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Long-term elite controllers (LTECs) are a fascinating small subset of HIV individuals with
viral and immunological HIV control in the long term that have been designated as models
of an HIV functional cure. However, data on the LTEC phenotype are still scarce, and
hence, the metabolomics and lipidomics signatures in the LTEC-extreme phenotype,
LTECs with more than 10 years of viral and immunological HIV control, could be pivotal to
finding the keys for functional HIV remission. Metabolomics and lipidomics analyses were
performed using high-resolution mass spectrometry (ultra-high-performance liquid
chromatography–electrospray ionization–quadrupole time of flight [UHPLC-(ESI) qTOF]
in plasma samples of 13 patients defined as LTEC-extreme, a group of 20 LTECs that lost
viral and/or immunological control during the follow-up study (LTEC-losing) and 9 EC
patients with short-term viral and immunological control (less than 5 years; no-LTEC
patients). Long-term viral and immunological HIV-1 control was found to be strongly
associated with elevated tricarboxylic acid (TCA) cycle function. Interestingly, of the nine
metabolites identified in the TCA cycle, a-ketoglutaric acid (p = 0.004), a metabolite
implicated in the activation of the mTOR complex, a modulator of HIV latency and
regulator of several biological processes, was found to be a key metabolite in the
persistent control. On the other hand, a lipidomics panel combining 45 lipid species
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showed an optimal percentage of separation and an ability to differentiate LTEC-extreme
from LTEC-losing, revealing that an elevated lipidomics plasma profile could be a
predictive factor for the reignition of viral replication in LTEC individuals.
Keywords: metabolomics, lipidomics, elite controllers (ECs), HIV infection, Kreb's cycle, long-term, viral,
mass spectrometry
INTRODUCTION

HIV infection involves a broad, dynamic process and varies in
the different phenotypes of people living with HIV. Elite
controllers (ECs) are a fascinating subset of these individuals
capable of maintaining viral and immunological control, even
during long periods without antiretroviral therapy (ART) (1, 2).
This characteristic could make ECs a good pathogenic model for
a long-awaited HIV cure (3). However, ECs comprise a
heterogeneous populat ion in terms of virologica l ,
immunological, and even clinical characteristics. Although
previous studies have investigated the mechanisms associated
with HIV replication and HIV immunodeficiency that could
contribute to the loss of spontaneous control in ECs (transient
controllers) (4–6), data on long-term ECs (LTECs) are scarce (7).
LTECs are a very small proportion of ECs with viral control
(HIV-RNA viral load below 50 copies/ml) and lack
immunological progression (positive or null CD4 slope) in the
long-term without ART (8). Thus, LTEC subjects have been
designated as an appropriate model for long-term HIV remission
(3) and pose the controversial query of whether ECs need to
receive ART (9).

Based on our previous works studying the loss of spontaneous
HIV-1 control in ECs (transient controllers) (4, 5, 10), we firmly
believe that the identification and quantification of small
molecules, from metabolites to lipids, could provide knowledge
of immunotherapeutic strategies for ART-free HIV remission
(11) and aid in deciding whether ART is warranted in ECs. Thus,
we aimed to define the metabolomics and lipidomics signatures
underlying the long-term EC phenotype to understand the
mechanisms operating for persistent viral and immunological
control in LTEC patients with more than 10 years of
HIV control.
MATERIALS AND METHODS

Patient Cohort Enrolment and
Study Design
A total of 42 ECs from the Spanish AIDS Research Network (RIS)
cohort of HIV Controllers Study Group (ECRIS) database were
retrospectively selected and classified in different EC phenotypes
according to their ability to maintain viral and immunological
control in the long term (12) (Figure 1). Nine EC patients who
experienced a loss of spontaneous viral HIV-1 control in less than
5 years of follow-up were classified as no long-term ECs (no-
LTEC); 33 EC patients who maintained viral and immunological
control for at least 5 years were defined as LTECs. Among the
org 2
LTEC groups, 13 individuals were classified as LTEC-extreme
(defined as LTECs maintaining viral and immunological control
throughout the whole follow-up period and for more than 10
years); a group of 20 LTECs that lost viral and immunological HIV
control during follow-up were included and compared to the
group of LTEC-extreme to find the signature underlying the long-
term EC phenotype. Loss of viral control was described as two
consecutive measurements of plasma HIV-RNA load above the
lower detection limit, and the loss of immunological control was
described as a statistically significant negative slope of CD4+ T-cell
count during the follow-up period (p-value <0.05) (Table 1).

Samples
Samples from patients were kindly provided by the HIV BioBank
integrated into the RIS. Briefly, blood samples were collected
using ethylenediaminetetraacetic acid (EDTA) tubes and sent on
the same day to the Spanish HIV HGM BioBank for processing.
Plasma was obtained by centrifugation and stored at −80°C. All
plasma samples analyzed were obtained before the loss of HIV
control (in the case of no-LTEC and LTEC-losing groups).

