effects [4,5]. The influence
of n-9 monounsaturated fatty acids (MUFA) still remains unclear and studies have reported
from weak-promoting to protective effects on experimental mammary carcinogenesis [4,5].
Olive oil, rich in n-9 MUFA oleic acid, is the main source of fat in the Mediterranean
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diet. This diet has been proposed as healthy dietary pattern associated to a decreased
risk for some chronic diseases such as cardiovascular disease, obesity and cancer. The
Mediterranean diet is characterized by abundant use of olive oil; abundant and varied
plant foods (fruits, vegetables, cereals, legumes and nuts); moderate intake of red wine
with meals; moderate consumption of fish and seafood, dairy products, poultry and eggs;
and low consumption of red meat and sweets [6]. The Mediterranean diet is a pattern
historically linked to decreased rates of breast cancer in Mediterranean countries. Actually,
breast and other cancer mortality rates have been increasing in southern European countries
over the years, which has been correlated with changes in dietary patterns, including the
decrease in olive oil consumption and the increase in the consumption of seed oils [7].

Olive oil is obtained from the fruit of the olive tree (Olea europaea L.) and has a particular
chemical composition not only for its lipid profile but also for a significant quantity of
minor compounds, some of them highly bioactive. The specific components depend, to a
large extent, on the quality of the oil. Virgin olive oils are the oils extracted mechanically
from olives and with no other treatments. Afterward, they are divided according to their
acidity, with the lowest corresponding to the extra-virgin olive oil (EVOO). Only virgin
olive oils preserve their minor compounds. Refined olive oil is obtained from virgin oil
by refining methods. What is known simply as “olive oil” is a blend of refined and virgin
olive oils [8,9]. In addition to its quality, olive oil’s specific composition depends on many
other parameters, including cultivar, growing area, environmental conditions, pedology,
harvest time and system, extraction method, or storage conditions [9,10].

Olive oil composition can be divided into two fractions, the major components (repre-
senting more than 98% of total oil weight), which is the saponifiable fraction and includes
triacylglycerides and derivatives; and the minor unsaponifiable fraction [8,11–14]. The
fatty acid profile composing the major fraction of a typical olive oil is represented by
MUFA oleic acid (55–83%) and palmitoleic acid (0.3–3.5%); palmitic (7.5–20%) and stearic
(0.5–5%) saturated fatty acids; n-6 PUFA linoleic acid (3.5–21%); n-3 PUFA linolenic acid
(0–1%); and little quantities of other fatty acids (myristic, 14:0; margaric, 17:0; margaroleic,
17:1n9; arachidic, 20:0; eicosenoic, 20:1n9; docosanoic, 22:0; lignoceric, 24:0) [11,15–17].
The olive oil unsaponifiable fraction (1–2% of total weight) is characterized by chemical
variability and complexity and more than 230 components from different chemical classes
have been identified. This unsaponifiable fraction includes triterpenic dialcohols and acids
(20–200 mg/kg [18,19]); sterols (1000–5000 mg/kg [11,18]); hydrocarbons, such as squalene
(1000–8000 mg/kg [11,18]), n-alkanes and alkenes (up to 330 mg/kg [13,20]), or carotenoids
(β-carotene is the most abundant, with 1–11 mg/kg [11,21]); pigments (5–30 mg/kg [21]);
and phenolic compounds (lipophilic and hydrophilic). The most important lipophilic
phenols are tocopherols (the most abundant is α-tocopherol, with 12–400 mg/kg [11]). In
relation to hydrophilic phenols (40–1000 mg/kg [11]), several chemical classes have been
identified, such as secoiridois, flavonoids or lignans [12]. Other components are also found
in the unsaponifiable EVOO fraction, such as aliphatic alcohols, waxes and many volatiles
compounds [11,13]. Table 1 shows the composition of typical EVOO, with the main fatty
acids found in the saponifiable fraction, as well as the main chemical classes found in the
unsaponifiable fraction.

In the last years, much attention has been given to the potential health benefits of olive
oil and the effects of different EVOO components [9,14,22]. Virgin olive oil is considered a
healthy fat and two health claims for the beneficial effects of its lipid profile and polyphenol
content have been announced by the European Food Safety Authority (EFSA) [23,24].
In relation to cancer, several minor components have demonstrated potential antitumor
effects [25], especially hydroxytyrosol [26], secoiridoids [26–28], flavonoids [29], lignans [30]
and triterpenes [31]. Thus, the purpose of this article is to review the effects of olive oil and
its components on breast cancer and obtain insight into the potential mechanisms of action
associated to these effects.
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Table 1. Olive oil components.

Composition of Olive Oil

Saponifiable Fraction (>98%)
Triacylglycerols and derivatives

16:0 Palmitic acid
16:1n-7 Palmitoleic acid
18:0 Stearic acid
18:1n-9 Oleic acid
18:2n-6 Linoleic acid
18:3n-3 Linolenic acid

Unsaponifiable Fraction (<2%)
Non-glyceride esters and waxes
Aliphatic alcohols
Volatile compounds: aldehydes, ketones, alcohols, acids, esters, etc.
Triterpenes: erythrodiol, uvaol, oleanolic acid and maslinic acid
Sterols: β-sitosterol, campesterol, stigmasterol and avenasterol
Hydrocarbons

Squalene
n-alkanes and n-alkenes
Carotenoids: β-carotene and lycopene

Pigments: chlorophylls and pheophytins
Lipophilic phenolics: tocopherols and tocotrienols
Hydrophilic phenolics

Phenolic acids: gallic, vanillic, cinnamic, caffeic, coumanic and elenolic acids
Phenolic alcohols: hydroxytyrosol, tyrosol and their glucosides
Secoiridoids: oleuropein and ligstroside derivates (oleocanthal and oleacein)
Lignans: pinoresinol and acetoxypinoresinol
Flavonoids: luteolin and apigenin

2. Human Data: Epidemiological Studies on the Effects of Mediterranean Diet and
Olive Oil on Breast Cancer Risk

Epidemiological studies have been designed in order to associate the risk of breast
cancer with the Mediterranean diet, olive oil consumption, or intake of some EVOO
components. These human investigations are mainly based on case-control studies with
fewer long-prospective and interventional ones and the results are not fully consistent
and conclusive. Thus, case-control studies have showed inverse associations between
olive oil consumption and the risk of this neoplasm, with decreased risk for the highest
consumption of olive oil described in cohorts conducted in Mediterranean countries such as
Greece [32], Italy [33], Kuwait [34] and Spain [35,36]. In the multi-center case-control study
EURAMIC, oleic acid concentration in fat stores showed an inverse association with breast
cancer but only in the Spanish center (odds ratio, 0.40), suggesting the role of other olive oil
compounds beyond oleic acid in its potential protective effect [37]. In this sense, the SUN
trial has investigated the association with polyphenol consumption, finding an inverse
association between total polyphenol intake and breast cancer risk for postmenopausal
women. Thus, there was a 69% risk reduction in the third tertile of polyphenol intake
(>800 mg/day) in comparison to the first tertile (<566 mg/day) [38].

On the other hand, meta-analyses combine data from independent primary studies
with a large number of participants. In general, those meta-analysis including case-control
studies have also observed significant associations of olive oil consumption and reduction
in the risk of developing breast cancer, reporting up to five-fold differences in subjects
consuming olive oil versus those consuming butter and a relative risk of 0.62 for the highest
versus the lowest levels of olive oil intake [39,40]. Prospective cohort studies have also
evaluated the association between the Mediterranean diet or olive oil and breast cancer
risk. The European Prospective Investigation into Cancer and Nutrition (EPIC) study is
one of the largest cohort studies designed to investigate the relationships between diet,
nutritional status, lifestyle and environmental factors and the incidence of cancer and
other chronic diseases. In a study focused on the Mediterranean diet pattern, the EPIC-
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Greece cohort reported marginally significant inverse association with breast cancer risk
among postmenopausal women (22% reduction every 2-point increase in conformity to
the Mediterranean diet) [41]. This negative association resulted significant for estrogen
receptor-negative (ER−) breast cancer in two studies [42,43], although, in other cohorts,
no clear association has been found [44–47]. Meta-analyses including cohort studies have
reported similar results, also finding inverse associations of the Mediterranean diet with
breast cancer and mortality [48] and more strongly with ER− breast cancer [43,49]. It is
more difficult to establish associations with Mediterranean diet components and fewer
studies have addressed the influence of olive oil consumption. In this sense, a study
with postmenopausal women from the EPIC Mediterranean countries (Spain, Greece and
Italy, with a high but varied olive oil intake) has also suggested a negative association
between olive oil intake and ER− and PR− (progesterone receptor-negative) tumors [50].
However, more recently, a meta-analysis including ten observational studies showed no
significant dose–response relationship for olive oil and breast cancer risk, thus highlighting
the need for additional prospective studies with better assessment of olive oil intake [51],
although conflicting findings between case-control and cohort studies for breast cancer
were found [52]. In any case, it should be considered that many epidemiological studies do
not distinguish between the consumption of olive oil and EVOO, thus resulting in a great
variability in the profile and quality of the oil consumed.

The Mediterranean diet has also been investigated in dietary intervention studies for
its cardioprotective effect potential. Some of these trials have discovered secondarily that
breast cancer risk was lower in intervention groups. A randomized secondary prevention
trial testing the effect of a Mediterranean α-linolenic acid-rich diet showed 61% lower risk
of cancer (all subtypes) [53]. In the PREDIMED randomized, nutritional intervention trial,
although based on a few incident cases, long-term dietary intervention with EVOO supple-
mentation was associated with 62% reduced breast cancer rates [54]. This trial reported
other health benefits of the Mediterranean diet supplemented with EVOO compared to a
low-fat control diet, with potential implications in breast cancer risk, such as an effect on
body weight and composition [55,56] or antioxidant capacity [57].

Thus, the strongest evidence of the association of the Mediterranean diet and breast
cancer risk has been observed in Mediterranean countries [41,54,58], where the consump-
tion of EVOO is higher, but human results remain controversial. The inconsistent associ-
ation between dietary patterns, foods or nutrients and breast cancer risk is probable due
to the complex human diet. Individuals do not have a diet based on isolated nutrients
but complex mixtures of components that interact with many biological processes. Thus,
several methodological issues and limitations may interfere in human studies, such as the
determination of the components of the diet (which is inconsistent among studies), the as-
sessment of the whole diet through questionnaires, geographical variations due to multiple
variables (genetics, carcinogenic exposure, culture, or different cancer incidence), or indi-
vidual characteristics such as hormones, body mass index or exercise practice. Moreover,
the potential protective effect of olive oil may strongly depend on its specific composi-
tion, i.e., the fatty acid composition and minor compounds, including a great number
of polyphenols, as well as the interactions among components. Despite the inconsistent
results, epidemiological data suggest a potential beneficial effect of the Mediterranean diet
on breast cancer risk, with olive oil playing an important role.

3. Effects of Olive Oil on Experimental Mammary Carcinogenesis

Due to the great difficulty in obtaining unbiased data from controlled variables in hu-
mans, experimental carcinogenesis become an indispensable tool to obtain mechanistic rela-
tionships between dietetic factors and health. Although many models have been developed,
the two experimental models more used in mammary carcinogenesis are chemically in-
duced in rodents, specifically the intragastric administration of 7,12 dimethylbenz[α]anthracene
(DMBA) and the administration (intravenous, subcutaneous or intraperitoneal) of N-
nitrosomethylurea (NMU) [59]. Classical studies reported a stimulating effect of diets
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high in fat on mammary carcinogenesis. Moreover, for the same amount of fat, a spe-
cific effect of the type of lipid has been described [60]. Since the studies carried out by
Tannenbaum, several authors have demonstrated the stimulating effect of a diet rich in
n-6 PUFA [61] and many of the studies including olive oil have analyzed the influence
of this fruit oil in comparison to seed oils rich in n-6 PUFA, such as corn, sunflower or
safflower oils. The specific composition of olive oil is a key factor of its potential effect. As
already mentioned, EVOO is obtained by physical processes without alterations and with
no other treatments, thus being rich in MUFA (oleic acid represents 55–83% of total fatty
acids, depending on the oil cultivar, among other variables) but also rich in minor bioactive
compounds [11,12,17]. Virgin olive oil, but not the refined one, is the oil that contains all
the minor compounds. What is known simply as “olive oil” is not the original product
extracted from olives but a blend of virgin and refined oil; therefore, it is not as rich in
polyphenols and other minor compounds as EVOO [8,9]. In this sense, few studies have
used extra-virgin olive oil in animal studies.

