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Land use is central to addressing sustainability issues, including biodiversity conservation, climate change,
food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumu-
lated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard
truths that have strong, general, empirical support. These facts help to explain the challenges of achieving
sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and
values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with
abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of
land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of
land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used
planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between
different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlap-
ping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users
have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have
implications for governance, but do not provide fixed answers. Instead they constitute a set of core princi-
ples which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges
in land use.
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How human societies use, manage, and interact with
land is key to addressing current sustainability issues
including nature conservation, climate change, food
security, poverty alleviation, and energy transitions,
framed in high-level political agreements from the
2030 Agenda for Sustainable Development to the

Paris Climate Agreement or the Convention on
Biological Diversity. Despite the centrality of land use
to these debates, long-disproven misconceptions,
partial framings, and ill-conceived ideas continue to
permeate these discussions, such as the misconcep-
tion that there is abundant land available globally
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that is “unused” or “uncontested” (1). Misconceptions of com-
plexities also distort potential solution spaces, for instance with
the frequent advocacy for single, silver-bullet solutions to
issues that should instead be framed as wicked problems (2).
We challenge these received wisdoms (3) through 10 facts that
have broad empirical support from land system science (LSS).

Land systems are terrestrial social-ecological systems where
human and environmental systems interact through land use
and are the focus of the interdisciplinary field of LSS (4, 5). From
knowledge accumulated over decades by a large and diverse
LSS community, we extracted key insights that scientists, policy
and decision makers, and practitioners should understand about
land use. These insights are akin to “stylized facts” or “empirical
regularities” in economics or ecology, i.e., empirical generaliza-
tions supported by a solid body of evidence that represent the
current state of knowledge on land systems. They are structured
around four core, higher-level facts (numbers 1, 2, 6, and 10;
see Fig. 1) and six more specific ones stemming from these.
These facts build on and derive from each other, but each
expresses a singular idea.

Fact 1 provides a foundation, as meanings and values about
land underpin all purposes and thus how human societies inter-
act with land. Fact 2 and its corollaries (3 to 5) establish that
land systems have the properties of complex systems, which
hold across spatial and temporal contexts. Together, Facts 1
through 5 thus establish basic properties of land systems. Fact
6 and its corollaries (7 to 9) describe contingent realities: facts
that are, at present, empirically correct, but which might
change. Fact 10 concludes by describing normative founda-
tions on which to build solutions to land-related sustainability
challenges. Instead of an exhaustive review of the state of
knowledge on land systems (see refs. 6–9 for foundational
works), we focus on key lessons from LSS that can serve as com-
mon ground for scientists, policy makers, and practitioners to
collaborate on addressing pressing challenges around land.
We highlight how each fact implies distinct challenges for sus-
tainability and discuss the implications of these facts for the
governance of sustainable land systems.

Ten Facts
1. Land Is a Source and Focus of Multiple Meanings and Values.
Land is first a biophysical reality. However, it is also humanity’s
home; it constitutes landscapes and it is culturally and symbol-
ically loaded. Notions of land being “valued” or “useful,” or
the converse, are necessarily social constructions, reflecting
diverse beliefs and perspectives of the different people who live
in, use, and govern land (10, 11). Land is embedded in knowl-
edge and belief systems, religious or otherwise, and is an
anchor for memories, identity, and heritage as well as for
hopes and aspirations, through which people develop a diver-
sity of values relating to land and nature, and land becomes a
place (12, 13). Land can be a source of power and prestige or
a space to occupy for (geo)political purposes, and it is also a
core source of livelihoods and economic profit, including a
means to capture subsidies or rents. Meanings and values of
land are dynamic over time and influence the claims regarding
the use and expected benefits of land (14, 15).

As a crucial example, notions of degradation and restoration
build on biophysical aspects but are socially constructed and thus
potentially highly contested. Broadly, defining land degradation
as the set of processes that drive the decline of land-based
biodiversity, ecosystem functions, or their benefits to people (10)

highlights a dual notion. On the one hand, there is solid biophysi-
cal and ecological knowledge allowing us to measure scientifically
indicators of change in ecosystem functions, such as climate regu-
lation. On the other hand, the interpretation of these physical
measures as affecting benefits from land ultimately lies in people’s
views and definitions, which can be broadly shared but also con-
flicting (16, 17). Certain specific land system changes, such as soil
erosion and organic matter loss, which are typically part of what
people define as land degradation, have generally overwhelm-
ingly negative impacts on human societies, but definitions of land
degradation usually go beyond these specific aspects. Shifting cul-
tivation and the use of fire for vegetation management are two
recurring and disputed examples of the role of indigenous and
traditional land use practices that are mobilized in land degra-
dation debates. Judgments on whether these practices lead to
degradation have long been rooted in deep ethnocentric values
and beliefs about civilization versus the savage, and “modern”
versus “backward” (18–20). Reflecting these various definitions
and uncertainties, estimates of the global extent of land degra-
dation range from 10 to 60 Mkm2 (10, 21). This large range and
varying interpretations complicate international efforts to
address degradation and restoration such as the United Nations
Convention to Combat Desertification and Sustainable Devel-
opment Goals’ objectives of land degradation neutrality (22).

