
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8724  | https://doi.org/10.1038/s41598-022-12682-8

www.nature.com/scientificreports

Bayesian network‑based 
over‑sampling method (BOSME) 
with application to indirect 
cost‑sensitive learning
Rosario Delgado 1* & J. David Núñez‑González1,2

Traditional supervised learning algorithms do not satisfactorily solve the classification problem on 
imbalanced data sets, since they tend to assign the majority class, to the detriment of the minority 
class classification. In this paper, we introduce the Bayesian network‑based over‑sampling method 
(BOSME), which is a new over‑sampling methodology based on Bayesian networks. Over‑sampling 
methods handle imbalanced data by generating synthetic minority instances, with the benefit that 
classifiers learned from a more balanced data set have a better ability to predict the minority class. 
What makes BOSME different is that it relies on a new approach, generating artificial instances of 
the minority class following the probability distribution of a Bayesian network that is learned from 
the original minority classes by likelihood maximization. We compare BOSME with the benchmark 
synthetic minority over‑sampling technique (SMOTE) through a series of experiments in the context 
of indirect cost-sensitive learning, with some state‑of‑the‑art classifiers and various data sets, showing 
statistical evidence in favor of BOSME, with respect to the expected (misclassification) cost.

Abbreviations
BOSME  Bayesian network-based over-sampling method
SMOTE  Synthetic minority over-sampling technique
SMOTE-NC  Synthetic minority over-sampling technique-nominal continuous
SVDD  Support vector data description
G-SMOTE  Variant of SMOTE that allows the generation of synthetic instances in a geometric region 

around the selected instances
BN  Bayesian network
DAG  Directed acyclic graph (the graphical part of a BN)
PA  Set of nodes that are parents, in the DAG, of a given node
MLE  Maximum likelihood estimation method for parameters estimation
LS  Logic Sampling algorithm
ROSE  Random over-sampling examples
LR  Logistic regression
RF  Random forest
SVM  Support vector machine
RBF  Radial basis function kernel

In classification, an imbalanced data set is one with a skewed class distribution. We can assume we mean binary 
class data sets (otherwise non-minority classes can be merged into a single majority class), with a majority class 
(negative), and the minority class (positive) being generally the one we are most interested in predicting.

Imbalanced data sets are pervasive across a multitude of fields, making it difficult for machine learning 
algorithms to identify the minority cases. In fact, detecting instances belonging to the minority class is gener-
ally difficult, and the cost associated with misclassifying them (false negative) is often much higher than that of 
misclassifying an instance of the majority class (false positive). There are many real-world situations, such as spam 
detection, fraud identification, disease diagnosis, or vital prognosis, where misclassifying a positive class is clearly 
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worse than misclassifying a negative class. For example,  in1 the minority class is the death of the patient in the 
ICU, and the cost of a false negative error, corresponding to classifying a patient who is going to die as a survivor, 
implies failing to recognize the severity of the situation and includes postponing or ruling out treatments that 
could actually improve the patient’s life expectancy, revealing the seriousness of this error.

This simple example shows the practical inadequacy of classical cost-insensitive classification, which focuses 
on maximizing accuracy but does not take into account the costs associated with different types of classification 
errors. This is because, due to the disparity of the class distribution, the algorithms learned from the data set 
tend to assign the majority class, misclassifying the minority cases, but at the same time giving the false impres-
sion of high accuracy. That is, algorithms learned from an unbalanced data set are biased towards the majority 
class and fail to learn the underlying patterns that distinguish between classes, so they are prone to overfit the 
majority class.

To address this issue, we focus on probably the most common approach, which is over-sampling.

Over‑sampling. Over-sampling is a suitable methodology to modify the class variable distribution at a data-
level stage (pre-processing), before the learning process, to address the problem of learning classifiers from an 
imbalanced data set. In fact, it consists of creating new synthetic cases of the minority class based on the avail-
able data, and then learning the classification algorithm from the enlarged and more balanced data set, instead 
of using the original one.

The most widely used over-sampling algorithm is SMOTE (synthetic minority over-sampling technique) 
which was proposed in  20022 as an alternative to the standard random over-sampling, based on interpolation 
between neighboring cases of the minority class, and became a pioneer for the research community in imbal-
ance classification. Since then, it has become a benchmark for preprocessing imbalanced data for the purpose of 
learning classifiers from it, and has proven successful in a variety of applications from several different domains. 
Due to its popularity, SMOTE is the most influential over-sampling algorithm.

SMOTE is designed to deal with continuous features, since it over-samples the minority class by taking 
each minority class instance and introducing artificial cases by choosing points along line segments connect-
ing it with one of its (typically 5) nearest minority class neighbors in the feature space, and translates the same 
methodology to the categorical scenario, a methodology that makes no sense in this case, although it may (or 
may not) give good practical results. In fact, it generates the synthetic instances along the line segments joining 
neighbors of the k nearest neighbors in the minority class, where k is a hyper-parameter to be specified. More 
specifically, to generate a new synthetic instance, randomly selects one of two values of any categorial feature: the 
one corresponding to an instance and one of its neighbors (see details  in3). Even works that generalize SMOTE 
to handle mixed data sets of categorical and continuous features have the same drawback. For  example2, intro-
duces SMOTE-NC (Synthetic Minority Over-sampling TEchnique-Nominal Continuous) which, as described 
there, uses the median of the standard deviations of the continuous features of the minority class to define a 
“distance” between instances that differ in categorical features. Aside from the fact that this makes it impossible 
for this method to work with categorical data sets that do not contain continuous features (which BOSME can, 
however), it clearly lacks theoretical justification for this technique, regardless of whether experimentally it can 
experimentally give good results, since it requires working with the concept of “distance” between values taken by 
categorical variables. That is, the idea behind SMOTE lacks justification, in our opinion, for categorical features, 
and this method in no way approximates the distribution of minority instances.

In spite of this, until 2018, the date of the publication  of3, a large number of SMOTE-based extensions have 
been proposed in the specialized literature. And nowadays, SMOTE is still used as the main method of over-sam-
pling. See for  example4, where it is used in combination with a support vector data description SVDD model,  or5, 
where the G-SMOTE algorithm used in classification is extended to regression tasks, being G-SMOTE a variant 
of SMOTE that allows the generation of synthetic instances in a geometric region around the selected instances 
instead of in the line segment that joins them. And work continues to find variants that somehow compensate 
for SMOTE’s weaknesses focusing, for example, on the definition of the neighborhood to generate new minor-
ity samples using the Euclidean distance  (see6). However, some works critical of SMOTE have begun to appear 
recently in the same vein as ours. An example  is7, where two imbalanced binary data classification methods based 
on diversity over-sampling by generative methods are proposed as an alternative, just as we propose BOSME.

