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Calibration curves allow instrument calibration by predicting the
concentration of an analyte in a sample from the reading of the
instrument. This curve is constructed as the regression straight
line that best fits the relationship between some known
concentration standards and their respective instrument
readings. An example is the Beer–Lambert Law, used to predict
the concentration of a new sample from its absorbance
obtained by spectrometry. The issue is that usually this
methodology is misapplied. In this paper, we want to clarify
this point, explaining what the error consists of and how
(easily) to fix it, with the intention of ensuring that it does not
continue to be reproduced in the experimental scientific work.
1. Introduction
Instrument calibration involves the construction of a calibration
curve that allows to predict the concentration of an analyte in a
sample from the reading of an instrument. This curve is the
linear regression model that ‘best fits’ the relationship between
some known concentration standards and the respective
instrument responses. Of course, the effectiveness of the
calibration procedure will depend on whether the relationship
between the concentration and the instrument reading is indeed
(approximately) linear. If it is, bivariate regression may be used
to address the issue of predicting the output or dependent
variable, say Y, from the input, regressor or independent
variable X, by fitting a straight line to a scatterplot of
observations on both variables, with the values of the variable
X on the x-axis (abscissa), and those of the variable Y on the
y-axis (ordinate). The best straight line, in the sense of minimizing
the sum of the squared errors of prediction has the expression

y ¼ b0 þ b1 x,

b0 being the intercept (where the straight line intersects the y-axis),
and b1 the slope, both computed from the observations (see
formula (A 1) in appendix A), if the prediction for variable Y
when X= x0 is that given by the straight line, that is, b0 + b1 x0.
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A paradigmatic example is the very popular Beer–Lambert Law (also known as Beer’s Law), which

establishes that under ideal conditions, the absorbance of a solution of an absorbing substance that is
obtained by spectrometry techniques is directly proportional to the substance’s concentration. This
implies that the increase of the concentration value gives an increasing value of the absorbance, which
is due to the fact that a high concentration of solution absorbs more light compared with a low
concentration and that this happens in a linear way. This relationship between absorbance and
concentration is used not only by chemists, but by experimental scientists of many other disciplines.
Details of what this law says are given in §2.

There are innumerable works that collect research in which Beer’s Law has been applied in very
diverse fields that use the technique of spectrometry. Just to mention a few of them: in [1] the authors
obtain the absorbance of some samples of glucose extracted from three different types of fruits peel
wastes using UV–Vis spectroscopy, and from it and by means of Beer’s Law, they obtain the
corresponding concentrations, comparing between them. In [2] the authors say verbatim that ‘The
significance of Beer–Lambert Law is to measure the absorbance of a particular sample and to infer the
concentration of the solution’. They use a spectrometer for measuring the absorbance of three
macronutrients that are essential for plant growth (nitrogen, phosphorus and potassium) and are
commonly used in fertilizers, in non-agriculture soil. As the quantity of fertilizer has to be estimated
based on the requirements for optimum production, they apply the Beer–Lambert Law to determine
the nutrients concentrations. Paper [3] explains a study for the determination of the amount of
manganese metal present in tricalcium phosphate using flame atomic absorption spectrophotometer to
observe the corresponding absorbance, by means of the calibration curve. The authors of [4] carry out
an experiment to introduce a method to estimate the amlopidine in pure drug and marketed tablet
Formulation consisting in the use of a calibration curve derived from Beer’s Law to obtain the
concentration from the absorbance. Andriamahenina et al. [5] investigate the effect of the presence of
outliers in the calibration of lead by graphite furnace atomic absorption spectrometry, concluding that
the presence of outliers worsens the quality of the measurement of the concentration of lead obtained
from the absorbance given by the instrument reading, by using the calibration curve. A non-invasive
alternative of blood glucose monitoring is introduced in [6], based on the detection of the optical
density of the solution samples by means of a spectrophotometer, and then converting it into the
corresponding glucose concentration by using the Beer–Lambert Law, with the help of a concentration
curve. In [7] Ocean Optics Ocean View spectrometer operating software is used to obtain and process
data from spectrometer, and get the transmittance (then, the absorbance) of a uric acid solution, from
which to calculate uric acid concentration by using a concentration curve. The authors of [8] present
and validate a quick and sensitive spectrophotometric method for quantitative determination of
gliquidone in bulk drug, pharmaceutical formulations and human serum, based on the absorbance
readings and their transformation into concentration through a calibration curve of the absorbance
over the concentration. Restrepo et al. [9] report an easy methodology to construct handmade solar
cells to produce clean energy from chlorophyll-a (chl-a) extracted from the leaves of Diacol Capiro
potato. A spectroscopic calibration curve was constructed using different chl-a standard solutions and
their absorbances. In [10] a quality-by-design (QbD) approach was implemented for the routine
quality control analysis of serotonin in pharmaceutical dosage form through a spectroscopic method,
by using a calibration curve of the absorbance over the concentration.

Although very common, Beer’s Law is not the only source of application of calibration curves in
different fields. For example, in the very recent paper [11] the authors construct calibration curves for
the total protein eluted from membranes with respect to the concentrations of Bevacizumab or
Trastuzumab used to add to serum employed to load the membranes. The total protein eluted from
membranes is determined by measuring native fluorescence and then the concentration of
Bevacizumab or Tratuzumab is determined using the calibration curve.

The problem of the proper use of calibration curves is common to many engineering and science
applications, but not much attention has been paid to it from Statistics, with some exceptions (see ch.
15 in [12], for example, and references therein). The objective of this work is to show simply and
without too many technicalities, in an accessible way to engineers and experimental scientists, the
misuse of the calibration curves, explaining how to (easily) correct this pitfall, that could result in
undesirable consequences. This issue has been treated before, although not always with the same
success (see details in §4), but it is still worth reporting and publicizing to ward off further spreading
among experimental scientists. Probably, in most cases this error has not practical importance and
does not invalidate the published studies, since there will be little difference between the results
obtained using the wrong calibration curve (classical calibration), and those obtained using the proper
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one (inverse regression). Nevertheless, this does not prevent the error from being worth noting, for
three main reasons:

(a) because regardless of the practical implications, from a conceptual point of view, the statistical
methodology must be used in the appropriate way;

(b) because a priori it is not possible to know the extent of the repercussions of the misuse of the
calibration curve on the results of an experiment;

(c) because an error does not cease to be so even though it is very generalized and commonly accepted.

The organization of the rest of the paper is as follows: in §3 we explain the misuse of the Beer–Lambert
Law and other calibration curves. Section 4 details how to fix this problem, and a toy example of
calibration is developed in §5 to show how the two calibration curves are applied, and compare them.
Section 6 includes a few words in conclusion and an outline of what calibration curve is appropriate
in every situation in figure 6. Finally, in appendix A we recall the main formulae of the linear
regression model, and in appendix B we show two more examples of calibration, one with real
experimental data and the other using simulation.
Open
Sci.9:211103
2. The Beer–Lambert Law
Aspectrophotometer is an instrument thatmeasuresthenumberofphotonsdeliveredbyasolutionof achemical
species that absorbs light of aparticularwavelength in agivenunit of time,which is called the intensity, allowing
to compare the intensity of the beam of light entering the solution (I0) with the intensity of the beam of light
exiting it (I). The ratio of these intensities is called transmittance, and is denoted by the letter T. That is, T= I/
I0. If the transmittance is a measure of the quantity of photons passing through a solution (the proportion of
the intensity of the light entering the solution that exits), the absorbance A is a measure of how much light is
absorbed by the solution, and is defined as a function of the transmittance in this way,

A ¼ � log10ðTÞ, ð2:1Þ
(largevaluesof absorbanceare associatedwithvery little lightpassing through the solution, andon theopposite,
small values of absorbance are associated with most of the light passing entirely through it).

