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Pozas Rojas is a hydrological system comprising nine isolated shallow ponds and
a deep lagoon, which were temporally merged in 2010 by increased rainfall due to
a tropical cyclone. In this work, we assess which components, biotic interactions,
or environment filtering effects, drive the assembly of microbial communities after a
natural perturbation. Arsenic, pH, and temperature are among the most significant
environmental variables between each pond, clustering the samples in two main groups,
whereas microbial composition is diverse and unique to each site, with no core at the
operational taxonomic unit level and only 150 core genera when studied at the genus
level. Los Hundidos lagoon has the most differentiated community, which is highly similar
to the epipelagic Mediterranean Sea communities. On the other hand, the shallow ponds
at the Pozas Rojas system resemble more to epicontinental hydrological systems, such
as some cold rivers of the world and the phreatic mantle from Iowa. Overall, despite
being a sole of water body 2 years prior to the sampling, interspecific interactions,
rather than environmental selection, seem to play a more important role in Pozas Rojas,
bolstered by founder effects on each poza and subsequent isolation of each water body.

Keywords: Eltonian niche, Grinnellian niche, founder effect, environmental filtering, compositional differentiation,
ecological perturbation

INTRODUCTION

Early in the 20th century, two main frameworks for the study of ecological niches have been
proposed: the Grinnellian and Eltonian niche concepts. On one hand, the Grinnellian niche
concept (Grinnell, 1904) was meant as a description of the complete range of conditions
and resources where any given organism could live and reproduce (see review in Soberón,
2007). On the other hand, the Eltonian (Elton, 1927) niche concept is explained by the
interactions among species, with the trophic web as central for the establishment of local
community assembly (Soberón, 2007). Although there are multiple studies on the interplay of the
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Grinnellian and Eltonian niches in natural animal and plant
populations (Soberón, 2007; Larson et al., 2010; Rosado et al.,
2016; Junker et al., 2019), their role in succession processes and
perturbation scenarios is more difficult to dissect, and questions
regarding the relative importance of local environmental
conditions and interactions among members of the community
remain to be answered, particularly in in situ microbial setups.

Succession process in aquatic microbial communities is
seldom studied in situ given the complexities of natural
communities and a large amount of confounding factors,
including community response to environmental variables
and stressors, stochastic processes, migration, and founders’
effect (Pajares et al., 2013, 2015; Pascual-García and Bell,
2020). However, aquatic mesocosm experiments have shown
that environmental variables such as temperature and UV
light determine the response of the microbial community to
perturbation, as the Grinnellian niche concept would predict.
Other studies have shown the influence of the Eltonian niche.
For instance, the establishment of bacterial communities in beech
tree holes seems to be governed by functional redundancy and
founders’ effect (Pascual-García and Bell, 2020). In contrast,
communities from oligotrophic lakes in the Pyrenees have shown
to be influenced by the interactions between environment and the
community as well as migration processes, being environmental
filtering a strong force (Ortiz-Álvarez et al., 2020). Therefore,
both the Grinnellian and Eltonian niches are relevant for the
establishment of the lake microbial communities.

Another fundamental issue is what happens to microbial
communities after natural perturbations, that is, when the
Grinnellian niche changes abruptly. In a 4-year study of halite
communities from the Atacama Desert, after an unusual rain,
the community shifted to a completely new unstable state
and then recovered through stochastic recolonization once
the water evaporated (Uritskiy et al., 2019). Opposite to the
Atacama example, in the Churince system from Cuatro Ciénegas
Basin (CCB), water became scarce, and salinity progressively
rose due to the overexploitation of the aquifer. This resulted
in demographic fluctuations of the Pseudomonas community,
producing a sudden bloom of Pseudomonas aeruginosa (García-
Ulloa et al., 2019) and an event of evolutionary rescue of
Pseudomonas otitidis (García-Ulloa et al., 2021). However, as the
perturbation became stronger and disrupted the community, the
entire genus disappeared and a never-before-seen environmental
strain of Vibrio cholerae appeared close to the extinction of the
lagoon. The interplay between Grinnellian and Eltonian niches
seems to explain this outcome; as the Grinnellian niche radically
changed, the Eltonian niche eventually became altered, and the
original community collapsed. Unfortunately, as in the case of
P. otitidis and possibly most of the Pseudomonas genus, the
enormous diversity of Churince [5,167 operational taxonomic
units (OTUs) in a square km (Souza et al., 2018)] is now mostly
lost due to the water depletion.