The first investigations with diets containing olive oil, in the NMU-induced carcino-
genesis model, showed a stimulating effect of high n-6 PUFA diets (rich in safflower and
corn oils) when compared to high olive oil and low-fat diets [62,63]. Moreover, when olive
oils with different percentages of oleic acid were tested (54, 70 and 80%), the oil containing
the highest oleic acid and the lowest linoleic acid (80% and 5%, respectively) caused histo-
logically more benign adenocarcinomas [64]. In the DMBA-induced rat mammary cancer
model, an olive oil diet elicited longer tumor-free time, fewer tumors per rat and lower
tumor incidence in comparison to diets high in linoleic acid, what was associated with the
low percentage of linoleic acid (18:2n-6) in olive oil [65]. A high-corn-oil diet, but not a high
olive oil diet or a high saturated fat diet, also enhanced the growth of pulmonary metasta-
sis [66]. In the MMTV-neu(ndl)-YD5 transgenic mouse model, that develops spontaneous
mammary tumors, a 10% marine-derived n-3 PUFA diet was the one that best mitigated
breast cancer outcomes, followed by a 10% olive oil diet (with similar effects to saturated fat
and plant-derived n-3 diets) and a 10% n-6 PUFA diet showing the poorest outcomes [67].

Few studies have used extra-virgin olive oil to assess its effects on experimental mam-
mary carcinogenesis. In the NMU model, a normolipidic 4% fat diet showed that animals
fed with EVOO had longer latency and lower mortality rates than animals fed sunflower
or oleic acid-enriched sunflower oil [68]. Prenatal and prepuberal exposure to moder-
ate quantities of fat (7%) showed the protective effect of an EVOO diet when compared
to an n-6 PUFA diet, while high-fat diets (15%) in general had an enhancing effect on
DMBA-induced carcinogenesis [69]. On the other hand, in this DMBA-induced model of
mammary cancer, a 20% EVOO diet clearly demonstrated a differential effect on the clinical
and morphological degree of tumor malignancy in comparison to a 20% corn oil diet, rich
in n-6 PUFA. These high-fat diets were administered from weaning or after carcinogen
induction, in order to obtain insight into their effects on the initiation and on the promotion
of carcinogenesis. In both cases, the high-EVOO diet, in comparison to the high-corn-oil
diet, lengthened the tumor latency (interval from carcinogen exposure to palpable appear-
ance of tumor) and decreased tumor incidence (percentage of tumor-bearing animals),
multiplicity (number of tumors per animal) and tumor volume [70–73]. Moreover, these
diets also modified the morphological characteristics of tumor aggressiveness. Thus, the
high-corn-oil diet, both from weaning and after induction, promoted adenocarcinomas with
a high histological degree, more prominent tumor necrosis, stromal invasion and frequent
cribriform pattern in comparison with control and high-EVOO diet. Tumors from animals
fed the high-EVOO diet displayed a low histopathological grade, with few invasive and
necrotic areas [70,74–77]. Figure 1 depicts the effects of a high-EVOO diet, in comparison
to a high-corn-oil diet, on the clinical and morphological manifestation of experimental
carcinogenesis, as well as the related mechanisms. Table 2 summarizes the effects and
molecular mechanisms of action on olive oil on experimental mammary carcinogenesis
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Figure 1. Effects and main mechanisms of action of high-EVOO diets, in comparison to high-seed-oil
diets, on experimental mammary carcinogenesis. Animals fed the high-EVOO diet displayed tumors
of lower clinical and morphological degree of malignancy. These effects can be related to systemic
mechanisms influencing susceptibility and tumor initiation (growth and sexual maturation, liver
capacity of carcinogen detoxification, hormone levels, antioxidant capacity and immune function),
as well as molecular changes in tumors (in membrane composition, epigenetics, gene expression,
DNA damage, oxidative stress, or metabolism, conducting cells to decreased proliferation and
increased apoptosis).

3.1. Molecular Mechanisms of the Effects of Olive Oil on Experimental Mammary Carcinogenesis
3.1.1. Effects on Animal Susceptibility and Tumor Initiation

Olive oil has been proposed to have a beneficial effect on breast cancer risk at different
systemic levels, including different organs, tissues and body processes beyond the tumoral
tissue. One of the earlier processes studied was the hormonal status, since breast cancer
is an estrogen-dependent neoplasia (at least at the early steps of carcinogenesis); thus, it
is highly influenced by hormones. The cycling nature of hormones and their labile levels
make it difficult to draw a relationship, thus data on hormone levels by effect of other
fats are inconclusive and few studies have been carried out with olive oil. In pregnant
rats, a 7% EVOO diet decreased the estradiol levels in comparison with a corn oil diet
and with high-fat diets [69]. However, administration of a 20% EVOO diet from weaning
induced no changes in hormones (LH, FSH, estradiol, progesterone, prolactin, insulin and
corticosterone) neither in hormone receptors in mammary gland nor in tumors. Such diet
increased progesterone receptor in mammary glands at ages around puberty [78].

Growth and sexual maturation are key developmental processes affecting later breast
cancer risk [79]. Several studies suggested the effect of dietary fat on such processes.
Dietary exposure to a 20% high-corn-oil diet from weaning increased the body weight and
mass index of rats, while the isocaloric high-EVOO diet did not modify body weight or
mass in relation to a low-fat diet [78,80]. This lack of effect on body weight, despite the
great amount of fat in this EVOO diet, was related to the increased level of hypothalamic
oxytocin and a nonsignificant increase in plasmatic OEA, both molecules related to body
weight regulation [80], and to the regulation of hepatic metabolic genes, such as the
uncoupling protein UCP2 [73]. Accordingly, leptin serum levels were lower in animals
fed the EVOO diet than in the ones fed the high-n-6-PUFA diet [76]. Concordant results
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have been observed in sexual maturation, a process that, in humans, is closely related to
breast cancer risk [78]. The high-n-6-PUFA diet, but not the high-EVOO diet, advanced
morphological sexual maturation in accordance with the increased expression of kisspeptin
in the hypothalamus, a marker of puberty. However, little influence of either high-fat diets
was observed in the morphology of the mammary gland (number of different epithelial
structures) or in molecular differentiation markers (caseins) [78,81].

Recent data have also suggested that the systemic oxidative status may be influenced
differentially by these high-fat diets. In healthy rats, oxidative stress-related DNA adducts
in liver were increased by effect of a diet supplemented with n-6 PUFA, with no effect by
supplementation with olive oil [82]. Although inconsistent results have been obtained, in
DMBA-induced animals, high-fat diets seemed to increase oxidative stress, especially the
20% corn oil diet, according to a higher lipid peroxidation in liver [83].

Of special interest is the possible effect of dietary lipids on liver carcinogen detoxifica-
tion, as they may have a direct impact on cancer initiation. The expression of xenobiotic
metabolizing genes (phase I activation of the carcinogen and phase II inactivation of the
carcinogen) was studied in the liver and mammary gland of rats fed post-weaning with
20% corn oil or 20% EVOO diets. The results in the liver suggested a balance in favor of the
production of active carcinogenic compounds due to the effect of the diet rich in seed oil
(increased CYP1A1, CYP1A2 and CYP1B1) and, on the contrary, a greater detoxification
due to the effect of the diet rich in EVOO (increased GSTP1, NQO1 and Nrf2 activity), thus
modifying the susceptibility to the transformation by environmental carcinogens [72,84,85].

Finally, several studies also pointed at a potential effect of olive oil on the immune
system. In DMBA-induced rats, prenatal exposure to a 15% olive oil diet induced changes
in spleen production of B and T lymphocytes, as well as higher leucocyte infiltration of
tumor [86,87]. Animals fed post-weaning with a 20% EVOO diet showed lower serum
levels of proinflammatory cytokines IL1α and leptin than animals fed the isocaloric corn
oil diet. In rats fed after induction with this EVOO diet, tumors showed an increase in the
infiltration of cytotoxic T lymphocytes (CD8+) [76].

3.1.2. Effects on Tumor Lipid Profile

Dietary lipids may influence the composition, thus the function, of the tumor cell mem-
brane, with an impact on membrane fluidity, lipid peroxidation and signaling transduction
pathways mediated by lipids [88]. In DMBA-induced rats, a 20% corn oil diet changed
the tumor lipid profile, increasing the relative content of linoleic acid (18:2n-6 PUFA) and
decreasing that of oleic acid (18:1n-9 MUFA) in three lipidic fractions, phosphatidylcholine,
free fatty acids and triacylglycerides [89].

Other authors have also observed that tumor composition in 18:1n-9 MUFA and
18:2n-6 PUFA reflected the diet, more in the neutral lipid than in the phospholipid frac-
tion [90]. Changes in tumor composition by effect of an olive oil diet have been also ob-
served in N-ethyl-N-nitrosourea-induced tumors [91], in NMU-induced tumors [92] and in
spontaneous mammary tumors developed in the MMTV-neu(ndl)-YD5 mouse model [67].

3.1.3. Effects on Tumor Gene Expression

Different cellular processes can be modulated by changes in the gene expression
profile. Dietary factors may influence gene expression by a direct effect, but gene mod-
ulation can also be the consequence of the interplay among different mechanisms, e.g.,
cell membrane changes, activation of signaling pathways, or changes in epigenetics. In
any case, several studies reported changes, by the effect of olive oil, in tumor genes with a
potential role in the carcinogenic process, such as proliferation, differentiation, apoptosis,
or metabolism [71,76,93,94].

Transcriptomic analyses demonstrated that a 20% high-EVOO diet induced changes
in the mammary gland and tumors. In the mammary gland, especially after a short dietary
intervention, a high-corn-oil diet downregulated genes related to the immune system and
apoptosis, while a high-EVOO diet modified genes mainly related to metabolism [73]. In
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DMBA-induced mammary tumors, these high-EVOO diets also mainly modified metabolic
genes, while the high-n-6-PUFA diet decreased genes with a role in apoptosis and im-
mune system. Further validation confirmed the downregulation, by the EVOO diet, of
the proliferation genes such as Smad1 or Jack2, metabolic genes such as Scd and lower
Arg1 and Tngβ1 [76,93]. Other studies on this same model showed changes in the gene
expression of proteins involved in important proliferating pathways. The 20% EVOO diet
also modulated the mRNA variants of c-erbB1 (coding full-length or truncated EGFR) [71]
and Igf2 expression [94].

Prenatal exposure to different 23.4% high-fat diets also resulted in changes on DMBA-
induced cancer susceptibility and in the transcriptomic profile of the mammary gland,
depending on the type of dietary lipid. The high-olive-oil diet modulated adhesion genes
such as Cadm4 or genes related to the immune system (Btn1a1) [95].

3.1.4. Effects on Tumor Epigenetic Mechanisms

EVOO has also shown an effect on epigenetic mechanisms in animal models. A
20% EVOO diet administered from weaning influenced DNA methylation and histone
modification in the mammary gland and DMBA-induced tumors. Such diet increased global
DNA methylation in mammary glands at ages around puberty, which is in accordance with
a decrease in the susceptibility of this gland to mammary transformation. Moreover, global
DNA methylation was also increased by the effect of the EVOO diet on mammary tumors,
which is in agreement with a lower degree of malignancy. In addition, a 20% high-n-6-PUFA
diet, but not the high-EVOO diet, increased the activity of the DNA methyl transferase
enzyme, concomitantly with an increase in specific gene methylation of tumor suppressors
Rassf1a and Timp3. On the other hand, both high-fat diets had an influence on histone
modifications, with the EVOO one decreasing the methylation of histone 4 (H4K20me3) in
tumor, while the high-n-6-PUFA diet decreased the methylation of histone 3 (H3K27me3) in
the mammary gland, both modifications being associated to increased carcinogenesis. This
effect on histone methylation was postulated to be related to the weak tumor-enhancing
effect of the high-EVOO diet, in comparison with a low-fat diet, by virtue of the fact of
being high in fat [96,97].