These multiple values, meanings, and “ways of knowing” under-
line the need for land governance processes that bridge diverse
knowledge and value systems (15, 23) and also explain why
top-down policy agendas, often rooted in one dominant value
system, are generally contentious and resisted (24).

2. Land System Dynamics Are Complex, with Feedbacks and
Interactions Leading to Both Abrupt Changes and Stability.
Land systems are complex social-ecological systems, with multi-
ple interactions between natural processes, socioeconomic and
cultural dynamics, technologies, and governance systems across
spatial and temporal scales (6). Further complexities arise
because the scales at which societal decisions are made often
do not match with the scale of environmental dynamics. These
complex, cross-scale interactions can lead to abrupt, sometimes
unpredictable, structural transformations in land use and eco-
system dynamics, known as regime shifts (25–27). Prominent
examples include the sudden emergence of large-scale defores-
tation frontiers in the tropics or massive land abandonment follow-
ing the breakdown of the Soviet Union (28, 29). Complexity
implies that some seemingly rational interventions, such as intensi-
fying agriculture or forestry in order to spare land for nature, may
trigger counteracting rebound effects, resulting in further agricul-
tural or forestry expansion (5). Technological advances such as soil
improvement, agricultural mechanization, and genetic improve-
ment of crops can trigger profound and rapid changes in the way
land is used and the spatial distribution of land uses (28). Complex
interactions driven by positive feedbacks can lead to abrupt
changes, while negative feedbacks and time lags can strongly hin-
der or slow other land system changes, creating stability that can
be desirable or undesirable (30). Examples of negative feedbacks
are poverty traps that maintain households in low agricultural pro-
ductivity systems (31, 32) or public subsidies that may improve
resilience of agriculture to market (commodity price volatility) or
environmental (e.g., extreme weather events) stressors and shocks
but may also hinder needed systemic transformations (33).

Despite this complexity, it is possible to build contextual gen-
eralizations of causal mechanisms which can support explanations
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and interventions; examples include middle-range theories on
forest transitions, land-use spillovers, the conditions under which
intensification can lead to land sparing (5, 34, 35), or archetypes
of the outcomes of large-scale land acquisitions (36). However,
complexity does make prediction of the consequences of inter-
ventions hard and sometimes impossible, as with many other
sustainability domains, partly explaining why projections of future
land use tend to be so variable (37).

3. Some Land-Use Changes Have Irreversible Social and Envi-
ronmental Impacts at the Scale of Decades to Centuries. Many
land systems have constrained future options, due to land-use
changes that crossed critical thresholds and created path
dependence. This can constitute “lock-in” situations, where
combined biophysical, infrastructural, technological, institu-
tional, and behavioral processes act to inhibit change (38) or
reduce the resilience of systems in response to perturbations.
Impacts resulting from such situations can be social and environ-
mental, can be positively or negatively valued, and may be hard
to reverse (39–41). Examples are conversion of prime agricul-
tural land to urban or other impervious land covers (42–44),
old-growth forest destruction (45), peatland drainage (46), soil
salinization (47), as well as legacies of political boundaries, eco-
nomic development trajectories, or infrastructure that create
behavioral or energy lock-ins, such as in mobility patterns (48,
49). Increasing returns to scale or agglomeration economies can
act as a key mechanism reinforcing these lock-ins. Disturbed land
might be restored to some extent, sometimes through hysteresis
pathways, but key impacts can be considered irreversible in a
time frame relevant to human societies, e.g., biodiversity compo-
sition, soil organic carbon, or biogeochemical cycles may take cen-
turies to recover in secondary forests or grasslands (50, 51). A
major complication is that irreversibility is often unacknowl-
edged due to the phenomenon of “shifting baselines” or
“environmental amnesia”: People become progressively used
to the new state so that they are no longer aware that it represents

a change, and therefore may not appreciate what has been per-
manently lost (52, 53). Overall, land-use change may thus lead to
the loss of option value (i.e., the value of having a more diverse set
of options in the future) which implies challenges for sustainability
and intergenerational justice. Therefore, over short to medium
time scales it is more important to monitor and govern gross land-
use changes, such as initial clearing of primary forest, rather than
net land-use changes, such as changes in total forest cover. Fur-
thermore, restoration, although crucial (54), often cannot fully bring
ecosystems back to their original state, which may anyway be hard
to identify. Instead, where a return to a past reference state is
infeasible, restoration should focus action along a gradient includ-
ing both “hybrid” (55) and “novel” ecosystems (56) approaches.