Within the studied sites at CCB is Pozas Rojas, located
on the east side of the valley and composed of multiple
shallow pozas and a deeper lagoon. This place was studied in
parallel to Churince as a comparative site for cultivated Bacillus,
Exiguobacterium, and Pseudomonas (Avitia et al., 2014) and more

recently for Vibrio (Vázquez-Rosas-Landa et al., 2017, 2020). It
is interesting to note that earlier metagenomics of Pozas Rojas
observed a strong dominance and diversity of Pseudomonas, a
lineage that probably benefited from the environmental filtering
due to the extreme unbalanced stoichiometry of the site (C:N:P
15,820:157:1; Bonilla-Rosso et al., 2012; Peimbert et al., 2012).
However, the extreme oligotrophy of Pozas Rojas was perturbed
by Hurricane Alex in April 2010. This natural perturbation
brought not only water that temporarily connected all pozas and
the lagoon into one body of water, but also debris from most of
the east side of the basin to the region named Los Hundidos due to
its karstic nature and slightly lower elevation than the rest of the
basin. As time passed, the superficial excess of water refilled the
deep aquifer, leaving in 2012 the pozas in the same geographical
position they were before the perturbation. At the moment of
the sampling in 2013, the site was no longer oligotrophic (C:N:P
350:9:1) allowing the more copiotroph Vibrio to thrive (Vázquez-
Rosas-Landa et al., 2020). Also, in a recent sampling of Pozas
Rojas viral diversity, compared with Churince, the pozas showed
a much larger diversity and differentiation in the water column
between water bodies in March 2014 (Taboada et al., 2018), a year
after the present study.

Herein we studied the aquatic microbial diversity of Pozas
Rojas, 3 years after Hurricane Alex merged all the pozas into
one lake and then got reseparated. In this work, we want
to address the issue of differentiation between pozas in a
very short time, testing the hypothesis of Grinnellian versus
Eltonian niche as drivers of the community structure. As a
null hypothesis, the flooding erased the structure between pozas
within Pozas Rojas, and at that time, they showed no significant
differentiation. However, there are two alternative hypotheses: (1)
the Grinnellian niche drives the pozas differentiation; therefore,
environmental variables explain most of Pozas Rojas diversity; (2)
each poza will be unique within Pozas Rojas due to the Eltonian
niche where interactions rule community assembly. Moreover,
we scale such geographical differentiation from the local to a
more global scale by comparing the Pozas Rojas composition
with other epicontinental and marine water bodies: the phreatic
mantle from Iowa, a groundwater system; the Mediterranean Sea,
a marine system; several cold rivers from the world, which are
instances of lotic systems; the Churince system from the CCB;
and the well-studied Lake St. Clair in Michigan, a lentic system
that is part of the Great Lakes Basin. We expected sites within
Pozas Rojas to be more similar among each other than other CCB
sites, such as Churince. Following this logic, CCB’s systems would
be more similar between them than between different sites of the
world, as Pozas Rojas and Churince may share a core of CCB
microbiota given their shared deep aquifer (Wolaver et al., 2013).

MATERIALS AND METHODS

Sample Collection, DNA Purification, and
Sequencing
Pozas Rojas system, within the CCB, is located at the geographic
coordinates 26◦52′N, 102◦1′W. Sampling site overview and
geographic coordinates for each poza/lagoon are provided in
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the Supplementary Figure 1 and Supplementary Table 1. The
pozas (designated S02–S09 in the present study) are small and
shallow (no more than 20 cm in the winter); therefore, wind
is expected to evenly mix the water column, except at the Los
Hundidos (designated LH1) lagoon, which is roughly 10 m deep,
and stratification is presumed. Each water body was sampled with
sterilized water bottles, collecting 6 L of superficial water and
keeping them in a cold icebox. Simultaneously, environmental
variables were measured with a Hydrolab MS5 multiprobe. Three
liters from each water body was taken for mineral and nutrient
determination (CIECO and Instituto de Geofísica, UNAM).
Microbes were collected by filtering in situ all the sampled water
onto sterile GF/F filters (0.2-mm nominal pore size; Whatman,
Piscataway, NJ, United States) using a Millipore filtering device.
GF/F filters were used in order to accumulate enough biomass
for DNA extraction.