Ethical Protocol
The studies involving human participants were reviewed,
approved, and carried out according to the recommendations
of the Ethical Committee for Clinical Research following the
rules of Good Clinical Practice from the Institut d’Investigació
Sanitària Pere Virgili (CEIm IISPV, ref. 041/2018). The CEIM
IISPV is an independent committee made up of health and non-
health professionals that supervise the correct compliance of the
ethical principles governing clinical trials and research projects
that are carried out in our region, specifically in terms of
methodology, ethics, and laws. All participants in the study
gave their written informed consent, and the study protocol
was evaluated and approved by institutional Ethical Committees
in agreement with the Declaration of Helsinki.

Determination of the Metabolomics Profile
(Analytical Method)
For metabolomics analysis, a protein precipitation extraction was
performed by adding eight volumes of methanol:water (8:2)
containing internal standard mixture to plasma samples.
Samples were mixed and incubated at 4°C for 10 min and
centrifuged at 21,000g, and the supernatant was evaporated to
dryness before compound derivatization [methoxyamine
hydrochloride and N-methyl-N-trimethylsilyltrifluoro
acetamide + 1% trimethylsilyl chloride (MSTFA +1% TMCS)].
Samples were analyzed on a 7200 GC-qTOF from Agilent
Technologies (Santa Clara, CA, USA). The chromatographic
April 2022 | Volume 13 | Article 822272
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separation was based on the Fiehn method (13), using a J&W
Scientific HP5-MS (30 m × 0.25 mm i.d., 0.25 µm) film capillary
column and helium as carrier gas using an oven program from
60°C to 325°C. Ionization was done by electronic impact (EI),
with electron energy of 70 eV, and operated in full scan mode,
recording data in a range between 35 and 700 m/z at a scan rate
of 5 spec/s.

Targeted compounds were identified using pure standards
with a mass accuracy of 20 ppm: amino acid mix (Cambridge
Isotope Laboratories, Montreal, QC, Canada), pyruvic acid, lactic
Frontiers in Immunology | www.frontiersin.org 3
acid, glycolic acid, 3-hydroxybutyric acid, glycerol, succinic acid,
glyceric acid, fumaric acid, malic acid, d-threitol, threonic acid,
a-ketoglutaric acid, glycerol-1-phosphate, citric acid,
d-mannitol, myo-inositol, d-sucrose, and a-tocopherol (Sigma-
Aldrich, St. Louis, MO, USA). Different internal standards were
used to correct signal response: labeled amino acid mix standards
(Cambridge Isotope Laboratories), succinic-D4 acid, myristic-
D27 acid, glucose-

13C6, and L-methionine-(carboxy-13C, methyl-
D3) (Sigma Aldrich). Chromatographic peaks were deconvoluted
using Unknowns Analysis software (version B.09.00, from
TABLE 1 | Baseline characteristics of the study participants.

Clinical characteristics No-LTEC (n = 9) LTEC-losing (n = 20) LTEC-extreme (n = 13) p-Value*