Another approach to dealing with imbalanced data sets is under-sampling, which is just the opposite of over-
sampling, meaning a removal of instances of the majority class. There is even an intermediate approach, called 
hybrid-sampling, which uses a combination of both. See, for example, the wrapper framework for applying under-
sampling and over-sampling using SMOTE  in8. Nevertheless, in this paper we will focus on over-sampling, since 
it avoids the loss of information that comes with deleting instances.

The objective of our work has been the introduction of a new general methodology of over-sampling, which 
represents a new paradigm, called Bayesian network-based over-sampling method (BOSME), which pre-pro-
cesses any set of imbalanced data by augmenting it with new cases of the minority class, so that any type of clas-
sifier can be learned from the enlarged data set. More specifically, BOSME consists of randomly generating new 
instances of the minority class using a Bayesian network. This Bayesian network is a model for the probabilistic 
relationships between the features that is learned from the subset of instances in the original data set that belong 
to the minority class, with the criterion of maximizing the likelihood.

Bayesian networks. Bayesian networks (BN) are graphical models representing the probabilistic relation-
ships among variables affecting a phenomenon, which can be (and usually are) used for probabilistic inference. 
For a set of random variables V = {X1, . . . , Xn} , a BN is a model that represents their joint probability distribu-
tion P, the graphical part of the model consisting of a directed acyclic graph (DAG), whose n nodes represent 
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the random variables. The directed arcs among the nodes represent conditional dependencies (not necessarily 
causal) governed by the Markov condition, which we explain below.

Node X is a “parent” of node Y (and Y is a “child” of X) if there is a directed arc in the DAG from X to Y. We 
denote by PA(Y) the set of parents of Y. If PA(Y) = ∅ we say that Y is a root node. If there is a path from node 
Z to node T (that is, a concatenation of directed arcs connecting them), then we say that T is a “descendant” of 
Z; if a node has no descendants, we say that it is a “leaf ”. What characterizes the BN is the Markov condition, 
which can be expressed as follows: each variable in V is conditionally independent of any of its non-descendants 
conditioning to the state of all its parents. Moreover, P can be expressed as the product of the conditional distribu-
tions of all nodes given the values of their parents, whenever these conditional distributions exist. This is what 
is known as chain rule and is formally expressed for discrete/categorical variables as follows:

for all the possible values (instantiations) xi for Xi , i = 1, . . . , n (see  Neapolitan9). The chain rule is very useful 
because it allows to obtain the joint distribution of the variables from the conditional distributions of each node 
to its parents, and from the marginal distributions of the root nodes. The probability values of these conditional 
and marginal distributions are the parameters of the BN to be learned from data.

We adopt the hill climbing greedy search-and-score-based structure learning algorithm to learn the DAG, 
which is the structure of the BN. This algorithm explores the space of the directed acyclic graphs by single-arc 
addition, removal and reversals, to find the structure that maximizes the score function, taking advantage of 
the score decomposability to decrease its complexity and make it computationally feasible. For our purpose we 
choose the logarithm of the likelihood function (logLik) as score function to be maximized, since it is a measure 
of how well the model fits the actually observed data when the parameters are estimated by using the maximum 
likelihood estimation (MLE) method.

Once we have learned from data the BN that represents the probabilistic dependency relations between the 
variables of V, both the structure and the parameters, we can obtain samples of instances following the prob-
ability distribution P entailed by the BN. For that, we will use the logic sampling (LS)  algorithm10, that generates 
instances from the network distribution by randomly selecting values for each node, weighted by the probability 
of that value occurring. Indeed, LS generates the values of a new instance starting from the root nodes, which 
are sampled from their marginal probability distributions. The nodes are traversed from the “roots” down to the 
“leaves”, so at each step the weighting probability is either the marginal or the conditional probability distribution 
entry for the sampled parent values: once the values for the root nodes have been generated, the values of their 
children in the DAG are sampled from their conditional distributions (conditional on the values already sampled 
from the parents), and so on, iteratively, until that all nodes have been visited and the values of the “leaf ” nodes 
have been sampled, and with them, those of all the nodes, finishing the process. That the instances generated in 
this way follow the distribution of P is a consequence of the chain rule.

Its character as a graphic model given by the DAG, together with the Markov condition and the Chain rule, 
which allow obtaining the joint probability distribution of the model variables (and, therefore, any other prob-
ability) from the conditional probabilities of each node to its parents in the DAG, make this probabilistic model 
a really versatile, useful and unique model in the current landscape of machine learning models.

BOSME is original and different from the other over-sampling methods in that it generates the new cases from 
a model chosen using the likelihood criterion: the more likely the model is for cases of the minority class, the 
more representative of this class the cases artificially generated from the model will be, and thus allow a classifier 
learned from the enlarged data set to better discriminate the classes.

But how many cases of the minority class must be artificially generated? It depends on what is intended with 
it. We will make sense of this question and answer it in the context of cost-sensitive learning.

Cost‑sensitive approach to classification. Cost-sensitive learning is a subfield of machine learning that 
takes into account misclassification costs when learning a classifier. It is closely related to the study of classifica-
tion in the scenario of imbalanced data sets, so they share techniques and procedures  (see11). The aim of a cost-
sensitive classifier is to minimize the expected cost of (mis)classification.

Cost-sensitive learning techniques can be categorized into two groups: black box and transparent box  (see12), 
which coincide, respectively, with the data-level and the algorithm-level approaches referred  in13. The second 
category includes methods that modify the original learning algorithm to take cost into account, which makes it 
necessary to have a deep understanding of the algorithm itself, and thus the methods are algorithm-dependent. 
In contrast, the first category (also known as indirect methods14) uses techniques as sampling, relabeling and 
weighting before the learning of the classifier, to modify the training data set in a pre-processing phase, with the 
aim of obtaining a desired class distribution based on the misclassification costs. In this paper we focus on the 
sampling indirect methods for cost-sensitive learning, what are shared with the imbalanced classification problem. 
SMOTE has been chosen as the over-sampling method for the preprocessing of imbalanced data sets in relation 
to cost-sensitive learning by different  authors8,15. In this paper we propose to use BOSME alternatively.