3.1.5. Effects on Tumor Proliferation and Apoptosis Pathways

As already mentioned, changes in signaling pathways may be the result of the interplay
(as a cause or a consequence) of changes in membrane composition, in gene expression
or in epigenetic mechanisms. Some of the pathways more related to the carcinogenesis
process are those related to proliferation, apoptosis or metabolism. ErB/Ras is considered
a key signaling pathway for growth and proliferation, with relevance in breast cancer.
In DMBA-induced rats exposed, post-induction, to high-fat diets, the protein levels and
activity of the ErbB1, ErbB2 and ErbB3 were not altered, but a high-EVOO diet decreased
the expression of a truncated form of ErbB4. The EVOO diet also induced an increase
in p21Ras protein, but a significant decrease in its activity, as well as a decrease in the
expression and activity of AKT [75]. Further analyses have also suggested an effect of
EVOO on other proliferation pathways, as shown by the decrease in activated Smad [76].
These pathways may be closely related to apoptosis; in fact, a high-EVOO diet increased the
levels of activated Caspase-3, which is considered the most important executioner caspase
in both intrinsic and extrinsic pathways [75,76]. In mammary glands, the high-corn-oil diet
decreased the number of apoptotic cells in different epithelial structures around puberty,
while no effect by the isocaloric high-EVOO diet was observed [73].

In the same line, prenatal exposure to a 7% or 15% olive oil diet resulted in a higher
apoptotic index of DMBA-induced tumors [87]. Molecular analyses indicated lower lev-
els of anti-apoptotic Bcl2 and higher levels of pro-apoptotic Bak and Caspase-3 activity,
compared to tumors from animals fed the corn oil diet [69].
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3.1.6. Effects on Tumor Metabolism

One of the hallmarks of tumor cells is metabolic reprogramming [98]. In the DMBA
model, a transcriptomic analysis resulted in the modulation of metabolic genes by effect
of a high-EVOO diet [76]. At protein and activity levels, this diet, in comparison to a
high-corn-oil one, induced modifications, suggesting an increase in glucose uptake and gly-
colysis (higher levels of Glut1 and PFKL), pentose phosphate pathway (increased GAPDH
and PGD), tricarboxylic acid cycle (Citrate synthase and IDH) and energy dissipation by
UCP2 [99]. The fact that these changes, that have been associated with tumor aggressive-
ness, were found in tumors with a lower degree of malignancy, points out that the relevance
of metabolic changes probably depends on the interplay with other signaling pathways
and processes, such as apoptosis or oxidative stress.

3.1.7. Effects on Tumor Oxidative Stress

Deregulated redox balance and signaling are common hallmarks of carcinogenesis
and the potential antioxidant effect of nutrients has raised attention. Although EVOO com-
ponents have been extensively investigated in vitro, few studies in experimental mammary
tumors have addressed the role of EVOO in oxidative stress. In DMBA-induced tumors,
high-fat diets increased the markers of oxidative stress. In mammary glands, 20% high-fat
diets transitorily decreased the expression and activity of antioxidant enzymes (SOD and
Catalase) in comparison with a low-fat diet. The marker of oxidative stress GSSG/GSH (oxi-
dized/reduced glutathione) was increased especially in animals fed the high-n-6-PUFA diet.
In mammary tumors, high-fat diets increased the oxidized glutathione (GSSG), whereas
the reduced glutathione (GSH) was increased only in the group fed the high-EVOO diet.
Although the results were heterogenous, the markers for lipidic oxidative stress (lipofuscine
in liver) and DNA damage (8-oxo-dG) suggested a higher oxidative damage by effect of
the diet rich in n-6 PUFA [83].

3.1.8. Effects on Angiogenesis and Metastasis

Few studies have focused on the role of olive oil in angiogenesis or metastasis. In
NMU-induced mammary tumors, normolipidic diets with 4% of fat from EVOO, refined
sunflower oil (rich in n-6 PUFA) and refined sunflower oil enriched with oleic acid had
different effects on the renin–angiotensin system. Beyond its cardiovascular effects, this
system has been related to the promotion of angiogenesis and tumor growth. The n-6 PUFA
diet, but not the EVOO diet, increased the activity of renin–angiotensin [100]. On the other
hand, in a model of implantation of metastatic mammary adenocarcinoma, pulmonary
metastases developed in lungs were significantly higher in animals fed a high-n-6-PUFA
diet than those in animals fed high-olive-oil diet [66].

Table 2. Effects and mechanisms of action of olive oil on experimental mammary carcinogenesis.

Animal Model Dietary Intervention Carcinogenesis Molecular/Cellular
Mechanisms Ref.

NMU (50 mg/kg body
weight at day 50)

Safflower oil (23%, 5%), corn
oil (23%, 5%), olive oil (23%, 5%),
coconut oil (23%); post-
induction.

Promoting effect of
high-safflower-oil and
high-corn-oil diets
(increased incidence and
decreased latent period).

Lipid profile [62,63,92]

NMU (40 mg/kg body
weight at day 50)

Diets at 20% different varieties
of olive oil 54/20, 70/15, 80/5
(% oleic acid/% linoneic acid);
post-induction.

Lower degree of
morphological
malignancy by olive oil
(80/5).

[64]
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Table 2. Cont.

Animal Model Dietary Intervention Carcinogenesis Molecular/Cellular
Mechanisms Ref.

NMU (50 mg/kg body
weight at day 50)

Safflower oil (23%, 5%), corn
oil (23%, 5%), olive oil (23%, 5%),
coconut oil (23%); post-
induction.

Promoting effect of
high-safflower-oil and
high-corn-oil diets
(increased incidence and
decreased latent period).

Lipid profile [62,63,92]

NMU (40 mg/kg body
weight at day 50)

Diets at 20% different varieties
of olive oil 54/20, 70/15, 80/5
(% oleic acid/% linoneic acid);
post-induction.

Lower degree of
morphological
malignancy by olive oil
(80/5).

[64]

NMU (3 × 50 mg/kg
body weight at 50,
80 and 110 days)

Diets of 4% EVOO, 4% sunflower
oil, 4% oleic acid-enriched
sunflower oil; post-weaning.

Protective effect of olive oil
(longer latency period,
lowest mortality).

[68]

Diet of 4% oleic
acid-enriched
sunflower oil induced the
highest
tumor volume but the
lowest
morphological malignancy.

Renin–angiotensin
system [100]

Tumor implantation
(2 mm3 of metastatic
mammary tumor)

Corn oil (23%, 5%), olive oil
(20%, 5%), beef tallow (20%);
4 weeks pre-implantation.

Increased metastases in
23% corn oil vs. all others. [66]

DMBA (65 mg/kg
body weight at
day 50)

Diets of 20% high-linoleic
safflower oil, 20% high-oleic
safflower oil, 20% olive oil,
20% linoleic-supplemented
olive oil.

Preventive effect of olive
oil (longer tumor-free time,
fewer tumors per rat and
lower tumor incidence).

Lipid profile [65,90]

DMBA (2 × 2 mg/rat
at 5 and 6 weeks of age)

Corn oil (7%, 15%), EVOO
(7%, 15%); prenatal and
lactation.

Smaller tumors with 7%
olive oil diet. Promoting
effect of high-fat
diets.

Hormones (estradiol),
apoptosis (Bcl2, Bak,
Casp3)

[69]

DMBA (2 × 10mg/rat
at 5 and 6 weeks of age)

Corn oil (7%, 15%), olive oil (7%,
15%); prenatal and
lactation.

Preventive effect of olive
oil.
Promoting effect of
high-fat diets.

Immune function,
apoptotic index [87]

DMBA
(2 × of 10 mg/rat) Low-fat, 15% olive oil.

Spleen cellular
components, tumor
leukocyte infiltrates,
apoptosis

[86]

DMBA (5 mg/rat
at day 53)

Diets of 3% low-fat, 20% corn
oil, 20% EVOO;
post-induction.

EVOO vs. corn oil
preventive effect. Low
histologic grade, few
necrotic and invasive areas.

[74,77]

EVOO vs. corn oil
preventive effect.
Higher latency time, lower
incidence, multiplicity,
volume; lower degree of
histopathological
malignancy.

[70]
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Table 2. Cont.

Animal Model Dietary Intervention Carcinogenesis Molecular/Cellular
Mechanisms Ref.

Gene expression—
proliferation genes
(EGFR, neu)

[71]

Gene expression—
differentiation genes
(igf2, H19, VDUP1)

[94]

Gene expression—
differentiation genes
(transferrin, β-actin);
ZBP1 protein

[81]

Proliferation and
apoptosis pathways
(PCNA, ErbB4, Ras,
ERK1/2, AKT,
Casp3), DNA damage

[75]

DMBA (5 mg/rat
at day 53)

Diets of 3% low-fat, 20% corn oil,
20% EVOO;
post-weaning/post-induction.

EVOO vs. corn oil
preventive effect.
Lower tumor incidence
and yield.

Growth and sexual
maturation
(hypothalamic Kiss1)

[78]

Body mass (plasma
OEA, hypothalamic
oxytocin)

[80]

Transcriptomics in
mammary gland
(immune system,
apoptosis,
metabolism genes)
Liver metabolism
(UCP2)

[73]

EVOO vs. corn oil
preventive effect.
Lower tumor incidence,
yield, volume; lower
degree of histopatho-
logical malignancy (degree,
stromal
reaction, necrosis, mitoses).

Transcriptomics in
tumor (proliferation,
immune system,
apoptosis,
metabolism genes)

[76,93]

Expression of Scd,
Pfkl, Sema3A, Jak2,
Smad1, Casp3, Arg1,
Tgfβ1;
serum ILα, leptin;
CD8 infiltration

[76]

Epigenetics: DNA
methylation (DNMT,
Rassf1A, Timp3),
histone modifications

[96,97]

Metabolism (Glut1,
PFKL, GAPDH, CS,
IDH, UCP2)

[99]
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Table 2. Cont.

Animal Model Dietary Intervention Carcinogenesis Molecular/Cellular
Mechanisms Ref.

Carcinogen
detoxification (liver
and mammary gland
Cyp1A1, Cyp1A2,
Cyp1B1, Nqo1, AhR,
Nfr2, Gstp1)

[84,85]

Oxidative stress
(GSSG/GSH, lipid
oxidation, DNA
damage)

[83]

DMBA (10 mg/rat
at day 53)

Diets of 3% low-fat, 20% corn oil,
20% EVOO; post-weaning.

EVOO vs. corn oil
preventive effect.
Promoting effect of
high-fat diets.

Carcinogen
detoxification
(Cyp1A1, Cyp1A2,
Cyp1B1, Nqo1, AhR,
Nfr2, Gstp1), DMBA
metabolites and DNA
adducts

[72]

DMBA (20 mg/kg
body weight at
day 21)

Diets of 23,4% olive oil, 23,4%
butterfat, 23,4% safflower oil;
prenatal.

High safflower oil
increased
carcinogenesis.

Gene transcription
Cadm4, Bbn1a1 [95]

MMTV-neu(ndl)-YD5
mouse

Diets of 10% safflower oil (SA),
3% menhaden oil + 7% SA, 3%
flaxseed oil + 7% SA, 10% olive
oil, 10% lard.

Menhaden oil better
prevented
carcinogenesis; safflower
oil was
the strongest promoter.

