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Identifying human proteins that interact with SARS-CoV-2 genome is important to
understand its replication and to identify therapeutic strategies. Recent studies have
unveiled protein interactions of SARS-COV-2 in different cell lines and through a number of
high-throughput approaches. Here, we carried out a comparative analysis of four
experimental and one computational studies to characterize the interactions of SARS-
CoV-2 genomic RNA. Although hundreds of interactors have been identified, only twenty-
one appear in all the experiments and show a strong propensity to bind. This set of
interactors includes stress granule forming proteins, pre-mRNA regulators and elements
involved in the replication process. Our calculations indicate that DDX3X and several
editases bind the 5′ end of SARS-CoV-2, a regulatory region previously reported to attract
a large number of proteins. The small overlap among experimental datasets suggests that
SARS-CoV-2 genome establishes stable interactions only with few interactors, while many
proteins bind less tightly. In analogy to what has been previously reported for Xist non-
coding RNA, we propose a mechanism of phase separation through which SARS-CoV-2
progressively sequesters human proteins hijacking the host immune response.
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INTRODUCTION

Identification of viral interactions within the host cell can lead to the design of novel strategies against
infection. Recently, different high-throughput strategies have been implemented to characterize host
interactions with SARS-CoV-2 proteins and genomic RNA.

Non-structural proteins of SARS-CoV-2 have been used for affinity purification to retrieve host
binding partners using mass spectrometry in HEK-293T/17 cells (Gordon et al., 2020). A total of 332
interactions between human and SARS-CoV-2 proteins have been identified. Around 40% of SARS-
CoV-2 interacting proteins are associated with vesicle trafficking pathways and endomembrane
compartments.

Here, we focus on four experimental studies aiming to characterize interactions with SARS-CoV-
2 genomic RNA.

In one experiment, a multi-omic approach was employed to identify which viral and human
RNA-binding proteins (RBPs) are involved in SARS-CoV-2 infection (Kamel et al., 2021). The
“comparative RNA interactome capture” (cRIC) method was developed to find in which way the
RNA-bound proteome responds to the infection. The results show that SARS-CoV-2 genome is the
epicenter of critical interactions with host proteins: many cellular RBP networks are remodeled upon
SARS-CoV-2 infection and around 300 proteins are affected, mostly related to RNA metabolic
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processes and antiviral defenses. A second approach called “viral
RNA interactome capture” (vRIC) was employed to identify
cellular and viral proteins interacting with SARS-CoV-2
genomic RNA (Kamel et al., 2021). Inhibition of specific
proteins interacting with viral RNA was shown to impair
SARS-CoV-2 infection.

In another study (Lee et al., 2021), the repertoire of host
proteins associated with SARS-CoV-2 and HCoV-OC43
genomes was identified. The work relies on a robust
nucleoprotein (RNP) capture protocol. More than 100 host
factors directly binding to SARS-CoV-2 RNA were detected.
By applying RNP capture on HCoV-OC43, evolutionary
conserved interactions between the viral RNAs and the host
proteins could be identified. Upon knockdown experiments
and transcriptome analysis, Lee et al. identified 17 antiviral
and 8 pro-viral RBPs that have a role in several steps of the
mRNA life cycle. The authors identified La-related protein 1
(LARP1), a downstream target of the mTOR signaling pathway,
as an important antiviral host factor that interacts with SARS-
CoV-2 RNA.

Another group exploited an approach in which a
comprehensive identification of RBPs followed by mass
spectrometry (ChIRP-MS) led to the identification of host
proteins that bind SARS-CoV-2 genomic RNA during active
infection (Flynn et al., 2021). The results were corroborated
with analyses from three RNA viruses and contributed to
characterize the specificity of virus-host interactions. Flynn
et al. also carried out a series of targeted CRISPR screens that
highlighted the fact that a big portion of functional RNA-binding
proteins act as host’s protectors from virus-induced cell death.
Comparative CRISPR screens, performed across seven RNA
viruses, reveal both shared and SARS-specific antiviral factors.
By combining the RNA-centric approach and the functional
CRISPR screens, the authors found a functional connection
between SARS-CoV-2 and mitochondria, showing that this
organelle is a platform for antiviral activity.