Much effort has been devoted so far to the development of cost-sensitive decision tree learners, but much 
less to the development of cost-sensitive Bayesian networks. See the recent  paper16, in which direct and indirect 
approaches to cost-sensitive learning of Bayesian networks were followed, and experimentally compared with a 
cost-sensitive decision tree learning algorithm, showing that they are better in terms of misclassification costs 
and accuracy.  In17, the indirect approach has been applied to some state-of-the-art Bayesian network classifiers, 

P(X1 = x1, . . . , Xn = xn) =

n∏

i=1

P(Xi = xi/PA(Xi))
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which perform better than when derived from the original training data set, and  in18 cost-sensitive Bayesian 
networks apply to rock burst prediction.

In12, the authors used resampling and reject sampling as cost-sensitive basic indirect methods, the former 
presenting the risk of severe overfitting, and the latter requiring the averaging of different classifiers to improve 
predictive performance, which might not be very good since reject sampling implies a reduction of cases in the 
data set. Compared to them, the approach we focus on, based on the use of an over-sampling method, is a meth-
odology that avoids these two sources of poor performance: overfitting and data set reduction.

When dealing with an imbalanced data set in the cost-sensitive approach scenario, considering over-sampling 
as a sampling indirect method and the expected cost as the performance metric, we see as application of the Folk 
Theorem how from the misclassification costs, we can determine a priori how many cases we should artificially 
generate from the minority class, so that the classifier that maximizes accuracy with the enlarged data set is the 
same that minimizes the expected cost with the original. In fact, the Folk Theorem states that for that, the 
distribution of the class variable must be modified with a factor proportional to the costs of misclassification. In 
this way, we can transform any supervised learning problem with costs into a costless one suitable for applying 
any cost-insensitive classifier learning algorithm, simply by conveniently extending the data entering the learning 
process with an appropriate number of new artificial instances of the minority class.

The layout of the paper is as follows. In “Section Bayesian network-based over-sampling method (BOSME)” 
we introduce and describe BOSME, including the pseudo-algorithm that implements it. “Section Application: 
sampling indirect method for cost-sensitive learning” explains the use of the Folk Theorem to determine 
the number of new artificial cases that will be generated from the minority class by applying BOSME. “Sec-
tion Experiments” describes the experimental phase to evaluate BOSME and compare it with other methods of 
over-sampling such as SMOTE, considered as benchmark, and ROSE (Random Over-Sampling Examples). The 
results of these experiments are given in “Section Results”, and we conclude with a few words in “Section Conclu-
sion”. To lighten “Section Results”, we moved to the “Appendix” some auxiliary tables.

Bayesian network‑based over‑sampling method (BOSME)
We introduce BOSME as a theoretically well-motivated over-sampling preprocessing technique that can be used 
for general data sets. That is, it can be applied both when the features are (or can be transformed into) categori-
cal, when they are mixed (categorical and continuous), and when they are all continuous. The goal is to generate 
new artificial instances of the minority class, and this method consists of randomly generate them from the joint 
probability distribution entailed by a Bayesian network that is constructed as the probabilistic model for the 
dependency relationships between the features in the minority class setting, with the highest likelihood. This 
makes BOSME a new paradigm for over-sampling methods.

The Bayesian network is learned from the subset of the data set corresponding to the instances belonging 
to the minority class. While parameters learning is carried out following the Maximum Likelihood Estimation, 
structure learning is performed following a score-based structure learning algorithm with the logarithm of the 
likelihood function (logLik) as the score function. In the case of mixed categorical and continuous features, we 
assume that

• categorical nodes can only have other categorical nodes as parents,
• the distribution of continuous nodes is a conditional linear Gaussian, that is, conditional on any combina-

tion of values of the categorical parents, and on any value of the continuous parents, the distribution of a 
continuous node is Gaussian with a linear function of the values of the continuous parents as mean value.

If all the features are continuous, we assume that they follow a joint Gaussian distribution and each variable is 
normally distributed, being its mean a linear function of its parents, and having a common standard deviation.

The learned Bayesian network is a pseudo-optimal probabilistic model for the relationship between the 
features of the minority class, since it reaches a local maximum of the likelihood function. Since the likelihood 
function is a measure of the goodness of fit of a model to the set of instances for given unknown parameters, it 
sounds quite natural to randomly generate a sample of new synthetic instances for the minority class following 
the joint probability distribution of the features entailed by the learned Bayesian network. The intuition of this 
method is clear, leaving aside its efficacy as an over-sampling method, which we will evaluate in the experimenta-
tion section, contrary to what happens with the benchmark over-sampling method SMOTE.

We introduce some notations: denote by S the original (imbalanced) data set, with M instances and with 
binary class variable V. Let m+ be the number of instances corresponding to the minority (positive) class in S, 
and m− be the number of instances in the majority class, that is, m− = M −m+ . We assume that m+

M < 0.5 (usu-
ally, but not necessarily, << 0.5 ). The original distribution of the class variable V in the data set S is therefore 
(p+, p−) , where p+ =

m+

M  and p− =
m−

M  . Therefore, BOSME’s goal is to generate a number of new instances, say 
n, of the minority class, such that in the enlarged data set augmented with the synthetically generated instances, 
denoted by S̃ , the minority class represents a desired proportion q of the total.

For the sake of explanation, we want to determine the number of instances that the over-sampling method 
will generate, n, such that

Isolating from this equation, we get that

m+ + n

M + n
= q .
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rounding to the nearest integer, since n must be a (positive) integer. In this way, the proportion actually achieved 
will be approximately q.

The steps of the BOSME over-sampling method are detailed below (see Fig. 1 and the pseudo-code in 
Algorithm 1): 

Step 1: Extract from the data set S the subset of the minority class, that is, the cases for which V is the positive 
class “+”, and denote it with S+ , which is composed of m+ instances. Only if it makes sense, that is, if the 
proportion we would like for the minority class is greater than what it initially represents and less than 1 
( m+

M < q < 1 ), we can continue.
Step 2: Construct a Bayesian network named BN as a model for the relationship between the model features (all 

variables except the class variable V) from the data set S+ , using a score-based structure learning algorithm 
with score the log-likelihood function (logLik). In this sense, BN is a pseudo-optimal model that (locally) 
maximizes the probability of the observed instances of the minority class.