Age (years) 37 [34–45] 46 [43–50] 48 [42–51] 0.075
Time of control (years) 2.5 [1.3–3.3] 13.7 [8.6–17.1] 14.3 [13.2–15.6] <0.001
Male 5 (55.6) 8 (40) 9 (69.2) 0.262
HIV risk factor 0.141
Heterosexual 6 (66.7) 6 (30) 2 (15.4)
Homo/bisexual 1 (11.1) 2 (10)
Intravenous drug abuse 2 (22.2) 10 (50) 10 (76.9)
Other/unknown 2 (10) 1 (7.7)
CD4+ T-cell count (cells/µl) 724 [430–1029] 756 [646–1041] 830 [522–1028] 0.772
CD4 count slope (cells/month) – −0.35 [−1.23 to 0.99] −1.98 [−2.80 to −1.31] 0.012
HIV viral load (log) 1.6 [1.45–1.7] 1.7 [1.6–1.7] 1.6 [1.3–1.7] 0.337
HCV coinfection (positive) 3 (33.3) 13 (65) 13 (100) 0.003
Active HCV coinfection (positive) 1 (11.1) 10 (50) 10 (77) 0.010
April 2022 | Volume 13 | Artic
All plasma samples analyzed were obtained before the loss of HIV control (in the case of no-LTEC and LTEC-losing groups) compared to LTEC-extreme. Data are presented as n (%) or median
(interquartile range). Categorical data were compared through a c2 test, whereas continuous data were compared using the non-parametric Kruskal–Wallis test*. (P values < 0.05 in bold).
no-LTEC, no long-term elite controllers; LTEC-losing, long-term elite controllers patients who lost HIV control during follow-up; LTEC-extreme, long-term elite controllers patients
maintaining HIV control during the whole follow-up and for more than 10 years.
FIGURE 1 | Flowchart illustrating patient cohort enrolment and analysis. From the 42 elite controllers (ECs) analyzed, 9 individuals who experienced a loss of
spontaneous viral HIV-1 control in less than 5 years were classified as no long-term elite controllers (no-LTEC); 33 EC individuals who maintained viral and
immunological control for at least 5 years were defined as long-term elite controllers (LTECs). Among the LTEC groups, 13 patients were classified as LTEC-extreme
(defined as LTECs maintaining viral and immunological control throughout the whole follow-up period and for more than 10 years); and 20 were classified as LTEC-
losing (defined as LTECs that lost viral and immunological HIV control during follow-up). Loss of viral control was described as two consecutive measurements of
plasma HIV-RNA load above the lower detection limit and a statistically significant negative slope of CD+ T-cell count during the follow-up period.
le 822272
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Agilent, Santa Clara, CA, USA) based on the exact mass.
Identification of compounds was tentatively made comparing
the mass spectra and retention time of all detected compounds
with the Fiehn 2013 Mass Spectral RTL Library and the National
Institute of Standards and Technology (NIST) library 11 (2014)
libraries also using the Unknowns software. The identity of the
main compounds was confirmed with commercial pure
standards. After direct (with pure standards) or putative (with
library) identification of metabolites, these were semi-quantified
in terms of internal standard response ratio. For this relative
quantification, the area of specific fragments for each metabolite
was divided by the area of its specific internal standard to provide
a reliable, accurate, and reproducible relative concentration
of metabolites.

Determination of the Lipidomics Profile
(Analytical Method)
Lipidomics is a subset of metabolomics considered a dissimilar
discipline due to the uniqueness and functional specificity of lipids
relative to other metabolites. A total of 114 lipids were identified in
plasma samples. The name of each compound is abbreviated as
follows: CE for cholesteryl ester, DG for diacylglycerol, LPC for
lysophosphocholine, PC for phosphatidylcholine, SM for
sphingomyelin, and TG for triacylglycerol. The first number
indicates the acyl carbon atoms, and the second indicates the
number of unsaturations.

For the extraction of hydrophobic lipids, liquid–liquid
extraction with chloroform:methanol (2:1) based on the Folch
procedure was performed by adding four volumes of chloroform:
methanol (2:1) containing internal standard mixture (Lipidomic
SPLASH® Avanti Polar Lipids, Birmingham, AL, USA) with
15:0-18:1(d7) PC, 18:1(d7) LPC, 18:1(d7), Chol Ester, 15:0-18:1
(d7) DG, 15:0-18:1(d7)-15:0 TG and 18:1(d9) SM, among other
lipid species) to plasma. Then, the samples were mixed and
incubated at −20°C for 30 min. Afterward, 1/10 volumes of NaCl
0.8% were added, and the mixture was centrifuged at 15,000 rpm.
The lower phase was recovered, evaporated to dryness, and
reconstituted with methanol:methyl-tert-butyl ether (9:1) and
analyzed on a 1290 Infinity UHPLC coupled to a 6550 qTOF
mass spectrometer (Agilent Technologies, Santa Clara, CA,
USA) in positive electrospray ionization mode. The
chromatographic elution consists of a ternary mobile phase
containing water (A), methanol (B), 2-propanol (C), and 200
mM of ammonium formate and 2% formic acid (D). The
gradient was as follows: 0 min, 10% B, 35% C, and 5% D;
0.5 min, 10% B, 45% C, and 5% D; 1.5 min, 9.5% B, 47.7% C, and
5% D; 1.6 min, 7.5% B, 58.5% C, and 5% D; 5 min, 7% B, 61.2%
C, and 5% D; 5.1 min, 4% B, 77.4% C, and 5% D; 7.5 min, 3.5% B,
80% C, and 5% D; 9 min, 3.5% B, 80% C, and 5% D; 9.5 min, 0%
B, 100% C, and 0% D; 11.5 min, 0% B, 100% C, and 0% D;
11.6 min, 10% B, 35% C, and 5% D; and 14 min, 10% B, 35% C,
and 5% D. The stationary phase was a C18 column (Kinetex
EVO C18 Column, 2.6 mm, 2.1 mm × 100 mm) that allows the
sequential elution of the more hydrophobic lipids such as
lysophospholipids, SMs, phospholipids, DGs, TGs, and CEs.
Frontiers in Immunology | www.frontiersin.org 4
To ensure reproducibility during the analysis, a pooled matrix
sample was generated by taking a small volume of each
experimental sample and was used as a technical replicate
throughout the analysis.