A slightly different experiment led to the identification of more
than 100 human proteins that directly and specifically bind to
SARS-CoV-2 RNAs in infected cells, performing RNA antisense
purification and mass spectrometry. Schmidt et al. linked SARS-
CoV-2 interactome with changes in proteome abundance
induced by viral infection, identifying cellular pathways
relevant to SARS-CoV-2 infections. The authors demonstrated
by genetic perturbation that both Cellular Nucleic-acid Binding
Protein (CNBP) and LARP1, which are two of the most enriched
viral RNA binders, have the ability to restrict SARS-CoV-2
replication in infected cells and provide a general map of their
direct RNA contact sites. The authors demonstrated a reduced
viral replication rate in two human cell lines after a
pharmacological inhibition of three other binding partners
(PPIA, ATP1A1, ARP2/3 complex).

As experimental studies require time and resources and are
affected by intrinsic limitations (for instance mass-spec cannot
identify every protein with the same efficiency), computational
methods can be exploited to prioritize candidate targets. We
previously used the CROSS method (Delli Ponti et al., 2017) to
predict secondary structure content of and the catRAPID

approach (Bellucci et al., 2011; Agostini et al., 2013b; Cirillo
et al., 2017) to compute >100000 human protein interactions with
SARS-CoV-2 genomic RNA (Vandelli et al., 2020). The 5′ and 3′
end of SARS-CoV-2 were found to be highly structured, in
agreement with subsequent experimental reports (Manfredonia
et al., 2020) and show strong propensity to interact with human
proteins. Among the identified interactors we identified there are
several RNA editases and ATP-dependent RNA helicases that
play a role in viral RNA processing and have a high propensity to
participate in large macromolecular complexes. A number of
proteins are predicted to be sequestered by SARS-CoV-2 genome
and their recruitment contributes is thought to modify both the
transcriptional and post-transcriptional regulations of host cells.

Here, we analyzed four experimental and one computational
studies on human RBPs interactions with SARS-CoV-2 genomic
RNA. We exploited the catRAPID algorithm to estimate the
ability of proteins to bind SARS-CoV-2 and identified a tight
correlation between the number of experiments in which a
specific protein is detected experimentally and its predicted
binding affinity. Finally, we propose a model in which SARS-
CoV-2 RNA promotes the formation of a phase-separated
assembly by sequestering specific human proteins.

RESULTS

Interactomes Comparison
To retrieve interactions relevant for SARS-CoV-2 infection, we
analysed four protein-RNA interactome experiments
(Supplementary Material S1).

Twenty-one proteins were found in common to the four datasets
(Flynn et al., 2021; Kamel et al., 2021; Lee et al., 2021; Schmidt et al.,
2021) (Figure 1A). The list includes PABPC1 (Polyadenylate-
binding protein 1), SND1 (Staphylococcal nuclease domain-
containing protein 1), PPIA (Peptidyl-prolyl cis-trans isomerase
A), DDX3X (ATP-dependent RNA helicase DDX3X),
HNRNPA2B1 (Heterogeneous nuclear ribonucleoproteins A2/B1),
HNRNPA0 (Heterogeneous nuclear ribonucleoprotein A), G3BP1
(Ras GTPase-activating protein-binding protein 1), G3BP2 (Ras
GTPase-activating protein-binding protein 2), EIF4B (Eukaryotic
translation initiation factor 4B), RPS2 (40S ribosomal protein S2),
RPS3 (40S ribosomal protein S3), EIF3G (Eukaryotic translation
initiation factor 3 subunit G) and YBX1 (Y-box-binding protein 1),
Supplementary Tables S1, S2).