When passing a beam of light of the appropriate wavelength through the solution, if it is fairly dilute,
the photons will encounter a small number of the absorbing chemical species and then we can expect a
high transmittance and low absorbance. On the contrary, if the solution is highly concentrated we will
expect a higher number of the absorbing chemical species and a low transmittance and high
absorbance. This leads us to think that the absorbance could be a monotonic increasing function of
the concentration of the solution, and even that it could be (directly) proportional to it. As well, it
seems that the absorbance would increase if the beam of light goes through the solution for a longer
period of time, and since the speed of light is constant, we could think that the absorbance is also
directly proportional to the path length of the beam through the solution. In this way we come to the
(deterministic) Beer–Lambert Law, which states the following:

The Beer� Lambert Law : A ¼ 1 L c, ð2:2Þ
where c is the concentration of the absorbing species in the solution, L is the path length of beam through
the sample compartment where the solution is, and ɛ is the proportionality constant. If the path length L
is reported in centimetres (cm), and the concentration c is reported in molarity (moles per litre, mol l−1),
the proportionality constant ɛ is called the molar absorptivity or molar extinction coefficient, and has
units litres per mole-centimetre (l (mol × cm)−1). In this way, when multiplying ɛ, L and c, all the units
cancel and as such, it follows that absorbance A is unit-less. Note that ɛ is intrinsic to the absorption
of the solution of chemical species at a particular wavelength of light.

If, in a given context, we know three of the four quantities that appear in equation (2.2), we can solve
for the value of the fourth. We could obtain the absorbance of a solution A from its concentration c,
knowing the other two quantities L and ɛ, without needing more to substitute in (2.2). Or vice versa,
knowing the absorbance of the solution at a given wavelength, usually from the transmittance, by
using equation (2.1), we could obtain the concentration by solving c from equation (2.2),

c ¼ A
1 L

, ð2:3Þ

(note that equations (2.2) and (2.3) are completely equivalent, since ɛ L > 0).
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The crux of the issue appears when the product of the molar absorptivity and the path length, ɛ L,

which is constant for a given solution (ɛ) and as long as the same sample compartment is used to
make measurements (L), is not known. Then, in order to determine the concentration c of the solution
given its absorbance value A, a calibration curve needs to be constructed. And it is at this point that
the source of the error appears, as will be described in the next section.
publishing.org/journal/rsos
R.Soc.Open

Sci.9:211103
3. Misuse of the calibration curves
What is this widespread error? In the context of lack of knowledge of the (constant) value of ɛ L, the
following misuse of the Beer–Lambert Law is usually committed: in order to construct the calibration
curve to predict the concentration of an unknown solution from its known absorbance, a set of
standard concentrations within the range of the measuring instrument are prepared, and the
corresponding absorbances are determined by spectrometry, say (c1, A1), (c2, A2),…, (cn, An). Then
the equation of the regression straight line for the response variable absorbance and prediction
variable (or regressor) concentration that best fits these n points is

Calibration curve ofA over c : A ¼ b0 þ b1 c, ð3:1Þ

where β1 is the slope of the line, and β0 is the y-intercept, and both are obtained from the n points by
means of the linear least-squares method and are given by formulae

b1 ¼
Pn

i¼1 ci Ai � n�c �APn
i¼1 c

2
i � n ð�cÞ2 , b0 ¼ �A� b1 �c, with �c ¼ 1

n

Xn
i¼1

ci, �A ¼ 1
n

Xn
i¼1

Ai: ð3:2Þ

Now, if we denote by bAi the prediction of the absorbance given by the straight line for a solution whose
concentration is that corresponding to the ith point, ci, it is obtained by substituting ci into equation (3.1),

bAi ¼ b0 þ b1 ci,

then the difference (error) between the predicted and the observed absorbance for the solution with
concentration ci is: ei ¼ Ai � bAi, and formulae in (3.2) are obtained imposing that the sum of the
square of the errors be minimum

SSE ¼
Xn
i¼1

e2i ¼
Xn
i¼1

�
Ai � bAi

�2 ¼Xn
i¼1

�
Ai � ðb0 þ b1 ciÞ

�2
: ð3:3Þ

That is, if absorbance A is plotted versus concentration c for the series of n known solutions with
the dependent variable A placed on the y-axis, and the independent variable c graphed on the
x-axis, the calibration curve (3.1) is the straight line that best fits the n points in the plane in the sense
of minimizing the sum of the squares of the distances from each point to its prediction vertically
(figure 1).

Calibration curve (3.1) is therefore intended for predicting the absorbance of new solutions for which
concentrations are known, since with the parameters β0 and β1 given by (3.2), it ensures that the sum of
the square of the errors committed in prediction for the n initial solutions is as low as possible. Then,
given the concentration of a new solution, say c0, we can obtain the predicted absorbance value for it,bA0 from equation (3.1) by substituting the concentration c0, that is bA0 ¼ b0 þ b1 c0 (figure 2a). However,
in what is known as classical calibration, (3.1) is usually used inappropriately to predict the
concentration of new solutions for which absorbances are known in the following way: first finding
the y-value on the regression straight line corresponding to the measure of the absorbance, and then
tracing downward to see which concentration matches up to it, and this value will be the predicted
concentration of the solution with that absorbance (figure 2b).

That is, given the absorbance value of a new unknown solution, say A0, the usual (wrong) practice is
to obtain the predicted concentration value for it, bc0, from equation (3.1) by substituting the absorbance
A0, that is

bc0 ¼ A0 � b0

b1
¼ �b0 þ A0

b1
¼ bþmA0, ð3:4Þ

where b =−β0/β1 and m = 1/β1, being β0 close to zero, and β1 an estimation of the unknown product ɛ L,
both computed using the formulae in (3.2). If we predict the concentration for the ith point given its
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(classical calibration) and prediction of the concentration bc0 of a new solution from its absorbance A0.
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absorbance in this (wrong) way, we obtain

bci ¼ Ai � b0

b1
: ð3:5Þ

But then, the sum of squared errors (differences between observed and predicted concentrations) is

Xn
i¼1

�
ci �bci�2 ¼Xn

i¼1

ci � Ai � b0

b1

� �2

,

and we do not have any optimality result in the sense that we cannot ensure that it is as small as possible,
with β0 and β1 given by (3.2), unlike what happens with (3.3).

In summary: it is possible algebraically to predict the concentration from the absorbance by using the
calibration curve of the absorbance A over the concentration c given by (3.1), following the expression
(3.4) with β0 and β1 given by (3.2), as in figure 2b. This is the classical calibration approach. But this is
not the optimal way, since we do not control for the prediction errors that are committed. Therefore,
this procedure should be avoided. Instead, it is advisable to preserve (3.1) exclusively to predict the
absorbance from the concentration, because this procedure is optimal to achieve the minimum sum of
the squared prediction errors (figure 2a).
4. Easily fixing it
The problem is easily solvable: since it is a question of constructing a calibration curve to predict the
concentration of a new solution of which the absorbance is known, from the concentrations and
absorbances of the initial known solutions, the regression straight line of the concentration c over the
absorbance A will be the proper one to be used, since it is the one that minimizes the sum of the
squared errors of prediction (ordinary least squares, OLS). From the known concentrations and
absorbances of the set of n solutions, we obtain the equation of the regression straight line for the
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response variable concentration and prediction variable absorbance

Calibration curve of coverA : c ¼ a0 þ a1 A, ð4:1Þ
with the slope α1, which is an estimation of (ɛ L)−1, and the intercept α0 (close to zero) obtained from the
formulae

a1 ¼
Pn

i¼1 ci Ai � n�c �APn
i¼1 A

2
i � n ð �AÞ2 , a0 ¼ �c� a1 �A: ð4:2Þ

Given the absorbance corresponding to the ith point, Ai, the prediction of its concentration, bci, is obtained
by substituting Ai into equation (4.1), that is,

bci ¼ a0 þ a1 Ai, ð4:3Þ
and then the difference (error) between the predicted and the observed concentration for the solution
with absorbance Ai is: 1i ¼ ci �bci, and in these cases formulae in (4.2) are obtained imposing that the
following sum of the square of the errors be minimum:

Xn
i¼1

12i ¼
Xn
i¼1

�
ci �bci�2 ¼Xn

i¼1

�
ci � ða0 þ a1 AiÞ

�2,
(see figure 3). Note that the two straight lines (4.1) and (3.1) intersect at the point ð�c, �AÞ.