The identification of lipid species was performed using the
Agilent MassHunter Profinder B.08 software. First, a feature
extraction deconvolution was made; then accurate mass and
tandem mass spectra, when available, were matched to Metlin-
PCDL (2017) from Agilent containing more than 40,000
metabolites and lipids, allowing a mass error of 20 ppm and a
score higher than 80 for isotopic distribution. To ensure the
tentative characterization, chromatographic behavior of pure
standards for each family and corroboration with Lipid Maps
database (www.lipidmaps.org) was used to ensure their putative
identification. Afterward, matched entities were selected to
perform a targeted MS/MS acquisition on the liquid
chromatography–quadrupole time of flight–mass spectrometry
(LC-qTOF-MS) instrument to corroborate the identification.
Lipid species, then, were semiquantified in terms of internal
standard response ratio using one internal standard for each
lipid family.

Statistical Analysis
Categorical data were compared through a chi-squared test,
whereas continuous data were compared using the Kruskal–
Wallis and Mann–Whitney U non-parametric tests. Correlations
between variables were assessed using Spearman’s test. Heatmap
analysis of hierarchical clustering comparing LTEC phenotypes,
by each quantified lipid species concentration, was performed.
The Euclidean distance-metric hierarchical cluster represented
patients on vertical lines and candidate lipid families on
horizontal lines. The scale from blue (low concentration) to
red (high concentration) represents the normalized abundance
in arbitrary units. The diagnostic accuracy for predicting
individuals belonging to different LTEC phenotypes was
evaluated by logistic regression and receiver operating
characteristic (ROC) curve analysis.

For metabolomics and lipidomics data analysis, log-
transformation was applied to all quantified metabolites to
normalize the concentration distributions. Quantitative
enrichment analysis (QEA) and pathway analysis were performed
using the web-based analytical pipeline MetaboAnalyst 5.0 (14) and
log-transformed normalized for uni- and multivariate analyses,
high-dimensional feature selection, clustering and supervised
classification, functional enrichment, and metabolic pathway
analysis. Normalized data were then analyzed using the database
Kyoto Encyclopedia of Genes and Genomes (KEGG) (15).
Significantly altered metabolites were defined by a t-test analysis
with a p-value <0.05 and a false discovery rate (FDR) ≤0.05.

The statistical software used was SPSS Software v22 and
XLSTAT 2020.5.1.1064. Graphs were generated using
GraphPad Prism 5.0. Illustrations were created using the
BioRender web server and the web-based analytical
MetaboAnalyst 5.0 as indicated in the figure legends. The
results were considered statistically significant at p < 0.05.
April 2022 | Volume 13 | Article 822272
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RESULTS

Characteristics of the Study Participants
A total of 42 HIV-EC were recruited based on the study design
shown in Figure 1. The clinical and demographic characteristics
of patients included in the study are summarized in Table 1.

No differences were observed in sex, CD4+ T-cell counts, or
HIV viral load (log) in the LTEC-extreme group compared to the
LTEC-losing group or the no-LTEC group. However, LTEC-
extreme patients were older (p = 0.036) and showed significantly
different transmission routes (p = 0.031) than no-LTEC patients.
Additionally, our results revealed a higher prevalence of HCV
coinfection in the LTEC-extreme group than in the no-LTEC
(p = 0.001) and LTEC-losing (p = 0.018) groups. This higher
prevalence of HCV coinfection in the LTEC-extreme group is
mainly due to the period of the infection (more than 10 years
ago) when the HIV risk factor in this cohort was the majority due
to intravenous drug abuse.

Tricarboxylic Acid Cycle Metabolites Were
Increased in the Long-Term Elite
Controller-Extreme Group Compared to
the No-Long-Term Elite Controller Group
A total of 78 metabolites and 114 lipid species were identified in
the plasma samples of the study cohort (Supplementary Tables
S1, S2). Orthogonal principal component analysis (ortho-PCA)
of these 78 metabolites showed a high discriminatory ability of
metabolomics profile to separate between the LTEC-extreme and
the no-LTEC groups (Figure 2A). Indeed, relative plasma
concentrations of nine metabolites were significantly higher in
the LTEC-extreme group than in the no-LTEC group. Metabolic
enrichment pathways were evaluated. The metabolomics profile
associated with LTEC-extreme confirmed that the TCA cycle
(p = 0.003), pyruvate metabolism (p = 0.004), and glycolysis/
gluconeogenesis (p = 0.005) (Figure 2B) pathways were among
the most enriched pathways related to persistent viral and
immunological control. Then, among the significant
metabolites in the LTEC-extreme group, we found that seven
of them were strongly related to the tricarboxylic acid cycle (TCA
cycle) (Figure 2C), which could indicate that the Krebs cycle is
highly associated with viral control in LTEC-extreme patients. In
fact, the combination of these seven metabolites could
differentiate perfectly both groups of LTEC phenotype (area
under the curve (AUC) = 0.957) (Figure 2D).