4. Certain Land Uses Have a Small Spatial Extent but Large
Spillover Impacts. Some land uses have widespread impacts far
larger than their own relatively small land footprint. These small-
footprint, high-spillover land uses can drive extensive impacts by
influencing the spatial structure of landscapes and by catalyzing
cascading effects of other land uses around them or distantly.
These land uses may lead to fragmentation of other land covers
(e.g., roads inducing deforestation and natural habitat fragmen-
tation) or may structure other land uses around them (e.g., with
urban configuration and transport infrastructure shaping other
land uses, energy extraction, and waste disposal patterns).

Key land uses that have such large spillover effects include
cities and urban areas (57, 58) with their effects on resource
consumption patterns, urban heat islands, or outdoor nighttime
lighting (59–61); roads and channelization of waterways (62); and
hydropower dams and resource extraction infrastructures (63, 64),
including mining (65), as well as renewable energy projects (66).
Within a landscape, a plot of intensive cropland can generate
large externalities or spillovers, such as effluents and pesticide
leaching, or impacting biodiversity through changed connectivity.
These large spillover impacts can be positive as well as negative,
e.g., if very intensive local footprints in one place, such as dense

Fig. 1. Ten empirical realities (facts) about land systems that have strong, general support. Challenges summarize the issues that arise
from each fact when trying to manage and govern land systems for sustainability. Implications summarize how governance of land systems
for sustainability could be improved by acknowledging these facts and challenges. The 10 facts are structured through four higher-level
facts (1, 2, 6, and 10) and several lower-level facts that derive from these higher-level ones (3, 4, and 5 deriving from 2; 7, 8, and 9 deriving
from 6), yet they all express specific realities that imply distinct challenges.
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urbanization or intensive agriculture, lead to lower impacts
elsewhere, such as through reduced urban sprawl or agricultural
expansion (67).

The indirect impacts of such small-footprint, high-spillover
land uses are often less visible and less well understood than
direct impacts (68, 69). Nonetheless, managing these spillover
impacts is often more important than direct impacts.

5. Land Systems Are Interconnected Globally. Land system
changes are increasingly influenced by distant drivers, which may
have possibly unintended or unexpected consequences in other
places (70). Such couplings of land systems occur at local,
regional, and global scales, and globalization has reinforced the
complexity of influences that can operate on any single piece of
land. Broad patterns of land use can often be explained by a few
structural socioenvironmental factors, but distant influences
increase the number of determinative processes and make it
more complicated to foresee and predict the specific trajectories
of land system change. For example, increases in forest cover,
such as in high- or middle-income regions, can be linked to
deforestation in other, often tropical, regions through various
forms of displacement or leakage. Furthermore, spillovers from
policies like REDD+ or certification systems to conserve forests
can displace deforestation locally and distantly through multiple
pathways, e.g., by inducing population movements, or creating
incentives for land managers abroad to expand production to
serve market demands (68, 71). Positive spillovers can also occur,
for example when more sustainable land-use practices are intro-
duced or supported in an area by distant land users.

These distant linkages result in the consumption of land-
based goods being increasingly physically and mentally
detached from the land itself, blurring the perception by con-
sumers of the impacts linked to land use. Many benefits of land
use are appropriated distantly toward 1) cities, where an increas-
ing share of the global population reside, and 2) internationally,
as reduced costs and regulatory barriers expand global trade (10,
72). Around 40% of the global material resource extraction and
use has been linked to internationally traded goods and services
(73). International trade represents ∼23% of global economic out-
put, while embodying 21 to 37% of land use and 17 to 30% of
biodiversity loss (74). Trade has heterogeneous effects on land-
use efficiency (such as overall yields per land unit area); some
trade relations may lead to concentrating production on land with
the highest efficiency, while others may lead to expanding pro-
duction into less-suitable areas and degradation of land systems
(75, 76). Globalization and access to very large markets can also
lead to high spatial concentration of some land uses in specific
localities where they can have large impacts, such as deforesta-
tion and economic returns linked to vanilla production in Mada-
gascar or avocado production in Michoac�an in Mexico (77, 78).

These distant couplings imply that 1) new approaches are
needed to reconnect actors to the consequences of their deci-
sions, 2) local solutions to land system challenges may only dis-
place problems if distant connections are not considered, and
3) the boundaries of LSS need to expand to genuinely encom-
pass consumption of material and nonmaterial benefits and its
dynamic interactions with the required land uses.