Given the absorbance of a new solution, say A0, we can obtain the predicted concentration value for
it, bc0 from equation (4.1) by substituting the absorbance A0 in this direct way

bc0 ¼ a0 þ a1 A0, ð4:4Þ
and if we compare (4.4) with (3.4) we realize that in general, a0 = b and a1 = m, that is, the two
approaches are not equivalent, as can be seen graphically in figure 4.
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Since we are interested in minimizing the sum of the squared errors of prediction, it is then evident

that the proper calibration curve is (4.1) and not (3.1). This approach is known as inverse regression from
[13]. It is perfectly adequate in terms of prediction errors, since the OLS method does not depend on any
additional hypotheses about the regression model, being the optimal approach in the sense of
minimizing the sum of the squared errors.

However, it is true that to make statistical inferences about the linear regression model (confidence
intervals and tests of hypothesis on the coefficients of the regression straight line), some hypotheses
are assumed (see appendix A for details), being the most basic that the regressor is measured without
error, and that the response variable is randomly distributed following a normal distribution with
mean a linear function of the regressor, and constant variance. We will call them: LR hypotheses (by
linear regression). If we are interested in making statistical inferences about the regression model, we
have to design the experiment to collect data in such a way that these assumptions are reasonably
fulfilled. In our case, this means that absorbances have to be measured with precision while
concentrations are measured with non-negligible error, which in practice may not be possible, and this
is considered in the literature the weak point of the inverse regression approach. Indeed, in the
opinion of Parker et al. [14], for example, the observed measurements (absorbances) in practical
calibrations are subject to measurement error, violating the LR hypotheses.

What if the LR hypotheses with regressor the absorbance and the concentration as response,
corresponding to the approximation of the inverse regression, are not fulfilled, not even roughly?
Nothing invalidatesthis approximation, in our opinion, for the following reasons:

(1) The hypotheses are needed if we want to make statistical inference about the model, not to make
predictions, that can be carried out equally.

(2) The convenience of using the inverse regression approach relies on OLS, which does not depend on
any hypothesis but on the errors of prediction, which allow to evaluate the predictive capacity of any
model.

(3) The greater predictive power of the inverse regression, compared with that of classical calibration,
gives support to its use and has been shown empirically in this work by a toy example in §5 and
two more examples in appendix B, one with real experimental data, and the other built by
simulation.

Likewise, it has also been described in some works. In this regard, [13] compared classical
calibration (named there Method A) and inverse regression (Method B) using simulations, and
recommended the latter based on the mean squared error. The authors of [14] also arrived at the
same conclusions through some simulation studies (see also references therein in the same vein),
although other authors criticize that recommendation. For example, in the recent paper [15], the
authors introduced a new methodology, the ‘reverse inverse regression’ to address the same
problem, assuming that the inputs (concentration values) vary according to Gaussian
distributions, which allow them to derive some statistical properties, and criticize the inverse
regression approach based on the treatment of the inputs (absorbance values) as determined with
small error. But they compare their method against classical calibration and inverse regression
using a simulation study, and have to recognize the best behaviour of the latter in the sense of
minimizing the variance of the prediction interval.

In brief, leaving aside assumptions that could, or not, be accomplished (that in case to be fulfilled allow to
deduce some statistical properties for the linear regression model), if we are interested in prediction, the
best approach nonetheless seems to be inverse regression.

5. A toy example
We prepare a set of n ( = 10) standards within the range of the measuring instrument, with the following
made-up values of concentration (in mg l−1) and absorbance, recorded in table 1.

The two calibration curves given by (3.2) and (4.2) are:

Classical calibration (curve ofA over cÞ : A ¼ b0 þ b1 c ¼ 0:00554þ 0:0003936364 c
Inverse regression (curve of coverAÞ : c ¼ a0 þ a1 A ¼ 6:06475þ 2128:07645A

We can observe in figure 5 that indeed, as explained above, the two curves are not the same, and they
cut at the point ð�c ¼ 110, �A ¼ 0:04884Þ. Moreover, the values of the R-squared (R2) have also been
reported for the two calibration curves, being higher than that of the inverse regression approach to



Table 1. Toy example: concentration and absorbance of 10 solutions, and their averages.

concentration (mg l−1) absorbance

20 0.0060

40 0.0111

60 0.0233

80 0.0547

100 0.0489

120 0.0675

140 0.0654

160 0.0625

180 0.0785

200 0.0705

�c ¼ 110 �A ¼ 0:04884

toy example

0.08

0.07

0.06

0.05

ab
so

rb
an

ce

concentration

0.04

0.03

0.02

0.01

30 50 70 90 110 130 150 170 190

c = 6.06475 + 2128.07645 A

A = 0.00554 + 0.00039 c
R2 = 0.80624

R2 = 0.83769

Figure 5. Calibration curves for the toy example to predict the concentration from the absorbance. In blue the calibration curve of A
over c (classical calibration). In magenta the (proper) calibration curve of c over A (inverse regression).
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predict concentration from absorbance. R2 represents the proportion of variation in the response variable
that is explained by the calibration curve (the higher the better).

Note that R2 = 1− (SSE/SST), where SSE and SST denote the sum of squared errors and the sum of
squared total, respectively, that is, SSE ¼Pn

i¼1ðci �bciÞ2 and SST ¼Pn
i¼1 c

2
i � n ð�cÞ2, being bci the prediction

for the concentration of the ith solution (with absorbance Ai), that is given by (3.5) for the classical
calibration approach, but by (4.3) for the inverse regression. In table 2, we report the predictions bci
with the two approaches.

As expected, the proper calibration curve (that of c over A) has lower standard error (s.e.) and higher
R2 than the usual one (the calibration curve of A over c), to predict concentration from absorbance, which
confirms the theoretical result that states that it is better. In other words, inverse regression is better than
classical calibration in the sense of minimizing the sum of squared errors in prediction, and this
conclusion is independent of the hypotheses of the linear regression model.