Step 3: Simulate from BN as many new instances as needed by using the LS algorithm, to reach the desired 
n given by (1), with no missing values, forming a set of complete instances indicated by S′+ . Note that the 
class variable V does not appear in the generated synthetic instances, and must be added manually, taking 
the value of the minority (positive) class.

Step 4: Bind the synthetically generated instances corresponding to the minority class, S′+ , and the original S, 
to obtain the new enlarged data set S̃ = S ∪ S′+.

(1)n = round
( qM −m+

1− q

)

Figure 1.  Graphical scheme of the BOSME algorithm.
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Algorithm 1 BOSME algorithm
Input data set S, variable name V , minority class “+”, proportion q
Output enlarged data set S̃

1: Separate S into S+ (with V = “+”) and S− (with V = “-”).
2: Get

m+, the number of instances in S+,
m−, the number of instances in S−, and
M = m+ +m−

3: if m+
M < q < 1 then

4: Build a Bayesian network BN using a score-based structure learning
algorithm with score=log-Likelihood, from D = S+ without V .

5: Compute the number of new instances to be generated
n = round

(
qM−m+

1−q

)

6: Initialize S′
+ = ∅ and Count = 0

7: while Count < n do
8: Randomly generate a new instance x, following the joint probability

distribution entailed by BN
9: Update S′

+ = S′
+∪ x

10: Update Count = Count+1
11: end while
12: end if
13: Tack on S′

+ a new variable called V with all values “+”
14: Enlarge the data set by S̃ = S ∪ S′

+

Note that the amount of over-sampling, n, is a parameter of the algorithm that is deduced by (1) from the 
input q ∈ (

m+

M , 1) , which is the desired proportion for the over-sampled minority class in the final data set, 
including the new synthetic instances.

Application: sampling indirect method for cost‑sensitive learning
We denote by c+ and c− , respectively, the cost associated with misclassifying instances belonging to the positive 
(false negative) and the negative (false positive) classes. We assume that c+ > c− . So, if γ =

c+
c−

 denotes the cost 
rate, we assume that γ > 1.

We use a Folk Theorem (Translation Theorem 2.119) to determine the proper proportion q. In fact, this 
result indicates how to modify the data set to reflect the misclassification costs optimally: if we modify the dis-
tribution of the class variable V on the data set to a new one, say (p̃+, p̃−) , multiplying any of the components 
of the original distribution (p+, p−) by a constant proportional to the associated misclassification costs, the 
resulting distribution has the following property: choose the classifier that minimizes misclassification error rates 
(maximizes accuracy) under the new distribution is equivalent to choosing the classifier that minimizes the expected 
cost under the original distribution.

The rationale behind this theorem is as follows: consider a probabilistic classifier learned from the modified 
data set. Given a new instance, if the classifier assigns it to the positive class, the expected cost (with respect to 
the class distribution of the original data set) is: 0× p+ + c− p− = c− p− . Similarly, if the classifier assigns it 
to the negative class, the expected cost is 0× p− + c+ p+ = c+ p+ . Then, the assigned class that minimizes the 
expected cost (with respect to the class distribution of the original data set) is

which matches the class that minimizes misclassification error rates under the new distribution, which are p̃− if 
the predicted class is “+”, and p̃+ if the predicted class is “−”, provided that

for some constant C > 0 . Since p̃+ and p̃− must add up to 1, we obtain that the constant necessarily has to be

{
+ if c− p− < c+ p+
− if c− p− > c+ p+,

p̃+ = C p+ c+ and p̃− = C p− c−
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Therefore, to account for misclassification costs in the sampling indirect method for cost-sensitive learning, 
we will enlarge the original data set by over-sampling the minority class, and by the Folk Theorem we will 
choose the proportion q that the minority class will represent in the enlarged data set such that the modified 
distribution of the class variable is

That is,

with γ =
c+
c−

 , showing the functional dependence of q on the initial number of instances of each class and on 
the misclassification costs rate γ.

Remark 1: Note that by (2), q ∈ (
m+

M , 1) . Indeed, since m+ γ +m− > m+ γ we have that q < 1 . On the other 
hand, using M = m+ +m−,

which is true by assumption.

Experiments
We have performed some experiments to evaluate BOSME and compare it to the benchmark SMOTE. For that, 
we consider different open access data sets and some state-of-the-art classifiers. In addition to SMOTE, we also 
compare BOSME with the over-sampling method  ROSE20, which is based on a smoothed bootstrap form of re-
sampling from data, used to draw artificial samples from the feature space neighborhood around the minority 
class using a probability distribution centered at a randomly selected case and based on a smoothing matrix of 
scale parameters.

Data sets. In the experimentation phase, the data sets summarized in Tables 1 and 2 were considered, some 
with only categorical features, others with mixed features (categorical and continuous), and the rest with all 
the features continuous. In the data preprocessing phase, the missing cases of the categorical variables have 
been consigned as a new category different from the others, while for the continuous variables they have been 
eliminated. Also, when the class variable originally had more than two categories, it has been made binary by 
category merging.

Classifiers. In the experiments, we used the following three supervised machine learning algorithms for 
classification to compare BOSME with SMOTE and ROSE. 

C =
1

p+ c+ + p− c−
.

p̃+ =
p+ c+

p+ c+ + p− c−
and p̃− =

p− c−

p+ c+ + p− c−

(2)q = p̃+ =
p+ c+

p+ c+ + p− c−
=

p+ γ

p+ γ + p−
=

m+ γ

m+ γ +m−

q =
m+ γ

m+ γ +m−

>
m+

M
⇐⇒ γ (m+ +m−) > m+ γ +m− ⇐⇒ γ > 1 ,

Table 1.  Summary of data sets. For the data set Car evaluation, the categories good and v-good on one 
side, and acc and unaccc on the other, were merged. For Solar flare, we have taken the second data section 
flare.data2 as the data set as it seems to be more reliable. In Pizza price, extra-cheese has been taken as 
output class variable.