DNA was extracted from water column samples using the
MOBIO PowerWater DNA Isolation kit (MoBio Laboratories,
Carlsbad, CA, United States), with one modification: the volume
of PW1 solution was increased to 1.5 mL due to the high
absorbency of the GF/F filters, obtaining several filters per poza.
Therefore, a composed sample of several independent DNA
isolation steps from each site was pooled into one sample per
poza. The DNA was used to amplify the V4–V6 16S rRNA
gene variable regions using the primers 357F and CD[R] (Rudi
et al., 1997; Turner et al., 1999). Amplicon libraries (450–490-
bp length) were constructed as reported in the 16S Metagenomic
Sequencing Library Preparation protocol from Illumina and
sequenced on the Illumina MiSeq platform with a paired-end
read configuration of 150 cycles at CINVESTAV-LANGEBIO,
Irapuato, Mexico.

Measurement of Physicochemical
Parameters
To determine the ionic concentration of the samples, sediment
samples were incubated with distilled water for 19 h at
25◦C under continuous shaking. This procedure allows
the mobilization of the available ions within the sediment.
Liquid samples from sediment and water were filtered with
0.22 nitrocellulose membranes. Concentrations of CO3

2− and
HCO3

− anions were determined by HCl 0.01 N titration. Cl− and
SO4

2− concentrations were determined by high-performance
liquid chromatography. A 432-conductivity detector (Waters)
and an IC-Pack HR-Waters column were used. The mobile phase
was a mixture of sodium borate (1.3 M) and acetonitrile (12%) at
pH 8.5. Ca2+ and Mg2+ concentrations were obtained by atomic
absorption spectroscopy using a Perkin Elmer 3110 equipment.
Na+ and K+ were determined by flamometry using a Corning
400 device. For nutrient quantification, sediment samples were
dried, and water samples were filtered through a Millipore 0.42-
µm filter. Total carbon (TC) and inorganic carbon (IC) were
determined by combustion and colorimetric detection using a
TC analyzer (UIC model CM5012, Chicago, IL, United States).
Total organic carbon was calculated as the difference between
TC and IC. For total N and total P (TP) determination, samples
were acid digested with H2SO4, H2O2, K2SO4, and CuSO4 at

360◦C. Soil N was determined by the macro-Kjeldahl method
(Bradstreet, 1954), whereas P was determined by the molybdate
colorimetric method following ascorbic acid reduction (Dick and
Tabatabai, 1977). The N and P forms analyzed were determined
colorimetrically in a Bran–Luebbe Autoanalyzer 3 (Norderstedt,
Germany). Several replicates per measurement were used in the
statistical analysis.

Microbial Diversity
A total of 223,937 reads were obtained with MiSeq Illumina
2 × 300 using 357F and 939R primers. Reads passing the QC
filters (minimum read quality = Q20) were used to reconstruct
the original amplicon region (450–490-bp length) by overlapping
them with Flash v1.2.7 software (Magoč and Salzberg, 2011). All
non-overlapping sequences were discarded. A total of 188,190
sequences were used for taxonomic annotation with the Parallel-
META v2.4.1 pipeline (Su et al., 2014) against the Metaxa2
database v2.1.1 (Bengtsson-Palme et al., 2015; Escobar-Zepeda
et al., 2018). Stacked bar plots at different taxonomic levels were
generated with ggplot2 (Wickham, 2016). The OTU abundance
table was used to calculate the Good’s coverage (rarefaction) and α

diversity indexes, that is, Observed, Chao 1, Fisher, Simpson, Inv
Simpson, and Shannon, with the R Phyloseq library (McMurdie
and Holmes, 2013). The OTU table was normalized using the
metagenomeSeq method (Paulson et al., 2013), and the β diversity
distance matrix was calculated using Bray–Curtis dissimilarity.
Absence/presence plots were generated using the Upset R library
(Lex et al., 2014) from the abundance OTU table and taxonomic
annotation table at the genus level.

Statistical Analyses
Statistical analyses were conducted with R.1 Using the
physicochemical and environmental measurements, the optimal
number of clusters was assessed, from k = 2 to k = 8, with cluster
v2.1.0, and plotted with factoextra v1.0.7 R packages, respectively
(Kaufman and Rousseeuw, 2009). Pearson correlation coefficients
were calculated to assess the associations between microbial α

diversity and environmental measurements and the relationships
across various environmental variables. p < 0.05 was considered
to be statistically significant.