One way to see if the differences in prediction errors are statistically significant is as follows: consider
the differences of the absolute value of the prediction errors with the two approaches (last column in



Table 2. Toy example: predictions with the two methods: classical calibration and inverse regression, and corresponding prediction
errors with the difference of the absolute value of the errors. In italics the maximum R2 and the minimum standard error (s.e.), as
well as the p-value for the one-sided t-test in favour of the hypothesis that the mean of the differences is greater than 0.

predictions bci errors ci �bci
Ai ci classical Ai�b0

b1
inverse α0 + α1 Ai classical ei inverse ɛi difference |ei|− |ɛi|

0.0060 20 1.168591 18.83320 18.83141 1.166795 17.66461345

0.0111 40 14.124711 29.68639 25.87529 10.313605 15.56168328

0.0233 60 45.117783 55.64893 14.88222 4.351073 10.53114443

0.0547 80 124.886836 122.47.053 −44.88684 −42.470528 2.41630800

0.0489 100 110.152425 110.12768 −10.15242 −10.127685 0.02474035

0.0675 120 157.404157 149.70991 −37.40416 −29.709907 7.69425040

0.0654 140 152.069284 145.24095 −12.06928 −5.240946 6.82833797

0.0625 160 144.702079 139.06952 15.29792 20.930476 −5.63255415
0.0785 180 185.348730 173.11875 −5.34873 6.881252 −1.53252256
0.0705 200 165.025404 156.09414 34.97460 43.905864 −8.93126815

SSE = 6394.129 5356.287 Shapiro–Wilk p-value =0.915

MSE = SSE/(n− 2) = 799.266 669.536 one-sided t-test for mean >0

s:e: ¼ ffiffiffiffiffiffiffi
MSE

p ¼ 28.271 25.875 p-value = 0.07094�

R2 = 1− SSE/SST = 0.80624 0.83769

�Significance at 10% level.

Table 3. Radius of the (approximated) prediction intervals, and p-value of the one-sided t-test in favour of the hypothesis that
the mean of the differences of the radius is greater than 0.

prediction interval radius

Ai ci classical (a) inverse (b) difference (a) − (b)

0.0060 20 13.47537 12.76106 0.6607362

0.0111 40 13.28582 12.60487 0.6366435

0.0233 60 12.90608 12.29470 0.5882947

0.0547 80 12.57598 12.02834 0.5462853

0.0489 100 12.55686 12.01301 0.5438552

0.0675 120 12.74684 12.16581 0.5680196

0.0654 140 12.70719 12.13383 0.5629739

0.0625 160 12.65973 12.09561 0.5569352

0.0785 180 13.02142 12.38851 0.6029853

0.0705 200 12.81089 12.21756 0.5761737

Shapiro–Wilk p-value = 0.1859

one-sided t-test for mean >0 p-value = 1.998 × 10−12���

���Significance at 0.1% level.
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table 2). For this sample of size 10, we can perform a goodness-of-fit test for normality (Shapiro–Wilk
test) obtaining a p-value of 0.915, which does not allow us to reject the hypothesis of normality, so we
apply the one-sided t-test to compare the mean against 0, giving a p-value of 0.07094�. This p-value is
not less than 0.05 but it is not very far off (it is less than 0.10), so we can say that there is a slight
statistical significance in favour of the difference of the absolute values of the predictive errors being
positive, or what is the same, that on average the errors with the classical calibration approach are
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greater in absolute value than with the inverse regression. Since in practical calibrations the errors in

making the predictions are of the most important measures of the goodness of the calibration method,
in table 3 we also record the values of the radius of the prediction intervals.

For any absorbance Ai, the corresponding prediction intervals are of the form bci + ðaÞ using the
classical calibration (the expression for (a), which has been derived with the approximative Delta
method, can be found in (A 6), appendix A), and bci + ðbÞ with the inverse regression, where by (A 5)

in appendix A, ðbÞ ¼ tn�2
1�ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPn

i¼1 1
2
i =ðn� 2ÞÞ ð1þ ð1=nÞ þ ðAi � �AÞ2=ðPn

i¼1 A
2
i � n �A2ÞÞ

q
, with ɛi =

ci− (α0 + α1 Ai).
Note that both (a) and (b) in table 3 are deduced from the assumptions of the linear regression model;

therefore, they will be more or less adjusted, depending on the degree of compliance with the LR
hypotheses. In any case, for all absorbance values, the estimated radius of the prediction interval is
greater with the classical calibration than with the inverse regression. This fact is statistically
significant: if the two methods were equivalent from the perspective of the prediction interval error,
or if the classical calibration were better, the probability that for the 10 absorbance values the
prediction interval radius with the inverse regression are all less than the corresponding with the
classical calibration, is upper bounded by

PðBð10, p ¼ 0:5Þ ¼ 10Þ ¼ 0:510 ¼ 0:0009765625���,

which is a very low p-value (corresponding to the exact binomial test). This means that the probability
that the 10 prediction interval radius with the inverse regression are less than the corresponding
with the classical calibration if the first method is not better than the second in the sense of having
less prediction error, is very low, which reveals that the assumption must be rejected, and accepted
that inverse regression is statistically significantly better than classical calibration. The same conclusion
is reached by performing a statistical one-sided t-test to compare the mean of the differences (a)–(b)
with 0, with a p-value of 1.998 × 10−12��� in favour that the mean is greater than 0 or, equivalently,
that on average, the radius of the prediction intervals for the classical calibration are greater than for
the inverse regression. The t-test is performed after using a Shapiro–Wilk test of normality, whose
p-value is: 0.1859.

As a final comment in this toy example, note that the analysis of variance (ANOVA) methodology for
regression (see appendix A) can only be applied to the inverse regression approach, and that in this case,
the ANOVA table is:
source of variation response c
 d.f.
 sum Sq
 mean Sq
 F-value
regressor A
 1
 a2
1 SAA ¼ 27643:713
 a2

1 SAA ¼ 27643:713
 f = 41.28787
residuals (error)
 8
 SSE ¼Pn
i¼1 e

2
i ¼ 5356:287
 MSE = 669.536
total
 9
 SST ¼Pn
i¼1ðci ��cÞ2 ¼ 33 000
where SAA ¼Pn
i¼1ðAi � �AÞ2 ¼ 0:006104104. Then, if the LR hypotheses hold, the null hypothesis H0: ‘no

linear relationship between A and c’ is rejected since the corresponding p-value is P(F1,8 > 41.28787) =
0.0002035���. That is, we accept with a very strong statistical significance that A and c are linearly
related. We observe the concordance between values in this ANOVA table and that of table 2.
However, this is not true with classical calibration, the other approach. The reason is clear: the values
recorded in its ANOVA table (that we have not reproduced here) are that of the regression curve of A
over c: A = β0 + β1 c when used to predict the absorbance from the concentrations, and not vice versa.
For this reason, to compare both approaches, the ANOVA methodology does not turn out to be useful.
6. Conclusion
There are many very painstaking experimental works in which an analytical methodology to determine
the concentration of a given substance by using spectrometry is described. Without trying to undermine
the interest of these studies, it is necessary to mention that in them, in a systematic way, a gross error is
made in the application of the Beer–Lambert Law that allows to determine the concentration c from the
absorbance A. The pitfall consists in using the calibration curve of A over c (classical calibration), which is
clearly not an optimal approach (see [13], for example), instead of using the calibration curve of c over A,
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Figure 6. Outline on how to choose the most suitable calibration curve in each situation to get the proper prediction.
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which would be the appropriate (inverse regression), in the sense of minimizing the sum of the squared
errors of prediction.

But this not only happens in the application of Beer’s Law: it is also a common practice in
other contexts where instrument calibration is used, when inexpensive and quick measurements (Y)
are related to expensive and time-consuming measurements (X) based on a set of observations, and
we are interested in estimating the expensive measurement of X given a new measurement of Y.
Instead of use the classical calibration approach, it is advisable, from the point of view of minimizing
the sum of squared errors of prediction, to use the inverse regression. A guide on how to get it right
is in figure 6.