These proteins form a dense protein-protein network
(Figure 1B) containing several stress granule components
(G3BP1, G3BP2, EIF4B, DDX3X, YBX1, PABPC1), ribosomal
units (RPS2 and RPS3) and pre-mRNA processing units
(HNRNPA1/B2, HNRNPA0, YBX1) (Warde-Farley et al., 2010).
The biological relevance of these interactions is confirmed by the fact
that SARS-CoV-2 N protein impairs stress granule by sequestering
G3BP1 (Lu et al., 2021; Zheng et al., 2021). RPS2 and RPS3 are
important because the NSP1 protein of SARS-CoV-2 is responsible
for the impairment of mRNA translation by blocking the entry
access to the ribosome. The docking within the ribosomal entry
channel occurs through binding with RPS2 and RPS3 together with
18S RNA (Mendez et al., 2021).
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Some of these proteins have been shown to be also relevant for
other viruses’ infection. SND1 is involved in Epstein-Barr infection
(Tong et al., 1995); PABPC1 positively regulates Dengue virus
infection (Suzuki et al., 2016); PPIA acts as a mediator for SARS-
CoV nucleoprotein during the cell invasion process and stimulates
RNA-binding ability of HCVNS5A (Chen et al., 2005; Foster et al.,
2011); EIF3G is involved in FCV infection process (Pöyry et al.,
2007) and DDX3X has been shown to facilitate the viral replication
of other several viruses, such as HIV-1, Dengue, Zyka, Venezuelan
equine encephalitis and hepatitis C virus (Yedavalli et al., 2004;
Amaya et al., 2016; Doñate-Macián et al., 2018). DDX3X has been
identified as a suitable target to fight against SARS-CoV-2 infection
by Ciccosanti et al. (2021). More precisely, DDX3X has the
capability of unfolding viral RNA secondary structures
(Kukhanova et al., 2020) as reported for HIV-1 (Brai et al.,
2020) in which it enhances both translation and nucleus-to-
cytoplasm transport (Stunnenberg et al., 2018), and West Nile
(Brai et al., 2019). DDX3X belongs to the DEAD-box family of
ATP-dependent RNA helicases and assumes a crucial role in an
important variety of processes concerning RNA metabolism,
including transcription, splicing, and initial phase of translation
(Ariumi, 2014). Importantly, DDX3X interacts with the N protein
of SARS-CoV-2 and is required to infect both Vero E6 and Calu-3
cells (Ciccosanti et al., 2021). Additionally, SARS-CoV-2 protein N
interacts withDDX3X to inhibit its activity in the antiviral response
(Winnard et al., 2021). For these reasons, treating cells with
DDX3X inhibitors represents a promising approach to block
SARS-CoV-2 replication and viral production (Maga et al.,
2011; Brai et al., 2020).

Relationship Between Experimental
Interactomes and Computational
Predictions
We used the catRAPID method to understand the relationship
between experimental evidence of binding and predicted
interaction propensity that estimates interaction affinity
(Agostini et al., 2013a; Cid-Samper et al., 2018). For this
analysis we followed a procedure previously introduced to
study the interactome of the long non-coding RNA Xist
(Cirillo et al., 2017). We computed all SARS-CoV-2
interactions with proteins reported in the four experimental
datasets and counted how many times they were identified
(Supplementary Material S1). We observed a distinct
correlation between occurrence and strength of interactions,
indicating that high-affinity interactions are more likely to be
detected (Figure 1C). We note that in the case of Xist, strong
interaction proteins were predicted to initiate the formation of a
phase-separated assembly (Cerase et al., 2019, 2022), as recently
confirmed experimentally (Markaki et al., 2021; Jachowicz et al.,
2022).