Data set Repository Instances Minority class Majority class Categorical features Continuous features

Car evaluation UCI 1728 134 (7.75%) 1594 (92.25%) 6 0

Spect heart UCI 267 55 (20.6%) 212 (79.4%) 22 0

Balance scale UCI 625 49 (7.84%) 576 (92.16%) 4 0

Monks UCI 415 186 (44.82%) 229 (55.18%) 6 0

Post-operative patient UCI 88 24 (27.27%) 64 (72.73%) 8 0

Tic-tac-toe endgame UCI 958 332 (34.66%) 626 (65.34%) 9 0

Solar Flare UCI 1066 43 (4.03%) 1023 (95.97%) 11 0

Breast cancer UCI 286 85 (29.72%) 201 (70.28%) 9 0

Pizza price KAGGLE 129 43 (33.33%) 86 (66.67%) 4 2

Haberman KEEL 306 81 (26.47%) 225 (73.53%) 0 3

Saheart KEEL 462 160 (34.63%) 302 (65.37%) 1 8

Happiness UCI 143 66 (46.15%) 77 (53.85%) 6 0
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1. Logistic Regression (LR) is a Supervised Machine Learning method dedicated to classification tasks that 
has gained popularity during the last two decades, especially in the financial sector. This method uses a 
linear regression equation to produce discrete binary outputs. We implement it through the R function 
stats::glm, using the argument “family = binomial”  (see21). Note that stats package is a part of R 
(R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https:// www.R- proje ct. org/.)

2. Random Forest (RF)22 is an ensemble learning method for classification, based on a series of decision trees 
as basic classifiers (we use the default 500). The output is the mode of the classes of the individual trees 
(according to the majority vote criterion). We use its implementation in the mlearning R package (see 
“R packages references” at end of paper).

3. Support Vector Machine (SVM)23 uses a representation of the instances of the data set by mapping them as 
points in a space, in such a way that they are separated in the two categories by a gap as wide as possible. A 
new instance is then mapped into this space; depending on which side of the gap its point representation 
falls on, the instance class is predicted to be one or the other. We use the radial basis function (RBF) kernel 
to define the map, and the implementation of the algorithm in the mlearning R package (see “R packages 
references” at end of paper).

Implementation. The implementation of the experimental phase has been carried out in two stages. In 
Stage 1, for any of the data sets described in “Section Data sets”, since we will be using k-fold cross-validation 
(with k = 10 ), we first randomly divide the data set into k folds of rougly the same dimension, and for any fold, 
we reserve it for later use as a validation set, and use the rest as a training set. Then, for any pair of training/vali-
dation sets, we follow the steps below (see the architecture of the proposed implementation in Fig. 2). 

Step 1: Use the BOSME over-sampling technique (Algorithm 1), as well as SMOTE and ROSE, for cost-
sensitive learning of the classifiers from the initial training data set, using misclassification costs and the 
initial distribution of the class variable. That is, determine the proportion q that the minority class “+” 
should represent in the enlarged training set by (2), and apply the over-sampling technique to obtain it. 
To learn the Bayesian network in Algorithm 1, we use the hill-climbing algorithm implemented in the R 
package bnlearn by means of the function hc. As score we use the option loglik when all features are 
categorical, loglik-cg in the conditionally Gaussian mixed Bayesian network case, and loglik-g in 
the Gaussian case with all the features continuous. For the simulation of the new instances corresponding 
to the minority class from the Bayesian network with the LS algorithm, we use the rbn function from the 
bnlearn package. We use the implementation of SMOTE given by the smote function of the R package 
performanceEstimation, and function ROSE of the R package of the same name, for the implementa-
tion of the ROSE oversampling method. See “R packages references” at the end of the paper.

Step 2: Learn the classifiers introduced in “Section Classifiers” from the enlarged training data sets, obtained 
in Step 1, with BOSME, SMOTE and ROSE for comparison.

Step 3: Evaluate the classifiers using the original validation set. As performance metric we use accuracy, as 
explained in “Section Application: sampling indirect method for cost-sensitive learning”.

Therefore, for each data set we get a 10-dimensional vector of values for any classifier and any of the over-
sampling methods as output of Stage 1 (see the output in the scheme depicted in Fig. 2).

To avoid possible bias, in a second stage we repeat the described procedure 10 runs with different seeds for 
the random splitting of the data set into the k folds. Next, we analyze the results obtained to make comparisons 
between BOSME, SMOTE and ROSE as shown in the flowchart described in Fig. 3, which encompasses the 
architecture portrayed in Fig. 2.

For that, we have performed pairwise statistical tests of hypotheses to determine the significance of the results. 
More specifically, for any data set and for any run, given the classifier, we can perform a paired test to compare 
the mean (or median, as appropriate) accuracy of the two corresponding samples of size 10 obtained using the 

Table 2.  Summary of data sets whose results are statistically insignificant to compare BOSME with SMOTE.

Data set Repository Instances Minority class Majority class Categorical features Continuous features

Congresional Voting UCI 435 168 (38.62%) 267 (61.38%) 16 0

Lymphography KEEL 148 6 (4.05%) 142 (95.95%) 18 0

Diabetes UCI 520 200 (38.46%) 320 (61.54%) 15 0

Zoo UCI 101 5 (4.95%) 96 (95.05%) 16 0

Qualitative Bankrupcity UCI 250 107 (42.8%) 143 (57.2%) 6 0

Dishonest UCI 322 97 (30.12%) 225 (69.88%) 4 0

Lung KAGGLE 309 39 (12.62%) 270 (87.38%) 14 1

Indian KAGGLE 399 195 (48.87%) 204 (51.13%) 5 0

TAE UCI 151 29 (19.21%) 122 (80.79%) 2 3

Bupa KEEL 345 145 (42.03%) 200 (57.97%) 0 6

https://www.R-project.org/
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BOSME, SMOTE and ROSE over-sampling methods. We use the Shapiro-Wilk normality test to choose between 
the parametric t-test and the paired non-parametric Wilcoxon signed-rank test, with the criterium that if its p 
value is < 0.05 , normality cannot be assumed and therefore the last one must be carried out; otherwise, we can 
use the paired t-test.

In this way, for each data set, each classifier and each over-sampling method, we have two counters that col-
lect the number of runs, of the 10, in which BOSME outperforms the other over-sampling method (counter+ ) 
and the number of runs for which just the opposite happens (counter− ), which are shown as the output of the 
procedure described in Fig. 3. The above procedure is performed for different values of the cost ratio γ =

c+
c−

 , 
varying between 5 and 50, from 5 to 5. The results obtained are explained in the next section.