Non-correlated variables were selected based on a correlation
plot calculated with the R package corrplot v0.84 (Wei and Simko,
2017), resulting in eight independent environmental variables:
temperature, C:N, calcium (Ca), iron (Fe), conductivity, TP,
pH, and arsenic (As). However, Fe was excluded from the
analysis because of its slight presence in only two of the
samples. Euclidean dissimilarity matrices of individual and every
possible group of non-correlated environmental variables and a
Harvestine dissimilarity matrix of the coordinates from Pozas
Rojas samples were calculated. Mantel tests were performed
with both Spearman and Pearson correlation methods (9999
permutations) using the R package vegan v2.5.6 (Dixon, 2003).
In addition, a canonical correspondence analysis (CCA) of
the environmental and physicochemical measurements was

1http://cran.r-project.org
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performed using the cca function from the R package vegan
v2.5-6. Only variables with p < 0.05 are shown to reduce noise.

Data Acquisition of Worldwide Water
Bodies and Taxonomic Annotation
Pozas Rojas raw reads were uploaded to MG-RAST and
are publicly available on the site2 with the project accession
number mgp94066. 16S tags from water samples collected
globally were used as references. Accession numbers of the
reference sites are as follows: mgp82906 (phreatic zone, Iowa),
mgp10029 (eastern Mediterranean Sea), mgp89153 (Lake St.
Clair, Michigan), mgp83892 (cold rivers, worldwide), and
mgp94070 (Churince, Cuatro Cienegas, Mexico). All 16S tags
used in this study were processed with the MG-RAST pipeline
(Keegan et al., 2016). Rarefaction curves of the species count were
performed for all geographical sites, and taxonomic annotation
was done using the Ribosomal Database Project database as
reference. An abundance table was constructed with the following
minimum values: e = 10e−5, percentage of identity = 60%,
length = 15 bp, abundance = 1.

Comparative Analysis With Samples
From Around the World
Bray–Curtis dissimilarity matrices of relative abundances
and non-metric multidimensional scaling (NMDS) analyses
of all taxonomic categories, from phylum to genus, for all
sites around the world were calculated using the R package
vegan v2.5.6. Homogeneity of multivariate dispersion at
each taxonomic category was assessed with an analysis
of variance (ANOVA) of the β dispersions of the Bray–
Curtis dissimilarity matrices previously calculated. Validity
of the NMDS analyses was assessed with the stress scores.
A permutational multivariate ANOVA (1,000 permutations)
using dissimilarity matrices and an analysis of similarity
(ANOSIM) were carried out to measure significant differences
between sites based on their taxonomic abundances with the
adonis and anosim functions from vegan v2.5.6, respectively.
In addition, a stacked bar plot of the relative abundances
of phyla from all sites was done with the R package
ggplot2. Rarefaction curves for each sample are shown in
Supplementary Figure 4.

RESULTS

As, pH, and Temperature Are the Most
Important Environmental Variables in
Pozas Rojas
Nutrient analysis showed that the proportion of C:N:P was, on
average, 350:9:1 for water and 258:21:1 for sediment. These
nutrients (C, N, and P) were not significantly different
between sampling points for water samples (Vázquez-
Rosas-Landa et al., 2020). Environmental variables include
pH, temperature, conductivity, and the concentration

2mg-rast.org

of the following chemical species: CO3
2−, HCO3

−,
SO4

2−, Cl−, Na+, K+, Ca2+, Mg2+, Cd, Pb, and As
(Supplementary Table 2). Pozas were separated by such
environmental variables into two groups: LH1, S04, S05,
S07, S08, and S09 in one group and S02, S03, and S06 in
another (Figure 1).

Univariate Mantel tests show nine significant correlations of
geographic location with temperature and As [As (Spearman):
r = 0.615, p = 0.0164; temperature (Spearman): r = 0.366,
p = 0.038; As (Pearson): r = 0.818, p = 0.0071; temperature
(Pearson): r = 0.467, p = 0.013], and multivariable Mantel points
to temperature and pH [temperature + pH (Spearman): r = 0.404,
p = 0.037]. In addition, CCA gives significant results for pH and
conductivity (Table 1).