Lipid profile [67]

N-ethyl-N-nitrosourea
(180 mg/kg)

Diets of 4% fish oil, 4% olive
oil, 4% maize oil; post-induction. Protective effect of fish oil. Lipid profile [91]

4. Effect of Olive Oil Components on Mammary Carcinogenesis in In Vivo and In
Vitro Models

Numerous compounds in olive oil have been studied for their potential effect in chemo-
prevention. These studies have been carried out in vivo and, mainly, in vitro in different
cell lines. Studies in vivo have been used to elucidate the potential role of these compounds
as adjuvant treatment to potentiate the efficacy of certain chemotherapeutic agents and
few data have been published about their potential preventive effect as nutritional supple-
ments. On the other hand, extensive research on the effects of EVOO components has been
developed using in vitro models. Several breast cancer cell lines with different biological
and molecular characteristics have been established trying to represent such a complex
and heterogenous disease. Molecular classification of human breast cancer has been used
to refine taxonomy simply based on histological assessment, thus defining different ba-
sic molecular types. Luminal A is hormone-receptor positive (estrogen-receptor and/or
progesterone-receptor positive, ER+, PR+/−) and HER2 negative (HER−) and expresses
low levels of the proliferating marker Ki-67. Luminal B is hormone-receptor positive but
can express HER2 and has higher levels of Ki67. Triple-negative/basal-like breast cancer is
hormone-receptor negative (ER−, PR−) and HER−. HER2-enriched is hormone-receptor
negative (ER−, PR−) and HER+. Moreover, other subtypes include normal-like, claudin-
low, or apocrine [101]. Different cell lines resembling such molecular subtypes can be used,
such as MCF-7, T47D and SUM185 cell lines representing luminal A characteristics (ER+,
PR+/−, HER−); BT-474 and ZR-75 for luminal B (ER+, PR+/−, HER2+); MDA-MB-468
and SUM190 for triple-negative basal (ER−, PR− and HER2−); BT549, MDA-MB-231,
Hs578T and SUM1315 for triple-negative claudine-low (ER−, PR− and HER2−); SKBR3
and MDA-MB-453 for HER2-enriched (ER−, PR− and HER2+) [102]. The most commonly



Molecules 2022, 27, 477 13 of 38

used cell lines are MCF-7 as hormone-sensitive (representing luminal A) and MDA-MB231
as a model for metastatic triple-negative breast cancer.

4.1. Oleic Acid

As the main component of olive oil, several studies have analyzed, in vitro, the effects
of oleic acid, with different results reported depending on the concentration and the
specific cell line used. Although some results are contradictory, in breast cancer cells, many
investigations have found a stimulating influence on proliferation, migration and invasion
through different signaling pathways [103–106]. In the metastatic MDA-MD-231 cells
(triple-negative breast cancer), 10 µM oleate was suggested to bind the GPR40 receptor;
activate Src proteins, PI3-K and AKT; and increase Ca2+ [104]. Higher doses (100 µM)
stimulated migration and Stat5 activation through Src, MMPs, COX-2 and LOXs activity-
dependent pathways [106,107]. In MCF-7 cells, oleic acid induced ERK1/2 activation and
the AP-1-DNA complex, mediated by the activation of EGFR and Src [105] and increased
Ca2+ [108]. EGFR pathways were also involved in cell migration both in MCF-7 and
MDA-MB-231 cells, in which the activation of FFAR1/FFAR4 (GPR40/GPR120), AKT,
PI3K, EGFR and NFκB played a pivotal role [109]. On the contrary, in breast cancer cells
lines overexpressing HER2 (BT-474 and SKBR3), 10 µM oleic acid decreased the HER2
expression and synergistically enhanced the anti-proliferative effect of the HER2 inhibitor
trastuzumab [110,111].

Metabolic pathways have also been associated with oleic acid effects. High doses
of oleic acid decreased the viability of MCF-7, but increased viability and migration in
highly metastatic cells, such as MDA-MD-231, via enhanced β-oxidation mediated by
AMPK activation [112]. A study on a panel of different breast cancer cell lines reported
that, in those cells capable of accumulating triacylglycerol, such as MDA-MB-231, oleic acid
increased long-term serum-free survival, suggesting a triacylglycerol–FFA cycle induced by
oleate [113]. Some studies also pointed at the heterogeneous effects to be dependent on the
cell line, since oleic acid decreased the expression of fatty acid synthase (FAS) in the triple-
negative cell line MDA-MB-231, while it increased FAS expression in the triple-positive
BT-474 line [114].

4.2. Hydroxytyrosol

Hydroxytyrosol and tyrosol are the main phenolic alcohols found in EVOO. Fresh
olive oil has small concentrations of these compounds, but they increase during storage
process due to the hydrolysis secoiridoids [9]. Hydroxytyrosol (HT) has demonstrated
antitumoral activities in vivo and in vitro though different mechanisms. In rats induced
with DMBA, treatment for six weeks with 0.5 mg/kg of HT inhibited mammary tumor
growth and proliferation rate, as well as modified tumor expression profile, modulating
genes related to proliferation, apoptosis and the Wnt signaling pathway (increased the
expression of Sfrp4) [115]. This treatment with HT also enhanced the total antioxidant
capacity in plasma and decreased DNA damage and protein oxidation, suggesting that its
combination with chemotherapeutic drugs can reduce the adverse oxidative effects [116].

On the other hand, in vitro HT has demonstrated to decrease cell viability, inhibit
cell proliferation due to cell-cycle arrest in the G0/G1 phase and induce apoptosis in
MCF-7 cells [117,118]. The cell-cycle arrest was associated to the decrease in peptidyl-
prolyl cis-trans isomerase Pin1, which, in turn, decreased the level of the G1 key protein
Cyclin D1 [117].

Several signaling pathways have been related with this anti-proliferative effect. In
ER-positive cells (MCF-7), HT exerted a clear inhibition of estrogen-dependent activation
of ERK1/2 [119]. In HER2-overexpressing cancer cells (SKBR3 and the modified MCF-
7/HER2 line), HT significantly reduced the protein expression of the lipogenic enzyme
FAS [120], as well as HER2 protein and activation levels [121]. HT also modulated cancer-
associated-fibroblasts by suppressing the Chemokine C-C motif ligand 5 (CCL5), thus
inhibiting fibroblast-stimulated MCF-7 cell proliferation [122].
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Apoptotic pathways are also stimulated by HT treatment. As mentioned before, diet
supplementation with HT in DMBA-induced rats induced transcriptomic changes, leading
to the induction of Sfrp4, a negative modulator of the Wnt pathway, with a role in the
inhibition of proliferation, while it stimulated apoptosis. In addition to Sfrp4, upregulation
of Tnfrsf6, Cdkn2a, Cryab, Cabc1 and Il6st and downregulation of Ier3, JunB, c-Jun, Per2,
Ccnl2, Apbb3, Car11 were also observed [115]. In SKBR3 cells, HT bound and activated
GPER, stimulating the intrinsic apoptotic pathway. Paradoxically, HT increased ERK1/2,
although sustained ERK1/2 activation was suggested to lead apoptosis, as evidenced by
the upregulation of pro-apoptotic Bax protein followed by a decrease in anti-apoptotic Bcl-2
expression. Thus, HT would induce the GPER-mediated ERK-dependent mitochondria
apoptotic pathway, resulting in the release of Cytochrome C (Cyt C), activation of Caspase-9
and Caspase-3, as well as Poly(ADP-ribose) polymerase-1 (PARP-1) inactivation. This effect
was accompanied by upregulation in cell-cycle negative regulators, such as p21 and p53,
and a reduction in Cyclin D1 expression [123].

The chemopreventive effect of HT has also been related to its antioxidant effect,
although the role of oxidative stress and its modulation by antioxidants in cancer is con-
troversial. Reactive oxygen species (ROS) appear to have a complex double effect, having
both tumor promoting and tumor suppressing functions. Increased ROS levels have been
associated with cancer initiation, transformation and resistance to chemotherapy, but an
increase in ROS generation and/or decreased antioxidant defense may activate different
cell death pathways and it is the mechanistic effect of many chemotherapeutics. Several
studies in human breast cancer have shown that HT supplementation may alleviate the
oxidative impact of chemotherapeutic drugs in patients [116]. In vitro, it has been reported
that EVOO polyphenols exerted antioxidant effects and prevented DNA-damage at low
concentrations (from 1 to 10 µM), but had opposite effects at concentrations higher than
100 µM [124,125]. It has been suggested that, although polyphenols are considered antioxi-
dants, in common cell media and standard conditions, they may act as pro-oxidants. In
fact, HT, at high concentrations, produces extracellular hydrogen peroxide (H2O2) [125],
which would be due to sodium bicarbonate in cell media [126]. Moreover, the sensitivity
to HT’s anti-proliferative effect has been inversely correlated with the ability of different
cell lines to remove H2O2 from the culture medium [127]. In any case, in normal breast
cells (MCF-10A), HT decreased oxidative stress and oxidative DNA damage [128], thus
preventing transformation. In MCF-7 cancer cells, HT exerted an antioxidant effect in hy-
poxic conditions but not in normoxia, also decreasing the PI3K/AKT/mTOR pathway and
HIF-1α [129,130]. However, both in hypoxia and normoxia, high doses of HT upregulated
Nrf2 and the mRNA of its target genes GSTA2 and HO-1, coding antioxidant proteins.
HO-1 was also upregulated in a Nrf-2-independent way [129]. Moreover, high doses of HT
in hypoxic MCF-7 cells putatively acted as an aryl hydrocarbon receptor (AhR) agonist,
favoring the induction of the angiogenic genes through a HIF-1α-independent mecha-
nism, thus suggesting that HT’s effects under hypoxic conditions are largely dependent on
its concentration [130].

HT has also a role in migration inhibition. In triple-negative breast cancer cells (MDA-
MB-231, BT549 and Hs578T), HT inhibited metastatic potential in a dose-dependent manner,
decreasing epithelial-to-mesenchymal transition (EMT) and tumor cell migration. Such
effects were mediated by the dual inhibition of the Wnt/β-catenin and TGFβ signaling
pathways. Thus, HT inhibited SMAD2/3-dependent TGFβ signaling and Wnt/β-catenin
signaling by decreasing LRP6 (Low-density lipoprotein receptor-related protein-6, a Wnt
coreceptor) and β-catenin. Consequently, HT inhibited cyclin D1 protein expression and
EMT markers (SLUG, ZEB1, SNAIL and Vimentin), while increased the epithelial marker
ZO-1 [131]. HT has also been proposed to inhibit migration by induction of autophagy in
metastatic triple-negative (MDA-MB-231) [132] and ER-positive (MCF-7 and T47D) [133]
breast cancer cell lines. HT suppressed HGF-induced migration by reversing the inhibition
of autophagy proteins (LC3-II/LC3-I and Beclin-1) and reversing upregulation of p62 [132].
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4.3. Oleuropein

Secoiridoids are a group of compounds found in the species of Oleaceae plants and
they comprise the majority of bioactive polyphenols in olive oil and drupes. Oleuropein
(OLE) and its biosynthetic precursor, ligstroside, are the main secoiridoids in EVOO. OLE
structure comprises a glycosylated ester of elenolic acid with hydroxytyrosol. Most of the
secoiridoid phenolic derivatives in EVOO come from oleuropein and ligstroside [134].

OLE has demonstrated an inhibitory effect on viability, cell cycle, proliferation and mi-
gration, as well as promotion of apoptosis, in many breast cancer cell lines. Such activities
have been related to different molecules and signaling pathways at different levels, since
modulation of epigenetic mechanisms, transcriptome, protein levels and protein activation
has been described. In triple-negative MDA-MB-468 and MDA-MB-231 cells, OLE induced
cell growth inhibition and S-phase cell-cycle arrest-mediated apoptosis. Transcriptomic
analyses showed that OLE upregulated the expression of many apoptosis-involved genes
in both cell lines, but especially in MDA-MB-468, and those included caspases (Casp1,
Casp14), cell-death receptors (FADD, TNFRSF21) and other pro-apoptotic genes, such as
GADD45A, CYCS and BNIP2, among others [135]. OLE has also demonstrated an effect
on the expression of microRNAs controlling apoptosis proteins. In MDA-MB-231 and
MCF-7 cells, OLE increased the expression of pro-apoptotic genes and tumor suppres-
sor miRNAs (miR-125b, miR-16, miR-34a, p53, p21 and TNFRS10B) and decreased the
expression of anti-apoptotic genes and oncomiR (bcl-2, mcl1, miR-221, miR-29a, miR-21
and miR-155) [136,137]. In relation to the potential activity of secoiridoids as epigenetic
modulators, in vitro screening in different breast cancer cell lines has revealed that de-
carboxymethyl oleuropein aglycone had inhibitory effects of mTOR and DNA-methyl-
transferase (DNMT) and further in silico analyses suggested that this secoiridoid could act
as an ATP-competitive mTOR inhibitor and could block the SAM-dependent methylation
activity of DNMTs [138]. OLE has also shown, in MCF-7 cells, to decrease the mRNA of
several histone deacetylases (HDAC2, -3 and -4) [139,140].