6. People Use or Manage over Three-Quarters of Earth’s Ice-
Free Land, and Even Seemingly Unused Land Provides Benefits
to People. Human impacts on Earth through land use are
ancient (8, 79, 80), although the pace of land use change has

accelerated over recent decades. As a result, ∼25% of the ∼130
Mkm2 of ice-free land has been converted by humans (natural
ecosystems converted to cropland, settlements, mining, etc. or for-
est converted to grassland) (10, 81–84). An additional ∼50% of
Earth’s ice-free land is modified by land management to various
degrees, without having experienced full conversion to another
ecosystem type but with potentially large environmental impacts;
examples include forest used for wood harvesting, hunting, and
other products collection, and grasslands used for grazing
(83, 85). In total, three-quarters of the ice-free land surface is
thus used or managed by humans. Half of the remainder has
extremely low vegetation productivity (e.g., deserts), so only
∼12 to 16% of the ice-free land surface remains as vegetated
land without direct land use influence, mostly in inaccessible
tropical and boreal regions. Yet, even these remaining lands are
influenced by humans by other global environmental change
processes, including climatic and atmospheric changes.

Some of the transformed land fulfills a narrow set of functions
(e.g., intensive cropland that essentially provides food and
income), but much land provides multiple benefits, so that even
land managed for crop or forestry production can have nature
conservation potential and provide valuable ecosystem services.
Land without active use or management, including what is some-
times referred to as “wilderness,” also provides societal benefits
including water provisioning, carbon sequestration, and cultural
and psychological benefits (86–88). Given the scarcity of unused
land, different actors and land uses often compete for the same
land, and this competition is likely to exacerbate in the future. Land
requirements, and conflicts and competition with other land
uses, are often ignored in sectoral sustainability assessments,
such as in identifying grand challenges of renewable wind
energy (89). Nature conservation and carbon sequestration are
actively expanding land uses, supported by a growing policy
momentum, such as Half-Earth and Nature Needs Half initia-
tives, the Bonn Challenge on landscapes restoration and refor-
estation, and the UN Decade of Ecosystem Restoration. These
expanding land uses are therefore often in competition with
current livelihoods (90, 91), although they can also support
them.

Overall, land provides functions no matter whether people
are aware of them or intentionally use them, and all changes in
land use can therefore alter these functions, benefits, and serv-
ices. There is very little land potentially available for expansion
of agriculture, urbanization, climate change mitigation, or biodi-
versity conservation land uses that is “empty” or “free” of trade-
offs (1).

7. Land Use Entails Trade-Offs More Often than Win–Wins;
Maximizing One Benefit of Land, Such as Climate Change Miti-
gation, Nearly Always Reduces Other Benefits for Some. As
most land already delivers some benefits that are heteroge-
neously distributed, and as people across and within societies
attribute different meanings and values to land, trade-offs
between benefits and detriments are typical land system out-
comes (15, 92, 93). A key example is trade-offs between nature
conservation and food production (67). Such trade-offs occur
between people or places with differential access to benefits
and detriments (94–96), or between spatiotemporal scales such
as global versus local issues or current versus future outcomes.
Even the level of congruence between different environmental
indicators such as biodiversity and carbon stocks is highly het-
erogeneous across scales and geographies (97–99).
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While trade-offs are prevalent, they can partly be mitigated,
and win–wins can be crafted. Some lands carry especially high
values of some functions or benefits, so land-use planning can
help mitigate trade-offs such as by improving the crop yield to
carbon emission ratio in agricultural production (100). Synergies
between certain outcomes can exist and can be key levers for
transformation (101, 102) but often have to be actively fostered,
including by bringing different stakeholders’ perspectives closer
to each other (103). Some key examples are the cattle ranching
sector in Brazil, where win–wins can be fostered between envi-
ronmental conservation and economic development through
intensification and improved integration of crop and livestock
systems (104–106) or agroecology and agroforestry systems
that can provide improvements in both yields and environmental
conditions (107, 108). Globally, about 21% of Indigenous Peo-
ples’ lands overlap with protected areas, covering >40% of the
global protected area and providing synergies between conser-
vation goals and indigenous people’s livelihoods (109, 110). But
these opportunities for synergies are often easier to identify
when systems are locked in a highly degraded state and provide
very low or poorly diversified benefits [e.g., degraded pastures
in the Amazon (111) or low-intensity farming in Ethiopia (112)] or
in cultural landscapes where human use and ecosystems have
coevolved over a long time. Further, these synergies may occur
for only certain outcomes, with other trade-offs remaining (113).