Results
BOSME versus SMOTE. Tables 8, 9, 10, 11 and 12 in the "Appendix" summarize the results of the experi-
mental process when comparing BOSME with SMOTE. They record the number of runs (out of 10 possible) 
for which there is statistical evidence in favor of BOSME (positive number, counter+ ) and in favor of SMOTE 
(negative number, counter− ). If only a positive number appears in a box, it means that counter− = 0 , and the 
same happens if only a negative number appears, which means that counter+ = 0 . As usual, ∗ means statistical 
significance at the 0.05 level, ∗∗ at 0.01, and ∗∗∗ at 0.001.

The corresponding exact Binomial p values (used instead of the McNemar test, because the sample is small) 
have also been recorded in these tables, provided that they are significant ( < 0.05 ), for any data set and classifier, 
for the different values of γ . For example, in Table 8 with γ = 10 , for the SVM classifier and the Post opera-
tive data set, counter+ = 9 and counter− = 0 , that is, there are 9 of the 10 runs with statistical differences 
between BOSME and SMOTE, all in favor of BOSME, with a one-sided p value for the exact Binomial test equal to

One more example: in the same table, for the data set Flare with the SVM classifier, counter+ = 8 and coun-
ter− = 1 , which means that out of 10 runs, there are 9 with statistical differences between BOSME and SMOTE, 
8 in favor of BOSME and 1 in favor of SMOTE, giving a one-sided p value for the exact Binomial test in favor 
of BOSME equal to

P(B(n, 0.5) = counter+) = P(B(9, 0.5) = 9) =

(
9

9

)(1
2

)9(1
2

)0
= 0.001953125∗∗

Figure 2.  Implementation: Stage 1 architecture to compare BOSME with SMOTE (analogous with ROSE).
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In Table 3 we summarize by data set the results given in Tables 8, 9, 10, 11 and 12, showing with a positive number 
for how many classifiers BOSME has been statistically successful against SMOTE (p value < 0.05 and counter+ >

counter− ). On the contrary, a negative number expresses the number of classifiers with which SMOTE has been 
significantly better than BOSME (p value < 0.05 and counter− >counter+ ). Since we have used 3 different clas-
sifiers, +3/− 3 are the best and worst ratings, respectively, in favor of BOSME. The white boxes do not show 
significant results in any sense. The information from Table 3 is represented in Fig. 4, where we can observe 
the behavior of BOSME with respect to SMOTE for the different values of the cost ratio γ and any data set. As 
expected, although this behavior varies with the data set, in all the cases except the Saheart data set, BOSME 
outperforms SMOTE, especially for high values of γ . In Table 3 we also record the value of the β-score, which 
we enter as the sums per column. So β ranges from −36 to +36 ( 36 = 12× 3 , with 12 data sets and 3 classifiers).

Both in Table 3 and in Fig. 4 the data sets “Haberman” and “Saheart” appear to behave differently of the rest. 
These data sets have a characteristic that, together with “Pizza”, differentiates them from the rest, and that is the 
fact that some of the features are continuous, so the Bayesian network that is learned in the BOSME method is 
no longer a standard but a Gaussian Bayesian network (“Haberman”) or a hybrid Bayesian network (“Saheart”, 
“Pizza”). Therefore, it is not surprising that with these datasets BOSME does not behave so well with respect to 
SMOTE, since this last method has been designed for datasets with continuous features, and although SMOTE 
can also be used with categorical features, seems that in this case BOSME outperforms it. For both “Haberman” 
and “Saheart”, all the features (in the first), or almost (8 of 9 in the second), are continuous. However, “Pizza” is a 
hybrid case in which of the 6 features, only 2 are continuous, behaving more in line with the rest of the datasets.

Table 4 below is complementary to Table 3 in summarizing by classifier the results given in Tables 8, 9, 10, 11 
and 12. Since we have considered 12 different data sets for which there are significant results, +12/− 12 are the 
best and worst ratings, respectively, in favor of BOSME. Figure 5 below represents the information in this table 
and allows comparing the behavior of BOSME with respect to SMOTE for the different values of the cost ratio 
γ and any type of classifier. We see in Fig. 5 that although with some classifiers the behavior of BOSME relative 

P(B(n, 0.5) = counter+) = P(B(9, 0.5) = 8) =

(
9

8

)(1
2

)8(1
2

)1
= 0.01757812∗

Figure 3.  Implementation: Stage 2 procedure flowchart covering the Stage 1 architecture shown in Fig. 2. The 
letter “M” in the decision boxes denotes the mean/average or the median, depending on whether or not the 
normality of the distribution of the sample x − y can be assumed, respectively, where x and y are the output of 
Stage 1 (Fig. 2).
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to that of SMOTE is better than with others (it seems that with the Logistic Regression it is clearly worse), in 
general it improves when γ increases, regardless of the chosen classifier.

We can represent the β-score provided by Table 3 with the help of the graph in Fig. 6, where we can observe 
two interesting results: (a) the β-score turns out to be always positive, and (b) it increases with the cost ratio γ.

We can perform some statistical tests of hypotheses to check the importance of these two observed 
phenomena. 

Table 3.  Summary of the results, by data set, for different values of the cost ratio γ =
c+

c−
 . The numbers in the 

boxes indicate for how many classifiers, of the possible 3, there is statistical significance in favor of BOSME 
(positive) or in favor of SMOTE (negative, in bold). For each γ , we take count of the β-score.

γ 5 10 15 20 25 30 35 40 45 50

Car eval. +2 +2 +3 +3 +3 +3 +3 +3 +3

Spect heart +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Balance +1 +2 +2/−1 +2/−1 +2 +2 +2 +2 +2 +2

Monks +1 +1 +2 +2 +2 +2 +2 +2 +2

Post-oper. +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Tic-tac-toe +3 +3 +3 +3 +3 +3 +3 +3 +3 +3

Solar flare +2 +2 +1 +1 +1 +1 +2 +2 +2

Breast +2 +2 +2 +2 +2 +2 +3 +2 +2 +3

Pizza +1 +2 +2 +2 +2 +2 +2

Haberman +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1

Saheart /−1 /−1 /−1 /−3 /−2 /−3 /−3 /−3 /−3

Happiness +1 +1 +1 +1 +1 +1

β-score +8 +13 +12 +14 +15 +16 +16 +16 +16 +17

Figure 4.  Representation of the information in the Table 3, by data set, for the different values of γ.
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(a) Positiveness of the β-score: Indeed, in Table 3, of the 10 considered values of γ , the number of them for 
which the corresponding β-score is strictly positive is 10. The corresponding p value for the exact Binomial 
test is 

which implies a statistical significance in favor of BOSME (the one associated with the positive value of 
the β-score).