OLE is probably acting on tumor cells thought the modulation of several signaling
pathways and its antitumoral effects may be different, depending on the characteristics
of the cancer cell lines. In hormone-sensitive cells (MCF-7), high doses of OLE did not
interfere with the regulation of gene expression mediated by the estrogen receptor, but
could inhibit the estrogen-mediated activation of ERK1/2, suggesting an inhibition of
the transduction pathway involving GPR30 and EGF [119]. In this same MCF-7 cell
line, OLE reduced the activity of phosphatase PTP1B [141] and induced apoptosis by the
upregulation of pro-apoptotic genes (p53 and Bax) and downregulation of anti-apoptotic
Bcl-2 [142]. Despite its antitumoral effect on MCF-7 cells [117], OLE has demonstrated
stronger cytotoxicity in triple-negative MDA-MB-231 cells than in luminal MCF-7 cells, also
inducing apoptosis via the mitochondrial pathway (increased Bax and Casp3 and decreased
Bcl2 and Survivin) [143]. Moreover, OLE inhibited cell proliferation by delaying the cell
cycle at the S phase, downregulated nuclear factor kappa beta (NF-kB) and cyclin D1 and
upregulated the cyclin-dependent inhibitor p21 [143,144]. In addition, in MDA-MB-231
cells (which express Plasminogen activator inhibitor-1, PAI1), but not in MCF-7 cells, OLE
exerted anti-proliferative effects by inhibition of PAI-1, which was accompanied by the
activation of Caspase-8 [145]. Furthermore, OLE has also shown a stronger antitumor effect
in cells overexpressing HER2 (SKBR3 and MCF-7-derived HER2-overexpressing clone) than
in HER2-negative MCF-7, decreasing HER2 cleavage and activation [146], downregulating
the expression of FAS [120] and stimulating apoptosis through GPER-mediated intrinsic
apoptotic pathway (resulting in increased Bax, p21 and p53 and decreased Bcl2 and cyclin
D1) [123]. OLE has also shown to enhance tumor apoptosis induced by chemotherapeutics.
In nude mice bearing MDA-MB-231 xenografts, OLE (50 mg/kg), in combination with
doxorubicin (2.5 mg/kg), induced apoptosis via the mitochondrial pathway. This combined
treatment also downregulated NFkB and its target cyclin D1 and downregulated Bcl2
and Survivin [147].
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On the other hand, as already mentioned, polyphenols have caught strong attention
due to their antioxidant effect, although the role of oxidative stress in cancer is complex
and dual. Despite the antitumoral effect of several natural compounds such as polyphenols
having been related to antioxidant activity, they can exert a pro-oxidant effect in cancer
cells. Recently, it has been reported, in MDA-MB-231 cells, pro-oxidant activity of OLE,
being mitochondrial ROS generation the primary mechanism of its antitumor activity (anti-
proliferative and pro-apoptotic). Thus, OLE decreased mitochondrial functionality and
membrane potential, increased the levels of intracellular ROS and decreased the activity
of ROS scavenging enzymes (decreased SOD2 and Catalase). As a consequence, cell-cycle
arrest (decreased Cyclin B2 and Cyclin D1) and activation of apoptosis (increased cleaved
Caspase 9 and cleaved PARP-1) could be induced [148]. In the same triple-negative cells,
OLE also increased ROS and abrogated NF-kB [144]. In MCF-7 cells, EVOO phenolic
extracts, where secoiridoids comprised 83% of the total phenolic compounds, also induced
intracellular ROS generation and cell death [149]. In any case, the mechanisms by which
OLE can generate H2O2 in cell cultures has been related to the culture conditions [126];
thus, in in vitro studies on the effect of natural antioxidants on cancer cells, methodological
issues cannot be ruled out.

Several pathways have also been associated with OLE’s effect in epithelial-to-mesenchymal
transition (EMT) and cell migration. This secoiridoid inhibited migration by the induction
of autophagy in different cell lines via the inhibition of LC3-II/LC3-I and Beclin-1 and
upmodulation of p63 [132,133]. In MCF-7 cells, OLE remarkably decreased migration via
the upregulation of p53 and inhibition of SIRT1 and ZEB1, with the consequent increase
in the epithelial marker E-cadherin [150]. OLE further suppressed EMT downregulating
MMP-2 and MMP-9 [150].

OLE has also been related to other important hallmarks of cancer, such as immune
escape. In MDA-MB-231 cells, it induced the inhibition of viability and migration and
modulated the triad miR-194-5p/XIST/PD-L1. miR-194-5p and XIST are non-coding RNAs
that have been reported to be able to interact with and repress each other. The microRNA
miR-194-5p has been positively associated with carcinogenesis, while its potential target,
PD-L1, is considered one the major immune escape mechanisms. In this model, OLE
decreased miR-194-5p and PD-L1 and upregulated XIST [151]. On the other hand, OLE has
also been found to interfere with the aerobic glycolysis enhanced by tumor cells. In MDA-
MB-231 cells, glycolysis stress test conducted by measuring the extracellular acidification
rate showed a reduced glycolytic rate by effect of OLE [152].

4.4. Oleocanthal

Oleocanthal is a derivate by decarboxylation of the aglycone form of oleuropein. This
phenolic compound has attracted much scientific attention due to its anti-inflammatory
activities similar to ibuprofen, acting as a non-selective COX inhibitor [153]. Moreover,
oleocanthal (OC) demonstrated to be an inhibitor of Met, a membrane tyrosine kinase
receptor binding the growth factor HGF [154]. In vivo and in vitro, OC has inhibitory
effects on breast carcinogenesis though different mechanisms, such as the modulation of
apoptosis and changes in several signaling pathways.

In vivo, intragastric administration with oleocanthal (7.5 mg/kg daily for seven weeks)
suppressed the initiation and incidence of mammary carcinogenesis in MMTV-PyVT mice
developing spontaneous mammary tumors and in a breast cancer patient-derived xenograft
model, concomitantly with transcriptomic changes in tumors and with the downregulation
of Myc being a key event [155]. In an orthotopic nude mouse model using the MDA-MB-
231/GFP human breast cancer cell line, 5 mg/kg (-)-oleocanthal reduced tumor growth
and inhibited tumor activation of c-Met, the proliferation marker Ki-67 and the expression
of vessel formation marker CD31 [156]. In similar xenograft models, daily oral treat-
ment with OC (5–10 mg/kg) inhibited tumor growth of triple-negative breast cancer cell
xenografts, while prevented the estrogen-dependent growth of BT-474 cells and locore-
gional recurrence [157,158]. OC treatment increased the tumor expression of epithelial
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markers (E-cadherin) while decreasing the expression of mesenchymal markers (vimentin),
as well as decreasing the activation of Met and HER2 receptors and the serum levels of CA
15-3 human breast cancer marker [157].

In several breast cancer cell lines, OC has also demonstrated inhibitory effects on
proliferation, migration, invasion and G1/S cell cycle progression [154,156,159]. The OC
effects on MDA-MB-231, MCF-7 and BT-474 breast cancer cells were mediated by the inhi-
bition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways,
thus decreasing proliferation and cell survival [156]. In MDA-MB-231 cells, OC inhibited
HGF-induced AKT and ERK activation and elicited cell-cycle arrest in G1, with decreased
cyclin D1 and CDK6 and increased p21 and p27. Met inhibition also downregulated the
Brk/Paxillin/Rac1 signaling pathway, with a role in motility, invasion and EMT. Reduced
EMT was observed by the increase in epithelial markers (E-cadherin and ZO-1) while
the mesenchymal markers vimentin and β-catenin decreased. The downregulation of
HGF–Met also led to cell apoptosis by the activation of Caspase-8 and cleavage of receptor
interacting protein (RIP), Caspase-3 and PARP-1 [156]. Moreover, OC is a potent inhibitor
of mTOR, inducing apoptosis in cells highly expressing this protein, such as MDA-MB-
231 [159]. OC had also an antiangiogenic effect and decreased the expression of CD31, a
microvessel density marker, in MCF-7 and MDA-MB-231 cells [154].

In addition to OC’s strong effect on inhibiting Met and its downstream signaling
effectors, OC has shown to interfere in estrogen-induced proliferation. In ER+ breast
cancer cell lines (MCF-7, BT-474 and T47D), OC inhibited proliferation in cells treated with
17-β-estradiol, decreasing ERα expression in BT-474 cells both in vitro and in vivo [158].
On the other hand, in MCF-7 and MDA-MB-231, but not in non-tumorigenic MCF-10A
cells, OC inhibited cell migration concomitantly with a modulation of Ca2+ elicited by the
downregulation of the channel TRPC6 [160].

4.5. Luteolin and Apigenin

Flavonoids are a group of polyphenols extensively found in fruits, vegetables and
traditional medicinal plants. Apigenin and its major metabolite luteolin are the most
concentrated flavones, a class of flavonoids, found in EVOO. Flavones have demonstrated
anticancer effects in vivo and in vitro through cellular mechanisms such as inhibition
of cell growth, cell cycle arrest, stimulation of apoptosis, or inhibition of angiogenesis
and metastasis. Diet supplementation with 0.01% or 0.05% luteolin significantly reduced
tumor burden in nude mice inoculated with MDA-MB-231 cells [139]. In the animal
model of BALB/c mice inoculated with mouse mammary tumor cells, diets supplemented
with 0.02% luteolin reduced tumor volume and tumors showed higher apoptosis and
lower angiogenic activity. Luteolin upmodulated the pro-apoptotic genes p53 and Bax
and downmodulated the gene expression of anti-apoptotic Bcl-2 [140]. In the DMBA-
induced breast tumor model, luteolin had antitumor effects (alone and synergistically
in combination with chemotherapy) [141], suppressed the progestin-stimulating tumor
growth and had anti-angiogenic activity [142]. Apigenin had an anti-proliferative and
pro-apoptotic effect in xenograft models through the inhibition of HER2 expression, VEGF,
RANKL and proteasome activity [161,162].

The antitumor effects of flavonoids in vitro have been associated with the modulation
of different pathways. In MCF-7 and MDA-MB-468 cells, apigenin induced G2/M cell-cycle
arrest by modulating CDK1/cyclin B1, accompanied by ERK inhibition [163]. Similar effects
were induced by luteolin in MDA-MB-231 cells, suppressing proliferation and cell-cycle
progression by regulating AKT and p21, consequently eliciting PLK1 inhibition and cycle
arrest in the G2/M phase, thus decreasing the expression of cyclin B1, cyclin A, CDK1 and
CDK2. When cells were stimulated with EGF, luteolin induced a dose-dependent decrease
in EGFR gene expression and downregulated the activation of EGF, AKT, ERK1/2 and
p38 [164]. In MCF-7 cells, luteolin had a similar action, inhibiting not only the EGF signaling
pathways through EGFR, AKT, ERK1/2 and Stat3, but also IGF- and estrogen-induced
proliferation [165]. In cells stimulated with IGF, luteolin inhibited the activation of IGF1R
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and AKT, but not ERK activity. This inhibitory effect was dependent on ERα expression,
which was effectively down-regulated by this flavonoid [166]. Luteolin is not considered
to bind the estrogen receptors alpha or beta, but it blocks the estrogenic response, also
resulting in the modulation of genes related to the estrogen receptor pathway (NCOR1,
GTF2H2, NRAS, TAF9, DDX5, NRIP1, POLR2 A and NCOA3) and cell cycle (CDKN1A,
CCNA2, PCNA, PLK1 and CCND1). Such effects may be due to epigenetic mechanisms
involving histone H4 acetylation [167]. Moreover, luteolin can act as a direct inhibitor of
serine/theonine kinases such as PKC, PI3K, GSK3b, CDKs, VRK1 and TLP2 [168,169]. In
unstimulated Hs578T, MDA-MB-231 and MCF-7 cells, both flavones, apigenin and luteolin,
have also been reported to inhibit PI3K and PKB/AKT, resulting in increased FOXO3a
and upregulation of its target genes p21 and p27 [170]. On the other hand, luteolin and
apigenin have also shown anti-proliferative and pro-apoptotic effects interfering with
lipogenesis by inhibiting FAS expression and activity [120,171]. Luteolin is also able to
inhibit NF-kB activation and its target gene c-Myc, thus downregulating the expression
of human telomerase reverse transcriptase (hTERT), which encodes the catalytic subunit
of telomerase [172].