The ubiquity of trade-offs implies that prioritizing a single goal
on a land e.g., nature conservation as in the Half-Earth framing, or
tree planting as in the “Trillion Trees Initiative,” would severely
impact other functions if these trade-offs are not explicitly taken
into account (114). Using more land for strict, so-called fortress
conservation would impact human benefits derived from this land
(115). Maximizing carbon sinks on land through large-scale refor-
estation or bioenergy production, for instance is unlikely to pro-
vide adequate cobenefits for food security, nature conservation,
or water provision (116–118).

8. A Large Proportion of Land Globally Has Multiple Overlapping,
Unclear, and Contested Tenure and Claims. The multiple values of
land (Fact 1) interact with societal power relations and asymme-
tries to produce struggles about land tenure and claims. Multiple
systems of governance and tenure overlap, including customary
and legal. Further, there are often different tenure systems for dif-
ferent benefits that land can provide. Rights, including access,
use, and extraction, can all belong to different people, and claims
apply on different aspects (e.g., ownership versus use rights,
indigenous or community lands with constrained rights, mining
exploration) (119, 120). Access is often established through multi-
ple ways of making claims, of which legal titles are only one form,
while many other forms are more important in practice (e.g., phys-
ical claims, barriers, trust, and local social norms) (121, 122).

For much land, who legally holds rights and titles is unclear,
with some actors benefiting from these ambiguities. Indeed,
perhaps up to ∼65% of the world’s land area is covered by vari-
ous forms of customary rights by Indigenous Peoples and local
communities, but only a small part of this is formally recognized
as either owned by (10%) or controlled by (8%) them [http://
www.landmarkmap.org/ (123)]. Although consistent global data
on tenure is still lacking, evidence of widespread tenure over-
laps exist for countries such as Brazil [which has overlapping
claims on 50% of the total registered public or private territory
(124)], Peru (125), Malawi (126), Mozambique (127), Cameroon
(128), and Indonesia (129), to name just a few. Over a set of 12

low- or medium-income countries, an estimated ∼20% (9.1 Mha
of 45.9 Mha) of large-scale agricultural and forestry concessions
overlapped with indigenous or community lands (130). In urban
areas, competing and overlapping claims to land is a central
issue framed around “rights to the city,” including rights to
decide on whether land is used for, inter alia, private real estate,
recreation, shopping, or social housing (131).

Contested tenure and claims challenge the effectiveness and
efficiency of many interventions and policies aimed at improving
sustainability of land use. Some, such as REDD+ interventions
to conserve forests, or the establishment of payments for eco-
system services, are acutely hampered by contested claims, which
blur the legitimacy of some actors to intervene on certain lands
and complicate the identification of the land managers that can
actually enact and ensure land use changes (132). Land formaliza-
tion, or government programs to enhance land tenure security,
can play an important role in interventions for environmental
conservation (133) or agricultural productivity (134) but can also
contribute to increased environmental degradation or social mar-
ginalization (135, 136).

9. Benefits and Risks from Land Use Are Unevenly Distributed,
and Control over Land Resources Is Increasingly Concentrated
among Fewer Actors. Inequality prevails in the absence of equal-
izing forces (137). Uneven distribution of assets and benefits in
society reflects power differentials and manifests in many aspects
including land access, tenure, control, quality, and the monetary
and nonmonetary benefits from land. It encompasses aspects of
social, ethnic, and gender inequalities (138). Land distribution is
strongly unequal: Globally, farms below 2 ha represent around
84% of farms but cover only ∼12% of total farmland (139, 140). In
contrast, the largest 1% of farms (>50 ha) operate over 70% of
the world’s farmland (140). Across a set of low- and middle-
income countries, the top 10% of landowners—across urban and
rural areas—own between 35 and 80% of the land area and 45
and 60% of the land value, while the poorest 50% of rural house-
holds only control ∼1 to 10% of land by value (141). In many
countries, inequality in the monetary value of land owned is even
higher than in land area (142). Land distribution is most unequal
in Latin America, and less unequal in some Asian countries like
China and Vietnam. Land concentration has been increasing
globally since the 1980s (142). In most low- and lower-middle-
income countries, farm sizes overall have decreased between
1960 and 2010, but the opposite is true in high-income countries
and in other countries such as Brazil, with farms increasingly
polarized between small and large farms (140), and medium-
scale farms are gaining ground in some parts of Africa (143). Yet,
adequate data on land value and its distribution remain scarce
(144), and land ownership is only one dimension of inequality.