Evaluation of the Predictions of
SARS-CoV-2 Protein Interactions
The vRIC dataset by Kamel et al. contains both enriched and
depleted interactions (Kamel et al., 2021) and thus can be used to
assess the ability of catRAPID to distinguish between binding and
non-binding proteins. To analyze the vRIC interactome, we

FIGURE 1 | Datasets of protein interactions with SARS-CoV-2 genome. (A) experimental datasets (Flynn et al., 2021; Kamel et al., 2021; Lee et al., 2021; Schmidt
et al., 2021). The name of each dataset is shown above the diagrams. (B) diagram showing the protein-protein interactions among the 21 proteins identified in the four
experiments, as annotated by GeneMANIA (Warde-Farley et al., 2010). (C) catRAPID interaction scores (Agostini et al., 2013b; Armaos et al., 2021) correlate with the
number of experiments reporting a protein to interact with SARS-CoV-2, indicating that strong binding proteins are more likely to be identified; *p-value < 0.05;
**p-value < 0.01 (Wilcoxon rank sum test); I II, II, III and IV indicate proteins detected in 1,2,3 or 4 experiments, respectively.
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computed catRAPID predictions of interactions with an
experimental FDR <0.10 for SARS-CoV-2 RNA following a
procedure detailed in a previous work (Vandelli et al., 2020)
(Supplementary Material S1).

As shown in Figure 2A, catRAPID performs extremely well
when the proteins are ranked according to their experimental
scores (fold change; Supplementary Table S3): the predictive
power is proportional to the significance of protein interactions:
the Area Under the ROC Curve (AUC) increases from 0.60 to
0.99 while the experimental scores move from 30% (i.e., the 30%
strongest positives vs. the 30% strongest negatives) to 2.5%
(i.e., the 2.5% strongest positives vs. the 2.5% strongest
negatives). Thus, in agreement with the results presented in
Figure 1C, computational approaches such as catRAPID can
be exploited to address the problem of which proteins bind more
tightly to SARS-CoV-2 genome.

Specific Binders to SARS-CoV-2 Genomic
Fragments
catRAPID was employed for the localization of protein binding sites
on SARS-CoV-2 genomic RNA. To identify which regions of SARS-
CoV-2 bind to specific proteins, we computed interactions for the
four experimental protein datasets (30 fragments; Supplementary
Material S4), a procedure already proven to be efficient in a previous
work (Vandelli et al., 2020).

For each dataset the proteins bound to one fragment at a
certain interaction threshold were retained as interactors. We
applied three Z-score thresholds (Z ≥ 1.5, Z ≥ 1.75 and Z ≥ 2) in

order to evaluate the binding at the different levels of stringency.
Higher Z-scores correspond to higher interaction strength
(Supplementary Material S5).

Regions encompassing nucleotides 1–1000, 1001–2000,
22001–23000, 26001–27000, 28001–29000, 29001–29903
(Fragments 1, 2, 23, 27, 29 and 30 respectively) are the most
contacted SARS-CoV-2 regions, with a high number of
interactors in fragments 1, 2 and 30. (Figure 2B; Supplementary
Figures S1–S3). In particular, fragment 1, corresponding to the 5′
end of SARS-CoV-2 genome, is the region showing the highest
number of specific interactors in all four datasets, as previously
discovered (Vandelli et al., 2020). DDX3X is the only common
interactor reported in the experimental and computational studies.
At a Z ≥ 1.75 we DDX3X is found to bind specifically to fragment 1
of SARS-CoV-2.

Experimental Interactors Have a High
Propensity to Phase-Separate
Stress granules facilitate the establishment of an antiviral state by
limiting viral protein accumulation and regulating signaling cascades
that affect replication (McCormick and Khaperskyy, 2017). The
sequestration of G3BP1, G3BP2, EIF4B, DDX3X, YBX1, PABPC1,
among other proteins, is part of a mechanism through which SARS-
CoV-2 eludes the host immune response by weakening the
formation of stress granules (Lu et al., 2021; Zheng et al., 2021).
Biochemically, stress granule proteins form labile protein-protein
and protein-RNA interactions (Balcerak et al., 2019; Vandelli et al.,
2022), which induces the condensation in liquid-liquid phase