In relation to the pro-apoptotic effect of luteolin, evidence indicates that this flavone
is able to induce several pathways, such as intrinsic, extrinsic and caspase-independent
apoptosis. In MCF-7 cells, luteolin stimulated the extrinsic apoptotic pathway by increasing
the expression of the death cell receptor DR5 and Caspase-8 activity. Moreover, the acti-
vation of the intrinsic pathway was evidenced by increased Bax/Bcl-2 ratio, Cytochrome
C release and Caspase-9 activation. Apoptosis executer Caspase-3 was finally activated
by luteolin in a dose-dependent way [173]. Activation of the intrinsic pathway has also
been described in vivo [162,164,174] and in different cell lines by effect of both apigenin
and luteolin [162,170,175]. Finally, luteolin also induced caspase-independent cell death
by nuclear translocation of AIF, which was mediated by ERK and p38 activation [176].
Paradoxically, in MDA-MB-231 cells, EGF treatment activated ERK and p38, which were
inhibited by luteolin [164].

It has been proposed that luteolin influences EMT, invasion and metastasis modulat-
ing different signaling pathways, such as Wnt/β-catenin, Notch, or Receptors Tyrosine
Kinase (RTK). In xenograft in vivo models, luteolin inhibited lung metastases of breast
cancer [177] and the expression of EMT molecules Vimentin and Slug in primary tumor
tissues [178]. Further analysis in vitro in triple-negative cells showed that luteolin reversed
EMT by the downregulation of β-catenin and mesenchymal markers (N-cadherin and
Vimentin) and upregulation of epithelial markers (E-cadherin and Claudin) [178]. On the
other hand, in the triple-negative SUM-149 cell line, which is enriched in tumor-initiating-
cell population (CD44+/CD24-), luteolin inhibited Notch-4, with associated loss in cell
viability and mammosphere formation. Luteolin acted as a novel inhibitor of RSK (a family
of serine/threonine kinases that is part of the MAPK pathway), blocking YB-1/Notch4
signaling [179]. Both in triple-negative (MDA-MB-231) and hormone-sensitive (MCF-7)
cell lines, luteolin also inhibited Notch signaling, downregulating Notch-1, Hes-1, Hey-1,
Hey-2, VEGF, MMP-2 and MMP-9 mRNA, as well as decreasing the protein levels of VEGF
and metalloproteinases MMP-2 and MMP-9 in MDA-MB-231 cells. The modulation of miR-
NAs [180] and other epigenetic mechanisms such as changes in histone H3 modifications
in MMP-9 gene [181] could account, at least partially, for these effects. Thus, in BT-20, a
triple-negative cell line expressing androgen receptors, luteolin inhibited proliferation and
metastasis and inactivated the AKT/mTOR signaling pathway and subsequent histone
remodeling of the MMP9 promoter region [181]. Luteolin could also act as an AhR ligand
and decrease the expression of CXCR4, MMP-2 and MMP-9 in MDA-MB-231 cells and in
lung metastasis from a mouse melanoma xenograft model [182]. Other signaling pathways
have also been associated with luteolin’s blocking effect on EMT, in vitro and in vivo, by the
degradation of YAP/TAZ, two transcriptional activators with key roles in tumor–stromal
interactions [183]. In MCF-7 cells, a derivate of luteolin (8-C-β-fucopyranoside) suppressed
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MMP-9 and IL-8 via the downregulation of the MAPK pathway, which resulted in the
suppression of the transcription factor AP-1 and NF-κB signaling pathways [184].

In vivo and in vitro results also support an effect of luteolin on other steps of metasta-
sis, such as angiogenesis and extravasation. In a three-dimensional model of extravasation,
consisting of MDA-MB-231 spheroids and immortalized lymph endothelial cell monolayers,
both flavonoids luteolin and apigenin suppressed pro-intravasative factors, specifically
MMP-1 expression and CYP1A1 activity, thus inhibiting the MMP-1-induced activation of
the pro-intravasative factor FAK in lymph endothelial cells. Moreover, luteolin also blocked
MMP-1-induced Ca2+ signaling in these cells [185]. In vivo luteolin suppressed metastasis
of MDA-MB-435 and an MDA-MB-231-derived cell line to the lungs. In vitro, relatively
low levels (10 µM) of luteolin significantly inhibited the secretion of VEGF [177]. Luteolin
and apigenin also inhibited carcinogenesis and angiogenesis in DMBA-induced progestin-
stimulated human xenograft tumors, decreasing VEGF and CD31 markers [161,186,187],
decreasing, in addition, the acquisition of stem cell-like properties (decreased CD44 expres-
sion, aldehyde dehydrogenase activity and mammosphere formation) [186].

Flavones have also been reported to potentially decrease the immune escape of breast
cancer cells. Luteolin and, especially, apigenin avoided immune evasion by inhibiting
interferon-γ-induced PD-L1 upregulation in several breast cancer cell lines, through the
decrease in STAT1 activation. In co-cultures, apigenin increased the proliferation and
interleukin-2 synthesis of Jurkat T-cells, thus potentially increasing the vulnerability of
breast cancer cells to T-cells antitumor responses [188]. Moreover, apigenin decreased
the TNFα/IL-1α-induced release of chemokines (CCL2, GMCSF, IL-1α and IL-6), which
regulate cell infiltrates enabling hallmarks such as growth, immune evasion, angiogenesis
and metastasis. Such effect was mediated by the downregulation of IKBKe [189].

A novel screening approach (phage display coupled with second-generation sequenc-
ing) found 160 direct targets of apigenin, identifying, as a top candidate, the heterogeneous
ribonuclear protein A2 (hnRNPA2), a protein that regulates gene expression, splicing, RNA
stability and microRNA processing. In MDA-MB-231 breast cancer cells, apigenin inhibited
hnRNPA2 dimerization, thus modulating RNA splicing [190].

Flavonoids have been extensively investigated in combination with chemotherapeu-
tics, demonstrating, in vivo, to increase the efficacy and decrease the toxicity of doxorubicin
and cyclophosphamide, through oxidative stress-dependent and -independent mecha-
nisms [191,192]. Luteolin alone induced an increase in superoxide dismutase (SOD), cata-
lase (CAT) and glutathione peroxidase (GPx) in non-tumoral tissues and serum, as well as
a decrease in tumor [191,192]. However, no effects of luteolin were observed on SOD and
CAT in vitro under hypoxia, but there was a decrease in glycolytic flux without affecting
glucose uptake. The activation of anti-oxidant enzymes seemed to have a key role in
the luteolin protection of healthy tissues, while its anti-tumor effect was suggested to be
independent of anti-oxidant enzymes [191]. Apigenin was also shown, in vitro, to induce
apoptosis through DNA damage and oxidative stress in cancer cells but not in normal
cells [193]. In vitro models have also demonstrated the utility of luteolin as a chemosen-
sitizer. In different cell lines, luteolin had synergistic inhibitory effects with celecoxib
(a selective COX-2 inhibitor), via AKT inactivation, targeting different effectors depending
on the hormone receptor status of the cell. In ER+ cells (MCF-7 and MCF-7/HER18),
combined treatment induced AKT activation and ERK inhibition, while, in ER− cells
(MDA-MB-231 and SKBR), there was AKT and ERK activation [194,195]. In MCF-7 cells,
luteolin sensitized cells to tamoxifen and downregulated cyclin E2 [196], while apigenin
enhanced cisplatin cytotoxicity through p53-induced apoptosis [197]. In both in vitro and
in vivo xenograft tumors, ERα+ breast cancer cells (MCF-7 and T47D) were sensitized to
indole-3-carbinol by luteolin. The combined treatment downregulated two targets, ERα
and the cyclin-dependent kinase (CDK) 4/6/retinoblastoma (Rb) pathway [198]. On the
other hand, in hormone-independent MDA-MB-231 cells, the combination of luteolin with
paclitaxel increased apoptosis, activated Caspase-8 and Caspase-3 and increased the expres-
sion of cell death receptor Fas due to the blocking of STAT3 [199]. A role as an antioxidant
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may be at the basis of luteolin’s effects, but, as already mentioned, oxidative stress has
a dual role on cancer. In this sense, at low concentrations (10 µM), luteolin attenuated
doxorubicin-induced cytotoxicity to MCF-7 cells through a combination of antioxidant
activity (resulting in reduced doxorubicin-induced ROS generation) and an increase in
the anti-apoptotic protein Bcl-2. On the contrary, at high doses (>30 µM), it decreased
cell viability [200].

Finally, it is worth mentioning the potential effect of flavonoids on metabolic repro-
gramming. As already cited, under hypoxia, luteolin decreased glycolytic flux in MCF-7
and in 4T1 mouse mammary cell lines, decreasing lactate and ATP production, while it had
no effect on intracellular glucose and glucose uptake [191]. Other flavonoids have been
reported to inhibit glucose metabolism in different cancer cells and synthetic flavonoids
downmodulated hexokinase 2 in MCF-7 and MDA-MB-231 lines [201].

4.6. Other Minor Compounds

Many other EVOO components have been investigated in relation to a potential
protective effect on cancer. Lignans are dimeric structures of two phenylpropane units;
(+)-pinoresinol and 1-acetoxypinoresinol are the ones found in EVOO. Both lignans inhib-
ited proliferation, induced apoptosis, blocked HER2 activity and reduced the FAS levels in
HER2-overexpressing breast cancer cell lines [120,121,202]. In addition to the already men-
tioned, in these cell models, other compounds, such as tyrosol and elenolic acid, showed
similar effects [121]. Pinoresinol has also shown cytotoxic and anti-proliferative effects on
different breast cancer cells [203–205]. In relation to the complex effect of oxidative stress
on carcinogenesis, pinoresinol may prevent the initiation of cancer, as it diminished ROS
levels and DNA damage in non-tumorigenic cells (MCF-10A), while, in tumor cells, which
possess higher levels of ROS, after H2O2 treatment, this lignan enhanced ROS levels [205].

Phenolic acids are also found in EVOO, although many fruits, vegetables and mush-
rooms are richer in such compounds. Caffeic and gallic acids have demonstrated anti-
proliferative and pro-apoptotic effects on MCF-7 cells though gene expression modulation
of p53, Mcl-1 and p21 [206]. High doses of caffeic acid had anti-proliferative effects in
different cells lines, decreasing IGF-I-R and AKT activation, in addition to decreasing ER
and cyclin D1 in hormone-dependent cells [207]. Anti-tumor effects of caffeic acid may be
partially due to epigenetic mechanisms, such as the inhibition of DNMT1 activity [208].

Uvaol, erythrodiol, oleanolic acid and maslinic acid are the main triterpenes of EVOO.
In MCF-7 cells, erythrodiol, uvaol and olanolic acid showed a dose- and time-dependent
inhibition of cell growth and proliferation. Erythrodiol stimulated apoptosis associated
with ROS production and DNA damage, whereas uvaol’s and oleanolic acid’s growth-
inhibitory effects were related to cell-cycle arrest [209]. In these cells, maslinic acid did not
demonstrate anti-proliferative or cycle-blocking effect, but decreased ROS production and
DNA damage [209]. In MDA-MB-231 and MCF-10A cells, uvaol and erythrodiol (the only
difference between the two being the location of one methyl group) had also different effects
on oxidative stress. Both triterpenes acted as antioxidants, decreasing ROS levels in basal
conditions and, at high doses (10 µM), also decreasing ROS under H2O2-induced oxidative
stress. However, uvaol protected from DNA damage in both cell lines, whereas erythrodiol
had the opposite effect, promoting apoptosis and arresting cell cycle in MCF-10A cells [210].
Similar effects have been reported for oleanolic acid, which had antioxidant effects on
MCF-10A cells decreasing ROS levels in both the basal state and H2O2-induced oxidative
stress, while it exerted a pro-oxidant effect on MDA-MB-231 cells [211]. Oleanolic acid is a
hydroxyl pentacyclic triterpene acid that was demonstrated to have anticancer effects in
many breast cancer cell lines [209,212]. This acid induced the inhibition of proliferation,
cell-cycle arrest and apoptosis in ER+ cells through an ERα/Sp1-mediated activation of
p53 and p21 expression [212]. It also had a pro-apoptotic action in ER− cells, in which
oleanolic acid caused alterations in cholesterol homeostasis, associated with lipid-raft
disruption, thus inhibition of survival signaling mediated by these membrane structures.
This rapid and specific inhibition was the consequence of the disruption of the signaling
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complexes by decreasing the levels of the mTOR/FRAP1, RAPTOR and RICTOR, which,
in turn, decreased mTOR-complex 1 and -complex 2 activity [213]. Recent experiments
have reported an antitumor effect of oleanolic acid both in vitro and in vivo, associated
with changes in gene expression profile. Screening analyses of MCF-7 cells identified
genes related to the p53-, TNF- and mTOR-signaling pathways to be involved in oleanolic
acid’s antitumoral effects [214]. Moreover, multiple derivates of oleanolic acid have been
developed targeting several signaling pathways [215].