Despite this uneven distribution, smallholders produce a high
share of land-use outputs and have higher yields on aggregate;
in a set of 55 countries covering 51.1% of global agricultural
area, for instance, farms under 2 ha represent 24% of agricultural
area but produce 30 to 34% of food supply (145). This is despite
smallholders disproportionately living on less-favored agricul-
tural land and in remote areas (146, 147), with a lack of access to
better-quality land as well as declining soil fertility that constitute
key mechanisms of poverty traps (148). Land inequality also mani-
fests in many other aspects, such as access to cities and their
services (149) and to information and communication tools: Only
24 to 37% of farms of <1 ha are served by 3G or 4G mobile serv-
ices, compared to 74 to 80% of farms of >200 ha in size (150).
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Risks, such as climate change impacts on yields, also dispropor-
tionately affect poor populations in particular in drylands and
pastoral systems (118). Inequalities are also strong and growing
in urban areas (151), with very distinct patterns in terms of speed
and magnitude of urban growth in the Global South, but also
specific challenges in terms of youth unemployment, infant mor-
tality, poor housing quality, water, sanitation, and waste treat-
ment infrastructure, or air pollution (152).

As the baseline situation and trend is of increasing inequal-
ity, this fact suggests that, in practice, interventions on land sys-
tems almost always have consequences on the distribution of
land-derived benefits. Without explicit consideration of inequal-
ity, land-use interventions are likely to reinforce or reproduce
these current inequalities.

10. Social and Environmental Justice Related to Land Use Includes
Multiple Forms of Recognition, Procedural, Distributive, and
Intergenerational Justice. In contemporary land dynamics, actors
mobilize multiple visions of justice. The conventional notion of
the nation-state as the arbiter of justice, for instance, has been
challenged by globalized supply chains and private governance
systems (153, 154). Further, as in other sustainability domains,
social characteristics mediate experiences of environmental
harms and benefits (155, 156). As land is home, and is culturally
and symbolically loaded, aspects of recognition justice have
been increasingly mobilized in land system issues, as some
groups strive to make others acknowledge that their distinct
identities and histories are particularly and intimately linked to
their lands (156–158). This relationship between identity and
land may also be linked to the marginalization of peoples by
states or society, and the claims people make to lands can be
contested and vulnerable as a result. These recognition issues may
underpin issues of procedural justice, which relate to decision-
making about land, who decides, and how, and on what terms,
interests are considered (155, 157). Trade-offs and inequities in
land system issues also link to issues of distributive justice—how
goods and harms are distributed or concentrated among people,
including land ownership but also other degrees of access or
rights to harvest natural resources (159). The presence of irrevers-
ible impacts on land that occur over multiple human generational
timescales requires consideration of intergenerational justice as
land-use dynamics may constrain benefits to future generations
or their opportunities (155, 160). Policy and governance pro-
cesses that do not acknowledge these multiple forms of justice
are likely to be considered unjust by some actors.

Implications for Land System Governance for Sustainability
Taken together, the facts above have implications for develop-
ing and implementing interventions to unlock the potential of
land systems to help realize just and sustainable development.
The six implications that we highlight below do not constitute a
policy agenda but rather are intended as core principles on
which actors ranging from public to business and civil society
may seek to build land-use practices, governance approaches
and arrangements, strategic visions, and policy instruments that
can rise to the challenge of sustainable land use globally.

Just Solutions to Land Challenges Acknowledge Multiple
Perceptions, Beliefs, and Values, the Multiple Visions of Justice,
and Power Differentials. When scientists, policy makers, and civil
society design assessment criteria or governance interventions,
failure to account for the different ways by which distinct groups
express their values and notions of justice (161, 162) results in

interventions perceived as unfair or ineffective by at least some
of the stakeholders. Avoiding this requires scientists and policy
makers to explicitly ask what and whose beliefs and values are
being put forward or marginalized and to seek to understand
the values of those whose voices are infrequently heard (163,
164). Inclusiveness should go beyond those who hold formal
rights on the land, or directly benefit from it, to include all those
who derive or may derive value from the land but are not repre-
sented formally. Shortcomings in these aspects not only foster
injustice but also often contribute to failures and ineffective land
use, such as with many large-scale land investments.

Power differentials are pervasive in land systems and in sustain-
ability challenges (165). Frequently a policy or implementation
effort, no matter its intent, may reproduce the effects and linkages
that keep power imbalances in place. These interventions, even if
done “in the name of sustainability [will be] perceived to be unjust”
by those that are marginalized (166). Transformative change oper-
ates not only by fostering desired pathways but also by weakening
the forces that resist change (166). Conflicts can be shaped into
opportunities for transformative change and new pathways for
collaboration (167). New approaches are still in development to
account for these multiple forms of justice in linkages that cross
scales and geographic distances (168, 169).