(b) Trend monotonicity of the β-score with respect to γ : We observe in Table 3 that, in general, the values 
of the β-score increase with γ (see Fig. 6). To check the statistical significance of this trend monotonicity, 
we use the Mann–Kendall  test24,25, which statistically evaluates whether there is a monotonic upward or 
downward trend of the variable of interest, which is the β-score, relative to an ordered variable like γ (which 
does not necessarily have to be temporary in nature). A monotone up (down) trend means that the variable 
consistently increases (decreases) as γ increases. If the Mann–Kendall test gives a significant positive or 
negative trend (p value < 0.05 ), which in this case will be positive, Sen’s slope captures the magnitude of 

P(B(n = 10, p = 0.5) = 10) =

(
10

10

)(1
2

)10 (1
2

)0
= 0.0009765625∗∗∗ ,

Table 4.  Summary of the results, by classifier, for different values of the cost ratio γ =
c+

c−
 . The numbers in the 

boxes indicate for how many data sets, of the possible 12, there is statistical significance in favor of BOSME 
(positive) or in favor of SMOTE (negative, in bold).

γ 5 10 15 20 25 30 35 40 45 50

SVM +5 +7/−2 +7/−2 +8/−2 +8/−2 +8/−2 +8/−2 +9/−2 +9/−2 +9/−2

RF +3 +6 +6 +7 +8/−1 +8/−1 +8/−1 +8/−1 +8/−1 +8/−1

LR +1/−1 +2 +2/−1 +2/−1 +3/−1 +3 +4/−1 +3/−1 +3/−1 +4/−1

Figure 5.  Graphic representation of the information in Table 4, by type of classifier, for the different values of γ.
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that trend (that is, it provides an estimate of the average increase in the β-score per increase of a section 
of γ ). The results of the Mann–Kendall test, and also Spearman’s rank correlation test, are given in Table 5 
below.

Table 5 shows that there is indeed a significant monotonically increasing trend in the β-score, as the cost 
ratio γ increases, which is associated with a better behavior of BOSME with respect to SMOTE. The empirical 
evidence is in the sense that: BOSME outperforms SMOTE for all the values tested in the experimental phase, 
but it also does so more the higher the value of the cost ratio γ.

BOSME versus ROSE. Comparing BOSME with ROSE similarly to the comparison with SMOTE, we find that 
there are significant differences only for the 3 data sets: Pizza price, Haberman, and Saheart. The 
results are in Tables 6 and 7.

Positiveness of the β-score for BOSME versus ROSE: in Table 6 we observe that of the 10 values considered 
for γ , the number of them for which the corresponding β-score is strictly positive is 10. The corresponding p 
value for the exact Binomial test is the same as when compared to SMOTE: 0.0009765625*** in favor of BOSME. 
Since, except in one case, all values of the β-score are constant with γ , there is not statistical significance for trend 
monotonicity (two-sided Mann–Kendall p value 0.1616).

Conclusion
The introduced BOSME is an over-sampling method that has achieved moderate to good performance against 
the SMOTE and ROSE over-sampling methods, through a series of experiments, in the context of the indirect 
cost-sensitive learning approach. This approach consists of enlarge the original imbalanced data set with a 
number of artificially generated minority instances, which is determined from the misclassification costs. In 

Figure 6.  Graphic representation of the β-score for the results of Table 3, where the evolution as the cost ratio γ 
increases can be observed.

Table 5.  β-score. Mann–Kendall test: τ statistic, two-sided p value and Sen’s slope with a confidence interval 
(CI) of 95% . Spearman’s rank correlation test: rho statistic and one-sided p value for the alternative hypothesis 
that ρ > 0.

Mann–Kendall Spearman’s rank correlation

τ Two-sided p value Sen’s slope ρ p value

0.649 0.000091*** 1.34286, 95% CI: (0.4, 2.5) 0.95672 0.000007***

Table 6.  Summary of the results, by data set, for different values of the cost ratio γ =
c+

c−
 . The numbers in the 

boxes indicate for how many classifiers, of the possible 3, there is statistical significance in favor of BOSME 
(positive) or in favor of ROSE (negative, in bold). For each value of γ , we take count of the β-score.

γ 5    10    15   20   25 30 35 40 45 50

Pizza /−1 /−1 /−1

Haberman +1 +1 +1

Saheart +2 +2 +2 +2 +2 +2 +2 +2 +3 +2

β-score +2 +2 +2 +2 +2 +2 +2 +2 +3 +2
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this way, we use over-sampling methods and take misclassification costs into account, to extend the data used 
to feed cost-insensitive supervised learning algorithms.

In fact, the results empirically show that in the context of the cost-sensitive approach, 

(a) there is statistical evidence in favor of BOSME dominance over SMOTE,
(b) this evidence is stronger as the cost ratio γ increases, and for data sets with all categorical features (above 

continuous or mixed type),
(c) there is slight evidence in favor of BOSME’s dominance over ROSE, which remains constant as γ varies.

Other highlights of this new method that distinguish it from SMOTE are: 

1. BOSME is a novel over-sampling method based on a new paradigm, using Bayesian networks.
2. The generation of the artificial instances of the minority class is carried out from a model for the relationship 

between the features, instead of using the idea of distance between instances, which is the paradigm followed 
by SMOTE and its derivatives.

3. Maximizing the likelihood function is the criterion for choosing the Bayesian network to use as a model. In 
this way, the model will be the most plausible given the minority instances, and approximates their prob-
ability distribution.

4. The Bayesian network is then a good model that captures the relationship between the features for the minor-
ity class, with which generate new instances of this class that are really representative, and from them, learn 
classifiers that can better differentiate between the two classes, improving their predictive power.