On the other hand, the ortho-PCA including the 114 lipids
identified was unable to differentiate LTEC-extreme from no-
LTEC. No significant differences were found between LTEC-
extreme and no-LTEC.

The Important Role of Lipid Species in
Continuous Viral and Immunological HIV
Control in Long-Term Elite Controllers
Then, the metabolomics and lipidomics profiles associated with
LTEC-extreme were compared to those associated with LTEC-
losing. In this case, ortho-PCA including the 78 metabolites
identified was unable to offer a clear differentiation among
Frontiers in Immunology | www.frontiersin.org 5
groups, which indicated great metabolomics similarity among
the two phenotypes of LTEC (Figure 3A). Nevertheless, again,
higher relative plasma concentrations of metabolites directly
related to the TCA cycle were associated with the LTEC-
extreme phenotype. Specifically, plasma levels of a-ketoglutaric
acid (p = 0.006), glyceric acid (p = 0.04), oxoproline (p = 0.027),
and iso-maltoses 1 and 2 (p = 0.027 and 0.03) were significantly
higher in the LTEC-extreme individuals than in the LTEC-losing
individuals. Of interest, plasma glycerol (p = 0.006), 3-
hydroxyisobutyric acid (3-HIBA) (p = 0.048), and urea (p =
0.036) relative concentrations were significantly higher in the
LTEC-losing group than in the LTEC-extreme group (Figure 3B).

On the other hand, ortho-PCA including the 114 lipids
identified offered good differentiation among the LTEC-
extreme and LTEC-losing groups (Figure 3C). In agreement
with the ortho-PCA, 45 lipid species were statistically significant
between the LTEC-extreme and LTEC-losing samples
(Figure 3D). Lipids from the SM, PC, TG, and CE families
were significantly decreased in the LTEC-extreme group
compared to the LTEC-losing group. In fact, the lipidomics
profile including these 45 lipid species resulted in a good
lipidomics panel with an optimal percentage of separation and
an ability to differentiate LTEC-extreme from LTEC-losing
(AUC = 0.931) (Figure 3E).

Metabolomics/Lipidomics Signatures
Related to Long-Term Elite Controller-
Extreme Could Be Potential Biomarkers of
Long-Term Elite Controller Progression
Finally, to test that the above-described metabolomics and
lipidomics signatures could predict the clinical outcome in
LTECs, we used the 14 LTEC individuals, defined as LTEC-true,
with viral and immunological control during all the follow-up
studies that could not be classified as LTEC-extreme or LTEC-
losing, due to missing follow-up until 10 years (6.2 ± 0.38 years).
Increased plasmatic concentrations of a-ketoglutaric acid, a
product of glutaminolysis (Figure 4A), were the most
representative of persistent natural HIV control in LTEC-
extreme (Figures 2A, 3B). In fact, relative plasma a-ketoglutaric
acid concentrations were significantly higher in LTEC-extreme
individuals than in both LTEC-losing and non-LTEC individuals
(Figure 4B). Hence, we used plasma a-ketoglutaric acid
concentrations as a potential distinctive metabolite of the 14
LTEC-true individuals. Our results revealed 4 LTEC-true
subjects showing relative plasma a-ketoglutaric acid
concentrations around the plasma mean a-ketoglutaric acid
relative concentrations previously described for LTEC-extreme
(1.24 ± 0.66) (Figure 4C). Accordingly, we classified two
subgroups of individuals, a group of 4 LTEC-true with the
potential capability to become LTEC-extreme and a group of 10
LTEC-true who could probably become LTEC-losing (Figure 4C).
Thus, these two new groups of LTEC-true were evaluated using an
ortho-PCA, which included the lipidomics panel of 45 lipid species
related to the spontaneous loss of viral and/or immunological HIV
control in LTEC-losing (Figures 3D, E). As illustrated in the PCA
representation (Figure 4D), the LTEC-true group with the
April 2022 | Volume 13 | Article 822272
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potential capability to maintain viral and immunological HIV
control and the LTEC-true group that could probably become
LTEC-losing showed clear differentiation. Altogether, these data
indicate the feasibility of plasma a-ketoglutaric acid
concentrations and the panel of 45 lipid species, including the
SM, PC, TG, and CE families, as potential biomarkers for the loss
of viral and/or immunological control in LTEC individuals.
DISCUSSION