Solutions Are More Successful When They Are Contextual and
Adaptive, Avoiding Silver Bullets or “One-Size-Fits-All” Panaceas.
The complexity of land systems implies that adaptive governance
is needed to adjust to unpredicted changes and changing goals
(170). Adaptive governance builds on regularly updated scenar-
ios, monitoring systems, learning, and flexible institutions that
foster human agency and can be supported by contextual theo-
ries that identify key mechanisms and their conditions (5). This
contrasts with approaches that focus on identifying single solu-
tions applied across a wide set of contexts or optimal solutions to
maximize single benefits from a given area of land.

Solutions are often imperfect and transient, as new actors and
land uses emerge over time, and not only the values and goals
but also the pathways to reach them are dynamic (171, 172).
“Political entrepreneurs” and “problem-brokers” continuously
identify and frame distant or indirect spillovers as new issues to
be addressed (173). High-level, universal goals (e.g., SDGs, Paris
Climate Agreement, Aichi Biodiversity Targets) are crucial to
mobilize and monitor efforts toward sustainability, but solutions
that function in a given context can be dysfunctional in other
contexts—e.g., intensification to reduce natural habitat conver-
sion can be successful in certain contexts but lead to rebound
effects in others (174–176)—or fail to achieve the balance of
benefits desired by stakeholders (177). Different governance
interventions targeting multiple scales from local to global are
needed to find the balance between developing context-sensitive
solutions and tackling systemic interactions across scales and
sectors (178).

Governance of Land Systems Is More Effective When Considering
Spillovers across Spatial and Temporal Scales. Interventions guid-
ing land-use decisions should be based on their overall expected
impacts at broader spatial scales, instead of focusing only on
the direct local land footprint. This is key, for example, when
opening a new road, allowing mining operations, densifying
settlements, or intensifying agriculture, all of which are likely to
have large spillover effects.
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New forms of polycentric and hybrid, public–private gover-
nance can leverage change in distant regions and across jurisdic-
tional boundaries. Polycentric governance refers to situations
where many centers of decision-making, formally independent
of each other, such as nation-states, local communities, nongovern-
mental organizations and transnational companies, share decision-
making (179). Distant interactions imply responsibilities but also
create dependency upon other places and jurisdictions (e.g.,
vulnerability to climate change through land dependence afar).
Such situations require novel governance arrangements that
have been proposed to steer urban-land teleconnections (180),
the behavior of transnational corporations (181), supply chains
(182), trade agreements (183), and distant linkages more broadly
(184). These governance approaches build on improved transpar-
ency in supply chains (185) and monitoring of impacts on affected
land systems across scales (4). Local actors can increase their
leverage through coalitions with distant actors to develop land-
use planning across scales (186). However, these approaches
bring new sovereignty and legitimacy challenges, which are only
starting to be explored.

Policies and Management That Prevent Undesired, Irreversible
Impacts Bring More Overall Benefits than Trying to Restore
Land Afterward. This implication echoes the mitigation hierar-
chy in biodiversity conservation and land degradation and res-
toration planning—a framework requiring implementing actions
in the following order of priority: 1) avoid, 2) minimize, 3) restore
or remediate, and 4) offset environmental impacts of activities
and land use (22, 187, 188). This hierarchy aims to prevent unde-
sired “lock-ins” that limit choices in the future. Irreversible land-
use changes are akin to large investments in specific productive
capital, which can limit choices for decades (189). Changes that
are largely irreversible or create path dependence like urbaniza-
tion have to be carefully planned to target land on which they can
bring the largest benefits accounting for long-term effects. Resto-
ration can be more effective when it does not aim to strictly return
ecosystems to their past state but instead to manage “novel
ecosystems” more sustainably (190). Values and perceptions of
land evolve over time, so governance interventions should seek
to maintain a wide choice of possible future land uses.

Land-Use Decisions That Foster Synergies Are Important but
Need to Be Combined with Mitigating Unavoidable Trade-Offs
and Managing Demand. The spatial heterogeneity and concen-
tration of potential benefits argue for spatial planning to focus
and intensify land uses where they deliver the highest benefits
(urban areas, highly valuable croplands, high-biodiversity-value
lands) and where synergies can be achieved (167). Globally, there
is room for improvement in balancing multiple trade-offs to deliver
a broader set of benefits to human societies (191). However,
messy, regularly renegotiated compromises aiming for accept-
able balance among different targets are more likely to endure
than optimizations that inevitably become outdated when priori-
ties, or the social-ecological systems themselves, change.