Even if the LR hypotheses with regressor the absorbance and the concentration as response are not
accomplished, the approximation of the inverse regression remains valid: to carry out predictions it is
not necessary for the hypotheses to be fulfilled since the inverse regression approach relies on OLS,
which does not depend on any hypothesis. Moreover, the greater predictive power of the inverse
regression, compared with that of classical calibration, gives support to its use. This fact is founded on
the fact that inverse regression minimizes the sum of the squared error of the predictions for the
concentration given the absorbance, but it is also shown empirically in this work by a toy example in §5
and two more examples, one with real data and the other built by simulation, in appendix B.

That in the classical calibration approach the LR hypotheses are fulfilled, is nothing more than an
entelechy: how to be sure of the normality of the absorbance distribution given the concentration value,
which is assumed to be fixed (and determined without error, despite the fact that measurement errors
are unavoidable), and of the rest of the hypotheses? Despite the (possible but not usual) utilization of
methods for studying the goodness of fit of the observations to them, the assumption of the hypotheses
of a model is always a delicate subject that could be considered, in a sense, a matter of faith. Evaluating
the predictive capacity of a model by means of the sum of the squares of the errors of prediction is not.

Even in the simulation example presented in appendix B, in which the absorbance values have been
simulated from those of the concentration, that are fixed, according to the equation of a straight line
with an additive Gaussian noise, that is, in such a say that it can be assumed that the LR hypotheses
are fulfilled with the concentration as regressor and the absorbance as output variable (classical
calibration), from a predictive point of view it turns out that the inverse regression approach surpasses
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the classical calibration. In other words: leaving aside assumptions that could, or not, be accomplished (that
in the case to be fulfilled allow to deduce some statistical properties for the linear regression model), if we
are interested in prediction, the most appropriate would be to use the inverse regression approach.

It is true that in many applications the difference between the predicted concentrations obtained with
both calibration curves is small, and therefore, for practical purposes, this error does not usually have
great consequences. However, this does not justify overlooking the entanglement, which is important
from a conceptual point of view. What is more, it could potentially have practical consequences, so it
should be avoided. This paper aims to draw the attention of experimental scientists to this important
issue and contribute to the eradication of this pitfall.

Data accessibility. All scripts used in this study are openly accessible through https://github.com/StochasticBiology/
boolean-efflux.git. The data are provided in electronic supplementary material [20]. I have used simulated data that
I have uploaded in a csv format file.
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Appendix A. The linear regression model
In this section, we will see the formulae relative to the linear regression model, which is a model to
describe the linear relationship between two quantitative variables, namely X, which is the input or
regressor, and Y, which is the output or predicted variable. In each scenario, which of the two
variables should play the role of X, and which of Y, depends on the objective: the variable that has to
play the role of Y is the one for which we want to obtain a prediction given a known value for the
other variable (which, then, will play the role of X). This asymmetry between the variables is a factor
to take into account, since it could be a source of confusion. Indeed, it is very important to resolve
this issue at the beginning, before building the model, since making the wrong decision will lead, as
has been explained above that is common in instrument calibration by spectrometry, to predictions
subject to greater error, being precisely to highlight and clarify this matter, the motivation of this paper.

The linear regression model of Y over X is a straight line whose equation is the one that better fits the
data, which is a set of n > 2 pairs of values of the variables X and Y, say (x1, y1), (x2, y2),…, (xn, yn), and
is given by

y ¼ b0 þ b1 x,

where b0 and b1 are obtained from the data in this way

b1 ¼
Sxy
Sxx

, with �x ¼ 1
n

Xn
i¼1

xi, �y ¼ 1
n

Xn
i¼1

yi,

Sxy ¼
Xn
i¼1

xi yi � n �x �y, Sxx ¼
Xn
i¼1

x2i � n ð�x2Þ

b0 ¼ �y� b1 �x

9>>>>>>>>=>>>>>>>>;
(A 1Þ

(Note that the asymmetry between X and Y is reflected in the expressions to obtain the coefficients of the
straight line b0 and b1.)

In what sense is the regression line the one that best approximates the data? In which it is the one that
minimizes the sum of the squared errors, denoted by ei, which are the difference between the observed
value of the variable Ywhen the variable X takes the value xi, which is yi, and the prediction given by the
regression straight line, which is byi ¼ b0 þ b1 xi , that is, ei ¼ yi � byi. If the relationship between X and Y
were perfectly explained by the straight line (hypothetical and deterministic situation), then ei = 0 for
i = 1,…, n.

By imposing this criterion we can easily find (A 1). This is the well-known ordinary least squares
(OLS) method, due to Carl F. Gauss. To apply this method, we must derive

SSE ¼
Xn
i¼1

e2i ¼
Xn
i¼1

ðyi � byiÞ2 ¼Xn
i¼1

�
yi � ðb0 þ b1 xiÞ

�2,

https://github.com/StochasticBiology/boolean-efflux.git
https://github.com/StochasticBiology/boolean-efflux.git
https://github.com/StochasticBiology/boolean-efflux.git
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with respect to b0 and b1, and set these two derivatives to zero. Indeed, we obtain

� 2
Xn
i¼1

�
yi � ðb0 þ b1 xiÞ

� ¼ 0 and � 2
Xn
i¼1

�
yi � ðb0 þ b1 xiÞ

�
xi ¼ 0:

From the first we get

Xn
i¼1

�
yi � ðb0 þ b1 xiÞ

� ¼ 0 ,
Xn
i¼1

yi � n b0 � b1
Xn
i¼1

xi ¼ 0

, �y� b0 � b1 �x ¼ 0 , b0 ¼ �y� b1 �x,

and from the second, by substituting the expression obtained for b0, we finally have that

Xn
i¼1

�
yi � ðb0 þ b1 xiÞ

�
xi ¼ 0 ,

Xn
i¼1

xi yi � b0
Xn
i¼1

xi � b1
Xn
i¼1

x2i ¼ 0

,
Xn
i¼1

xi yi � ð�y� b1�xÞn�x� b1
Xn
i¼1

x2i ¼ 0

,
Xn
i¼1

xi yi � n �x �yþ b1 n ð�xÞ2 � b1
Xn
i¼1

x2i ¼ 0

, b1 ¼
Pn

i¼1 xi yi � n �x �yPn
i¼1 x

2
i � n ð�xÞ2 ¼ Sxy

Sxx

(further verification that it is indeed a minimum is necessary, although we will not go into details). A
value that is used as a measure of how well the regression straight line approximates to the n point, is
the determination coefficient or R-squared, being defined by

R2 ¼
�Pn

i¼1 xi yi � n �x �y
�2�Pn

i¼1 x
2
i � n ð�xÞ2 � �Pn

i¼1 y
2
i � n ð�yÞ2� ¼ S2xy

Sxx Syy
,

with Syy ¼
Pn

i¼1 y
2
i � n ð�yÞ2, which is between 0 and 1 and is interpreted as the proportion of the total

variability of the data that is explained by the regression straight line. The closer to 1 is R, the better
the linear approximation of the relationship between variables X and Y. Its square root, with the sign
of the slope b1, is the well-known Pearson’s correlation coefficient r∈ [− 1, 1].