LTECs are a heterogeneous group of ECs representing subjects
who maintain viral control with a stable CD4+ immunological
state for more than 10 years (1, 16) as well as patients who
occasionally lose HIV control at some point in their progression.
Multiple studies have already confirmed that metabolic pathways
can regulate innate and adaptive host responses to infections
(17), but substantial heterogeneity exists in ECs in terms of
Frontiers in Immunology | www.frontiersin.org 6
virological, immunological, and clinical outcomes. Thus, data on
EC phenotypes, such as LTECs, have not yet been fully described.
Hence, in this work, our objective was to elucidate the metabolic
and lipidomics profiles related to LTEC-extreme to fully
understand the mechanism implicated in persistent viral and
immunological HIV control. To our knowledge, this
extraordinary LTEC phenotype would be useful in the search
for a model of functional cure and to decide whether ART is
warranted in ECs.

Previously, an immunometabolism study of EC described the
strong associations among metabolites, lipid levels, and important
immune function parameters associated with spontaneous control
of HIV (4). However, the current study identified for the first time
metabolomics and lipidomics signatures associated with the
persistent viral and immunological control of HIV-1 infection.
Some important metabolic pathways described in this article
related to continuous viral and immunological HIV control are
glycolysis, the TCA cycle, fatty acid metabolism (FAO), and amino
acid metabolism (glutaminolysis) (18).
A

B

D

C

FIGURE 2 | Metabolic analysis comparing long-term elite controller (LTEC)-extreme and no-LTEC. (A) Orthogonal principal component analysis (ortho-PCA) of the
78 metabolites between LTEC-extreme and no-LTEC. (B) Metabolic enrichment pathways associated with the metabolites differentially expressed in the LTEC-
extreme group [Kyoto Encyclopedia of Genes and Genomes (KEGG) database]. The x-axis indicates the impact of selected metabolites in the presented pathway,
while the y-axis shows the level of enrichment of the pathway. (C) Illustration of the principal significant metabolites between LTEC-extreme and no-LTEC in the
tricarboxylic acid (TCA) cycle (column bars indicating differences in relative plasma concentrations of those metabolites implicated in the Krebs cycle; white bar
represents no-LTEC; gray bars represent LTEC-extreme [mean + SEM data]. *P < 0.05; **P < 0.01 (adapted from “Kreb’sCycleTemplate,” by BioRender.com (2021);
retrieved from https://app.biorender.com/biorender-templates). (D) Logistic regression and receiver operator characteristic (ROC) curves elucidated the statistically
significant metabolomics profile from the combination of 7 statistically significant TCA cycle metabolites as main differentiators between LTEC-extreme and no-LTEC-
losing [area under the curve (AUC) = 0.957].
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Metabolic pathways related to disturbances in energy
metabolism, such as glycolysis, the TCA cycle, and amino acid
catabolism, have been previously related to viral control in ECs
(19). Previous studies have demonstrated that all of these
pathways are targeted during viral infection, characterized by a
high demand for energy (20), a decrease in circulating metabolite
levels such as glucose, and an increased profile of glycolytic
intermediates (glycerol 3P, pyruvate, etc.) (21) in HIV-infected
CD4+ T cells. Accordingly, our results demonstrated that there
was a specific metabolomics profile associated with persistent
immunological and viral control in the LTEC-extreme
phenotype that was strongly related to critical deregulation of
the TCA cycle.

Of note, relative plasma concentrations of a-ketoglutaric acid,
a key molecule in the Krebs cycle determining the overall rate of
the citric acid cycle in the organism, were significantly increased
in LTEC-extreme compared to no-LTEC and LTEC-losing
(Figure 4B). Indeed, plasma concentrations of a-ketoglutaric
acid showed good clustering within LTEC-true individuals,
which could predict the natural evolution of persistent HIV
Frontiers in Immunology | www.frontiersin.org 7
control. In glutamine metabolism, a-ketoglutarate activates
mTOR, a catalytic factor of key cellular pathways regulating
cell growth and metabolism that control T-cell activation,
differentiation, function, and survival (22). In fact, mTOR has
been described as a modulator of HIV latency in Th17 cells in the
use of mTOR inhibitors as a potential therapeutic option in
decreasing HIV reservoirs and restoring the Th17-mediated
immunity at the intestinal level during ART (23, 24).
Moreover, increased levels of a-ketoglutaric acid could indicate
an antiviral maintained state that impedes HIV replication since
the incorporation of a-ketoglutaric acid into the TCA cycle is the
major anaplerotic step in proliferating cells (25) (Figure 4A).
Furthermore, some studies have proposed that cytotoxic T cells
have an important and relevant role in immunological viral
control in ECs (specific CD8+ T-cell transcriptional profiles in
ECs) (26). Although studies failed to sustain a specific antiviral
effect of CD8+ T cells in ECs, they described activation of related
metabolic pathways governed by PI3K/AKT, mTOR, and eIF2,
which exhibited regulation of cellular growth, proliferation, and
metabolism, as previously mentioned. In this sense, Loucif et al.
A B