5. This method has wide applicability, for all kinds of features.

Table 7.  Summary of the results, by classifier, for different values of the cost ratio γ =
c+

c−
 . The numbers in 

the boxes indicate for how many data sets, of the possible 3, there is statistical significance in favor of BOSME 
(positive) or in favor of ROSE (negative, in bold).

γ 5 10 15 20 25 30 35 40 45 50

SVM +1/−1 +2/−1 +2/−1 +1 +1 +1 +1 +1 +1

RF +1 +1 +1

LR +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Table 8.  Number of runs (of the possible 10) for which there is statistical evidence in favor of BOSME 
(positive number, counter+ ) or SMOTE (negative in bold, counter− ), and the corresponding exact Binomial 
p value, for any data set with significant differences, and classifier: Support Vector Machine (SVM), Random 
Forest (RF) and Logistic Regression (LR). γ = 5, 10.

γ = 5 γ = 10

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+7
0.00781**

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +6
0.01563*

Post-oper. +7
0.00781**

+9
0.00195**

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +8/−1
0.01758*

+7
0.00781**

Breast +9
0.00195**

+10
0.00098***

+10
0.00098***

+10
0.00098***

Pizza +10
0.00098***

Haberman +5
0.03125*

/−6
0.01563*

/−9
0.00195**

+7
0.00781**

Saheart /−7
0.00781**

Happiness
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As a consequence, we conclude that BOSME, which is the method presented in this paper, is a reasonable over-
sampling method that has shown very promising results for implementing indirect cost-sensitive learning, in 
the duel against the benchmark SMOTE, especially in the case of having data sets with all features of categorical 
type, and for a moderate to high cost ratio. In the case of data sets with mixed features, BOSME does not perform 
better but it can withstand SMOTE’s onslaught. With respect to ROSE, significant differences are only observed, 
in favor of BOSME, in the case of mixed features. Therefore, given that its results in the experimental phase 

Table 9.  Analogous to Table 8 but with γ = 15, 20.

γ = 15 γ = 20

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+7
0.00781**

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

−10
0.00098***

+10
0.00098***

+10
0.00098***

−9
0.00195**

Monks +10
0.00098***

+5
0.03125*

+9
0.00195**

Post-oper. +9
0.00195**

+9
0.00195**

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +6
0.01563*

+8
0.00391**

+8
0.00391**

Breast +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Pizza +8
0.00391**

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−10
0.00098***

Happiness

Table 10.  Analogous to Table 8 but with γ = 25, 30.

γ = 25 γ = 30

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+8
0.00391**

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +6
0.01563*

+10
0.00098***

+9
0.00195**

+10
0.00098***

Post-oper. +9
0.00195**

+9
0.00195**

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +8
0.00391**

+9
0.00195**

Breast +10
0.00098***

+10
0.00098***

+10
0.00098***

+9
0.00195**

Pizza +7
0.00781**

+5
0.03125*

+10
0.00098***

+6
0.01563*

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−5
0.03125*

/−6
/0.01563*

/−10
0.00098***

/−7
0.00781**

Happiness +5
0.03125*

+6
0.01563*
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have been very promising, we promote the use of BOSME as an over-sampling methodology with completely 
general applicability.

In future research, we will try to deepen the study of the effect of the type of features and the distribution of 
the class variable in the data set, on the behavior of BOSME, and we will compare it with other methods of over-
sampling using more data sets. We are also interested in considering extensions/modifications of the version of 

Table 11.  Analogous to Table 8 but with γ = 35, 40.

γ = 35 γ = 40

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +10
0.00098***

+10
0.00098***

+7
0.00781**

+10
0.00098***

Post-oper. +10
0.00098***

+10
0.00098***

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +9
0.00195**

+5
0.03125*

+9
0.00195**

Breast +10
0.00098***

+10
0.00098***

+6
0.01563*

+10
0.00098***

+10
0.00098***

Pizza +9
0.00195**

+6
0.01563*

+8
0.00391**

+5
0.03125*

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−9
0.00195**

/−6
/0.01563*

/−10
0.00098***

/−9
0.00195**

/−8
/0.00391**

Happiness +7
0.00781**

+7
0.00781**

Table 12.  Analogous to Table 8 but with γ = 45, 50.

γ = 45 γ = 50

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +9
0.00195**

+10
0.00098***

+10
0.00098***

+10
0.00098***

Post-oper. +10
0.00098***

+10
0.00098***

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +7
0.00781**

+9
0.00195**

+7
0.00781**

+9
0.00195**

Breast +10
0.00098***

+10
0.00098***

+10
0.00098***

+9
0.00195**

+5
0.03125*

Pizza +10
0.00098***

+7
0.00781**

+10
0.00098***

+6
0.01563*

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−8
0.00391**

/−9
/0.00195**

/−10
0.00098***

/−8
0.00391**

/−9
/0.00195**

Happiness +8
0.00391**

+7
0.00781**
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BOSME that we present in this paper, for example by introducing tree-width constraints on the learning structure 
that would lead to less complex structures.

R packages references

• performanceEstimation (version 1.1.0). Function: smote. Reference: Torgo, L. An Infra-Structure 
for Performance Estimation and Experimental Comparison of Predictive Models in R (2014). arXiv: 1412. 
0436 [cs.MS]

• ROSE (version 0.0-3). Function: ROSE. Reference: Lunardon, N., Menardi, G.,Torelli, N. ROSE: a Package 
for Binary Imbalanced Learning. R Journal, 6:82–92 (2014).

• mlearning (version 1.0-0). Functions: mlSvm and mlRforest. Reference: Grosjean, Ph., Denis, K. 
mlearning: Machine learning algorithms with unified interface and confusion matrices (2013). https:// 
CRAN.R- proje ct. org/ packa ge= mlear ning

• bnlearn (version 4.7). Functions: hc and rbn. Reference: Scutari, M. Learning Bayesian Networks with 
the bnlearn R Package. Journal of Statistical Software vol. 35(3), pp. 1–22 (2010). http:// www. jstat soft. org/ 
v35/ i03/

Code availability
The data sets analyzed during the current study are available in the following repositories: (1) UCI: https:// archi 
ve. ics. uci. edu/, (2) KAGGLE: https:// www. kaggle. com/, (3) KEEL https:// sci2s. ugr. es/ keel/ data sets. php.

Data availability
The R source code for this project is available upon reasonable request.

Appendix
See Tables 8, 9, 10, 11 and 12. 
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