FIGURE 1 | Dendrogram of environmental variables. Hierarchical K-means
clustering algorithm of the R package cluster v2.1.0 was used. Two main
groups resulted from the clustering of environmental variables, shown in blue
and yellow.

TABLE 1 | Canonical correspondence analysis of environmental variables.

Data χ 2 F stats Pr (>F) Significant
variables

All Temperature, pH,
conductivity, C:N,
C:P, N:P, COT, NT,
PT, CO3, HCO3,
SO4, Cl, Na, K, Ca,
Mg, Cd, Pb, As

1.70192 1.0343 0.188 COT
(p = 0.034)

Environmental Temperature, pH,
conductivity

1.10427 2.2101 0.013 pH (p = 0.001)
Conductivity
(p = 0.007)

Stoichiometry C:N, C:P, N:P 0.97696 1.696 0.088 C:P (p = 0.004)

Minerals COT, NT, PT, CO3,
HCO3, SO4, Cl,
Na, K, Ca, Mg, Cd,
Pb, As

1.70192 1.0343 0.216 CO3 (p = 0.05)
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FIGURE 2 | Dendrogram of Bray–Curtis distance between samples.

Each Poza Possesses a Distinctly High
Microbial Diversity
From a total of 188,190 reads, 5,268 OTUs were obtained at 97%
similarity. Rarefaction curves show that even if the number of
reads per poza is not the same, whereas LH is very well sampled
along with S02, S08, and S09, the other pozas are subsampled
(Supplementary Figure 2). However, microbial diversity is not
related to the sequence coverage or to environmental variables.
Community differentiation shows an isolated site (LH1) and two
more related clusters (Figure 2 versus 1). The Los Hundidos site
has clearly a unique microbial composition. This is confirmed by
Bray–Curtis β diversity that is, in general, also very high, showing
that each site is diverse and unique (Figures 2, 3 and Table 2).
Furthermore, a Mantel test shows that this differentiation is
unrelated to geographic distance (p = 0.2274, R2 = 0.03291),

despite that the somewhat closer pozas (S02, S05, and S03)
are more similar among each other in terms of community
composition (Figure 2).

Despite its recent recolonization, the diversity and equitativity
within each site is very high as reflected by the high Shannon and
Simpson indexes, with the notable exception of S02 and the less
well-sampled site S07 (Table 2).

There Is No Core Community in Pozas
Rojas
The divergent community composition of LH (Figure 2) is
also evident in the unique versus shared OTUs between Pozas
Rojas sites (Supplementary Figure 3), with LH having 1334
unique OTUs, whereas the next site in line, S08, has only
403. Surprisingly, there are no core OTUs that are shared
among all sites despite their proximity and the fact that
they were a connected water body 2 years prior to this
sampling (Supplementary Figure 3). In order to understand such
uniqueness, we assigned genera to the most abundant OTUs
(>0.1%). With this approach, we were able to identify that
150 genera are shared between the different pozas (Figure 3).
On the most divergent site, LH, the marine Cyanobacteria
Synechococcus is the most abundant, whereas it is rare in the
shallower pozas (Figure 4). Meanwhile, most shallow pozas have
diverse proportions of the Actinobacteria Candidatus Rhodoluna,
as well as a high abundance of Rhodobacteraceae along with
fewer Cyanobacteria.

Migration Is Rare Between Los Hundidos
and the Pozas
While at higher taxonomic levels clustering of sites is generally
not clear, at the genus level, all Pozas Rojas samples group

FIGURE 3 | Upset plot of shared genera between pozas. Connected points represent the different combinations of sample intersections. First vertical frequency bar
displays the common genera between all ponds. The total number of genera in each pond is shown by the horizontal frequency bars.
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TABLE 2 | Microbial α diversity in the water of the Pozas Rojas hydrological
system after a natural perturbation.