A.1. The hypotheses of the regression model (LR hypotheses)
The regression model assumes that for each fixed value of the variable X, xi (i = 1,…, n), the random
variable Y, which is denoted in this case by Yi, has Gaussian distribution with a mean which is a
linear function of xi, say γ0 + γ1 xi, where γ0 and γ1 are parameters independent of i, and with
variance σ2 > 0, which is also a parameter independent of i, that is, we assume that

Yi � Nðg0 þ g1 xi, s
2Þ i ¼ 1, . . . , n:

Moreover, we assume that the random variables Y1,…, Yn are independent. In other words,

Yi ¼ g0 þ g1 xi þ di i ¼ 1, . . . , n, (A 2Þ

where δ1,…, δn are independent and identically distributed random variables, N(0, σ2). These are the LR
hypotheses that are needed in order to perform statistical inferences. We assume them in the remainder of
appendix A. In this context, b0 and b1, the coefficients of the regression straight line, are the estimations of
the parameters of the model γ0 and γ1, respectively, obtained from data, that is, bg0 ¼ b0 and bg1 ¼ b1. The
estimation of parameter σ2 is Pn

i¼1 e2i
n� 2

¼ SSE
n� 2

¼ MSE: (A 3Þ



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211103
14
A.2. The coefficient estimates

Consider the estimations b0 and b1 of the coefficients of the linear regression model (respectively, γ0 and γ1
in equation (A 2)) given by (A 1). If in (A1) we substitute the observations yi by the random variables
from which they are assumed to be realizations, Yi, we obtain the expressions in (A 4) of the
estimators of the coefficients, say B0 and B1, which are random variables from which the estimations
b0 and b1, respectively, are realizations.

B1 ¼ SxY
Sxx

, with �Y ¼ 1
n

Xn
i¼1

Yi, SxY ¼
Xn
i¼1

xi Yi � n �x �Y

B0 ¼ �Y� B1 �x

9>>=>>; (A 4Þ

The Gauss–Markov theorem1 says that if the hypothesis of the linear regression model, LR hypotheses,
are satisfied, the estimators B0 and B1 are unbiased, that is, their distributions are centred at the
corresponding coefficients

E ðB1Þ ¼ g1, EðB0Þ ¼ g0,

(E denotes expectation of a random variable, that is, its mean value), and they are the tightest possible in
the sense that they have the smallest variance among all possible estimators of the coefficients that are
linear functions of the variables Y1,…, Yn. Then, they are the best linear unbiased estimators (BLUE)
of the coefficients of the linear regression model.

With regard to the other parameter of the model, σ2, its estimation is given by (A 3), which is the
realization of the estimator cs2, a random variable independent of B0 and B1 defined by

cs2 ¼
Pn

i¼1 E
2
i

n� 2
, with Ei ¼ Yi �

�
B0 þ B1 xi

�
, that verifies

cs2

s2 ðn� 2Þ � x2n�2:
A.3. The analysis of the variance (ANOVA) for the linear regression model
The principles and methodology of ANOVA (ANalysis Of the VAriance) can be applied to study if there
is a linear relationship between two variables X and Y. Specifically, we will carry on a statistical test for
the hypotheses

H0 : g1 ¼ 0
H1 : g1 = 0

�
(H0 is the null statistical hypothesis that corresponds to ‘no linear relationship between the variables’,
while the alternative H1 is the opposite). Considering that quantities x1,…, xn are fixed, the total
variability of the observations is measured by the ‘total sum of squares’ SST ¼Pn

i¼1ðyi � �yÞ2, which
can be decomposed as

SST ¼
Xn
i¼1

e2i þ b21
Xn
i¼1

ðxi � �xÞ2 ¼ SSEþ b21 Sxx,

where SST has n− 1 associated degrees of freedom (over the n quantities yi � �y, there is only one linear
restriction:

Pn
i¼1ðyi � �yÞ ¼ 0), SSE has n− 2 degrees of freedom since we sum the squares of n terms with

two independent linear restrictions:
Pn

i¼1 ei ¼ 0 and
Pn

i¼1 ei ðxi � �xÞ ¼ 0, and finally b21 Sxx has 1 degree of
freedom since it is fixed.

The statistical test of hypotheses consists in rejecting H0 if f ¼ b21 Sxx=MSE, with MSE = SSE/(n− 2), is
‘big enough’, that means greater than a tabulated value. As it can be seen (we do not give the details here)
that f is the realization of a random variable F with distribution Fisher’s F with 1 and n− 2 degrees of
freedom if the null hypothesis H0 is true, that is,

F ¼ B2
1 Sxx�Pn

i¼1 E
2
i =ðn� 2Þ

	 � F1,n�2 if g1 ¼ 0,
1As explained in [16], the method of OLS was developed by Gauss in Theoria combinationis observationum erroribus minimis obnoxiae
(1823), where a first proof of an early version of the theorem is given. Markov rediscovered the same result and included it in his
book Wahrscheinlichkeitsrechnung (1912), the year in which Fisher converts least squares into a general estimation method in
statistics. The terminology Gauss–Markov theorem comes from Neyman. For historical details, see [17].
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the hypothesis null H0 is rejected with a significance level α (then, a linear relationship between the

variables is accepted) if

p-value ¼ PðF1,n�2 . fÞ , a:

Calculations necessary to obtain f are usually carried out with help of the ANOVA table:

Analysis of variance (ANOVA) table
g.org/journal
source of
variation
response Y
 degree of freedom (d.f.)
 sum of squares (sum Sq)
 mean square (mean Sq)
 F-value
 /rs
os
regressor X
 1
 b21 Sxx
 b21 Sxx
 f ¼ b21 Sxx=MSE
R.
residuals (error)
 n− 2
 SSE ¼Pn
i¼1 e

2
i
 MSE = SSE/(n− 2)
Soc.
total
 n− 1
 SST ¼Pn
i¼1ðyi � �yÞ2
Ope
n
Sci.9:211103
A.4. Predicting with the linear regression model

Given a value for the variable X, let us say x0, the straight line equation is used to predict the
corresponding for the variable Y, which is denoted by ŷjx0, in the following way:

ŷjx0 ¼ b0 þ b1 x0,

and it can be carried out as long as the value x0 is found within the range of values given by x1,…, xn,
and if the linear approximation is good (R2 big enough).
A.5. Confidence intervals for the coefficients
Fixed γ∈ (0, 1) as confidence level, the confidence intervals for the coefficients of the regression straight
line are

g1 : b1 + tn�2
1�ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Pn
i¼1 e

2
i =ðn� 2Þ�
Sxx

s
and g0 : b0 + tn�2

1�ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Pn
i¼1 e

2
i =ðn� 2Þ� �Pn

i¼1 x
2
i =n
�

Sxx

s

where α = 1− γ and tn�2
1�ða=2Þ is the critical value for the distribution Student’s t with n− 2 degrees of

freedom, tn−2, such that the probability that this distribution gives a value greater than the critical
value is α/2 (that is, given ω∈ (0, 1), tn�2

v denotes the real number such that Pðtn�2 , tn�2
v Þ ¼ v).
A.6. Confidence interval for the prediction
Fixed a value for the variable X, say x0, and γ∈ (0, 1) as confidence level, the confidence interval for the
prediction for the variable Y, Ŷjx0 ¼ g0 þ g1 x0 (which can be thought as a new parameter, function of γ0
and γ1, whose estimation is ŷjx0 ¼ b0 þ b1 x0) is

ŷjx0 + tn�2
1�ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 e

2
i

n� 2

� �
1
n
þ ðx0 � �xÞ2

Sxx

 !vuut :

The value of x0 that minimizes the length of the confidence interval for the prediction is x0 ¼ �x. As x0
moves away from �x (by excess or by default) the length increases symmetrically.



