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Abstract

Motivation: Genomic alterations can modulate the tumor immunophenotype depending on their nature and tissue of
origin. Although this immune–genomic interaction may shape disease progression and response to immunotherapy,
the factors governing such dynamics and the influence of each tissue-specific context remain poorly understood.

Results: Here, we have developed the PanCancer ImmunoGenomics (PCIG) tool, a web-based resource that provides
researchers with the opportunity to mine immunome–genome relationships across several cancer types using data
from the Pan-Cancer Analysis of Whole-Genomes (PCAWG) study, which comprises >2,600 samples spanning
across 20 different cancer primary sites. PCIG yields an integrative analysis of the crosstalk between somatic genom-
ic alterations and different immune features, thus helping to understand immune response-related processes.

Availability and implementation: PCIG is freely available at https://pcig.vhio.net and is supported by all major web
browsers. PCIG was developed with Django, which is a Python-based free and open-source framework, and it uses
SQL Server as a relational database management system. The code is freely available for download at GitHub
https://github.com/AnnaPG/PCIG and in its online supplementary material.

Contact: annapedrolagomez@gmail.com or laia.bassaganyas@gmail.com or JCAMPS@clinic.cat

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer genomes play key roles in determining tumor immune fea-
tures, hence having important implications on disease progression
and response to immunotherapy (Thorsson et al., 2018). Somatic
genomic alterations may enhance anti-tumor immune activity by
enabling the differentiation between self and non-self (tumor)
through neoantigen presentation, but they promote immune evasion
in later stages of the disease (Litchfield et al., 2021; Mizuno et al.,
2021). In fact, the nature of genomic events can affect the genome–
immune interaction. Overall, the mutational burden is generally
associated with an activated tumor immunome environment and
better responses to immunotherapy, whereas high burdens of copy-
number alterations (CNAs) often correlate with immune depletion
and immunotherapy resistance (Davoli et al., 2017; Tamborero
et al., 2018). Moreover, the cancer type and the tissue of origin may

also influence the pattern of immune infiltrates (Varn et al., 2017).
This complex and dynamic interplay between the cancer genomic
landscape and the tumor immune infiltration still remains poorly
understood.

To overcome the limited analysis of whole-exome sequencing
data, which can hinder the complete view of genomic alterations
and complexity, the recently published Pan-Cancer Analysis of
Whole Genomes (PCAWG) project (https://dcc.icgc.org/pcawg)
includes whole-genome sequencing (WGS) data for more than 2,600
samples from The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC), spanning up to
20 different cancer types. Importantly, for a subset of 1,300 sam-
ples, PCAWG also incorporates whole-transcriptomic data analyzed
by RNAseq, providing an exceptional opportunity to comprehen-
sively investigate relationships between genomic alterations and the
immune system in primary tumors from different origins (ICGC/
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TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020).
Nevertheless, WGS data analysis can be costly and time-consuming,
limiting its feasibility for rapid and comprehensive exploration.

Here, to examine genome–immunome interactions across a wide
spectrum of cancer types, we exploited PCAWG data (https://
pcawg.xenahubs.net) to create the PanCancer ImmunoGenomics
(PCIG) tool, a web-accessible resource that can be used as a launch-
ing platform for clinical and translational research studies to deepen
in the exploration of cancer immunogenomics. To this end, we sur-
veyed somatic non-synonymous mutations, CNAs, complex struc-
tural variations (SVs), as well as gene expression and clinical
classification. Moreover, we created an array of integrative analyses
with additional estimated variables, such as the tumor immune com-
position, the expression of a chemokine-gene signature, the presence
of chromothripsis, deletions encompassing the human leukocyte
antigen locus, and the levels of broad and focal CNAs. The goal of
PCIG is to provide researchers with a fast and easy-to-use tool to
visualize the relationships between cancer genomes and immune-
related phenotypes to better understand tumor immunogenicity.

2 Implementation

PCIG is a web-based interface to explore and visualize the integra-
tion of multiple genomic, transcriptomic and immunological fea-
tures in different cancer types. This tool was created by using the
Python-based open-source Django framework. An extended explan-
ation of the PCIG pipeline for data mining and analysis, the genomic
and transcriptomic datasets from PCAWG used here, and a descrip-
tion of additional estimated variables are detailed in Supplementary
Material. PCIG also provides an extensive User Guide, explaining
details for each analysis and different plots presented on the website.

A diagram showing the main parameters and flowchart of the ana-
lysis performed by PCIG is depicted in Figure 1A. Briefly, PCIG
explores relationships between numerous immune-genomic parame-
ters (Fig. 1A) from 2,658 samples across 40 different cancer types clas-
sified based on the primary site (Fig. 1B). Specifically, PCIG employs
WGS data to quantify CNA scores and the tumor mutational load per
sample, and considers transcriptomic profiles associated with stromal
and immune-related genes to perform correlation and integrative anal-
yses to assess the dynamics between these tumor features, and with
tumor baseline clinical characteristics (Supplementary Material).