Sample Observed Chao1 Shannon ACE Simpson InvSimp Fisher

LH1 1,851 1,880.57 4.12 17.7 0.92 12.24 365.59

S02 1,143 1,449.02 2.85 22.95 0.71 3.5 235.81

S03 415 893.85 4.54 19.91 0.96 27.5 161.68

S04 736 1,220.71 5.06 22.55 0.98 49.85 255.53

S05 1,271 1,734.97 4.92 25.37 0.97 29.97 365.65

S06 905 1,323.49 4.94 21.68 0.97 32.46 271.47

S07 497 664.2 3.04 16.63 0.72 3.55 137.69

S08 1,841 2,358.46 5.43 28.8 0.98 42.28 501.55

S09 1,123 1,448.9 4.28 23.36 0.95 20.21 290.76

together and very closely to Churince samples, except for LH,
which arranges itself as a part of the epipelagic samples of
the Mediterranean Sea (Figure 5). Moreover, a clear difference
can be appreciated on the taxonomic profiles of LH1 and
the rest of the pozas along similarities with the epipelagic
Mediterranean Sea samples at the phylum level, mainly a
very high relative abundance of Cyanobacteria followed by
Bacteroidetes (Figure 6). This suggests not only that the water
source of LH is different from the shallow pozas, but also that
superficial migration from that lagoon to the pozas around
the lagoon is rare.

DISCUSSION

All the data show that there is a strong community structure
and differentiation between the individual pozas, particularly
with the deeper and most stable site, Los Hundidos lagoon.
As we stated previously, there are two possibilities: (1) the
Grinnellian environmental variables explain most of Pozas
Rojas diversity and structure; and (2) each poza is unique
because of the Eltonian niche determining community assembly.
In this study, we observed a significant differentiation in
community structure between pozas given by environmental
variables such as temperature and pH. This is to be expected,
as these environmental variables are the most important
variables in microbial community assembly in general (Hollister
et al., 2010; Ren et al., 2015; Yan et al., 2017). However,
nutrients and minerals, with the exception of As that is
more abundant in pozas S02, S04, and S07, appear to be
less relevant variables for community assembly in Pozas
Rojas. What is interesting is that LH, environmentally, is
part of the large inner cluster (Figure 1); this could be
due to the drainage of the hurricane water toward it.
Nevertheless, such clustering is not reflected in the microbial
community structure, being LH the most divergent site.
Therefore, although there is an influence of Grinnellian
niche on community assembly, Eltonian processes seem to
play a more important role in Pozas Rojas differentiation,

FIGURE 4 | Microbial community composition of the Pozas Rojas system. Relative abundance of 16S reads annotated at the genus level. Only the top 20 most
abundant genera are shown in legend.
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FIGURE 5 | Non-metric multidimensional scaling plots of relative abundances at different taxonomic levels. Taxonomic categories are separated by panels (A):
phylum, (B): class, (C): order, (D): family, and (E): genus. Samples are colored as follows: Pozas Rojas, purple; Lake St. Claire, pink; cold rivers of the world, red;
deep water from Iowa, blue; Mediterranean Sea, yellow; Churince, black.

potentiated by founder effects on each poza and their further
isolation by distance.

Although in this study we are exploring only the water
community, the overall diversity in Pozas Rojas is as high as
Churince (>5,000 OTUs, Souza et al., 2018). This is remarkable,
given the small scale of the study (circa 700 × 500 m) and
the subsampling due to the inherent sequencing technical
deficiencies. Other aquatic diversities have been reported to

be at least an order of magnitude lower, as is the case
of Svalbard subglacial ice with 700 OTUs in an equivalent
sampling coverage of three glaciers (Perini et al., 2019),
or 811 OTUs observed in five sites along the Ganjiang
River in China (Wang et al., 2016). It is most interesting
that despite the small scale of our study, the richness
observed here is double the species obtained in the TARA
ocean survey for superficial waters and comparable to the
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FIGURE 6 | Stacked bar plot of relative abundance of phyla from global samples. Sites to which samples belong are indicated on the X-axis.

observed in mesopelagic waters at the scale of the world
(Sunagawa et al., 2015).

It is possible that the large diversity found in Pozas Rojas is
in part the product of a more balanced stoichiometry, reducing
the environmental filtering of low phosphorus content typical
from CCB (Vázquez-Rosas-Landa et al., 2020). Another possible
factor is the pozas differentiation, where a particular founder
effect and a cohesive community, the Eltonian niche, isolate each
poza from the next one, generating an equitable distribution, as
well as a large diversity in most of the pozas. Another role in
such diversity and differentiation should be assigned to viruses
that we know are particularly diverse (Taboada et al., 2018) as
their constant pressure tends to increase diversity as a escape
mechanism to predators.