Other EVOO’s minor compounds have attracted attention for their potential anti-
cancer effects, although data may be scarce or nonconclusive. As an example, in colon
carcinogenesis, squalene, an acyclic hydrocarbon, was suggested to inhibit HMG-CoA
reductase, resulting in a reduction in farnesyl, thus interfering with membrane location
and activation of Ras [216]. Few studies have been carried out in breast cancer cells [217]
and, currently, squalene investigations are focused on targeting the synthetic pathways
with cholesterol-lowering purposes and on their utility as an adjuvant or in the developing
of squalene-based nanomedicines [218,219].

Table 3 summarizes the in vivo and in vitro effects of EVOO minor compounds on
mammary carcinogenesis. Figure 2 depicts the effects of EVOO minor compounds in
molecular targets with a role in the acquisition of tumor hallmarks.

Table 3. Overview of the effects of extra-virgin olive oil minor compounds on breast carcinogenesis
and associated molecular and cellular mechanisms. Mechanisms induced in combination with
chemotherapeutics are not shown.

Component Model Carcinogenesis Molecular/Cellular Mechanisms Ref.

Triterpenes

Uvaol MCF-7 Anti-proliferative ↓ ROS, ↓ H2O2-induced DNA
damage [209]

MCF-10A,
MDA-MB-231

Decrease in proliferation
and survival

↓ ROS, ↓ basal DNA damage (at low
doses),
↑ H2O2-induced DNA damage

[210]

Erythrodiol MCF-7 Anti-proliferative,
pro-apoptotic ↑ ROS [209]

MCF-10A,
MDA-MB-231

Decrease in proliferation
and survival

↓ ROS, ↑ DNA damage; cycle arrest
and apoptosis in MCF-10A [210]

Maslinic
acid MCF-7 ↓ ROS, ↓ H2O2-induced DNA

damage [209]

MCF-10A, MCF-7,
MDA-MB-23

Decrease in proliferation
and survival

↓ basal ROS in MCF-10A; ↑ basal
ROS in MCF-7
↑ H2O2-induced DNA damage

[211]

Oleanolic acid MCF-7 Anti-proliferative,
pro-apoptotic

↓ ROS, ↓ H2O2-induced DNA
damage [209]

MCF-10A, MCF-7,
MDA-MB-23

Decrease in proliferation
and survival

↑ ROS and H2O2-induced DNA
damage in MDA-MB-231
↓ ROS and H2O2-induced DNA
damage in MCF-10A

[211]

MCF-7, T47D, SKBR3 Growth inhibition,
pro-apoptotic

ERα/Sp1-mediated activation of the
p53 gene [212]

MCF-7,
MDA-MB-231

↓mTOR-Complex 1 and -Complex2
activity (↓mTOR/FRAP1, RICTOR,
RAPTOR, AKT, 4E-BP, p70S6k)

[213]
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Table 3. Cont.

Component Model Carcinogenesis Molecular/Cellular Mechanisms Ref.

MCF-7 Anti-proliferative,
pro-apoptotic

Transcriptomic changes; modulation
of p53-, TNF- and mTOR-signaling
pathways genes
↓THBS1, EDN1, CACNG4, CCN2,
AXIN2, BMP4
↑ATF4, SERPINE1, SESN2,
PPARGC1A, EGR1 and JAG1

[214]

Phenolic acids

Caffeic acid MCF-7 Decreased viability ↓ p53, ↑Mcl-1, ↓ p21 (short
treatment), ↑ p21 (long treatment) [206]

MCF-7,
MDA-MB-231

Anti-proliferative, cycle
arrest, pro-apoptotic

↓ IGFIR, ↓ AKT activation; ↓ ER, ↓
Cyclin D1 in MCF-7 cells [207]

MCF-7,
MDA-MB-231 ↓ RAR-β methylation [208]

Elenolic acid SKBR3,
MCF-7/HER2 Anti-proliferative ↓ HER2 [121]

Gallic acid MCF-7 Decreased viability ↑ p53, ↑Mcl-1, ↓ p21 (short
treatment), ↑ p21 (long treatment) [206]

Phenolic alcohols

Tyrosol SKBR3,
MCF-7/HER2 Anti-proliferative ↓ HER2 [121]

Hydroxyty-rosol In vivo (DMBA) Growth inhibition, anti-
proliferative

Transcriptomic changes in tumors;
modulation of apoptosis, cell cycle,
proliferation, differentiation,
survival and transformation
pathways genes;
↑ sfrp4

[115]

Plasma: ↑ antioxidant capacity, ↓
DNA and protein damage [116]

MCF-7

Decreased cell viability,
anti-proliferative,
blocked G(1)-to-S
transition, pro-apoptotic

↓ Pin1, ↓ Cyclin D1 [117,118]

MCF-7 Anti-proliferative ↓ ERK1/2 [119]

SKBR3, MCF-7/HER2 Anti-proliferative,
pro-apoptotic ↓ FAS, ↓ HER2 [120,121]

cocultures MCF-7-
fibroblast

Inhibition of
fibroblast-stimulated
MCF-7 proliferation

↓ CCL5 expression in aging
fibroblasts [122]

SKBR3 Pro-apoptotic

↑ GPER, ↑ ERK1/2, ↑ Bax, ↓ Bcl-2, ↑
Casp-9,
↑ Casp-3, ↓ PARP-1, ↑ p21, ↑ p53, ↓
Cyclin D1

[123]

MDA and MCF-7 Anti-proliferative,
pro-apoptotic

Extracellular production of
hydrogen peroxide [125]

MCF-10A,
MDA-MB-231, MCF-7

Prevents oxidative DNA damage
↓ intracellular ROS level in
MCF-10A

[128]
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Table 3. Cont.

Component Model Carcinogenesis Molecular/Cellular Mechanisms Ref.

MCF-10A,
MDA-MB-231

Pro-oxidant under specific growth
conditions [126]

MCF-7 Antioxidant; ↑ Nrf2, ↑ GSTA2, ↑
HO-1 [129]

MCF-7 under hypoxic
conditions

↓ PI3K/AKT/mTOR pathway, ↓
HIF-1α, ↓ PARP-1 At high doses ↑
VEGF, ↑ AM, ↑ Glut1

[130]

MDA-MB-231, BT549,
Hs578T

Inhibition of EMT,
migration and metastatic
potential

↓ SMAD2/3-dependent TGFβ
signaling,
↓ p-LRP6, ↓ LRP6, ↓ β-catenin, ↓
cyclin D1
↓ SLUG, ↓ ZEB1, ↓ SNAIL, ↓
Vimentin; ↑ ZO-1

[131]

MCF-7 and T47D Inhibition of migration
and invasion Induction of autophagy [133]

MDA-MB-231 Inhibition of migration
and invasion

Induction of autophagy; ↑
LC3-II/LC3-I, ↑ Beclin-1,
↓ p63

[132]

Secoiridoids

Ligstroside SKBR3,
MCF-7/HER2

Anti-proliferative,
pro-apoptotic ↓ FAS, ↓ HER2 [120,121]

Oleuropein
In vivo (cancer-
stem-cell-enriched
orthotopic model)

Treatment with
decarboxymethyl
oleuropein reduced
carcinogenesis

↓ DNMT, ↓mTOR [138]

MCF-7

Decreased cell viability,
inhibited cell
proliferation, blocked
G(1)-to-S transition,
pro-apoptotic

[117]

MDA-MB-468,
MDA-MB-231

Growth inhibition,
S-phase cell-cycle
arrest-mediated
apoptosis

Transcriptomic changes in
apoptosis-involved genes (Casp1,
Casp14, FADD, TNFRSF21,
GADD45A, CYCS and BNIP2)

[135]

MCF-7,
MDA-MB-231 Pro-apoptotic

Increased the expression of
pro-apoptotic genes and
tumor-suppressor miRNAs;
decreased the expression of
anti-apoptotic genes and oncomiR

[136]

MCF-7

Anti-proliferative,
pro-apoptotic, inhibition
of
migration

↓mir-21, ↓mir-155 [137]

MCF-7
Reduced viability and
invasiveness,
pro-apoptotic

↓ HDAC2, ↓ HDAC3, ↓ HDAC4 [139,140]

MCF-7 Anti-proliferative ↓ ERK1/2 [119]

MCF-7 Reduced viability, cell-
cycle arrest ↓ PTP1B [141]
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Table 3. Cont.

Component Model Carcinogenesis Molecular/Cellular Mechanisms Ref.

MCF-7 Pro-apoptotic ↑ p53, ↑ Bax, ↓ Bcl-2 [142]

MDA-MB-231
Anti-proliferative,
pro-apoptotic, cell-cycle
arrest

↑ Bax, ↑ Casp3, ↓ Bcl2, ↓ Survivin; ↓
NF-kB,
↓ CycD1, ↑ p21

[143]

MDA-MB-231 Pro-apoptotic ↑ ROS, ↓ NF-kB [144]

MDA-MB-231 Cell growth inhibition ↓ PAI-1, ↑ Casp8 [145]

SKBR3,
MCF-7/HER2 ↓ FAS [120]

SKBR3,
MCF-7/HER2,
MCF-10A/HER2

Anti-proliferative,
pro-apoptotic ↓ HER2 [121,146]

SKBR3 Pro-apoptotic
↑ GPER, ↑ Bax, ↓ Bcl-2; ↑ Casp-9, ↑
Casp-3,
↓ PARP-1; ↑ p21, ↑ p53, ↓ Cyclin D1

[123]

MCF-10A,
MDA-MB-231

Pro-oxidant under specific growth
conditions [126]

MDA-MB-231 Anti-proliferative,
pro-apoptotic

Pro-oxidant activity, ↓ SOD2 ↓
catalase, ↑ intracellular and
mitochondrial ROS
↓ CycB2, ↓ CycD1, ↑ Casp9, ↓
PARP-1

[148]

MCF-7 and T47D Inhibition of migration
and invasion Induction of autophagy [133]

MDA-MB-231 Inhibition of migration
and invasion

Induction of autophagy; ↑
LC3-II/LC3-I, ↑ Beclin-1,
↓ p62

[132]

MCF-7 Inhibition of migration ↓ Sirt1, ↑ ECad, ↓ ZEB1, ↓MMP-2, ↓
MMP-9, ↑ p53 [150]

MDA-MB-231 Decreased viability and
migration ↓miR-194-5p, ↓ PD-L1, ↑ XIST [151]

MDA-MB-231 ↓ glycolysis rate [152]

Oleocanthal
In vivo (MMTV-PyVT;
patient-derived
xenograft)

Suppressed initiation and
incidence Transcriptomic changes, ↓Myc [155]

In vivo (MDA-
MB-231 xenograft)

Inhibition of tumor
proliferation and growth ↓ c-Met, ↓ Ki-67, ↓ CD31 [156]

In vivo (BT-474
and MDA-MB-231
xenografts)

Prevention of
locoregional recurrence,
tumor growth inhibition

↓ c-Met, ↓ HER2; ↑ ECad, ↓
Vimentin; ↓ CA 15-3 in serum [157]

In vivo (BT-474
xenograft) Tumor growth inhibition ↓ ERα [158]

MCF-7, BT-474,
MDA-MB-231

Inhibition of proliferation
and survival

↓Met, ↓ AKT, ↓ ERK; ↓ CycD1, ↓
Cdk6, ↑ p21, ↑ p27; ↓
Brk/Paxillin/Rac1; ↑ ECad, ↑ ZO-1,
↓ Vimentin,
↓ β-catenin; ↑ Casp8, ↑ Casp3, ↓ RIP,
↓ PARP-1

[156]
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Table 3. Cont.