Nature conservation as a land use is increasingly competing
with other land uses. Therefore, the pursuit of environmental goals
is not politically neutral but comes with social, distributive, and
justice implications, which deserve more attention (192). Further,
even land that appears “unmanaged” has importance for human
societies and Earth system dynamics, and such absence of formal,
institutionalized, or visible management is, de facto, a manage-
ment decision that implies trade-offs and should be acknowledged
in decision-making processes.

Managing land to balance trade-offs identified by stakeholders,
focusing on key functions of land (food, nature, a sense of place) is
likely to provide the most socially acceptable climate and conserva-
tion cobenefits, in contrast with prioritizing functions such as cli-
mate change mitigation that can be achieved by other ways (15).
Engaging with stakeholders’ values and goals can contribute to
transforming trade-offs into synergies, for example through serious
games and other participatory approaches (193). Negotiated and
socially acceptable compensation can also contribute to mitigate
these trade-offs. Yet, ultimately, not all trade-offs can be addressed
by managing the supply side of land systems, and there is a need
for more effective approaches for managing the demand and con-
sumption of benefits that land systems provide (10, 165, 167, 194).

To Avoid Reinforcing Inequalities, Governance Interventions Need
to Explicitly Address Inequalities and Acknowledge Unclear Land
Tenure. Distributional impacts and effectiveness of interventions
are often linked, for example in interventions for improving agri-
cultural productivity or ecosystem services delivery. However, the
precise relationships vary. Market-based interventions, such as
payments for ecosystem services, and private or public–private
hybrid supply chain policies are increasingly promoted by various
stakeholders. These approaches are not necessarily designed
with equity as a strong focus and may reinforce inequality as well
as land concentration. When they fit into, rather than challenge,
existing social relations which govern resource access, they tend
to be blunt instruments with respect to distributive and proce-
dural justice (195). Yet, it is also possible to design such instru-
ments in ways that foster both equity and effectiveness (196). This
debate also covers other instruments such as protected areas
(197, 198), for which meta-analysis evidence suggests that posi-
tive conservation outcomes were more likely to occur with inter-
ventions that addressed equity (199). Interventions to improve
environmental sustainability of commodity supply chains through
transparency may also have perverse equity impacts (185). Con-
versely, policies aiming to reduce poverty can have spillover
impacts on environmental aspects such as deforestation (200).
Across a spectrum of approaches and possible outcomes, the key
finding for policy is that if the sole metric is effectiveness in terms
of increasing the amount of products or services outputs, it is
likely to affect equity, whether that is the intention or not.

Land formalization, or enhancing land tenure security, can
play an important role but should not be considered a panacea.
Depending on the conditions, it can encourage sustainable land
management (201) but also, if uncoordinated with other poli-
cies, induce land degradation, deforestation (136), or land con-
centration (202). Effective land tenure and registration policies
can build on existing local institutions (203). Other policies to
address land inequality may include redistributive land policies
and agrarian reform, land market regulations, land taxes, in par-
ticular for large tracts of land left unproductive, antieviction and
tenancy laws, mechanisms to increase accountability of compa-
nies and investors, fostering collective and women’s land rights,
and broader transformations of food systems (135, 142).

Thus, interventions on land can be improved by 1) acknowl-
edging unclear and overlapping and contested land tenure
instead of assuming that land always has a clear and uncon-
tested tenure holder, 2) identifying and targeting the actors that
can enact land-use changes even if distinct from the de jure
landholder, and 3) enhancing local institutions that are able to
function with local land tenure systems. New institutional
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arrangements could govern rights and duties of multiple actors
to use the same land for various functions.

Conclusion
These 10 facts synthesized from LSS constitute hard truths that
help to delineate the key challenges but also provide major oppor-
tunities for governing land systems for sustainability. Achieving
sustainability through land systems is challenging precisely
because multiple beliefs and values exist; because land sys-
tems are complex, with irreversibility and path dependence,
large impacts of land uses with small footprints, and distant spill-
overs; because we live on a used planet where trade-offs are
prevalent, claims are overlapping and contested, and benefits
from land are unequally distributed; and because actors mobilize
multiple, sometimes conflicting, visions of justice. Avoiding irre-
versible negative impacts is always preferable, but beyond this,
progressing toward sustainability through land use is often about
negotiating fair and acceptable trade-offs and compensations,
rather than about achieving optimal outcomes, or stable peace
among actors. These facts do not provide simple answers to cur-
rent land-related debates on how to manage trade-offs and syn-
ergies, how to organize the multifunctionality of land systems
across places and scales, and how to set up fair procedures and
distribution of land benefits. However, they do point to how
answers could be developed and provide common ground for
science and policy, as well as a research agenda. We hope that

acknowledging these facts and their implications can help to
build more solid foundations for much-needed conversations on
land use and sustainability.

Data Availability. All study data are included in the main text.
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