FIGURE 2 | catRAPID and catGRANULE predictions of protein interactions. (A) catRAPID performance evaluation. On the X axis we report different portions of the
experimental dataset ranked by fold change and on the Y axis there is the corresponding predictive power (Area Under the ROC Curve, AUC). On the right, we report a
summary table showing the Uniprot IDs of top 2.5%, 5% and 7.5% experimental cases. (B) Distribution of specific binders for Kamel et al. dataset (Kamel et al., 2021).
Themost contacted SARS-CoV-2 genomic regions correspond to the 5’ (first fragment) e 3’ (30th fragment). (C) catGRANULE phase separation propensity scores
correlate with the number of experiments reporting a protein to interact with SARS-CoV-2 (Bolognesi et al., 2016; Cid-Samper et al., 2018); *p-value < 0.05; ****p-value <
0.0001 (Wilcoxon rank sum test); I II, II, III and IV indicate proteins detected in 1,2,3 or 4 experiments, respectively.
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separated assemblies (Gotor et al., 2020). We reasoned that the
relatively small overlap among experimental datasets (Figure 1A)
could be caused by the establishment of weak molecular interactions
with SARS-CoV-2 RNA. In agreement with this observation,
previous studies have suggested that phase separation could be a
mechanism through which SARS-CoV-2 attracts host proteins
(Iserman et al., 2020; Vandelli et al., 2020).

Using the catGRANULE algorithm to predict phase
separation propensities (Bolognesi et al., 2016; Cid-Samper
et al., 2018) we analyzed the interactomes of the four
experimental datasets. We discovered that the phase
separation propensity correlates with how many times proteins
are identified experimentally (Figure 2C). Considering that
strong binding propensities are associated with proteins
reported in the four experiments (Figure 1C) and the
reliability of our approach (Figure 2A), we speculate that a
possible mechanism of action for SARS-CoV-2 is to target
proteins that attract other partners through phase separation.

DISCUSSION

This work is a comparative analysis on protein-RNA interactomes
reported in experimental and computational studies. We found
several proteins shared by the four experiments, including
PABPC1, SND1, PPIA, EIF3G and DDX3X, which previous
studies have shown to regulate replication of viruses.

DDX3X is found in all the experimental studies and it has been
proven fundamental in SARS-CoV-2 biological processes and in
the replication process of other viruses (Maga et al., 2011; Ariumi,
2014; Stunnenberg et al., 2018; Brai et al., 2019, 2020; Kukhanova
et al., 2020; Ciccosanti et al., 2021; Winnard et al., 2021).
catRAPID predictions of human protein interactions with
SARS-CoV-2 showed a prevalence of specific binders to the 5′
end of the virus, with DDX3X being one of them. Since catRAPID
reproduces experimental data to a remarkable extent, as assessed
by directly comparing performances at different cut-offs, we
believe that this information on the localization of protein
interactions is to be taken into account for future analyses.

Predictive studies always have a margin of error, so further work
will be necessary for a complete understanding of the specific
binding sites and the role(s) of proteins in the context of infection.

In a recent study (Cirillo et al., 2017), we reported that the long
non-coding RNA Xist physically interacts with few specific
proteins that attract several other proteins (Cerase et al., 2019)
forming a phase-separated assembly that silences the X
chromosome (Cerase et al., 2022; Jachowicz et al., 2022). The
relatively poor overlap of interactors among SARS-CoV-2 studies
(only 21 proteins in common out of hundreds identified in total)
suggests a mechanism similar to the one identified for Xist. The
fact that SARS-CoV-2 binding proteins are either stress granules
components or have high phase separation propensity supports
our hypothesis. Indeed, phase separation is caused by weak
protein-protein or protein-RNA interactions (Balcerak et al.,
2019; Vandelli et al., 2022), which renders the identification of
binding partners particularly difficult at the experimental level
(Tartaglia, 2016; Cerase and Tartaglia, 2020) and could hamper

their reproducibility. Moreover, the fact that proteins with the
highest interaction and phase separation propensities were
identified in all experimental studies suggests that they could
act as the primary attractors to ignite the formation of an
assembly that is capable of using host elements for replication.
Further work is needed to study this fundamental aspect of SARS-
CoV-2 biology and how it could be exploited to prevent viral
infection. For example, molecular chaperones (Tartaglia et al.,
2010; Alagar Boopathy et al., 2022) could be important players
(Guihur et al., 2020) to be investigated in more detail.
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