Table 4. Example of practical calibration (table 3 in [19]): five replications of the absorbance reading for any of the 14 fixed
concentrations.

concentration absorbance

0 0 0 0 0 0

1 0.053 0.053 0.054 0.054 0.055

2 0.092 0.092 0.092 0.092 0.092

3 0.130 0.134 0.129 0.129 0.128

4 0.181 0.181 0.181 0.179 0.180

5 0.209 0.208 0.208 0.207 0.207

6 0.265 0.265 0.264 0.262 0.264

7 0.324 0.324 0.324 0.324 0.324

8 0.354 0.352 0.352 0.352 0.354

9 0.381 0.379 0.381 0.379 0.381

10 0.430 0.430 0.430 0.430 0.430

20 0.881 0.880 0.880 0.880 0.882

40 1.576 1.575 1.576 1.576 1.576

60 2.062 2.062 2.062 2.060 2.062
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A.7. Statistical hypotheses testing
Fixed a significance level α∈ (0, 1), the statistical test of hypotheses for the parameters of the regression
model are:

g1 : statistic t ¼ b1 � g01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Pn
i¼1 e

2
i =ðn� 2Þ�=Sxxq , g0 : statistic t ¼ b0 � g00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Pn

i¼1 e
2
i =ðn� 2Þ� �Pn

i¼1 x
2
i =nÞ=Sxx

q
alternative hypothesisðg01, g00 fixed ) accepted if p-value

H1 : g1 . g01 = g0 . g00 �! t . tn�2
1�a �! P(tn�2 . t)

H1 : g1 , g01 = g0 , g00 �! t , tn�2
a �! P(tn�2 , t)

H1 : g1 = g01 = g0 = g00 �! j t j. tn�2
1�a=2 �! 2P(tn�2 . jtj)
A.8. Prediction interval
Fixed a value for the variable X, say x0, and γ∈ (0, 1) as confidence level, the prediction interval is an
interval ‘of the most probable values’ for the variable Y, that when X = x0 we denote by Y0, that is,
Y0 = γ0 + γ1 x0 + δ0 with δ0∼N(0, σ2) independent of δ1,…, δn. Informally speaking, the prediction
interval is an interval where the variable Y0 takes values with probability γ, and has the expression

ŷjx0 + tn�2
1�ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 e

2
i

n� 2

� �
1þ 1

n
þ ðx0 � �xÞ2

Sxx

 !vuut : (A 5Þ
A.9. Prediction interval for classical calibration
The problem with classical calibration is that to make predictions we have to deal with the reciprocal of the
slope, which follows a Gaussian distribution under the hypothesis of the linear regression model. The
reciprocal of a Gaussian random variable has infinite variance (then, the mean squared error is infinite),
but although an asymptotic approximation can be derived using the Delta method (see [14]), it has
limitations. By formulae (4.32) and (4.32a) in [18, p. 169], for any absorbance Ai, the corresponding
prediction interval using the classical calibration and under the hypothesis of the linear regression model,



Table 5. Predictions with the two methods: classical calibration and inverse regression, and corresponding radius of the
prediction intervals and errors, for data in table 4. In italics the maximum R2 and the minimum standard error s.e.

predictions bci prediction interval radius errors ci �bci
Ai ci

classical
Ai�b0
b1

inverse α0 +
α1 Ai

classical
(a)

inverse
(b) classical ei inverse ɛi

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.181 4 3.62591020 3.7126938 2.582782 2.576339 0.374089799 0.28730621

0.179 4 3.56942588 3.6567619 2.582810 2.576365 0.430574117 0.34323815

0.180 4 3.59766804 3.6847278 2.582796 2.576352 0.402331958 0.31527218

0.209 5 4.41669065 4.4957409 2.582411 2.575986 0.583309349 0.50425915

0.208 5 4.38844849 4.4677749 2.582423 2.575998 0.611551508 0.53222512

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
SSE = 187.5209 185.687

MSE = SSE/(n− 2) = 2.75766 2.730692

se ¼ ffiffiffiffiffiffiffi
MSE

p ¼ , 1.66062 1.65248

R2 = 1 − SSE/SST = 0.990124 0.9902206

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211103
17
is of the form bci + ðaÞ, where

ðaÞ ¼ tn�2
1� a

2

1
b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ee2i

n� 2

� �
1þ 1

n
þ ðbci � �cÞ2Pn

i¼1 c
2
i � n�c2

 !vuut , (A 6Þ

witheei being the errors committedwith the classical calibration, not to predict concentration fromabsorbance
but to predict absorbance by concentration, that is, eei ¼ Ai � ðb0 þ b1 ciÞ. See also formula (5) in [14].
Appendix B. Two more examples

B.1. An example of practical calibration with real experimental data
The following example of practical calibration is borrowed from [19] and can be used to compare the
approaches of classical calibration and inverse regression. The data (table 3 in [19]) are absorbance
readings for potassium permanganate at 525 nm given by the scanning of the spectrophotometer for
different concentrations. Specifically, a stock solution for standards was made by 0.072 g of potassium
permanganate in 250.0 cm3 standard flask, and standard working solutions are five replicates of each
one, containing, respectively, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60 mg dm−3 of potassium
permanganate, made by dilution of appropriate aliquots of the stock solution to 100.0 cm3 with
deionized water. Concentrations and measured absorbances are recorded in table 4 .

The two calibration curves given by (3.2) and (4.2) are

Classical calibration (curve ofA over cÞ : A ¼ b0 þ b1 c ¼ 0:05261356þ 0:03540806 c
Inverse regression (curve of c overAÞ : c ¼ a0 þ a1 A ¼ �1:349146þ 27:96597A:

For the difference between the absolute value of the errors in prediction with the classical calibration
and the inverse regression (the former minus the latter) (table 5), we perform a one-sided Wilcoxon
signed-rank test, which is the non-parametric counterpart of the t-test, to compare its median with 0
(the p-value of the Shapiro–Wilk test for normality is 1.976 × 10−8���, meaning that we have enough
evidence to reject the normality of the sample). The p-value of the one-sided Wilcoxon test with the
alternative hypothesis: ‘the median of the difference is greater than 0’ is 0.0002126���; that shows a
clear statistical significance in favour of inverse regression.



Table 6. First 10 observations of the simulated dataset. Note that original observation 8 has been deleted since the simulated
absorbance for a concentration of 57 was the negative number −1.1404749.

observation original order ci Ai

1 50 0.7376204

2 51 1.8321149

3 52 7.5390685

4 53 2.8829671

5 54 3.1188437

6 55 8.1835117

7 56 4.2675450

9 58 0.7379806

10 59 1.5506931

11 60 6.8808865

⋮ ⋮ ⋮
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With respect to the prediction interval radius, for all the (n = 70) observations, the radius for the
inverse regression is less than that of the classical calibration approach. We can perform a statistical
test to check if the median of the difference of the prediction interval radius (classical calibration
minus inverse regression) is significantly greater than 0. As the p-value for the Shapiro–Wilk of
normality is 8.925 × 10−14���, we reject normality and make the one-sided Wilcoxon signed-rank test,
obtaining as p-value 1.793 × 10−13���, that expresses a very high statistical significance in favour of the
inverse regression approach.

The analysis of variance (ANOVA) table for regression (see appendix A) applied to the inverse
regression approach is:
source of variation response c
 d.f.
 sum Sq
 mean Sq
 F-value
regressor A
 1
 a2
1 SAA ¼ 18801:81
 a2

1 SAA ¼ 18801:81
 f = 6885.344
residuals (error)
 68
 SSE ¼Pn
i¼1 e

2
i ¼ 185:69
 MSE = 2.7307
total
 69
 SST ¼Pn
i¼1ðci ��cÞ2 ¼ 18987:5
with SAA ¼Pn
i¼1ðAi � �AÞ2 ¼ 24:04031. The p-value for the statistical test with H0: ‘no linear relationship

between A and c’, if the LR hypotheses can be reasonably assumed, is P(F1,68 > 6885.344) < 2.2 × 10−16���,
and therefore we accept the linear relationship between concentration and absorbance.
B.2. An example by simulation
Apart from the toy example in §5, and the practical calibration example with real experimental data in the
first subsection of this appendix, now we will perform a simulation experiment consisting in the
following. First, a dataset with some values of concentration and the corresponding absorbances have
been created by simulation, in this way:

(i) Fix values for the concentration, ci, from 50 to 500, with a step one by one: 50, 51, 52,…, 499, 500 (a
total of 451 values).