Three main sections are deployed upon selection of primary site
and cancer type: Summary, Genomics and Immuno-Genomics. In
summary, the main clinical and molecular characteristics are detailed
for the selected subset of tumor samples, along with the genomic
profiling at the subcytoband level and corresponding parameters ana-
lyzed using PCIG’s pipeline. Genomics section presents results from
the correlative analysis between different genomic variables obtained
by WGS data (�2,600 samples), including the number of non-
synonymous mutations, broad and focal CNA scores (BCS and FCS,
respectively; Franch-Expósito et al., 2020), and the presence of chro-
mothripsis events, indicative of complex SVs (Cort�es-Ciriano et al.,
2020). Finally, established correlation analyses between genomic vari-
ables and different tumor immune metrics computationally derived
from transcriptomic data (�1,300 samples) are depicted in the
Immuno-Genomics section, including (i) global level of immune and
stromal cell infiltrates by ESTIMATE (i.e. ImmuneScore and
StromalScore; Yoshihara et al., 2013), (ii) quantification of the four
main determinants of tumor immunogenicity by Immunophenoscore
(i.e. major histocompatibility complex [MHC]-related antigen proc-
essing genes; checkpoints; effector cells; suppressor cells [SC];
Charoentong et al., 2017) and (iii) tumor inflammation assessment
through a 12-chemokine gene signature, also associated with the pres-
ence of tertiary lymphoid structures, suggestive of a good prognosis in
several cancers (Sautès-Fridman et al., 2019).

PCIG provides high comprehensive plots that can be down-
loaded together with their associated processed data for further ana-
lysis. Because of differences in data sources for each cancer type and
the limited number of cases in some cohorts, some analyses may re-
quire the use of validation datasets.

3 Results and discussion

To exemplify the analytical applicability of PCIG, we explored five
datasets: colon adenocarcinoma (COAD-US, n¼44), head and neck
squamous-cell carcinoma (HNSC-US, n¼44), lung adenocarcinoma
(n¼38), ovarian cancer (OV-US, n¼42) and skin cancer (SKCM-
US, n¼37). Analysis of genomic imbalances showed that ovarian
tumors displayed the highest BCS and FCS values (Supplementary
Fig. S1A and B), suggesting gross and chromosome-specific aneu-
ploidies. In contrast, the highest values of mutational load were
observed in colon cancer, probably due to the presence of POLE-
mutated or mismatch repair deficient tumors in the COAD-US data-
set (Supplementary Fig. S2). In agreement with previous reports of
depleted CD8þ lymphocytic activity in highly aneuploid tumors
(Bassaganyas et al., 2020; Davoli et al., 2017), we observed a signifi-
cant negative correlation between ImmuneScore and BCS or FCS in
the majority of cancer types, especially affecting the COAD-US,
HNSC-US and OV-US datasets (Fig. 1C and Supplementary Fig.
S3A and B). Likewise, tumors with high BCS or FCS such as OV-US
exhibited decreased expression of antigen-presenting MHC-related
machinery (Fig. 1D and Supplementary Fig. S4), confirming that
highly complex genomic tumors bear cold immunophenotypes.
Conversely, the presence of a high mutational load observed in skin
melanoma and colon adenocarcinoma appeared to be significantly
associated with more active immunophenotype profiles (Fig. 1E and
Supplementary Fig. S5).

In summary, PCIG correlates cancer genomic traits and immune-
related phenotypes, thus helping the interpretation of tumor im-
munogenicity. In this sense, our analysis of five different cancer

Fig. 1. Schematic diagram of PCIG and examples of its performance. (A) Flowchart

presenting the data sources, types, and analytical tools used by PCIG. (B) Detailed

summary of the analyses PCIG performs under each tab on the website. (C)

Correlation plots between ImmuneScore (source: ESTIMATE) and BCS (top) or

FCS (bottom) (source: CNApp) using the COAD-US cohort. (D) Correlation plot

between levels of MHC expression (source: Immunophenoscore) and BCS (top) or

FCS (bottom) (source: CNApp) using the OV-US cohort. (E) Correlation plot be-

tween ImmuneScore (source: ESTIMATE) and the mutational load (source: https://

pcawg.xenahubs.net) using the SKCM-US cohort.
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types included in PCAWG further suggests that the tissue of origin
and the genomic landscape have an impact on the tumor immune in-
filtrate. Altogether, PCIG assists in the processing and visualization

of large datasets, facilitates exhaustive immune-genomic analyses
for hypotheses generation, and displays very complex data in an

easy and comprehensible manner.
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