D EC

FIGURE 3 | Metabolomics and lipidomics analysis comparing long-term elite controller (LTEC)-extreme and LTEC-losing. (A) Orthogonal principal component analysis
(ortho-PCA) including 78 metabolites between LTEC-extreme and LTEC-losing. (B) Column bars indicating differences in relative plasma concentrations of the principal
significant metabolites (*P < 0.05; **P < 0.01) between LTEC-extreme and LTEC-losing. Light gray bars represent LTEC-losing, and dark gray bars represent LTEC-
extreme (mean + SEM data). (C) Ortho-PCA of the 114 lipid species differentiating the LTEC-extreme from the LTEC-losing group. (D) Hierarchical clustering of the 45
significantly expressed lipids species between LTEC-extreme and LTEC-losing. Patients were ordered on vertical lines and candidate relative concentration of each lipid
species on horizontal lines [sphingomyelin (SM), phosphatidylcholine (PC), triacylglycerol (TG), and cholesteryl ester (CE)]. The scale shows blue (low concentration) to red
(high concentration). (E) Logistic regression and receiver operator characteristic (ROC) curves elucidate the statistically significant lipidomics profile from the combination of
45 statistically significant lipid species as main differentiators between LTEC-extreme and LTEC-losing (area under the curve (AUC) = 0.931).
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found an association between lipophagy (degradation of
endogenous lipids via autophagy) as a critical immune
mediator to induce functional antiviral CD8+ T-cell responses
that have an important role in the natural control of HIV-1
infection in ECs (27). Concretely, enhanced lipophagy leads to
fuel mitochondrial metabolism due to glutaminolysis and
restores protective CD8A T-cell immunity during persistent
HIV-1 infection in an IL-21-dependent manner (28, 29). Thus,
the plasmatic accumulation of TCA metabolites in LTEC-
extreme not only suggests that in proliferating cells the TCA
cycle operates as a biosynthetic pathway (anaplerosis) (30, 31)
instead of as a purely bioenergetic pathway (Figure 2B), but it
could also reflect proliferative and survival states of CD8+ T cells
as a result of different immune mechanisms underlying natural
HIV-1 control. Paradoxically, a-ketoglutarate was one of the
increased metabolites in transient controllers before the loss of
HIV control compared to the persistent controllers (4). This
suggests that a-ketoglutarate could enter the TCA cycle for
energy production to compensate for the lack of oxidative
Krebs cycle activity. However, the follow-up period of the
Frontiers in Immunology | www.frontiersin.org 8
transient controllers was only 1 year, compared to the LTEC-
extreme phenotype, which can maintain viral and
immunological control for more than 10 years. On the other
hand, although no significant differences were found in the
plasma concentration of lipid species when LTEC-extreme was
compared to the no-LTEC group, the lipidomics signature
(relative concentration of 45 lipid species) was significantly
different in LTEC-losing compared to LTEC-extreme. Our
results showed a decreased lipidomics profile in the LTEC-
extreme phenotype that could provide a high association
between increased relative concentrations of lipidic species and
the spontaneous loss of viral and/or immunological control
(AUC = 0.931, from a panel of 45 lipid species that
differentiated LTEC-losing from LTEC-extreme) (Figure 3D).
Lipid processing and transport are affected by inflammatory
processes, and many lipid species contribute to inflammation
and immune activation and are essential during T-cell
differentiation and immune CD8+ T-cell responses (32).
However, the relationship between the lipidomics profile and
the inflammatory state is complex (33). Among the increased
A B