(ii) Compute the corresponding values of the absorbance Ai by means of the linear expression with
Gaussian additive noise (error),

Ai ¼ 0:01þ 0:05 ci þ 1i, i ¼ 1, . . . , 451,

with ɛi∼N(μ = 0, σ2 = 10), all generated independently. We use the function rnom of R, and fix a
random seed for reproducibility purpose with set.seed(123).

(iii) As it is possible that some values of the absorbance are negative, delete such observations. This
will depend on the Gaussian values that have been randomly generated. In our case, we are
left with a final number of n = 447.



Table 7. Sum of squared errors and mean sum of squared errors in the validation procedure for both approximations, classical
calibration and inverse regression, with k-fold cross-validation, k = 10, and difference in the mean sum of squared errors
between the approximations (classical calibration minus inverse regression).

fold sum of squared error mean sum of squared error

classical inverse classical inverse difference

1 268747.2 221536.15 6398.742 5274.670 1124.07218

2 207565.9 195265.34 4942.046 4649.175 292.87117

3 162817.2 137581.22 3876.600 3275.743 600.85696

4 148482.3 92484.90 3535.294 2202.022 1333.27201

5 198475.3 180907.94 4725.602 4307.332 418.26981

6 158211.0 105958.98 3766.930 2522.833 1244.09681

7 128881.1 112011.31 3068.597 2666.936 401.66138

8 128828.6 130050.20 3067.347 3096.433 −29.08651
9 157612.6 84083.97 3752.680 2001.999 1750.68097

10 173684.0 147785.03 3544.572 3016.021 528.55118

average: 4067.841 3301.316 766.5246

Table 8. Average mean sum of squared errors for both approximations, classical calibration and inverse regression, with k-fold
cross-validation, k = 10, p-value for the one-sided t-test to compare the differences in the mean/median, and p-value of the
exact binomial test in favour of the inverse regression (except those marked with y, which are in favour of the classical
calibration), with the number of folds, out of the 10 there are, for which the mean sum of squared errors is greater for the
inverse regression than for the classical calibration in brackets. All the p-values are significant except those for σ2 < 2.

average mean sum of squared
errors p-value p-value

σ2 classical inverse t-test/Wilcoxon test exact binomial test

0.01 4.014717 4.01434 0.4754 (6) 0:2050781y

0.1 40.17608 40.10235 0.3534 (6) 0:2050781y

0.5 201.1428 199.0806 0.1815 (5) 0.2460938

1 402.6806 394.2868 0.1016 (3) 0.117187500

2 806.484 772.9201 0.04209� (2) 0.043945310�

3 1211.606 1133.598 0.01526� (1) 0.009765625��

4 1617.850 1481.911 0.007936�� (1) 0.009765625��

5 2009.188 1801.027 0.004883�� (2) 0.043945310�

6 2439.265 2135.996 0.003818�� (1) 0.009765625��

7 2832.297 2437.114 0.003476�� (1) 0.009765625��

8 3243.029 2735.674 0.002206�� (1) 0.009765625��

9 3654.897 3023.564 0.001446�� (1) 0.009765625��

10 4067.841 3301.316 0.0009752��� (1) 0.009765625��

20 8539.498 5685.383 0.0003228��� (1) 0.009765625��

30 13335.26 7548.766 0.0009766��� (0) 0.0009765625���

As usual, �, �� and ��� denote significance at 5%, 1% and 0.1% levels, respectively.
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The first 10 observations of the 447 have been recorded in table 6. For the dataset with n = 447
observations, we obtain 0.9020323 as Pearson’s correlation coefficient, and 0.9060091 if instead we
compute Spearman’s correlation coefficient, both reflecting a good linear relationship between
concentration values and the corresponding simulated absorbances.
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Second, we use k-fold cross-validation with k = 10 to evaluate the prediction error with the two

approaches, classical calibration and inverse regression. Indeed, we randomly order the n instances
(using the sample function of R), and then divide the observations into 10-folds, the first 9 composed
of bn=10c observations (in this case, 44), and the last with the rest (51 observations). Then, for each fold:

(a) We reserve the fold for validation and learn the linear regression models (to follow the two
approaches) with the rest of the folds as a learning (training) set.

(b) Once learned the two linear regression models, we follow the two approaches to predict, for each of
the instances in the validation set, the concentration value from the known absorbance.

(c) As we know the observed concentration value corresponding to the absorbance of any observation in
the validation set, we can compare the observed and the predicted values obtained with the two
approaches.

(d) For any fold and approach, we compute the sum of the squared errors in making predictions and
also divide by the number of instances minus 2, to compensate the fact that one of the folds has
more observations than the other, obtaining in this way the mean sum of squared errors.
Be careful: we are making predictions for the concentrations given the absorbances of new

observations not seen by the regression models, which are the observations of the validation
dataset. This is different from the usual situation in which we evaluate the predictive capacity of
the model making predictions for the same observations that have been used to construct the model.

(e) Finally, we have two paired samples of size k = 10 of values of the mean sum of squared errors, that
can be used to perform a statistical test to compare the two approaches from the point of view of their
predictive power.

In table 7, we have recorded the mean sum of squared errors for each fold.
For the difference between the mean sum of squared errors with the classical calibration and the

inverse regression (the former minus the latter), we can perform a one-sided t-test to compare its
mean with 0 (since the Shapiro–Wilk test for normality gives a p-value of 0.5422, which implies that
we do not have enough evidence to reject the normality of the sample). The p-value of the one-sided
t-test with the alternative hypothesis: ‘the mean of the difference is greater than 0’ is 0.0009752���,
giving a very high statistical significance in favour of inverse regression being better than classical
calibration (less mean sum of squared errors when predicting new cases). If instead, we had used the
non-parametric Wilcoxon signed-rank test, not assuming normality of the sample of the differences,
the one-sided p-value continues to be very small, 0.001953��, showing statistical significance in the
same sense.

Finally, it is also possible to compute the p-value of the exact binomial test in favour of the inverse
regression, taking into account that out of 10 cases, there are nine in which the mean sum of squared
errors is greater for the classical calibration, and only one in which it is less,

p-value ¼ PðBð10, p ¼ 0:5Þ ¼ 1Þ ¼ 10
1

� �
0:510 ¼ 10� 0:510 ¼ 0:009765625��

(showing significance at 1% level).
As a conclusion, we can see that even in this example, in which the absorbance values have been

simulated from those of the concentration to be able to reasonably assume the LR hypotheses with the
classical calibration approach, favouring this approach, from the perspective of predictive power it is
better to use the approximation of the inverse regression instead, in concordance with the conclusions in [13].

To evaluate the possible effect of the variance σ2, that we have chosen to be 10 to simulate the
absorbance values up to now, we repeat the procedure with other possible values ranging from 0.01
to 30. In table 8, we record for any σ2, the values that had been computed before for the case σ2 = 10:
the average of the mean sum of squared errors (both, for the classical calibration and the inverse
regression), the p-value of the one-sided t-test (or Wilcoxon signed-rank test, as appropriate) to
compare the differences (mean/median of the classical calibration greater than that of inverse
regression), and the p-value of the exact binomial test in favour of the inverse regression. We can
observe clear evidence in favour of the inverse regression approach if σ2 is big (σ2≥ 2), and no
differences when σ2 is small, which agrees with intuition.
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