It seems that each poza had a unique process of establishment
[a.k.a. founder effect (Peter and Slatkin, 2015)]. In fact, after the
homogenization due to the hurricane’s high waters, only pozas
S02 and S05 share similar communities (Figure 2), even though
they are not so close, nor part of the same environmental cluster
(Figure 1). If we take away the lagoon (LH1), most of the unique
OTUs go away (1334) (Figure 3). Such a large number of unique
OTUs belong mostly to 33 unique genera, with Synechococcus
being particularly abundant in LH, which is one of the most
abundant Cyanobacteria in the ocean along with Prochlorococcus
(Sunagawa et al., 2015). This result is interesting but not new,
as multiple marine lineages such as Exiguobacterium (Rebollar
et al., 2012), Bacillus (Alcaraz et al., 2008; Moreno-Letelier et al.,
2012), and marine phages (Desnues et al., 2008) have been
previously found on the water systems from Cuatro Cienegas,

thus supporting the marine origin of local communities (Souza
et al., 2006). However, the observed pronounced differentiation
of the pozas from LH may be overestimated, given the acute
differences in-depth between the two types of water bodies. It
is expected to get a more complete community sampling from a
non-stratified shallow poza than a 10-m-deep lagoon from which
the sample was taken from the surface. Hence, sampling bias
led by the stratification of LH most likely played a role in the
observed divergence.

We observe among this large diversity a core of 150 genera
(Figure 3), even if there is not a core at the OTU level,
suggesting microdiversification processes separating each pond.
The shallow ponds are characterized by different proportions
of genus from the Microbacteriaceae family with strains related
to Candidatus Rhodoluna, which has been described to have
photorhodopsin that allows for autotrophy; from the same
family are the marine genus Candidatus Aquiluna, the soil
bacteria Agrococcus, and the aquatic Leifsonia that has been
described in continental waters (Reddy et al., 2003; Zhang
et al., 2010; Chuon et al., 2021). Beyond the core, at the genus
level, 25 genera explain the differences between pozas with a
p > 0.015 (Supplementary Table 3). It is interesting that most
of these bacteria are heterotrophs, but only few of them are
primary producers, as the marine Cyanobacteria Acaryochloris,
an halophile that has low light chlorophyll; Aphanothece and
Prochlorothrix, common in freshwater systems; Leptolyngbya,
found in the Arctic Ocean; and Chlorobaculum, a green sulfur
bacteria with an anoxygenic phototrophic metabolism. The
chemoautotroph Acidithiomicrobium, an Fe-oxidizing acidophile
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and thermophile, was also found to be important in the
differentiation of the pozas, and as only few species have been
described (Norris et al., 2011), it is possible that this one in
Pozas Rojas is a new species. Some genera are typical from deep
aquifers or marine environments, whereas others are typical from
freshwater and soil, therefore representing potential migrants
from the local environments that got “dragged” along the flood
water to the Pozas Rojas system. Interestingly, such migration did
not seem to occur to the larger lagoon.

When comparing the Pozas Rojas system with other water
systems of the world that have comparable data in MG-RAST, we
observe that each site has a “signature” even at the phylum level
determined mostly by their most abundant groups (Figure 6). In
this case, Churince and Pozas Rojas appear similar to the cold
rivers of the world and phreatic mantle from Iowa, meaning,
continental waters. On the other hand, LH from Pozas Rojas is
more similar to the epipelagic samples from the Mediterranean
Sea, in particular, on their high abundance of Cyanobacteria
(Figure 6). This similarity is maintained in the NMDS plot
at the phylum, order, and genus taxonomic levels only with
the epipelagic fraction of the Mediterranean Sea, which is
the zone with the highest abundance of Cyanobacteria in the
ocean (Figure 5).

Even though more in-depth studies are needed in this diverse
and heterogeneous site, it is captivating that the deep aquifer
possibly connected to the deep lagoon is related to the ocean,
and its community structure has persisted for at least 30 million
years that the highland of central Mexico along with the Sierra
Madre Oriental uplifted isolating CCB from the Western Seaway,
confirming that CCB is indeed a dynamic lost world where
ancestral residents mingle with more recent migrants without
losing its particular diverse marine signature. In the last years,
efforts toward saving this amazing wetland have yielded fruit
as 40 Ha of the wetland is in recovery as two channels that
diverted water for irrigation have been partially closed, giving us
the luxury of a little more time to understand the dynamics of this
unique deep aquifer.
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