DC

FIGURE 4 | a-Ketoglutaric acid and the lipid panel distinguish two subgroups in long-term elite controller (LTEC)-true. (A) Overview of the principal a-ketoglutarate
pathways implicated in the antiviral state in the LTEC-extreme patients: mTOR signaling for the control of T immune cells and the biosynthetic pathways in the
tricarboxylic acid (TCA) cycle associated with the cell growth and survival. Right: the possible inflammatory environment created by increased lipidic concentrations
as the mechanism operating behind the loss of immunological and/or viral control in LTEC-losing patients (created with BioRender.com (2021); retrieved from https://
app.biorender.com/biorender-templates). (B) Increased plasmatic levels of a-ketoglutaric acid in LTEC-extreme compared to other LTEC phenotypical groups (*P <
0.05). (C) Relative plasmatic concentrations of a-ketoglutaric acid distinguish the classification of two subgroups among the 14 LTEC-true individuals. (D) Orthogonal
principal component analysis (ortho-PCA) of the combination of 45 lipid species significantly increased in the LTEC-losing group differentiates both subgroups of
LTEC-true.
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relative plasma concentrations of lipid species that were in the
LTEC-losing group, we found TG, PC, and CE. Of note, previous
studies suggest an increase in TG concentrations during HIV
infection (34, 35), whereas PC indirectly activates the TNF-a
signaling cascade (36) via PC-derived 1,2-DAG (PC-specific
phospholipase C) and acts as a proinflammatory contributor to
HIV persistence and rapid post-ART HIV rebound (37). In this
sense, El-far et al. previously described the important role of the
proinflammatory cytokine IL-32 as a powerful biomarker for
control failure in HIV-infected slow progressor subjects.
Circulating levels of IL-32 positively correlated with the decline
of CD4 T-cell counts, increased viral load, lower CD4/CD8 ratio,
and levels of other inflammatory markers (sCD14 and IL-6)
(Figure 4A) (38). Another study associated the coinfection with
cytomegalovirus (CMV) to additional inflammation, leading to
CD4 T-cell activation, which contributes to progressive T-cell
loss (CD4 T-cell decay) in ECs (39). Thus, according to our
results, an increase in the relative concentration of the lipidic
profile in the LTEC-losing group could be associated with a
sustained inflammatory environment, which in turn would be
very advantageous for HIV replication (Figure 4A).
Furthermore, the combination of these 45 lipid species was a
main differentiating factor in the evaluation of LTEC progression.

Our study has several limitations. Although the number of
patients per group did not seem to be consistent, LTEC patients
are not common, and it is difficult to have a continuous follow-
up of more than 10 years for this EC phenotype. Accordingly,
with this long period of follow-up for more than 10 years, most of
the LTEC-extreme patients had an active HCV coinfection that,
although being treated in most cases, was not cured. In this
regard, information regarding HLA typing was missing. Other
inflammatory-related parameters (such as CMV status, IL-32, or
IL-21), immunological recovery factors (CD4/CD8 ratio), or
quantitative concentration of some target mitochondrial fuels
would have been very useful in the understanding of mechanistic
pathways. On the other hand, the association between
metabolomics and lipidomics in previous omics studies in ECs
was also challenging because of the high diversity of patients
included in the LTEC cohort. Designating relative plasma a-
ketoglutaric acid concentrations and the panel of 45 lipid species
as potential biomarkers of extreme long-term conditions requires
a consistent group of LTEC individuals with continuous follow-
up. Validation studies are needed.

To conclude, our study reveals a singular metabolomics
profile associated with maintained viral and/or immunological
control in LTEC-extreme individuals. Notably, elevated plasma
concentrations of TCA metabolites in LTEC-extreme were
associated with the natural control of HIV infection, especially
those metabolites related to glutamine metabolism. On the other
hand, the lipidomics pattern is highly associated with the
spontaneous loss of viral and/or immunological control in
LTEC individuals, with good differentiation of LTEC-losing
versus LTEC-extreme. Although the exact mechanism
underlying natural HIV control in LTEC-extreme is not fully
described, we can hypothesize the importance of metabolites
Frontiers in Immunology | www.frontiersin.org 9
and/or lipid species in immune metabolism as potential
biomarkers among phenotypical groups of LTECs.
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through the Red Temática de Investigación Cooperativa en SIDA
(RIS C03/173, RD12/0017/0018 and RD16/0002/0006) as part of
the Plan Nacional R+D+I and cofinanced by ISCIII-Subdirección
General de Evaluacion y el Fondo Europeo de Desarrollo
Regional (FEDER). We also thank Maria Guirro, Salvador
Fernández, and Antoni del Pino from the Proteomics and
Metabolomics Facilities of the Centre for Omic Sciences (COS)
Joint Unit of the Universitat Rovira I Virgili-Eurecat for their
contribution to mass spectrometry analyses.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.
822272/full#supplementary-material
REFERENCES

1. Navarrete-Muñoz MA, Restrepo C, Benito JM, Rallón N. Elite Controllers: A
Heterogeneous Group of HIV-Infected Patients. Virulence (2020) 11:889.
doi: 10.1080/21505594.2020.1788887

2. Deeks SG, Walker BD. Human Immunodeficiency Virus Controllers:
Mechanisms of Durable Virus Control in the Absence of Antiretroviral
Therapy. Immunity (2007) 27:406–16. doi: 10.1016/j.immuni.2007.08.010

3. Autran B, Descours B, Avettand-Fenoel V, Rouzioux C. Elite Controllers as a
Model of Functional Cure. Curr Opin HIV AIDS (2011) 6:181–7. doi: 10.1097/
COH.0b013e328345a328
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