Component Model Carcinogenesis Molecular/Cellular Mechanisms Ref.

MCF-7,
MDA-MB-231

Anti-proliferative,
inhibition of migration
and invasion

↓ c-Met activation. ↓microvessel
density marker (CD31) [154]

MCF-7, T47D,
MDA-MB-231 Anti-proliferative ↓mTOR and inducing apoptosis in

MDA-MB-231 cells [159]

MCF-7, BT-474,
T47D

Inhibition of estrogen-
induced proliferation ↓ ERα in BT-474 [158]

MCF-7,
MDA-MB-231

Anti-proliferative,
inhibition of migration

Modulation of Ca2+ entry through
TRPC6

[160]

Lignans

Pinoresinol SKBR3,
MCF-7/HER2 ↓ FAS [120]

SKBR3,
MCF-7/HER2,
MCF-10A/HER2

Anti-proliferative,
pro-apoptotic ↓ HER2 [121,202]

MCF-7 and TD47D Cytotoxicity [203]

MDA-MB-231 Anti-proliferation ↑ p21 [204]

MDA-MB-231,
MCF-7, MCF-10A

Cytotoxic,
anti-proliferative and
pro-oxidant

↓ ROS, ↓ DNA damage in MCF-10A
cells; ↑ ROS in cancer cells after
H2O2 treatment

[205]

Acetoxypinoresinol SKBR3,
MCF-7/HER2 ↓ FAS [120]

SKBR3,
MCF-7/HER2,
MCF-10A/HER2

Anti-proliferative,
pro-apoptotic ↓ HER2 [121,202]

Flavonoids

Apigenin In vivo (BT-474
xenograft model)

Tumor growth inhibition,
anti-proliferative, pro-
apoptotic

↓ Ki-67, ↓ HER2, ↓ VEGF, ↑ RANKL [161]

In vivo (MDA-
MB-231 xenograft)

Tumor growth inhibition,
pro-apoptotic

↑ ubiquitinated proteins, ↑ Bax, ↑
IκBα [162]

Hs578T, MDA-
MB-231, MCF-7

Anti-proliferative, cell-
cycle arrest,
pro-apoptotic

↓ PI3K, ↓ PKB, ↑ FOXO3a, ↑ p21, ↑
p27; ↑ p53;
↑ PARP-1; ↑ Cyt C

[170]

SKBR3,
MCF-7/HER2 ↓ FAS [120]

MDA-MB-231 Anti-proliferative,
pro-apoptotic

↑ Casp-3, ↑ proteosome activity,
↑ ubiquitinated proteins, ↑ Bax, ↑
IκBα, ↑ PARP-1

[162]

MCF-7,
MDA-MB-468

Growth inhibition, cycle
arrest

↓ cyclin B1, ↓ cyclin D1, ↓ cyclin A, ↓
CDK1,
↓ CDK4, ↓ Rb (in MCF-7), ↓ ERK (in
MDA-MB-468)

[163]

T47D,
MDA-MB-231

Anti-proliferative,
pro-apoptotic

↑ Casp3, ↓ PARP-1, ↑ Bax ↓ Bcl-2; ↑
LC3-II [156]

MDA-MB-231
spheroids—lymph
endothelial cells

↓MMP-1, ↓ CYP1A1 in
MDA-MB-231 cells
↓ FAK in lymph endothelial cells

[185]
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Table 3. Cont.

Component Model Carcinogenesis Molecular/Cellular Mechanisms Ref.

MDA-MB-468, SKBR3,
mouse 4T1 cells

↓ PD-L1, ↓ STAT1 activation, ↑ T-cell
proliferation
in co-culture

[188]

MDA-MB-231 Decreased viability ↓ CCL2, ↓ GMCSF, ↓ IL-1α, ↓ IL-6, ↓
IKBK-e [189]

human breast tumor
phage display cDNA
librar; MDA-MB-231

160 direct targets, hnRNPA2 top
candidate
↓ hnRNPA2 activation, modulation
of splicing in MDA-MB-231 cells

[190]

MCF-7,
MDA MB-231

Decreased viability,
pro-apoptotic ↑ lipid peroxidation, ↑ DNA damage [193]

Luteolin In vivo (MDA-MB-231
xenograft)

Reduced tumor burden
Reduced tumor growth ↓ Ki-67 [164,180]

In vivo (mouse
mammary tumor cells)

Tumor growth inhibition,
pro-apoptotic, angiogene-
sis inhibition

↑ p53, ↑ Bax, ↓ Bcl-2 [174]

In vivo (DMBA-
induced) Tumor growth inhibition Antioxidant, ↑ SOD, ↑ CAT, ↑ GPx [192]

In vivo (DMBA-
induced)

Tumor growth inhibition,
anti-angiogenic ↓ VEGF, ↓ CD31 [187]

In vivo (T47D
xenograft)

Tumor growth inhibition,
anti-angiogenic ↓ VEGF, ↓ CD31 [186]

In vivo (MDA-MB-435,
MDA-MB-
231(4175)LM2
xenograft)

Inhibition of lung
metastases [177]

In vivo (MDA-MB-231
xenograft)

Inhibition of lung
metastases ↓ Slug, ↓ Vimentin [178]

In vivo (4T1
implantation) Tumor growth inhibition ↓ YAP, ↓ TAZ [183]

In vivo (MCF-7,
4T1 implantation)

↑ SOD, CAT in serum
↓ SOD, ↓ CAT in tumor [191]

MDA-MB-231
Cell growth inhibition,
cell-cycle arrest,
pro-apoptotic

↑ p21, ↓ PLK1, ↓CycB1, ↓ CycA, ↓
CDK1, ↓ CDK2;
↑ Bax; ↓ EGFR, ↓ AKT, ↓ ERK1/2, ↓
p38

[164]

MCF-7
Anti-proliferative, cell-
cycle arrest,
pro-apoptotic

↓ EGFR, ↓ AKT, ↓ ERK1/2, ↓ Stat3 [165]

↓ IGFR1, ↓ AKT, ↓ ERα [166]

MCF-7 Anti-proliferative
Regulation of gene expression
(estrogen receptor pathway and cell
cycle genes)

[167]

Hs578T, MDA-
MB-231, MCF-7

Anti-proliferative, cell-
cycle arrest,
pro-apoptotic

↓ PI3K, ↓ PKB, ↑ FOXO3a, ↑ p21, ↑
p27; ↑ p53;
↑ PARP-1; ↑ Cyt C

[170]

MDA-MB-231 Anti-proliferative,
pro-apoptotic ↓ FAS [171]
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Table 3. Cont.

Component Model Carcinogenesis Molecular/Cellular Mechanisms Ref.

SKBR3,
MCF-7/HER2 ↓ FAS [120]

MDA-MB-231
Anti-proliferative, cell-
cycle arrest,
pro-apoptotic

↓ NF-kB, ↓Myc, ↓TERT [172]

MCF-7
Anti-proliferative, cell-
cycle arrest,
pro-apoptotic

↑ DR5, ↑ Casp8, ↑ Bax, ↓ Bcl-2, ↑
Casp9, ↑ Casp3 [173]

MCF-7, MDA-
MB-231, SKBR3

Decreased viability,
pro-apoptotic

↑ ERK/p38 activation, AIF
translocation [176]

MDA-MB-435, MDA-
MB-231(4175)LM2

Anti-proliferative,
pro-apoptotic, reduced
migration

↓ VEGF secretion [177]

MDA-MB-231,
BT5-4

Inhibition of migration
and invasion

↓ β-catenin, ↓ N-cadherin,
↓Vimentin, ↑ E-cadherin, [178]

↑ Claudin

SUM-149
Reduced enrichment in
stem cells and growth,
pro-apoptotic

↓ RSK, ↓ YB-1, ↓ Notch4 [179]

MCF-7,
MDA-MB-231

Anti-proliferative, cycle
arrest, decreased
migration

↓ Notch1, ↓ Hes1, ↓ Hey1, ↓ Hey2, ↓
VEGF,
↓MMP-2, ↓MMP-9
↑miR-34a, ↑miR-181a, ↑
miR-139-5p, ↑miR-224,
↑miR-246, ↓miR-155

[180]

BT-20
Anti-proliferative,
reduced migration and
invasion

↓ AKT, ↓mTOR, ↓MMP-9, ↓
H3K27ac, ↓ H3K56ac [181]

MDA-MB-231 Reduced viability, cycle
arrest, pro-apoptotic ↓ CXCR4, ↓MMP-2, ↓MMP-9 [182]

MDA-MB-231, 4T1
Reduced viability,
inhibition of colony
formation

↓ YAP, ↓ TAZ, ↓ N-Cad, ↓ Vimentin,
↓ FN1, ↑ E-Cad [183]

MDA-MB-231
spheroids—lymph
endothelial cells

↓MMP-1, ↓ CYP1A1 in
MDA-MB-231 cells
↓ FAK, ↓ Ca2+ release in lymph
endothelial cells

[185]

T47D, BT-474
Reduced viability,
pro-apoptotic ↓ VEGF [186]
Reduced mammosphere
formation in T47D cells

MDA-MB-468 ↓ PD-L1 [188]

MCF-7, 4T1 ↓ glycolytic flux (under hypoxia) [191]

↓: decrease, downmodulation or inactivation; ↑: increase, upmodulation or activation.
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Figure 2. Molecular effects of EVOO minor compounds on mammary carcinogenesis. Compounds
are grouped by chemical family and their effects in different molecular targets with a role in the
acquisition of tumor hallmarks are indicated. General transcriptomic and epigenetic mechanisms are
not associated with a specific hallmark. Many of the molecular targets shown have a role in different
tumor hallmarks; in this figure, molecules are classified according to the main effects described in
the specific bibliography. ↓, decrease, downmodulation or inactivation; ↑, increase, upmodulation
or activation.

5. Concluding Remarks

There is a wealth of knowledge of the potential benefits of EVOO and its minor
compounds on health and cancer prevention. The variety of human diet, complexity of
interactions among components, individual heterogeneity and multistage process of car-
cinogenesis make difficult to draw clear conclusions from human studies. Epidemiological
data suggest a protective effect of the Mediterranean diet on cancer and, despite the incon-
sistent results, virgin olive oil seems to play a prominent role. In contrast, extensive in vitro
data are reported regarding the anticancer effect of triterpenes, polyphenols (phenolic acids
and alcohols, secoiridoids, flavones and lignans) and other EVOO components, with a
potential translation to human cancer prevention and treatment. However, caution must be
applied, since the effects of such compounds are strongly dependent on methodological
issues such as dose, time of exposure and cell type. On the other hand, animal models
share, to a large extent, the physiology of nutrition and pathophysiology of the disease
with humans and, at the same time, it is possible to segregate the studied parameters. In
experimental breast cancer models, dietary lipids modulate clinical and histopathological
characteristics of experimental mammary tumors. A diet high in EVOO has a protective
effect on carcinogenesis when compared to an isocaloric diet rich in n-6 PUFA, conferring,
to tumors, features similar to those induced by a low-fat diet. Although, in general, diets
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high in fat have a cancer-stimulating influence, evidence points to a preventive effect
of EVOO if consumed in moderate quantities. The potential protective effect of EVOO
may account for its minor compounds and its ratio of n-3/n-6 PUFAs (higher than the
ratios found in many seed oils), while the contribution of MUFA oleic acid is controversial.
In vivo and in vitro research highlights that EVOO and/or its compounds can influence
the initiation, promotion and progression of carcinogenesis through multiple and varied
mechanisms, directly and indirectly, affecting different signaling pathways. The molecular
targets of EVOO compounds have a role in the acquisition of cancer hallmarks, resulting
in the inhibition of proliferation, cell-cycle arrest, induction of apoptosis, or decrease in
several processes, such as migration, immune evasion, angiogenesis and inflammation.
Their potential influence on redox balance is considered to have a role in the interplay
among different signaling pathways.

In conclusion, EVOO can have a beneficial effect on breast cancer risk, considering
a moderate consumption and in the context of Mediterranean diet as a healthy choice
from childhood and throughout life. Moreover, although more research is needed on
pharmacokinetics, pharmacodynamics, doses, toxicity or effectiveness, evidence highlights
the promising potential of several EVOO components as adjuvants in anticancer strategies.
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